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| Chapter 17

Achievements in targeted
therapies
Paolo Bironzo, Teresa Mele and Silvia Novello

Cytotoxic chemotherapy has historically been the cornerstone of advanced lung cancer
treatment, but in recent years, new insights into the molecular pathways of this tumour have
led to important therapeutic advances. The definition of different molecular profiles
characterise some subpopulations that potentially will benefit from each target agent in
terms of efficacy and quality of life. This landscape is evolving quickly as new oncogenic
drivers are becoming the target for specific drugs. In this chapter, the state of the art will be
presented together with perspectives on targeted therapies in lung cancer.

Targeted therapies are the perfect example of precision medicine and their role is rapidly
emerging throughout different oncological diseases, including lung cancer. As opposed

to traditional cytotoxic chemotherapy, which unselectively addresses rapidly dividing cells,
targeted therapies are specific inhibitors of different molecules involved in cancer cell
growth, survival or neoangiogenesis.

For many years, standard first-line systemic treatment for metastatic NSCLC has consisted
of doublet chemotherapy (carboplatin or cisplatin, combined with a non-platinum-derived
cytotoxic agent, such as taxanes, gemcitabine, vinorelbine or, more recently, pemetrexed).
The introduction of targeted agents in the last few years has deeply changed the treatment
paradigm in this setting and markedly modified the natural history of this disease.

The better understanding of molecular mechanisms underpinning oncogene addiction [1]
has allowed, in the last 10 years, for the identification of different molecular subtypes of
NSCLC, each dependent on a specific molecular driver, ultimately resulting in a
constitutively active mutant signalling protein.

As depicted in figure 1, the most frequent molecular drivers described in NSCLC are EGFR
mutations, ALK rearrangements, FGFR and Kirsten rat sarcoma viral oncogene homologue
(KRAS) mutations.

However, to date, known and confirmed “druggable” mutations in everyday clinical practice
are limited to lung ADCs (about 50% of all NSCLC). Outside these alterations, treatment
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choice is still dependent on the histological subtype or clinical characteristics, and mainly
limited to cytotoxic drugs.

The following sections will describe those targeted agents already approved by regulatory
agencies in lung ADCs and some new ones that will enter clinical practice in the near future.

EGFR and EGFR-directed agents

The EGFR gene is located on chromosome 7p12–13 and encodes a 170-kDa receptor
tyrosine kinase [3]. EGFR (also known as HER1) is a transmembrane receptor, belonging
to the ERBB family of cell-surface receptor tyrosine kinases together with HER2, HER3 and
HER4, having an extracellular ligand-binding region, a single membrane-spanning region
and a cytoplasmic tyrosine kinase-containing domain. Signalling through EGFR activation
is pivotal to cell proliferation, evasion of apoptosis, angiogenesis and metastasis in various
neoplasms, including NSCLC [4].

EGFR binding to EGF (its main ligand) triggers receptor homo- or heterodimerisation with
other ERBB members on the cell surface, leading to activation of the intrinsic kinase
domain and phosphorylation of tyrosine residues within the cytoplasmic tail. This process
activates downstream effectors such as Ras/Raf/mitogen-activated protein kinase kinase
(MEK)/extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase and
phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT/mTOR, with consequent cell

EGFR

HER2

KRAS

MEK1

MET

NRAS

PIK3CA

RET

PTEN

ROS1
AKTALK

BRAF

DDR2

FGFR1

Figure 1. Frequency of known driver mutations in NSCLC. KRAS: Kirsten rat sarcoma viral oncogene
homologue; MEK1: mitogen-activated protein kinase kinase 1; MET: Met; NRAS: neuroblastoma Ras viral
oncogene homologue; PIK3CA: phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit α; PTEN:
phosphatase and tensin homologue; RET: Ret; ROS1: c-ros; BRAF: B-Raf; DDR2: discoidin domain receptor
2. Data from [2].
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survival and proliferation. Other EGFR ligands include TGF-α, amphiregulin, epigen,
betacellulin, heparin-binding EGF and epiregulin [4, 5].

Under normal circumstances, EGFR signalling relies on ligand-dependent activation of the
receptor. However, EGFR mutations can independently sustain cell growth and survival.

EGFR mutations are localised in exon 19, mainly consisting of an in-frame deletion
(45–50%), and in exon 21, consisting of the L858R point mutation (40–45%); many other
less common mutations have been also identified [6]. As far as clinical characteristics are
concerned, EGFR mutations are known to be more commonly observed in never-smokers,
ADC, women and Asian people [7]. In unselected NSCLC, this genetic alteration is found in
about 10% of the Caucasian population, as opposed to 30% of the Asian population [8–10].

EGFR-directed agents can be divided into different subgroups presented in table 1. EGFR
TKIs are the key drugs in the management of EGFR mutant NSCLC patients. The selection
of cases cannot rely on clinical characteristics and mutation testing in this subset of
patients drives treatment decisions. EGFR mutation analysis must be performed according
to evidence-based recommendations [11].

EGFR-activating mutations cluster in the catalytic kinase domain; although over 100
mutations in the kinase domain have been identified in lung ADCs, most patients harbour
one of seven major mutations (exon 19 deletion (del-19), L858R in exon 21, exon 20
insertions, G719X, L861X, exon 19 insertions and T790M [12], exon 19 deletion and
L858R accounting for about 85% of EGFR mutations [13–15]).

EGFR mutation detection

EGFR mutation testing is recommended in nonsquamous histology and never-smokers
(independently of histotype) by a validated mutation test and it can be performed on the
primary tumour or at a metastatic site. Several methods are currently available for this
purpose, including direct sequencing and PCR [16].

These tests could be classified in two main groups: screening methods, i.e. those detecting
all mutations in exons 18–21 including novel variants, and targeted methods, i.e. those
identifying only already described mutations. IHC using mutation-specific antibodies has also
been evaluated [17–22], but is not widely adopted due to concerns about its lower sensitivity
and specificity compared with DNA-based molecular techniques. According to European
Society for Medical Oncology guidelines, a wide coverage of mutations in exons 18–21 is
strongly recommended, together with the identification of drug resistance-conferring
mutations (such as exon 20 insertions or T790M substitution). EGFR mutation detection in
peripheral blood has recently been shown to be highly predictive of the corresponding
mutational status of the primary tumour [23].

First-generation EGFR TKIs: gefitinib and erlotinib

First-generation TKIs were initially investigated in early phase II trials in previously treated,
unselected patients [24, 25]: clinical benefit was observed within 3–4 weeks of treatment
and responses (response rates ranging from 12% to 18%) were found to be higher in ADC
histology, never-smokers and female patients.
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Subsequent phase III trials comparing platinum-based chemotherapy in association with a
first-generation TKI versus chemotherapy alone in unselected patients did not show any
significant difference in terms of survival (both in patients treated with gefitinib or
erlotinib) [26–30]. A similar lack of success was reported in a large phase III trial (Iressa
Survival Evaluation in Lung Cancer) comparing gefitinib with placebo as a second- or
third-line treatment for locally advanced or metastatic NSCLC [31].

However, a trial by SHEPHERD et al. [32] demonstrated a survival benefit in unselected
patients treated with erlotinib after failure of first- and second-line chemotherapy, and this
led to the approval of erlotinib in NSCLC as a second- or third-line treatment (regardless
of the mutational status).

As opposed to the early trials, different results were drawn from later studies in which
patients were treated with EGFR-directed agents as a first-line treatment after being selected
according to their clinical characteristics and, further on, according to specific molecular
characteristics (EGFR mutational status).

In the Iressa Pan-Asia Study, Asian patients were selected according to their smoking history
(never- or light smokers) and histology (ADC), and randomised to carboplatin–paclitaxel
versus gefitinib as a first-line treatment. The primary end-point was PFS. Activating EGFR
mutations were found in 60% of tested patients, and both overall response rate (ORR) and
PFS favoured single-agent gefitinib in this subgroup. No significant difference in overall
survival was observed and this was attributed to patient crossover from chemotherapy to
gefitinib at the time of relapse [28]. In pointing out the role of EGFR mutations as predictive
biomarkers in patients treated with gefitinib, this pivotal trial changed clinical practice. The
beneficial role of a first-generation TKI in the Caucasian population was defined by the
European Randomised Trial of Tarceva versus Chemotherapy, which compared erlotinib
versus chemotherapy (cisplatin–gemcitabine or cisplatin–docetaxel) as a first-line treatment

Table 1. EGFR-directed agents

Subgroup Agents Description

First-generation,
reversible TKIs

Gefitinib
Erlotinib
Icotinib

Reversibly compete with ATP binding
to tyrosine kinase domain of EGFR,
inhibiting ligand-dependent receptor

activation

Second-generation,
irreversible TKIs

Afatinib
Dacomitinib
Neratinib
Canertinib

Pan-HER inhibitors that irreversibly
bind the ATP-binding pocket of EGFR

via covalent bonds, inducing
permanent inhibition

Third-generation TKIs Mutant-selective inhibitors
(CO1686, AZD9291,

HM61723)

Specifically target mutant forms of
EGFR, exhibiting minimal activity
toward the wild-type receptor

Monoclonal antibodies Cetuximab
Panitumumab
Nimotuzumab
Necitumumab

Competitively inhibit ligand binding to
EGFR, preventing ligand-induced

activation and downstream signalling
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[33]. As shown in table 2, other phase III trials on NSCLC patients selected on the basis of
EGFR mutational status demonstrated a significant increase of PFS and led to a fundamental
change in the approach to advanced NSCLC patients [34–37].

While evidence of an activating EGFR mutation is mandatory for first-line EGFR-TKI
treatment, erlotinib is still registered and reimbursed, as previously reported, even in second-
and third-line therapy, irrespectively of molecular characteristics, on the basis of the results of
BR.21 trial [25]. Although rarely, even EGFR wild-type patients (or those supposed as such)
respond to EGFR-TKI administration [40] and the mechanisms underlying this activity are still
not completely clear. While in some cases such activity is due to rare mutations not assessed
by commonly used targeted methods or could depend on false-negative results [41, 42], in
other patients, TKI activity could rely on EGFR expression, amplification or phosphorylation,
EGFR ligand expression, or other still unknown mechanisms [43–45].

Table 2. First-line TKIs in EGFR-mutated patients

First author
[ref.]

Study Treatment Patients
n

Median PFS
months

Median OS
months

MOK [28] IPASS Gefitinib versus
Carbo/Pacli

261 9.8 versus 6.4
(HR 0.48,
p<0.001)

21.6 versus
21.9 (HR 1.00,

p=0.99)
HAN [34] First-SIGNAL Gefitinib versus

Cis/Gem
42 8.4 versus 6.7

(HR 0.61,
p=0.084)

30.6 versus
26.5 (HR

0.823, p=0.65)
MITSUDOMI [35] WJTOG Gefitinib versus

Cis/docetaxel
172 9.2 versus 6.3

(HR 0.489,
p<0.0001)

35.5 versus
38.8 (HR 1.18)

MAEMONDO [36] NEJ02 Gefitinib versus
Carbo/Pacli

228 10.8 versus 5.4
(HR 0.32,
p<0.001)

27.7 versus
26.6 (HR 0.88,

p=0.31)
ZHOU [37] OPTIMAL Erlotinib versus

Carbo/Gem
154 13.1 versus 4.6

(HR 0.16,
p<0.0001)

22.7 versus
28.9 (HR 1.04)

ROSELL [33] EURTAC Erlotinib versus
platinum-based

chemo

173 9.7 versus 5.2
(HR 0.37,
p<0.0001)

19.3 versus
19.5 (HR 1.04,

p=0.87)
SEQUIST [38] LUX-Lung 3 Afatinib versus

Cis/Pem
345 11.1 versus 6.9

(HR 0.59,
p=0.0004)

Not reported

WU [39] LUX-Lung 6 Afatinib versus
Cis/Gem

364 11.0 versus 5.6
(HR 0.28, p<0.0001)

22.1 versus
22.2 (HR 0.95,

p=0.76;
immature

data)

OS: overall survival; IPASS: Iressa Pan-Asia Study; First-SIGNAL: First-Line Single-Agent Iressa
versus Gemcitabine and Cisplatin Trial in Never-Smokers with Adenocarcinoma of the Lung;
WJTOG: West Japan Thoracic Oncology Group; OPTIMAL: Erlotinib versus Standard Chemotherapy
in the First-Line Treatment of Patients with Advanced EGFR Mutation-Positive NSCLC; EURTAC:
European Randomised Trial of Tarceva versus Chemotherapy; Carbo: carboplatin; Pacli: paclitaxel;
Cis: cisplatin; Gem: gemcitabine; chemo: chemotherapy; Pem: pemetrexed; HR: hazard ratio.
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Second-generation EGFR-TKIs: afatinib and dacomitinib

The LUX-Lung 3 phase III trial investigated the role of afatinib in the first-line setting of
advanced NSCLC patients harbouring EGFR mutation. This trial was designed for 345
patients to compare the TKI with cisplatin–pemetrexed and a significant improvement in
PFS was shown (11.1 versus 6.9 months). This effect was found to be even stronger (PFS
13.6 versus 6.9 months) in patients with common EGFR mutations (Del-19 and L858R)
[38]. LUX-Lung 6 was conducted on Asian patients only, using cisplatin–gemcitabine as the
standard arm and demonstrating similar results [39]. These trials led to afatinib approval in
TKI-naïve patients with locally advanced or metastatic NSCLC harbouring EGFR mutations.
The ongoing LUX-Lung 7 trial will provide data on afatinib versus gefitinib in first-line,
EGFR mutation-positive patients (www.clinicaltrials.gov identifier number NCT01466660).

Dacomitinib did not show any significant improvement in PFS when used as a second- or
third-line treatment in unselected patients [46]. Its role in EGFR-mutated patients is
currently under evaluation in phase III trials comparing dacomitinib versus gefitinib in the
first-line setting (ARCHER 1050 trial; NCT01774721).

EGFR monoclonal antibodies

EGFR-directed monoclonal antibodies block receptor signalling through specific competitive
binding to EGFR on the extracellular surface of cells. Their action on tumour cells is also
enhanced by antibody-dependent cellular cytotoxicity. EGFR-directed monoclonal antibodies
evaluated in NSCLC include cetuximab, panitumumab, nimotuzumab and necitumumab.

Cetuximab is a chimaeric monoclonal antibody (mAb) that selectively binds the extracellular
domain of EGFR. The role of cetuximab in combination with first-line chemotherapy has
been investigated in phase II and III trials [47–50] and within a subsequent meta-analysis
[51], and a modest benefit in all efficacy end-points from the addition of cetuximab to
standard platinum-based treatment in NSCLC was reported (table 3). Moreover, the
addition of cetuximab to chemotherapy was characterised by an increased toxicity in terms
of rash, diarrhoea, neutropenia and infusion reaction, and this is the main reason why
(together with modest efficacy advantage) the First-Line Erbitux in Lung Cancer trial did
not led to treatment approval by regulatory agencies.

Table 3. Combination of chemotherapy and cetuximab in advanced NSCLC

First author
[ref.]

Study Treatment Patients
n

Median PFS
months

Median OS
months

BUTTS [49] Cis or Carbo/Gem
± Cet

65 5.09 versus 4.21 11.99 versus
9.26

ROSELL [50] Cis/Vnb ± Cet 86 5.0 versus 4.6 8.3 versus 7.3
PIRKER [47] FLEX Cis/Vnb ± Cet 1125 4.8 versus 4.8 11.3 versus 10.1
LYNCH [48] BMS099 Taxane/Carbo ±

Cet
676 4.4 versus 4.24 9.69 versus 8.38

OS: overall survival; FLEX: First-Line Erbitux in Lung Cancer; Cis: cisplatin; Carbo: carboplatin;
Gem: gemcitabine; Cet: cetuximab; Vnb: vinorelbine.
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Necitumumab, a fully human mAb, has been evaluated in phase III trials in combination with
cisplatin–pemetrexed in advanced nonsquamous NSCLC (INSPIRE trial, stopped early for
unexpected toxicity) and with cisplatin–gemcitabine in squamous histology (SQUIRE trial). In
the SQUIRE trial, the addition of necitumumab to cisplatin–gemcitabine statistically significantly
improved overall survival (11.5 versus 9.9 months) and PFS (5.7 versus 5.5 months) [52].

Nimotuzumab (95% human antibody) is under investigation in phase II trials
(NCT00983047 and NCT01393080).

None of the EGFR-directed monoclonal antibodies is currently part of the therapeutic
armamentarium for NSCLC treatment, in any clinical setting.

Toxicity

Despite the high selectivity of targeted therapies, a range of previously unknown and
sometimes unpredictable side-effects have been described. Toxicity related to the
aforementioned EGFR-directed agents mainly reflects their off-target effects, i.e. targeting
wild-type EGFR in normal tissues. The most common toxicities are rash/dermatitis
acneiform, diarrhoea, stomatitis, dry skin and pruritus [53, 54].

Skin disorders are generally mild or moderate in severity and can be managed by
appropriate topical or systemic interventions, or by reducing the TKI dose [55]. As for
other treatments, there is possibly an underestimation of toxicity by clinicians when
compared with patients and this fact must be taken into account, especially if dealing with
long-term therapies, which is the aim of these targeted drugs [56].

Drug resistance

Despite the benefit that targeted agents brought to NSCLC treatment, not all EGFR-mutated
patients exhibit durable responses, the median PFS is still less than 1 year and almost all
patients develop resistance [33, 37, 38].

Primary resistance may occur in some patients not responding to TKIs from the very
beginning and acquired resistance may also develop over time, due to several mechanisms.
Secondary, acquired gatekeeper mutations in the EGFR kinase domain (such as T790M,
L747S, D761Y and T854A) and PI3K mutations alter the binding kinetics of the receptor
and its downstream effectors, representing a form of oncogenic drift [13, 14]. Other
mechanisms of resistance include activation of second oncogenic drivers through different
mechanisms, such as MET amplification, EGFR amplification, HER2 upregulation and ALK
amplification [57]. In addition, a shift towards SCLC histology and epithelial–mesenchymal
transition have been described as additional mechanisms of acquired resistance [57, 58].

Clinically, TKI resistance can be classified into two categories: oligoprogression and systemic
progression. Even without strong prospective data, in oligometastatic patients, local therapies
(radiotherapy, surgery and local ablation) are feasible options together with continuation of
the oral TKI beyond Response Evaluation Criteria In Solid Tumors (RECIST)-defined disease
progression [59, 60]. The rationale of such approach is avoiding the flare-up phenomenon
(rapid recurrence of symptoms and symptomatic decline) [61], taking advantage of the
remaining drug sensitivity. Recent trials evaluated the role of TKI beyond progression. In the
phase II ASPIRATION trial, Asian patients with advanced EGFR mutation-positive NSCLC
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received erlotinib beyond progression. The difference between PFS1 (calculated until RECIST
progression) and PFS2 (calculated until progression assessed by doctor discretion) was
3.7 months [62]. The phase III Iressa Treatment Beyond Progression in Addition to
Chemotherapy versus Chemotherapy Alone study explored the role of gefitinib beyond
progression in addition to chemotherapy versus chemotherapy alone in EGFR-mutated
NSCLC, but the study did not meet the primary end-point (PFS) and no benefit was seen in
terms of survival or response rate from continuing the TKI with cytotoxic drugs [63].

The main therapeutic strategy to overcome EGFR-TKI resistance has been the development
and introduction of third-line EGFR-TKIs. Combinatorial targeting of the EGFR pathway
has been also investigated.

A single-arm, phase Ib trial investigated afatinib and cetuximab, in patients who developed
acquired resistance to erlotinib or gefitinib, described a PFS of 4.7 months, but with some
issues concerning the toxicity profile [64]. By contrast, a similar phase I/II trial of erlotinib
and cetuximab did not demonstrate efficacy [65].

The identification of molecular drivers and the rapidly increasing development of
corresponding new targeted agents led to an approach of cotargeting EGFR and further
intracellular pathways as an alternative strategy to overcome EGFR-TKI resistance. In this
setting, Met targeting has been thoroughly investigated (given its pivotal role both in de novo
and acquired resistance) but combinatorial EFGR–Met targeting was discouraged by the
results of phase III trials [66, 67]. No targeted-agent combination is currently recommended
in EGFR-TKI-resistant NSCLC patients outside clinical trials and further data are warranted.

Third-generation TKIs

Third-generation TKIs (CO1686, AZD9291 and HM61713) are oral, irreversible EGFR
inhibitors that block mutated EGFR, including drug resistance mutations such as T790M. At
therapeutic dose, they do not inhibit wild-type EGFR and such binding specificity deeply
limits the observed toxicity [68, 69]. AZD9291 and CO1686 already showed very promising
results in phase I/II trials reporting remarkable overall disease control rates (89% for CO1686
and 96% for AZD9291) [69, 70]. Phase II and III studies exploring these drugs in TKI-naïve
and in TKI-resistant patients are currently ongoing. A recent phase I trial evaluated the role
of HM61713 in EGFR-TKI-pre-treated patients, divided into two arms according to the time
since prior EGFR-TKI treatment (<4 versus ⩾4 weeks), showing a good safety profile
together with a disease control rate of 76.5% and 73.1% in the two arms, respectively [71].

ALK rearrangements

The EML4–ALK fusion gene was first described as an oncogenic driver in lung ADC in
2007 [72]. This rearrangement is generated by an inversion in chromosome 2p that
juxtaposes the 5′-end of EML4 with the 3′-kinase domain of ALK, leading to constitutive
ALK kinase activation.

Many variants of this fusion protein have been described to date [73] and other ALK
partners emerged, including TRL-fused gene (TFG) [74], kinesin family member 5B (KIF5B)
[75, 76], kinesin light chain 1 (KLC1) [77] and translocated promoter region (TPR) [78].
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This genetic alteration is found in 2–7% of NSCLC patients, a percentage depending on the
detection method used and on the screened population [79–82]. Typically, EML4–
ALK-positive tumours are ADCs, mainly young nonsmoking patients, but not exclusively;
the genetic alteration seems to be mutually exclusive to KRAS and EGFR mutations [83–87].

ALK rearrangement detection

Currently, the gold standard and US Food and Drug Administration (FDA)-approved
diagnostic test for ALK gene rearrangement detection is the break-apart FISH test [88].
However, this method is expensive, not always reproducible and not widely available.

For such reasons, clinical and preclinical research is evaluating alternative methods, such as
real-time PCR, IHC with dedicated antibodies, and NGS techniques [89–92]. In Europe,
IHC has recently been approved as one of the standard diagnostic tests to detect ALK
rearrangements: in a paper by MARCHETTI et al. [93], an algorithm was proposed where
ALK IHC is the first diagnostic step in EGFR- and KRAS-negative NSCLC, whereas FISH
is reserved for IHC-positive patients only.

As for EGFR mutations, ALK rearrangement testing is recommended in all patients with
advanced nonsquamous NSCLC at diagnosis and should be carried out in parallel with
EGFR mutation analysis; moreover, ALK rearrangement testing should be considered even
in SCC from patients with minimal or remote smoking history [23, 94].

ALK-rearranged tumours: treatment

Crizotinib
In August 2011, crizotinib, an oral, small-molecule inhibitor of the Met, ALK and ROS1
tyrosine kinases, was approved by the FDA under an accelerated procedure for ALK-rearranged
locally advanced and metastatic NSCLC patients on the basis of the results of phase I and II
trials (PROFILE 1001 and PROFILE 1005) showing high response rates and a good tolerability
profile [79, 95].

A phase III trial in previously treated patients [96] showed a statistically significant
improvement in PFS (7.7 versus 3.3 months; hazard ratio (HR) 0.49 (95% CI 0.37–0.64),
p<0.001) and response rate (65% versus 20%) with crizotinib, as compared with single-agent
chemotherapy (pemetrexed or docetaxel) in advanced NSCLC, ALK-rearranged patients. More
recently, preliminary data from a phase III, open-label, randomised trial comparing first-line
platinum (either cisplatin or carboplatin)/pemetrexed chemotherapy versus crizotinib were
presented, showing significant improvements in PFS (median 10.9 versus 7 months; HR 0.454
(95% CI 0.346–0.596), p<0.0001) and ORR (74% versus 45%; p<0.0001) with the TKI [97].

Novel ALK inhibitors
Ceritinib (LDK378), a novel ALK inhibitor with some activity on ROS1, insulin-like growth
factor-1 receptor and insulin receptor, was evaluated in a phase I/II, open-label, randomised
trial that enrolled 163 ALK-positive metastatic NSCLC patients progressing on or intolerant
to crizotinib [98, 99]. Ceritinib led to an ORR of 58% (95% CI 48–67%) and, notably, an
ORR of 56% in patients previously treated with crizotinib (95% CI 45–67%). Based on these
data, on April 2014, the FDA granted accelerated approval of ceritinib for the treatment of
metastatic, ALK-positive NSCLC previously treated with or intolerant to crizotinib.
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Alectinib (RO5424802/CH5424802), another second-generation ALK inhibitor, demonstrated
activity in both crizotinib-naïve [100] and pre-treated patients in phase I/II trials [101, 102]. The
drug is currently approved in Japan for the treatment of ALK-positive, advanced NSCLC patients.

These novel ALK inhibitors can effectively cross the blood–brain barrier, also leading to
good responses in patients harbouring central nervous system metastasis.

ASP3026 is also a novel ALK inhibitor showing activity in cases with the crizotinib-resistant
gatekeeper mutation L1196M; preliminary results from a phase I trial demonstrated clinical
activity in ALK-positive NSCLC that progressed on prior crizotinib [103]. AP26113 is a
potent inhibitor of wild-type ALK that maintains activity against several crizotinib-resistant
ALK mutants, as shown in a phase I/II, single-arm trial conducted by GETTINGER et al. [104].
Due to these results, both agents, along with other compounds currently under active
investigation (X-396, X-376, PF-06463922, TSR-011, RXDX-101, CEP-28122 and CEP-37440)
could lead to further progress in ALK-positive NSCLC treatment [105].

Toxicity
Crizotinib is usually well tolerated. The most common toxicities are neutropenia, diarrhoea,
nausea, abdominal pain, transaminase elevation (especially alanine transaminase) and
visual disorders; rare but potentially fatal drug-related pneumonia and hepatic insufficiency
could also occur. Male patients could develop symptomatic hypogonadism [106].

Ceritinib could induce gastrointestinal toxicity, fatigue and transaminase alteration [107],
while alectinib was reported to be associated with fluid retention and fatigue [108]. The
most frequent ASP3026 adverse events are fatigue, vomiting, nausea and constipation, while
AP26113, in addition, induced cough, headache and pulmonary symptoms such as
dyspnoea and hypoxia.

Drug resistance
Similarly to the EGFR population, in ALK-rearranged patients, after an initial response,
progression occurs: the three main mechanisms of ALK resistance are mutation of the ALK
tyrosine kinase domain (accounting for approximately 25% of cases), amplification of the
EML4–ALK gene and activation of alternative signalling pathways [109–113].

Clinical research is currently focussing on evaluating second-generation ALK inhibitors in
this context (see earlier). Moreover, interesting results come from heat shock protein (Hsp)
inhibition [114]. Drugs inhibiting this target have been investigated in ALK-rearranged
patients with low response rates, when used alone and compared with ALK inhibitors, but
other trials are currently combining an ALK-TKI with and Hsp90 inhibitor, in order to
prevent resistance development or overcome it [115] (NCT01579994 and NCT01772797).

An intriguing aspect, although still debated, is the activity of pemetrexed in ALK-rearranged
patients, as observed in subgroup analyses and retrospective trials [96, 116].

Angiogenesis inhibition

Neoangiogenesis, which promotes tumour growth and metastasis, is characterised by the
formation of abnormal and chaotic vessels leading to an altered tumour microenvironment,
which increases VEGF production, causing an autonomous proangiogenic and
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promitogenic loop. Currently available antiangiogenic drugs are directed against circulating
VEGF or VEGFR.

Bevacizumab is a humanised mAb that targets circulating VEGF, approved for
nonsquamous, advanced NSCLC first-line treatment, in addition to platinum doublet
chemotherapy.

The registration of this drug was based on two phase III trials, which evaluated
platinum-based doublet chemotherapy versus the same doublet plus bevacizumab. The
Eastern Cooperative Oncology Group E4599 trial enrolled 878 patients with stage IIIB/IV
nonsquamous NSCLC randomised to six cycles of carboplatin and paclitaxel with or without
bevacizumab 15 mg⋅kg−1. Overall survival was significantly greater in the experimental arm
(12.3 versus 10.3 months, p=0.003), as well as PFS (6.2 versus 4.5 months, p<0.001) and
response rate (35% versus 15%, p<0.001) [117]. The Avastin in Lung Cancer trial randomised
the same population to cisplatin and gemcitabine chemotherapy plus bevacizumab at two
different doses (7.5 or 15 mg⋅kg−1) or placebo. Compared with the placebo group, the risk of
progression or death at any time was reduced by 25% in the evacizumab 7.5 mg·kg−1 group
(HR 0.75, 95% CI 0.64–0.87; p=0.0003) and by 15% in the bevacizumab 15 mg·kg−1 group
(HR 0.85, 95% CI 0.73–1.00; p=0.0456), while no significant improvement was shown for
overall survival [118]. The main toxicities of bevacizumab are arterial hypertension,
haemorrhagic events, proteinuria and neutropenia [119].

Nintedanib is an oral inhibitor of VEGFR, platelet-derived growth factor and FGFR. This agent
was added to docetaxel in second-line setting in a phase III randomised placebo-controlled
trial (LUME-Lung 1). The combination significantly prolonged PFS in the whole population
(median 3.4 versus 2.7 months, p=0.0019); moreover, overall survival was increased at a
pre-planned subgroup analysis in ADC patients, especially in those who progressed within
9 months after starting first-line chemotherapy (10.9 versus 7.9 months, p=0.0073) [120].

A second study investigated nintedanib plus pemetrexed versus placebo plus pemetrexed in
advanced nonsquamous NSCLC as second-line therapy. The trial was stopped after an
interim analysis that suggested lack of improvement from the addition of nintedanib. The
final analysis of the intention-to-treat population showed a significant although modest
improvement of PFS with the experimental combination (median PFS 4.4 versus
3.6 months, p=0.04) [121].

Ramucirumab, an IgG1 mAb against the extracellular domain of VEGFR2, has been
evaluated in a double-blind, placebo-controlled, phase III trial in association with docetaxel
in second-line treatment of stage IV NSCLC. The addition of the mAb significantly
improved ORR (22.9% versus 13.6%, p<0.001), PFS (median PFS 4.5 versus 3.0 months;
HR 0.762, p<0.0001) and overall survival (median overall survival 10.5 versus 9.1 months;
HR 0.857 (95% CI 0.751–0.98), p=0.0235), with only a slight increase of grade 3–4
neutropenia, fatigue and hypertension, while grade 5 adverse events were comparable
between the two arms [122].

Promising new targets and agents

BRAF somatic mutations occur in 1–2% of NSCLC, mainly in ADC and former/current
smokers. V600E point mutation represents the most common, even if other sites of
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mutations are reported in lung cancer. Dabrafenib, a B-Raf inhibitor, showed clinical
activity in a phase II study in 78 BRAF V600E-mutated NSCLC patients, with an ORR of
32% and a disease control rate of 56% after 12 weeks of treatment [123].

PI3K inhibitors are of interest in SCC where PIK3CA, PTEN (a phosphatase and tensin
homologue) and AKT mutations are more frequent [124]. Currently, buparlisib (BKM-120)
and pictilisib (GCD-0941) are under investigation in association with chemotherapy, and
data are awaited (NCT01911325 and NCT01493843).

Met protein overexpression is found in approximately 25–75% of early-stage NSCLC
and such alteration, along with gene amplification, is associated with poor prognosis
[125–127]. While only 4–7% of untreated NSCLCs harbour MET amplification, 20% of
patients previously treated with EGFR-TKIs show this alteration, possibly mediating
EGFR-directed agent resistance [128, 129]. Moreover, elevated serum levels of HGF, which
binds the Met tyrosine kinase receptor, have been associated with poor prognosis and
aggressiveness in both NSCLC and SCLC, along with primary and secondary resistance to
EGFR-TKIs [130–133].

mAbs binding HGF are currently being tested. Of these, ficlatuzumab seems to confer some
benefit in EGFR-mutated patients with low c-Met expression when associated with
gefinitib, possibly by delaying resistance onset [134].

In contrast, onartuzumab, a mAb against Met, after promising results in a phase II trial
[135], was deemed ineffective, with the early closure of the phase III trial (MetLung) in
Met-positive (IHC detection), advanced NSCLC patients [136]. Small molecules inhibiting
Met include tivantinib (ARQ-197), cabozantinib (XL-184) and crizotinib. Two phase III
trials investigating tivantinib, a non-ATP-competitive Met inhibitor, in association with
erlotinib were both prematurely stopped because of either futility (MARQUEE trial) [66] or
toxicity (ATTENTION trial) [67]. Cabozantinib and crizotinib are currently under
investigation as Met inhibitors. Interestingly, cabozantinib is also a potent inhibitor of
VEGFR2, AXL and Ret, showing activity in tumours positive for the RET fusion gene
[137], which account for approximately 1.7% of lung ADCs [138].

ROS1 rearrangement, which is detected in about 1% of ADCs [139], is actively targeted by
crizotinib, with an ORR of 72% (95% CI 58–84%) and a median PFS of 19.2 months (95%
CI 14.5 months–not reached) [140]; second-generation ALK inhibitors are also being
investigated in clinical trials in this subset of patients.

A unique class of patients is represented by those carrying HER2 mutations or amplification.
While some data suggest activity of HER2-targeted agents such as trastuzumab and
dacomitinib [141, 142], further studies are warranted to explore treatment opportunities
actively in this subpopulation.

KRAS is the most common mutated gene in NSCLC, and is frequently detected in patients
with smoking history (25% versus 6% in former/current smokers and nonsmokers,
respectively) [143] and ADC (34%) [144]. Selumetinib inhibits MEK1/MEK2, downstream
kinases of the Ras/Raf/MEK/ERK signalling pathway. This small molecule has been
investigated with docetaxel in a phase II trial in patients who had progressed to first-line
therapy, showing a statistically significant improvement in ORR (37% versus 0%, p<0.0001)
and PFS (HR 0.58, 80% CI 0.42–0.79; one-sided p=0.0014), and numerically superior, although
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not statistically significant, overall survival (9.4 versus 5.2 months). However, the combination
regimen was more toxic: higher rates of neutropenia, febrile neutropenia and serious adverse
events leading to hospitalisation (48% versus 19%) [145]. Currently, a phase III trial is ongoing
testing docetaxel plus selumetinib versus docetaxel plus placebo (NCT01933932).

Conclusion

The introduction of targeted drugs in the clinical management of lung cancer patients is
undoubtedly a step forward in tailored therapy. The current treatment choice relies on a
careful assessment of histological and molecular features (EGFR mutations and ALK
translocation are already part of routine diagnostic work-up), in order to identify those
patients who may benefit more from a certain therapeutic approach.

This assessment is important both at diagnosis and at relapse, since cancer cells may
dynamically change their features over time. Such modifications can occur for intrinsic
cancer changes due to progression or they can be enhanced by selective pressure
superimposed by treatment, ultimately leading to drug resistance (i.e. T790M mutation in
patients who received EGFR-TKIs and ALK amplification in crizotinib treated patients).

One of the main hurdles underpinning disease progression and drug resistance is tumour
heterogeneity and drug adaptation. Heterogeneous subclonal events caused by genetic drift
may account for drug resistance and different clinical behaviour of the disease at different
sites or diverse biological responses within the same lesion.

Liquid biopsies have recently been introduced as a tool to overcome limitations in
collecting tissue samples, by genotyping circulating cell-free DNA or circulating cell DNA.

In current clinical practice, a single-gene testing approach is mainly used to identify
variants (e.g. EGFR mutation or ALK rearrangement) to guide treatment decisions, and
such serial testing takes time and depletes tumour tissue. In addition, the cost of
single-gene methods scales linearly with the number of genes interrogated and targeted
NGS of cancer-related genes could be a future method to detect commonly altered genes
on a single platform.

The introduction of targeted drugs in the therapeutic armamentarium has also
revolutionised the way in which clinical trials are designed in thoracic oncology. As
opposed to previous clinical trials exploring the role of chemotherapy in wide, unselected
groups of patients, those on targeted therapies are run on selected patient populations and,
consequently, on small sample sizes. The so-called basket trials are designed to explore
treatment efficacy in a quick and safe way: patients with multiple diseases and one or more
targets are enrolled in small cohorts, according to their biomolecular features. Cohorts with
good responses can be expanded, whereas cohorts with poor responses can be closed
rapidly, allowing patients to shift to a new drug.

Finally, even though the identification of new active molecules is rapidly speeding up, the
actual introduction of these compounds to clinical practice is not straightforward. This is
due to the need for approval by regulatory agencies, which often lead to different scenarios
across the world, depending on local approvals and regulations, which is inevitably stressful
for both the patients and the physicians taking care of them.
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