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Sufficientness postulates for
Gibbs-type priors and
hierarchical generalizations
S. Bacallado, M. Battiston, S. Favaro∗ and L. Trippa

University of Cambridge, University of Oxford, University of Torino and Harvard University

Abstract. A fundamental problem in Bayesian nonparametrics consists
of selecting a prior distribution by assuming that the corresponding
predictive probabilities obey certain properties. An early discussion of
such a problem, although in a parametric framework, dates back to
the seminal work by English philosopher W. E. Johnson, who intro-
duced a noteworthy characterization for the predictive probabilities of
the symmetric Dirichlet prior distribution. This is typically referred to
as Johnson’s “sufficientness” postulate. In this paper we review some
nonparametric generalizations of Johnson’s postulate for a class of non-
parametric priors known as species sampling models. In particular we
revisit and discuss the “sufficientness” postulate for the two parameter
Poisson-Dirichlet prior within the more general framework of Gibbs-
type priors and their hierarchical generalizations.

Key words and phrases: Bayesian nonparametrics, Dirichlet and two
parameter Poisson-Dirichlet process, discovery probability, Gibbs-type
species sampling models, hierarchical species sampling models, John-
son’s “sufficientness” postulate, Pólya-like urn scheme, predictive prob-
abilities.

1. INTRODUCTION

At the heart of Bayesian nonparametric inference lies the fundamental concept
of discrete random probability measure, whose distribution acts as a nonpara-
metric prior, the most notable example being the Dirichlet process by Ferguson
[25]. Species sampling models, first introduced by Pitman [52], form a very gen-
eral class of discrete random probability measures P =

∑
i≥1 piδX∗

i
defined by

the sole requirements that (pi)i≥1 are nonnegative random weights such that∑
i≥1 pi = 1 almost surely, and (X∗i )i≥1 are random locations independent of
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2 BACALLADO ET AL.

(pi)i≥1 and independent and identically distributed as a nonatomic base distri-
bution ν0. The term “species sampling” refers to the fact that the distribution
P of P has a natural interpretation as a (prior) distribution for the unknown
species composition (pi)i≥1 of a population of individuals (Xi)i≥1 belonging to
species X∗i ’s. As discussed in Pitman [52] and Lee et al. [40], the definition of
species sampling models provides some insights on the structural sampling prop-
erties of these discrete random probability measures. However, for being usable
as nonparametric priors, a distribution for the random probability (pi)i≥1 has to
be specified. Among the various approaches for specifying such a distribution,
the most common are the stick-breaking approach by Ishwaran and James [34]
and the normalization approach by James [35], Pitman [53] and Regazzini et
al. [60]. These approaches lead to popular species sampling models such as the
Dirichlet process, the generalized Dirichlet process (Hjort [31] and Ishwaran and
James [34]), the two parameter Poisson-Dirichlet process (Perman et al. [50] and
Pitman and Yor [55]) and the normalized generalized Gamma process (James
[35], Prünster [56] and Pitman [53]) to name a few. The reader is referred to
Lijoi and Prünster [44] for a comprehensive and stimulating account of species
sampling models, as well as generalizations thereof, with applications to Bayesian
nonparametrics.

A common building block in Bayesian nonparametrics, either at the level of
observed data or at the latent level of hierarchical models, consists of a sample
from a species sampling model P with distribution P. According to de Finetti’s
representation theorem, such a sample is part of an exchangeable sequence (Xi)i≥1
with directing (de Finetti) measure P, i.e. limn→+∞ n

−1∑
1≤i≤n δXi = P almost

surely. In particular, due to the discreteness of species sampling models, a sample
of size n from P features Kn = k ≤ n distinct species, labelled by X∗1 , . . . , X

∗
Kn

,
with corresponding frequencies Nn = (N1,n, . . . , NKn,n) = n = (n1, . . . , nk) such
that

∑
1≤i≤Kn Ni,n = n. More formally, if (X1, . . . , Xn) is a random sample from

P , namely

Xi |P
iid∼ P i = 1, . . . , n,(1)

P ∼ P,

then the sample induces a random partition Πn of {1, . . . , n} whose blocks cor-
responds to the equivalence classes for the random equivalence relations i ∼
j ⇐⇒ Xi = Xj almost surely. The random partition Πn is exchangeable, namely
the distribution of Πn is a symmetric function of the frequencies n. This func-
tion, denoted pn,k(n), is known as the exchangeable partition probability function
(EPPF), a concept introduced in Pitman [51] as a development of earlier results
in Kingman [38].

The notion of exchangeable random partition of {1, . . . , n} can be extended to
the natural numbers N. In particular, the infinite exchangeable sequence (Xi)i≥1
induces an exchangeable random partition Π of N, where exchangeable means that
the distribution of Π is invariant under finite permutations of its elements. This
partition can be described by the sequence (Πn)n≥1 of its restrictions to the first
n integer numbers, i.e., Πn is obtained from Π by discarding all elements greater
than n. Conversely, a sequence of random exchangeable partitions (Πn)n≥1 defines
an exchangeable random partition of N provided that this sequence is consistent,
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i.e., Πm is the restriction of Πn to the first m elements, for all m < n. Consistency
implies that

(2) pn,k(n) = pn+1,k+1(n, 1) +

k∑
i=1

pn+1,k(n1,n + ei)

for all n ≥ 1, where ei denotes a k-dimensional vector with all entries equal to
zero but the i-th entry equal to 1. As a direct consequence of Kingman’s theory
of exchangeable random partitions of N, the predictive probabilities of (Xi)i≥1
are

Pr[Xn+1 ∈ · |X1, . . . , Xn] = g(n, k,n)ν0(·) +

k∑
i=1

fi(n, k,n)δX∗
i
(·),(3)

for any n ≥ 1, where ν0 is a nonatomic distribution on the sample space and where
g(n, k,n) := pn+1,k+1(n, 1)/pn,k(n) and fi(n, k,n) := pn+1,k(n1,n + ei)/pn,k(n)
are nonnegative functions of (n, k,n), respectively describing the probability
that the Xn+1 will be a new value and the probability that it will be equal
to X∗i . From (2), it follows that g and fi must satisfy the following constraint:
g(n, k,n) +

∑
1≤i≤k fi(n, k,n) = 1. The functions g and fi completely determine

the distribution of (Xi)i≥1 and, in turn, the distribution of Π. See Pitman [52]
for a detailed account of exchangeable random partitions and species sampling
models.

Within the Bayesian nonparametric framework (1), how to select the prior
distribution P is an important issue. Of course one approach is to select P by
appealing to prior information about P , and then attempt to incorporate this
information into P. This is often a difficult task for nonparametric priors, since
P is an infinite dimensional object. Alternatively, one may select P by assuming
that the predictive probabilities (3) obey or exhibit some characteristic or prop-
erty. Indeed in practical applications it may be that the form of the functions
g and fi may be an adequate description of our current state of knowledge. An
early discussion of this alternative approach, although in a parametric frame-
work, dates back to the seminal work by English philosopher W. E. Johnson.
Specifically, assuming T < +∞ possible species that are known and equiprobable
prior to observations, Johnson [37] characterized the T -dimensional symmetric
Dirichlet distribution as the unique prior for which g depends only on n, k and
T , and fi depends only on n, ni and T . As a direct consequence of the parametric
assumption that T < +∞, of course, g = 0 for all k ≥ T . Using the terminology
in Good [28], this characterization of the Dirichlet prior is referred to as John-
son’s “sufficientness” postulate. We refer to the work of Zabell [71] and Zabell [73]
for a review of Johnson’s postulate. See also the monograph by Zabell [75] for
a more comprehensive account of sufficientness, exchangeability and predictive
probabilities.

In this paper we discuss and derive some generalizations of Johnson’s postu-
late that arise by removing the parametric assumption of a prespecified number
T < +∞ of possible species in the population. We focus on species sampling
models that allow either for an infinite number of species or for a finite random
number T of species, with T having unbounded support over N. Regazzini [58],
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4 BACALLADO ET AL.

and later on Lo [48], provided a nonparametric counterpart of Johnson’s pos-
tulate. Specifically, under the assumption of an infinite number of species in the
population, they showed that the Dirichlet process is the unique species sampling
model for which the function g depends only on n, and the function fi depends
only on n and ni. A noteworthy extension of this nonparametric sufficientness
postulate was presented in Zabell [74], and it characterizes the two parameter
Poisson-Dirichlet process of Pitman [51] as the unique species sampling model
for which g depends only on n and k, and fi depends only on n and ni. Here we
revisit the seminal work of Zabell [74] within the more general framework of the
Gibbs-type species sampling models introduced by Gnedin and Pitman [27], and
nowadays widely used in Bayesian nonparametrics. Gibbs-type species sampling
models, which include the Dirichlet process and two parameter Poisson-Dirichlet
process as special cases, suggest for the formulation of a novel nonparametric
sufficientness postulate in which the function g depends only on n and k, and
the function fi depends only on n, k and ni. We present such a postulate and,
in light of that, we show how the sufficientness postulates of Regazzini [58] and
Zabell [74] may be rephrased in terms of an intuitive Pólya-like urn scheme for
Gibbs-type species sampling models. Table 1 provides with a schematic summary
of sufficientness postulates for species sampling models. Our study is completed
with a discussion on the problem of formulating analogous nonparametric suffi-
cientness postulates in the context of the hierarchical species sampling models
introduced by Teh et al. [67].

Table 1
Sufficientness postulates for species sampling models (SSM): T -dimensional symmetric

Dirichlet distribution (T -SD), Dirichlet process (DP), two parameter Poisson-Dirichlet process
(2PD) and Gibbs-type SSM.

SSM NUMBER T OF SPECIES g(n, k,n) fi(n, k,n)

T -SD Known T < +∞ g(n, k, T ) f(n, ni)
DP T = +∞ g(n) f(n, ni)
2PD T = +∞ g(n, k) f(n, ni)

Gibbs-type SSM T = +∞ g(n, k) f(n, k, ni)

The paper is structured as follows. Section 2 contains a brief review on the
sampling properties of the class of Gibbs-type species sampling models. In Section
3 we review the sufficientness postulate of Zabell [74], we present its generalization
within the more general framework of Gibbs-type species sampling models, and
we introduce a Pólya-like urn scheme for describing the predictive probabilities
of Gibbs-type species sampling models. In Section 4 we discuss how Johnson’s
sufficientness postulate can be extended to the framework of hierarchical species
sampling models. Section 5 contains a discussion of the proposed characterizations
and open questions. Proofs of our results are provided as online supplementary
material.
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2. A BRIEF REVIEW OF GIBBS-TYPE PRIORS

As recently discussed in De Blasi et al. [17], Gibbs-type species sampling mod-
els, or Gibbs-type priors, may be considered as the most “natural” generaliza-
tion of the Dirichlet process. Indeed, apart of the well-known conjugacy of the
Dirichlet process, Gibbs-type species sampling models share numerous proper-
ties that are appealing from both a theoretical and an applied point of view:
i) they admit a simple and intuitive definition in terms of predictive probabil-
ities, which is a generalization of the Blackwell and MacQueen [9] urn scheme;
ii) they stand out in terms of mathematical tractability, which allows to study
their distributional properties for finite sample sizes and asymptotically; iii) they
admit a stick-breaking representation and a representation as normalized ran-
dom measures, thus taking the advantages of both representations; iv) they are
characterized by a flexible parameterization, thus including numerous interesting
special cases, most of them still unexplored. All these properties have made the
class of Gibbs-type priors a common choice in several contexts, such as in hierar-
chical mixture modeling, species sampling problems, feature and graph modeling,
hidden Markov modeling, etc. In this section we briefly review Gibbs-type species
sampling models, with emphasis towards their predictive probabilities and sam-
pling properties. The reader is referred to the monographs by Pitman [54] and
Bertoin [8] for a comprehensive account of Gibbs-type species sampling models,
and to Lijoi and Prünster [44] and De Blasi et al. [17] for reviews on their use in
Bayesian nonparametrics.

Among various possible definitions of Gibbs-type species sampling models,
the most intuitive is given in terms of their predictive probabilities. See, e.g.,
Pitman [53] and Gnedin and Pitman [27]. These predictive probabilities are of
the general form (3), for a suitable specification of the nonnegative functions
g and fi. In particular let (X1, . . . , Xn) be a sample from an arbitrary species
sampling model P , and assume that (X1, . . . , Xn) features Kn = k ≤ n species,
labelled by X∗1 , . . . , X

∗
Kn

, with corresponding frequencies Nn = n. For α < 1
and for ν0 a nonatomic probability measure, P is a Gibbs-type species sampling
model if

(4) Pr[X1 ∈ ·] = ν0(·)

and

(5) Pr[Xn+1 ∈ · |X1, . . . , Xn] =
Vn+1,k+1

Vn,k
ν0(·) +

Vn+1,k

Vn,k

k∑
i=1

(ni − α)δX∗
i
(·)

for any n ≥ 1, where (Vn,k)1≤k≤n,n≥1 are nonnegative weights satisfying the tri-
angular recursion Vn,k = Vn+1,k(n − αk) + Vn+1,k+1 with the proviso V1,1 := 1.
By combining the predictive probabilities (5) with the nonparametric sufficient-
ness postulate in Regazzini [58] and Lo [48], it follows that Gibbs-type species
sampling models generalize the Dirichlet process by introducing the dependency
on k in both the functions g and fi. See also Zabell [71] and references therein
for details.

Gnedin and Pitman [27] characterized the de Finetti measure of an exchange-
able sequence (Xi)i≥1 distributed as (4) and (5). Such a characterization relies
on the notion of Poisson-Kingman model introduced by Pitman [53]. Specifically,
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for any α ∈ (0, 1) let (Ji)i≥1 be decreasing ordered jumps of an α-stable subordi-
nator, namely a subordinator with Lévy measure ρ(dx) = Cαx

−α−1dx for some
constant Cα. See Sato [63] and references therein for details. Furthermore, let
Pi = Ji/Tα where Tα =

∑
i≥1 Ji < +∞ almost surely, and let PK(α; t) denote

the conditional distribution of (Pi)i≥1 given Tα = t. In particular Tα is a positive
α-stable random variable, and we denote by fα its density function. If we denote
by Tα,h a random variable with density function fTα,h(t) = h(t)fα(t), for any
nonnegative function h, then an α-stable Poisson-Kingman model is defined as
the discrete random probability measure Pα,h =

∑
i≥1 Pi,hδX∗

i
, where (Pi,h)i≥1 is

distributed as
∫
(0,+∞) PK(α; t)fTα,h(t)dt and (X∗i )i≥1 are random variables, inde-

pendent of (Pi,h)i≥1, and independent and identically distributed as ν0. According
to Gnedin and Pitman [27], if (Xi)i≥1 is an exchangeable sequence distributed as
(4) and (5) then the de Finetti measure of (Xi)i≥1 is the law of: i) an α-stable
Poisson-Kingman model, for α ∈ (0, 1); ii) the Dirichlet process, for α = 0; iii)
an M -dimensional symmetric Dirichlet distribution, with M being a nonnegative
discrete random variable on N, for α < 0. In other terms (Xi)i≥1 distributed as
(4) and (5) admits a finite number M of species for α < 0, and an infinite number
of species for α ∈ [0, 1).

The characterization of Gnedin and Pitman [27] leads to identify explicit ex-
pressions for the Vn,k’s in (5). In particular, for the class of α-stable Poisson-
Kingman models an expression for Vn,k was provided in Pitman [53], and further
investigated by Ho et al. [32]. See also James [36] and references therein. Let Γ(·)
denote the Gamma function. For any α ∈ (0, 1) and c > 0 let Sα,c be a polynomi-
ally tilted α-stable random variable, i.e. fSα,c(s) = Γ(cα+ 1)s−αcfα(s)/Γ(c+ 1),
and let Ba,b be a Beta random variable with parameter (a, b) independent of Sα,c.
Then,

(6) Vn,k =
αkΓ(k)

Γ(n)
E

[
h

(
Sα,k

Bαk,n−αk

)]
.

We refer to Chapter 4 of Pitman [54] for additional details on (6). For the Dirichlet
process, the expression of Vn,k is well-known from the seminal work of Ewens [20],
i.e.

(7) Vn,k =
θk

(θ)n

for any θ > 0. See also Antoniak [2] for an alternative derivation of (7) in terms of
the urn scheme description of the Dirichlet process in Blackwell and MacQueen
[9]. For the M -dimensional symmetric Dirichlet distributions, for any α < 0 one
has

(8) Vn,k =

∏k−1
i=0 (M |α|+ iα)

(M |α|)n
.

Conditionally to M = m, the expression (8) dates back to the seminal work of
Fisher et al. [26]. In particular they derived (8) and they also considered the
passage to the limit as m→ +∞ and −α→ 0 for fixed θ = mα > 0, which leads
to the weight in (7). See also Johnson [37], Watterson [70] and Engen [19] for
a detailed account of the M -dimensional symmetric Dirichlet species sampling
model.
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Among Gibbs-type species sampling models with α ∈ (0, 1), the two param-
eter Poisson-Dirichlet process certainly stands out. See, e.g., Perman et al. [50],
Pitman [51], Pitman and Yor [55] and Pitman [53]. Another noteworthy exam-
ple is the normalized generalized Gamma process, introduced in Pitman [53]
and further investigated in Bayesian nonparametrics, e.g., James [35], Lijoi et
al. [43], Lijoi et al. [45] and James [36]. For α ∈ (0, 1) and θ > −α, the two
parameter Poisson-Dirichlet process is a Gibbs-type species sampling model with
h(t) = αΓ(θ)t−θ/Γ(θ/α). In particular, by replacing this function in (6), one
obtains

(9) Vn,k =

∏k−1
i=0 (θ + iα)

(θ)n
,

where (θ)n is the ascending factorial, i.e., (θ)n :=
∏

0≤i≤n−1(θ+i) with the proviso
(θ)0 = 1. For α ∈ (0, 1) and τ ≥ 0 the normalized generalized Gamma process is
a Gibbs-type species sampling model with h(t) = exp{τ − τ1/αt}. By replacing
this function in (6),

(10) Vn,k =
αkeτ

Γ(n)

n−1∑
i=0

(
n− 1

i

)
(−τ1/α)iΓ

(
k − i

α
, τ

)
,

where Γ(·, ·) is the incomplete Gamma function. Note that (9) may be viewed
as a suitable mixture of (10). That is, if Gθ/α,1 is a Gamma random variable
with parameter (θ/α, 1) then (9) can be written as (10) where τ is replaced by
Gθ/α,1. In general, for any θ > 0 the two parameter Poisson-Dirichlet process may
be viewed as hierarchical generalization of the normalized generalized Gamma
process, with a Gamma prior over τ . See Section 5 in Pitman and Yor [55] for
details.

The predictive probabilities (5) lead to the distribution of the exchangeable
random partition Πn induced by a sample (X1, . . . , Xn) from a Gibbs-type species

sampling model. In particular, let p
(n)
k (n) denote the EPPF of Πn, that is prob-

ability of any particular partition of the set {1, . . . , n} induced by (X1, . . . , Xn)
and featuring Kn = k distinct blocks with frequencies Nn = n, for any n ≥ 1.
Then, by a direct application of the predictive probabilities (5), one may easily
verify that

(11) p
(n)
k (n) = Vn,k

k∏
i=1

(1− α)(ni−1).

Moreover, by marginalizing Pr[Kn = k,Nn = n] = (k!)−1
(

n
n1,...,nk

)
p
(n)
k (n) with

respect to the frequencies n, one obtains the distribution of Kn. In particular,
one has

(12) Pr[Kn = k] = Vn,k
C (n, k;α)

αk
,

where C (n, k;α) is the generalized factorial coefficient, namely C (n, k; a) :=
(k!)−1

∑
1≤i≤k(−1)i

(
k
i

)
(−ai)n. As discussed in Gnedin and Pitman [54] and De

Blasi et al. [17], the mathematical tractability of Gibbs-type species sampling
models originates from the product form of the EPPF (11). Such a product form
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is closely related to the notion of product partition model in Quintana and Iglesias
[57].

The role of the parameter α in the distribution (11) is easily interpreted. In
particular, a first interpretation of α follows from the predictive probabilities (5).
Indeed, α > 0 acts an interesting reinforcement mechanism in the empirical part
of the predictive probability (5). Note that the probability that Xn+1 coincides
with the species X∗i , for any i = 1, . . . , k, is a function of the frequency ni and
α. In particular, the ratio of the probabilities assigned to any pair of species
(X∗i , X

∗
j ) is

(13)
ni − α
nj − α

If α→ 0 the ration (13) reduces to the ratio of the frequencies of the two species,
and therefore the coincidence probability is proportional to the frequency of the
species. On the other hand if α > 0 and ni > nj then the ratio is an increasing
function of α. Accordingly, as α increases the mass is reallocated from the species
X∗j to the species X∗i . In other terms the sampling procedure tends to reinforce,
among the observed species, those having higher frequencies. See De Blasi et
al. [17] and references therein for a detailed discussion on such a reinforcement
mechanism. If α < 0, the reinforcement mechanism works in the opposite way
in the sense that the coincidence probabilities are less than proportional to the
species frequencies.

A further interpretation of the parameter α arises from the large n asymptotic
behavior of the random variable Kn with distribution (12). This behaviour was
first investigated by Korwar and Hollander [39] for the Dirichlet process, and
then extended by Pitman [53] to the general framework of Gibbs-type species
sampling model. See also Gnedin and Pitman [27] and Pitman [54] for details.
The parameter α determines the rate at which Kn increases, as the sample size n
increases. Three different rates may be identified for Gibbs-type species sampling
models. Let

cn(α) :=


nα if α ∈ (0, 1)

log(n) if α = 0

1 if α ∈ (−∞, 0),

for any n ≥ 1. Then there exists a random variable Sα, positive and finite almost
surely, such that

(14)
Kn

cn(α)
→ Sα

almost surely, as n→ +∞. Using the terminology in Pitman [53], Sα is referred to
as the α-diversity of the the Gibbs-type species sampling model. More precisely:
i) for α ∈ (0, 1) the α-diversity coincides, in distribution, with T−αα,h ; ii) for α = 0
the α-diversity is a random variable whose distribution degenerates at θ > 0; iii)
for α < 0 the α-diversity coincides, in distribution, with the random number M
of species in the population. The larger α, the faster the rate of increase of Kn or,
in other terms, the more new species are generated from the sampling mechanism
described in (5).
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SUFFICIENTNESS POSTULATES FOR GIBBS-TYPE PRIORS 9

Gibbs-type species sampling models have been extensively used in the context
of Bayesian nonparametric inference for species sampling problems. See, e.g., Li-
joi et al. [42], Lijoi et al. [45], Favaro et al. [21], Favaro et al. [22], Bacallado et
al. [5, 6] and Arbel et al. [3]. Species sampling problems are arguably the field
in which the mathematical tractably of Gibbs-type species sampling models can
be most appreciated. In the last few years a plethora of posterior properties of
Gibbs-type priors, for finite sample sizes and asymptotically, have been derived
and applied for estimating population’s features and predicting features of addi-
tional unobservable samples. Gibbs-type species sampling models have been also
applied in the context of mixture modeling, thus generalizing the seminal work
by Lo [47]. See, e.g., Ishwaran and James [34], Lijoi et al. [41], Lijoi et al. [42],
Favaro and Walker [23] and Lomeli et al. [49]. While maintaining the same com-
putational tractability of the Dirichlet process mixture model, the availability
of the additional parameter α allows for a better control of the clustering be-
haviour. Most recently, Gibbs-type species sampling models have been proposed
for Bayesian nonparametric inference for ranked data in Caron et al. [12], sparse
exchangeable random graphs and networks in Caron and Fox [12] and Herlau
[30], feature allocations in Teh and Görür [66], Broderick et al. [10], Heaukulani
and Roy [29], Roy [62] and Battiston et al. [7], reversible Markov chains in Ba-
callado et al. [4], dynamic textual data in Chen et al. [14] and Chen et al. [15],
and bipartite graphs in Caron [11].

3. SUFFICIENTNESS POSTULATES AND URN SCHEMES FOR
GIBBS-TYPE PRIORS

A noteworthy generalization of Johnson’s sufficientness postulate was first dis-
cussed in the work of Zabell [74]. Specifically, let P be an arbitrary species
sampling model with predictive probabilities (3), and consider the following as-
sumptions: A1) Pr[Πn = πn] > 0 for all the partitions πn of {1, . . . , n}, that
is no scenario is deemed, a priori, to be impossible; A2) g(n, k,n) = g(n, k),
that is the probability of observing a new species depends only on n and k; A3)
fi(n, k,n) = f(n, ni), that is the probability of observing the species X∗i depends
only on n and ni. Zabell [74] showed that if just these three assumptions are
imposed, then there exist three parameters α ∈ (0, 1), θ > −α and cn ≥ 0 such
that

i) if k ≥ 2 then

(15) g(n, k) =
θ + kα

θ + n
; f(n, ni) =

ni − α
θ + n

;

ii) if k = 1 then

(16) g(n, k) =
θ + α

θ + n
− cn; f(n, n) =

n− α
θ + n

+ cn.

In other words, if a species sampling model satisfies the assumptions A1)-A3),
then the functions g and fi in the predictive probabilities (3) must have the
expressions (15) and (16). Zabell’s sufficientness postulate may be viewed as a
nonparametric counterpart of the classical Johnson’s postulate, in the sense that
it allows to remove the assumption of a prespecified number T < +∞ of possible

imsart-sts ver. 2014/10/16 file: urn_gibbs_revised_12jun17.tex date: August 1, 2018



10 BACALLADO ET AL.

species in the population. See Zabell [71], Zabell [73] and references therein for
details.

As discussed in Zabell [74], the parameters (cn)n≥1 represent adjustments of
the predictive probabilities that arise when only one species is observed in an
exchangeable sequence (Xi)i≥1 of trials. That is a partition consisting of a single
block is observed. Accordingly one may set cn = 0, for any n ≥ 1, by imposing
the following additional assumption: A4) Pr[Kn > 1] = 1 almost surely for any
n ≥ 1. In particular, let (X1, . . . , Xn) be a sample of size n from an arbitrary
species sampling model P , such that (X1, . . . , Xn) features Kn = k ≤ n species
X∗1 , . . . , X

∗
Kn

with corresponding frequencies Nn = n. Then under A1)-A4) one
has

(17) Pr[Xn+1 ∈ · |X1, . . . , Xn] =
θ + kα

θ + n
ν0(·) +

1

θ + n

k∑
i=1

(ni − α)δX∗
i
(·),

for any n ≥ 1, which are precisely the predictive probabilities of the two pa-
rameter Poisson-Dirichlet process. An intuitive description of (17) was proposed
by Zabell [74] in terms of the following Pólya-like urn scheme. Consider an urn
containing both colored and black balls, where colored balls may be interpreted
as the individuals with their associated species (color). Balls are drawn and then
replaced, in such a way that the probability of a particular ball being drawn at
any stage is proportional to its selection weight. Initially the urn contains a black
ball with weight θ > 0, and at the n-th draw: i) if we pick a colored ball then it
is returned to the urn with ball of the same color with weight 1; ii) if we pick a
black ball, then it is returned to the urn with a black ball of weight α ∈ (0, 1)
and a ball of a new color with weight 1 − α. If Xn is the color of the ball re-
turned in the urn after the n-th draw, and such a color is generated according to
the nonatomic distribution ν0, then it can be easily verified that the predictive
probabilities Pr[Xn+1 ∈ · |X1, . . . , Xn] coincides with (17), for any α ∈ (0, 1) and
θ > 0.

According to Zabell’s sufficientness postulate, the two parameter Poisson-
Dirichlet process is the unique species sampling model for which the function
g depends only on n and k, and the function fi depends only on n and ni, for
any i = 1, . . . , k. As a limiting special case of Zabell’s characterization, for α→ 0
the Dirichlet process is the unique species sampling model for which the func-
tion g depends only on n, and the function fi depends only on n and ni, for
any i = 1, . . . , k. The predictive probabilities (5) of a Gibbs-type species sam-
pling model generalize those of the two parameter Poisson-Dirichlet process by
introducing the dependency on k in the function f . In particular, within the
class of Gibbs-type species sampling model one may rephrase Zabell’s sufficient-
ness postulated as follows: for any index α ∈ (0, 1) the two parameter Poisson-
Dirichlet process is the unique Gibbs-type species sampling model for which the
ratio Vn+1,k/Vn,k in (5) simplifies in such a way to remove the dependency on
the number k of observed species. The normalized generalized Gamma process,
whose predictive probabilities are expressed in terms of the Vn,k’s in (10), is a
representative example of a Gibbs-type species sampling model for which such a
simplification does not occur. See, e.g., Lijoi et al. [43] and Lijoi et al. [45] for
details. The predictive probabilities of Gibbs-type species sampling models thus
suggest for a generalization of the Zabell’s sufficientness postulate, where the as-
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SUFFICIENTNESS POSTULATES FOR GIBBS-TYPE PRIORS 11

sumption A3) is replaced by the assumption fi(n, k,n) = f(n, k, ni), that is the
probability of observing the species X∗i depends only on n, k and ni, for any
i = 1, . . . , k. The following generalization of the Zabell’s sufficientness postulate
can be proved.

Proposition 1. Let P be a pecies sampling model with predictive probabilities
of the form (3), and allowing either for an infinite number of species or for a finite
random number T of species, with T being supported on N. Furthermore, assume
that

A1) Pr[Πn = πn] > 0 for all the partitions πn of the set {1, . . . , n};
A2) g(n, k,n) = g(n, k);
A3) fi(n, k,n) = f(n, k, ni) for any i = 1, . . . , k.

Under A1)-A3) there exists a parameter α < 1 and a collection of nonnegative
weights (Vn,k)1≤k≤n,n≥1 with V1,1 = 1 and satisfying Vn,k = Vn+1,k(n − αk) +
Vn+1,k+1 such that

g(n, k) =
Vn+1,k+1

Vn,k
; f(n, k, ni) =

Vn+1,k

Vn,k
(ni − α)

for any i = 1, . . . , k. In other terms, if a species sampling model P satisfies
the assumptions A1)-A3) then P is a Gibbs-type species sampling model with
parameter α < 1.

As we pointed out in the Introduction, Zabell’s sufficientness postulate gen-
eralizes the original framework of Regazzini [58] and Lo [48] by introducing the
dependency on k in the function g. Proposition 1 provides an even more general
framework by introducing the dependency on k in both the function g and the
function fi, for any i = 1, . . . , k, while maintaining the same structure with re-
spect to the dependency on the frequencies counts n. The proof of Proposition 1
is rather long and technical, although along lines similar to the proof of Zabell’s
sufficientness postulate. In particular it consists of verifying the following main
steps:

i) showing that the function f(n, k, ni) is a linear with respect to ni, for any
n ≥ 1, 1 ≤ k ≤ n, i.e., there exist parameters an,k and bn,k such that
f(n, k,m) = an,k + bn,km;

ii) showing that the parameter bn,k is different from zero, for any n ≥ 1 and
1 ≤ k ≤ n; this allows us to introduce an additional parameter αn,k =
−an,k/bn,k, which we show to be independent of n and k and to be strictly
less than 1;

iii) introducing the new parametrization Vn,k, showing that it satisfies the re-
cursion specific of the Gibbs-type prior and finally recovering the fi and g
of a generic Gibbs-type prior.

See Section 1 of the supplementary material for the proof of Proposition 1. Note
that Proposition 1 does not characterize the entire class of Gibbs-type species
sampling models. Indeed we confined ourself to species sampling models allowing
either for an infinite number of species or for a finite random number T of species,
with T being supported on N. According to the characterization of Gnedin and
Pitman [27], this restriction excludes Gibbs-type species sampling models with
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12 BACALLADO ET AL.

α < 0 and with M being a distribution with finite support. It remains an open
problem to check whether it is possible to characterize the entire class of Gibbs-
type priors by relaxing A1).

One can derive an intuitive urn scheme that describes the predictive probabil-
ities for the class of Gibbs-type species sampling model. Let (Vn,k)1≤k≤n,n≥1 be a
collection of nonnegative weights such that V1,1 = 1 and Vn,k = Vn+1,k(n−αk) +
Vn+1,k+1. Consider an urn containing both colored and black balls, where colored
balls may be interpreted as the individuals with their associated species (color).
The urn initially contains only a black ball with an arbitrary weight. Balls are
drawn successively from the urn with probabilities proportional to their weights,
and the drawing mechanism is described by the following Pólya-like urn scheme.
Assuming that at the i-th draw black balls have weight M , and that there are k
distinct colors in the urn with weights M1, . . . ,Mk, respectively, at the (i+ 1)-th
draw:

i) if we pick a black ball, then it is returned to the urn together with a black
ball of weight

(18) B∗i+1 = M
Vi+2,k+2Vi+1,k

Vi+2,k+1Vi+1,k+1
−M,

and a ball of a new color with weight

(19) A∗i+1 = (1− α)M
Vi+1,k

Vi+1,k+1
;

ii) if we pick a non-black ball, then it is returned to the urn together with a
black ball of weight

(20) B̃i+1 = M
Vi+2,k+1Vi+1,k

Vi+2,kVi+1,k+1
−M,

and an additional ball of the same color with weight

(21) Ãi+1 = M
Vi+1,k

Vi+1,k+1
.

If Xn is the color the non-black ball returned in the urn after the n-th draw, then
it can be verified that Pr[Xn+1 ∈ · |X1, . . . , Xn] coincides with the predictive
probabilities (5) of the class of Gibbs-type species sampling models. We refer to
Section 2 of the supplementary material for details on formulae (18), (19), (20)
and (21). Hereafter we denote by Xn,k a sample of size n from the above urn
scheme and featuring Kn = k ≤ n distinct colors, labelled by X∗1 , . . . , X

∗
Kn

, with
frequencies Nn = n.

Note that the urn scheme proposed in Zabell [74] is recovered from (18), (19),
(20) and (21) by setting Vn,k of the form (9) and M = θ + kα. Note that under
this assumptions the black ball is updated only when the black ball is drawn.
This is indeed a feature of Zabell’s urn scheme. Differently, in our urn scheme
the weight of the black ball is updated when the black ball is drawn (18) and
also when a non-black ball is drawn (20). According to (20), in order to update
the black ball only when the black ball is drawn we must assume the following
constrain

(22)
Vn+2,k+1Vn+1,k

Vn+2,kVn+1,k+1
= 1.
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SUFFICIENTNESS POSTULATES FOR GIBBS-TYPE PRIORS 13

By means of (5), it can be easily verified that the assumption (22) is equivalent
to

Pr[Xn+2 is of color X∗i |Xn+1,k+1](23)

= Pr[Xn+2 is of color X∗i |Xn+1,k],

for i = 1, . . . , k, i.e. the probability of observing at the next step a species of
type i is independent of k. By Zabell’s sufficientness postulate and Proposition
1 together, we know that, for any α ∈ (0, 1) and θ > −α, the two parameter
Poisson-Dirichlet process is the unique Gibbs-type species sampling model for
which (23) holds true. In Section 2 of the supplementary material we present a
direct proof of this fact, which is stated here as a proposition. This proposition
holds true for all α < 1 and does not rely on Zabell’s characterization but only
on Proposition 1.

Proposition 2. The two parameter Poisson-Dirichlet process is the unique
Gibbs-type species sampling model for which the assumptions (22) hold true.

Now, let us consider the alternative scenario in which the weight of the black
ball is not updated neither when the black ball is drawn, nor when a non-black
ball is drawn. Recall that, from the Pólya-like urn scheme of Zabell [74], this
scenario is obtained by letting α → 0. In other terms we are considering the
predictive probabilities characterizing the Dirichlet process. According to (18)
and (20), in order to never update the black ball we must assume condition (22)
together with

(24)
Vn+2,k+2Vn+1,k

Vn+2,k+1Vn+1,k+1
= 1.

By means of (5), it can be easily verified that the two assumptions are equivalent
to assuming (23) and

Pr[Xn+2 is a new color |Xn+1,k+1](25)

= Pr[Xn+2 is a new color |Xn+1,k].

According to Regazzini [58], for any θ > 0 the Dirichlet process is the unique
species sampling model for which (23) and (25) hold true. The next proposition
provides an alternative proof of this result, not relying on the results of Regazzini
[58], by only on Proposition 1. Its proof is presented in Section 2 of the supple-
mentary material.

Proposition 3. The Dirichlet process is the unique Gibbs-type species sam-
pling model for which the assumptions (23) and (25) hold true.

So far we discussed the relationship between: i) the dependency on k of the ratio
Vn+1,k+1/Vn,k and Vn+1,k/Vn,k, which appear in the predictive probabilities (5);
ii) the updates of the black ball in the above Pólya-like urn scheme. According
to Proposition 2 the weight of the black ball is updated only when the black-
ball is drawn if and only if Vn+1,k+1/Vn,k depends on k and Vn+1,k/Vn,k does
not depend on k. The opposite scenario consists of updating the weight of the
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14 BACALLADO ET AL.

black ball when a non-black ball is drawn, and not updating it when the black
ball is drawn. According to (18) and (20), this scenario is obtained by assuming
only (24). In the next proposition we show that this constraint alone implies that
α = 0. That is, imposing not to reinforce the black ball when a black ball is picked
leads to the trivial scenario in which the weight of the black ball is actually never
updated. See Section 2 of the supplementary material for the proof of the next
proposition.

Proposition 4. The Dirichlet process is the unique Gibbs-type species sam-
pling model for which the assumption (25) holds true.

If α→ 0 then the urn scheme of Zabell [74] reduces to the Pólya-like urn scheme
introduced by Hoppe [33]. Hoppe [33] showed that the configuration of the colored
balls after n draws from the urn is distributed as the sampling formula of Ewens
[20], i.e, the distribution of the number of different gene types (alleles) and their
frequencies at a selectively neutral locus under the infinitely-many-alleles model
of mutation with rate θ > 0. Hence, the following natural genetic interpretation
for the Hoppe’s urn scheme: colors are mutations and the black ball, which is
ignored in describing the urn configuration, is a device for introducing new mu-
tations. See Crane [16] for detailed account of the interplay between Hoppe’s urn
and Ewens sampling formula, as well as for their genetic interpretations. Under
the Zabell’s urn scheme, as well as under our general urn scheme, the distribu-
tion of the configuration of the colored balls after n draws from the urn can be
easily derived from (11). See, e.g., Pitman [51] and Pitman [53]. However, despite
explicit generalized Ewens sampling formulae are available, we are not aware of
any genetic interpretation of them. Even for the simplest case of the Zabell’s urn
scheme, a natural genetic interpretation seems missing from the literature. While
the parameter θ might be still interpreted as a mutation parameter, it is not clear
a natural genetic interpretation for the parameter α ∈ (0, 1). See Feng and Hoppe
[24] for a discussion.

4. SUFFICIENTNESS POSTULATES AND HIERARCHICAL DIRICHLET
PROCESSES

The hierarchical Dirichlet process was introduced in Teh et al. [67], while its
two parameter generalization is due to Teh [65]. Let P be a species sampling
model with nonatomic base distribution ν0. Hierarchical species sampling models
are defined as collections of species sampling models, say P1, . . . , Pr, with the
same random base distribution P . Due to the discreteness of P , the support of
the Pj ’s is contained in that of P and, hence, all the Pj ’s share the same random
support of P . A sample from a hierarchical species sampling model is then part
of a random array (Xj,i)i≥1,1≤j≤r, which is partially exchangeable in the sense
de Finetti [18] originally attached to this term, i.e., each sequence (Xj,i)i≥1 is
exchangeable for all j ≤ r. The distribution of a sample (Xj,i)1≤i≤nj ,1≤j≤r from a
hierarchical species sampling model can be expressed in the following hierarchical
form

Xj,i |Pj
ind∼ Pj i = 1, . . . , nj , j = 1, . . . , r,(26)

Pj |P
ind∼ Pj(P ) j = 1, . . . , r,
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SUFFICIENTNESS POSTULATES FOR GIBBS-TYPE PRIORS 15

P ∼ P,

where nj is the size of the sample from Pj and, in the second line, Pj is indexed
by j because the conditional distribution may depend on additional population-
specific parameters and P . One may think of the sample (Xj,i)1≤i≤nj ,1≤j≤r as a
collection of samples from r different populations. Within population, observa-
tions are exchangeable, but across populations their dependence becomes weaker.
Consideration of hierarchical models defined by layers of species sampling mod-
els raises the interesting problem of whether there exists sufficientness postulates
that characterize the resulting models. In this section we discuss such a prob-
lem with respect to the two parameter hierarchical Poisson-Dirichlet process,
namely: i) the Pj ’s are two parameter Poisson-Dirichlet process with parameters
αj ∈ [0, 1), θj > −αj and with common base distribution P ; ii) P is a two param-
eter Poisson-Dirichlet process with parameters α ∈ [0, 1), γ > −α and nonatomic
base distribution ν0.

To describe the two parameter hierarchical Poisson-Dirichlet process we adopt
the notation of Teh and Jordan [68]. Let X∗∗1 , . . . , X

∗∗
K be the K distinct species

observed in the joint sample from the r populations. Observations in population j
are grouped in clusters. We remark that there may be two or more clusters in the
population j composed of individuals of the same species. We therefore denote by
mj,k the number of clusters in population j sharing species X∗∗k and by nj,t,k the
number of observations in population j, belonging to the t-th cluster and having
species X∗∗k . Within cluster t observations belong to the same species. We use
dots in the subscripts to denote that we are summing over indexes, e.g. nj·· and
mj· are the number of observations and the number of clusters in population j
respectively. Finally, we denote by (X∗j,1, . . . , X

∗
j,mj·

) the species of the mj· clusters

in population j. Given a sample (Xj,i)1≤j≤r,1≤i≤nj·· , the predictive probability of
Xj,i+1 is

(27)
θj +mj·αj
θj + nj··

P (·) +
1

θj + nj··

mj·∑
t=1

(njt· − αj)δX∗
j,t

(·)

for any j = 1, . . . , r, whereas the predictive probability for a new cluster X∗j,mj·+1

is

(28)
γ +Kα

γ +m··
ν0(·) +

1

γ +m··

K∑
k=1

(m·k − α)δX∗∗
k

(·),

These two formulae should be understood as follows. Xj,i+1 joins the t-th cluster
in population j and belongs to species X∗j,t with probability proportional to (njt·−
αj), or it forms a new cluster with probability proportional to (θj+mj·αj). In this
latter case, the species of this new cluster, X∗j,mj·+1 is sampled from (28). Such
a species is one of those already observed among all populations, say X∗k , with
probability proportional to (m·k − Kα), or it is a new species with probability
proportional to (γ+Kα). The parameters αj and θj have the same interpretation
as for the predictive probabilities (17). Instead, α and γ control the total number
and the sharing of cluster values among populations: the lower γ the lower is the
average total number of different species observed K; the larger α the lower is
the number of species shared across populations. We refer to Teh and Jordan [68]
for further details.
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The predictive probabilities of the hierarchical Dirichlet process arises from
(27) and (28) by setting α = 0 and αj = 0 for any j = 1, . . . , r. We refer to Teh et
al. [67] for a detailed account on this predictive probabilities, with a description
in terms of the so-called Chinese restaurant franchise process. We assume the
θj = θ for any j = 1, . . .. Now, let (Xi)i≥1 be an exchangeable sequence directed
by a Dirichlet process P with parameter γ and base distribution ν0. Given P , or
equivalently given (Xi)i≥1, let (Xj,i)i≥1,j≥1 be a collection of conditionally inde-
pendent exchangeable sequences, the j-th sequence being directed by a Dirichlet
process Pj with parameter θ and base distribution P . We observe that in order
to implement the second level of the hierarchy, and generate a finite sample of
observations from multiple populations, it is not necessary to resort to P , but
it is sufficient to have a truncated version of the Pólya urn sequence (Xi)i≥1.
In particular, it is enough to have at hand (Xi)i≤n··· , because the exchangeable
sequences at the second level of the hierarchy needs at most n··· conditional in-
dependent samples from P . In the next proposition we introduce a sufficientness
postulate for the hierarchical Dirichlet process. Our postulate thus extends the
characterization of Regazzini [58] and reveals some limitations of the hierarchical
Dirichlet process.

Proposition 5. Let (Xj,i)i≥1,j≥1 be a partially exchangeable array directed
by a hierarchical species sampling model, and assume that its predictive prob-
abilities are such that the conditional probability of X`,n`+1 given the sample
(Xj,i)1≤i≤nj ,j≤r is

(29) wn`F̂`,n` + (1− wn`)F [(Xj,i)1≤i≤nj ,j≤r]

where

i) F̂`,n` is the empirical distribution of X`,1, . . . , X`,n`;
ii) wn` varies only with the population specific sample sizes n`;

iii) F [(Xj,i)1≤i≤nj ,j≤r] does not depend on `.

Then the hierarchical Dirichlet process is the directing measure of the array
(Xj,i)i≥1,j≥1.

The proof of Proposition 5 is presented in Section 3 of the supplementary ma-
terial. Proposition (5) imposes some constraints on the predictive probabilities of
the partially exchangeable array (Xj,i)i≥1,1≤j≤r. In particular, the constraint on
the form (29) for the predictive probabilities, with the function F [(Xj,i)1≤i≤nj ,j≤r]
not depending on ` and the weights wn` depending only on the sample size n`, is
the most relevant in practice. Indeed this constraint requires that the conditional
probability of discovering a new species in an additional sample from the popula-
tion j, given the sample (Xj,i)1≤i≤nj ,1≤j≤r, depends only on the size of the sample
from the population j, in a way that is homogeneous across populations. More
formally, probabilities of discovering a new species by sampling from one of the
populations are proportional to the vector of weights [(1 − wn1), . . . , (1 − wnr)].
This assumption is violated in numerous real-world examples, as evidenced in
Figure 1. This figure shows an estimate of the Shannon entropy for the distribu-
tion of bacterial species in 900 samples of the vaginal microbiome taken from the
work of Ravel et al. [59]. Note that the predictive probabilities of a hierarchical
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Dirichlet process, conditioned on these data, would assign an equal probability
to the event of discovering a new species from each of these populations, because
the sample sizes nj ’s are equal, despite the evident disparity in the diversity of
species.
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Fig 1. The empirical Shannon entropy in the microbial distribution across 900 samples of the
vaginal microbiome (Ravel et al. [59]), which are ranked according to the level of diversity. The
dashed blue line shows the Shannon entropy of the Uniform distribution for the same number of
species.

Proposition 5 does not extend easily to the two parameter hierarchical Poisson-
Dirichlet process. In fact, we believe it may not be trivial to provide a suffientness
postulate for this model, unless one makes use of latent variables. Specifically,
consider the predictive probabilities (27) and (28). If we condition on a set of
variables that determine the steps in (Xj,i)i≥1,1≤j≤r in which P is sampled, then
it is not difficult to formulate sufficientness conditions that characterize the ex-
changeable sequences. In particular the sufficientness characterization of Zabell
[74] could be applied to each layer of the process. However, conditioning on this
set of variables is not in the spirit of Johnson sufficientness postulate because,
first, the variables that determine when P is sampled are not observable since the
species observed at those steps are not necessarily “new”, and second, unlike the
exchangeability of a random partition the hierarchical structure assumed does not
have an apparent subjective motivation. We also note that model interpretability,
in this case, is provided by the overall probability construction, rather than by
characteristics of the joint distribution of dependent random partitions, which in
most cases presents analytic expressions that are far from trivial. With the excep-
tion of the correlations between the random probabilities P1, . . . , Pr, results to
quantify and understand the degree of dependence among (Xj,i)i≥1,1≤j≤r remain
limited.

5. DISCUSSION

In this paper we reviewed and discussed some nonparametric counterparts of
the celebrated Johnson’s “sufficientness” postulate. In particular we presented a
general framework for “sufficientness” which extends previous characterizations
by Regazzini [58], Zabell [71], Lo [48] and Zabell [75] for the Dirichlet process
and two parameter Poisson-Dirichlet process. The reader is referred to the works
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of Zabell [72], Walker and Muliere [69], Rolles [61] and Bacallado et al. [4] for
related “sufficientness” characterizations in the context of neutral to the right
random probability measures and Markov chains. Following the parallel with
the “sufficientness” postulates for the Dirichlet process and the two parameter
Poisson-Dirichlet process, we paired our postulate with a simple Pólya-like urn
scheme for describing the predictive probabilities of Gibbs-type species sampling
priors. Such a scheme provides a novel and intuitive interpretation of these pre-
dictive probabilities in terms of the updates of a sequence of balls drawn for a
Pólya-like urn. We find this interpretation particularly useful in order to high-
lights the fundamental differences between the Dirichlet process, the two param-
eter Poisson-Dirichlet process, and the more general class of Gibbs-type species
sampling models. In particular we show how the sufficientness postulates origi-
nally proposed by Zabell [74] and Regazzini [58] may be rephrased in terms of
our Pólya-like urn scheme.

The Pólya-like urn schemes for the Dirichlet process and the two-parameter
Poisson-Dirichlet process are often applied in hierarchical constructions. While
hierarchical species sampling priors had a tremendous impact on several applied
fields, it still remains difficult to guide a selection of the prior distribution with
subjective arguments, such as the number of species and their variability across
populations. On the other hand it also remains challenging to tune hierarchi-
cal constructions to optimize the performance of the resulting tools, quantified
by classification and prediction error metrics. Our hope, and a motivation for
our work, is that “sufficientness” postulates and urn schemes contribute to a
better understanding and interpretability of hierarchical constructions [67] and
dependent random distributions [64] that combine layers of exchangeable random
partitions. In particular the study of Gibbs-type exchangeable random partitions
has the potential of contributing to the critical evaluation of hierarchical con-
structions for data analysis. When, for example, heterogeneous populations, say
in ecology of microbiome studies, are modeled using dependent random parti-
tions embedded in hierarchical constructions, how can we use the imputed layers
of partitions generated through Markov chain Monte Carlo algorithms or other
approaches to evaluate the construction of the prior model? When can we say that
the use of hierarchical species sampling priors appears appropriate? Which type
of assumption can we leverage on to tackle this type of problems? The theoretical
characterization and classification of random partitions will allow the statistical
and machine learning communities to approach these problems.

SUPPLEMENTARY MATERIAL

Online supplementary material includes the proofs of Proposition 1, 2, 3, 4
and 5, and the derivation of the Pólya-like urn scheme for Gibbs-type species
sampling models.
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[33] Hoppe, F.H. (1984). Pólya-like urns and the Ewens sampling formula. J. Math. Biol., 20,
91–94.

[34] Ishwaran, H. and James, L.F. (2001). Gibbs sampling methods for stick- breaking priors.
J. Amer. Stat. Ass., 96 161–173.

[35] James, L.F. (2002). Poisson process partition calculus with applications to exchangeable
models and Bayesian nonparametrics. Preprint arXiv:math/0205093.

[36] James, L.F. (2013). Stick-breaking PG(α, ζ)-generalized Gamma processes. Preprint
arXiv:1308.6570.

[37] Johnson, W.E. (1932). Probability: the deductive and inductive problems. Mind, 41, 409–
423.

[38] Kingman, J.F.C. (1978). The representation of partiton structure. J. London. Math. Soc.,
18, 374–380.

[39] Korwar, R.M. and Hollander, M. (1973). Contribution to the theory of Dirichlet pro-
cesses. Ann. Probab., 1, 705–711.

[40] Lee, J., Quintana, F.A., Müller, P. and Trippa, L. (2013). Defining predictive prob-
ability functions for species sampling models. Statist. Sci., 28, 209–222.

[41] Lijoi, A., Mena, R.H. and Prünster, I. (2005). Hierarchical mixture modelling with
normalized inverse-Gaussian priors. J. Amer. Stat. Assoc. 100 1278–1291.

[42] Lijoi, A., Mena, R.H. and Prünster, I. (2007). Bayesian nonparametric estimation of
the probability of discovering new species. Biometrika, 94, 769–786.

[43] Lijoi, A., Mena, R.H. and Prünster, I. (2007a). Controlling the reinforcement in
Bayesian non-parametric mixture models. J. Roy. Statist. Soc. Ser. B, 69, 769–786.

[44] Lijoi, A. and Prünster, I. (2010). Models beyond the Dirichlet process. In Bayesian
Nonparametrics, Hjort, N.L., Holmes, C.C. Müller, P. and Walker, S.G. Eds. Cambridge
University Press.

[45] Lijoi, A., Prünster, I. and Walker, S.G. (2008). Investigating nonparametric priors
with Gibbs structure. Statist. Sinica, 18, 1653–1668.

[46] Lijoi, A., Prünster, I. and Walker, S.G. (2008). Bayesian nonparametric estimators
derived from conditional Gibbs structures. Ann. Appl. Probab., 18, 1519–1547.

[47] Lo, A.Y. (1984). On a class of Bayesian nonparametric estimates. Ann. Statist., 12, 351–
357.

[48] Lo, A.Y. (1991). A characterization of the Dirichlet process. Statist. Probab. Lett., 12,
185–187.

[49] Lomeli, M., Favaro, S and Teh, Y.W. (2017). A marginal sampler for σ-stable Poisson-
Kingman mixture models. J. Comput. Graph. Statist., 26, 44–53.

[50] Perman, M., Pitman, J. and Yor, M. (1992). Size-biased sampling of Poisson point
processes and excursions. Probab. Theory Related Fields. 92, 21–39.

[51] Pitman, J. (1995). Exchangeable and partially exchangeable random partitions. Probab.
Theory Related Fields, 102, 145–158.

[52] Pitman, J. (1996). Some developments of the Blackwell-MacQueen urn scheme. In Statis-
tics, Probability and Game Theory, Ferguson, T.S., Shapley, L.S. and MacQueen, J.B. Eds.,
Institute of Mathematical Statistics.

[53] Pitman, J. (2003). Poisson-Kingman partitions. In Science and Statistics: A Festschrift
for Terry Speed, Goldstein, D.R. Eds. Institute of Mathematical Statistics.

imsart-sts ver. 2014/10/16 file: urn_gibbs_revised_12jun17.tex date: August 1, 2018



SUFFICIENTNESS POSTULATES FOR GIBBS-TYPE PRIORS 21

[54] Pitman, J. (2006). Combinatorial Stochastic Processes. Ecole d’Eté de Probabilités de
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