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Abstract 19 

Waste treatment and the simultaneous production of energy have gained great interest in the world. In the last 20 

decades, scientific efforts have focused largely on improving and developing sustainable bioprocess solutions for 21 

energy recovery from challenging waste. Anaerobic digestion (AD) has been developed as a low-cost organic 22 

waste treatment technology with a simple set-up and relatively limited investment and operating costs. Different 23 

technologies such as, one-stage and two-stage AD have been developed. The viability and performance of these 24 

technologies have been extensively reported, showing the supremacy of two-stage AD in terms of overall energy 25 

recovery from biomass under different substrates, temperatures and pH conditions. However, a comprehensive 26 

review of the advantages and disadvantages of these technologies is still lacking. Since microbial ecology is 27 

critical to developing successful AD, many studies have shown the structure and dynamics of archaeal and 28 

bacterial communities in this type of system. However, the role of Eukarya groups remains largely unknown to 29 

date. In this review, we provide a comprehensive review of the role, abundance, dynamics and structure of 30 

archaeal, bacterial and eukaryal communities during the AD process. The information provided could help 31 

researchers to select the adequate operational parameters to obtain the best performance and biogas production 32 

results. 33 

 34 

Keywords: anaerobic digestion; one stage vs two stage; microbiome; Archaea, Bacteria and Eukarya 35 

communities 36 

 37 

  38 



3 
 

Introduction 39 

Energy production from renewable sources and efficient waste treatment are two of the more relevant scientific 40 

and social challenges nowadays (De Vrieze et al. 2017). In the last two decades, anaerobic digestion (AD) has 41 

been proven to be a valuable method able to solve both of these issues, combining recycling of different waste 42 

materials with the production of biogas (Oslaj et al. 2010; Tyagi and Lo 2013).Current systems based on AD aim 43 

to convert organic matter into biogas. During this process, hydrolyzing microorganisms hydrolyze organic 44 

polymers (i.e. fats and proteins) producing simple molecules (i.e. sugars, amino acids and fatty acids); 45 

acidogenic microorganisms consume free monomers generating volatile fatty acids (VFAs) and alcohols; 46 

acetogenic microorganisms transform VFA and alcohols into acetic acid, CO2, and H2; methanogenic archaea 47 

consume acetic acid or hydrogen to generate CH4 (Gonzalez-Martinez et al. 2016a; Zhang et al. 2016b). 48 

AD is a process that can be applied to almost any organic waste. Many different substrates have been 49 

discussed in the literature: agricultural waste, food waste, animal manure, feed waste, energy crops and plant 50 

residues, such as brewery wastewater (Pozo et al. 2002; Chen et al. 2008; Meulepas et al. 2010). In addition to 51 

the digestion of individual substrates, AD reactors can be loaded with mixtures of different residues. This 52 

approach, which is usually termed ‘co-digestion’ or ‘co-fermentation’, offers various technical and commercial 53 

advantages. One example is the biostimulating effect coming from the overproduction of nutrients, which can 54 

accelerate the degradation of solid waste (Beyene et al. 2018). Moreover, the application of mono or co-digestion 55 

is an efficient alternative to obtain a stabilized solid waste that can be applied as soil conditioner (Rolando et al. 56 

2011; Gómez et al. 2006). 57 

The aim of this review is threefold. First, we will discuss relevant features of AD: the structure of the plants 58 

(one-stage vs two-stage AD), the operational temperature (mesophilic vs thermophilic) and other technologies in 59 

biogas production. A second section will be devoted to describe the role of the microbiome (Archaea, Bacteria 60 

and Eukarya communities) involved in AD and its link to operational and performance parameters and biogas 61 

production. Finally, we will discuss future implications and prospective biotechnologies in AD. 62 

 63 

Digester configurations: advantages and disadvantages 64 

Since the appearance of AD, a wide variety of digester configurations has been tested such as 65 

thermophilic/mesophilic digestion, dry/wet digestion, one-phase/two-phase digestion or one-stage/two-stage 66 

digestion (Møller et al. 2009; Nizami et al. 2009; Khalid et al. 2011; Mao et al. 2015; Sun et al. 2015; Chen et al. 67 

2016). Among these, the most relevant comparison, as well as the one most debated in the literature, is that based 68 

on the number of stages. However, independently of the digester configuration to obtain a high digestion 69 

efficiency, anaerobic bioreactors should allow a continuously high and sustainable organic load rate operating 70 

with short (Khalid et al. 2011) or long (Bergland et al. 2015) hydraulic retention time (HRT) depending on the 71 

substrate. 72 

The simplest possible configuration is the one-stage AD batch reactor, in which the tank is filled with the 73 

feedstock and let stand for a period after which it is emptied (Khalid et al. 2011). Although this kind of system 74 

has very low operational cost, it exhibits some limitations such as high fluctuations in gas production, biogas 75 

losses during emptying the bioreactors and restricted bioreactor heights (Khalid et al. 2011; Zhang et al. 2015; 76 

Sunyoto et al. 2016). A more widely used type of one-stage AD bioreactor is commonly defined ‘one-stage 77 

continuously fed systems’(Khalid et al. 2011). In one-stage AD system, hydrolysis, acidogenesis, acetogenesis 78 
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and methanogenesis take place in the same tank. This implies that acidogenic and methanogenic microbiota have 79 

to cohabit despite the existence of marked differences regarding growth factors and kinetics, nutritional needs 80 

and environmental conditions such as pH and temperature (Gonzalez-Martinez et al. 2016b; De Gioannis et al. 81 

2017). In this context, although the ideal pH range for AD has been reported to be between 6.8–7.4, it is known 82 

that in one-stage AD bioreactor the operational pH sometimes can affect the digestive progress and products 83 

directly. However, two-stage AD process separating the hydrolysis/acidification and 84 

acetogenesis/methanogenesis processes, provides optimal conditions for each of the microbiota, since the 85 

optimal pH levels for acidogenic (5.5–6.5) and methanogenic (7.0) microorganisms can be controlled to increase 86 

the efficiency of the process (Mao et al. 2015). Consequently, in these kinds of systems, the different sub-87 

processes of AD take place in separate sequential reactors. The most common configuration is the two-stage 88 

continuously fed system, although three-stage systems have been proposed (Angelidaki et al. 2003). Two-stage 89 

AD were originally conceived by Pohland and Ghosh (1971), and soon gained popularity, particularly for 90 

laboratory applications (Nizami et al. 2009). Although overall performance supremacy of two-stage AD has been 91 

variously reported in the literature, one-stage AD are far from being replaced (Møller et al. 2009). According to 92 

Rapport et al. (2012), 90% of the total capacity of the full-scale AD plants installed in Europe at that time was 93 

covered by one-stage systems. The main reasons behind this are probably the simpler structural features and 94 

lower operating costs. On the other hand, two-stage AD provides higher substrate conversion and better energy 95 

recovery, as well as better process stability, resilience and reliability (Salvador et al. 2013; De Gioannis et al. 96 

2017; Shen et al. 2017). 97 

Multiple-stage reactors have been developed to improve process stability and efficiency (Achinas et al. 98 

2017). In this sense, Kim et al. (2011) demonstrated significantly higher digestion efficiency of a four-stage AD 99 

system using activated sludge than a single-stage system. Likewise, a novel alternative technique based on a high 100 

working pressure (up to 100 bar), permits the production of biogas with more than 95% methane content. This 101 

technique integrate in a single process both biogas production and in situ increased-pressure purification, 102 

generating a clean biogas (99% methane) that can be fed directly into the natural gas networks. However, the 103 

effect of the working pressure on microbiome structure is still unknown (Lindeboom et al. 2011). The 104 

complexity and high cost of this novel technologies are barriers to commercial use and until date, few multiple-105 

stage AD units operate on a commercial scale. 106 

 107 

Thermophilic and mesophilic conditions 108 

A further relevant way to classify AD systems is to consider their operating temperature. Although the biogas 109 

process can proceed at different temperatures, mesophilic (30–40°C) and thermophilic (50–60 °C) conditions are 110 

commonly used (Møller et al. 2009; Wang et al. 2018). Temperature is, indeed, one of the main environmental 111 

factors affecting physical parameters such as viscosity, surface tension and mass transfer properties. Moreover, 112 

small changes in the temperature can result in a reduction in process efficiency, so its stability is also important 113 

(Angelidaki et al. 2003).Above all, temperature must be considered in relation to microbial growth and reactions 114 

(Amani et al. 2010; Gonzalez-Martinez et al. 2017) and changes in the structure and dynamics of prokaryotic and 115 

eukaryotic groups (see Section 2). The groups of microbes that have been identified for AD are mesophilic and 116 

thermophilic strains. While great diversity exists between mesophilic and thermophilic bacteria, with the latter 117 
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showing both higher specific growth and decay rates, methanogen growth is mostly favoured by both mesophilic 118 

and thermophilic temperatures (Li et al. 2015; Kundu et al. 2017). 119 

Neither of the two conditions (i.e. mesophilic or thermophilic) is absolutely preferable. Although mesophilic 120 

digestion has some disadvantages (i.e. lower metabolic rate, lower rate and efficiency of particulate matter 121 

hydrolysis, smaller degree of pathogen deactivation and lower biogas production yields) (Liu et al. 2017), it has 122 

important advantages, such as a lower VFA concentration in the final effluents, maintenance of a higher organic 123 

loading rate (OLR) (Bayr et al. 2012) and a more stable performance (Guo et al. 2014), compared to 124 

thermophilic digestion (Appels et al. 2008; Wang et al. 2017). On the other hand, thermophilic temperatures can 125 

produce large quantities of dissolved solids in the digester supernatant and more odours, and have acidification 126 

potential and higher energy requirements. For these reasons, two-stage AD offers the opportunity to operate 127 

thermophilic hydrolysis/acidogenesis and mesophilic methanogenesis, as a good compromise. Of note, a 128 

different approach not requiring an extra heat supply, named ‘ambient/seasonal temperature AD’, has also been 129 

used for organic waste. However, the changes in temperature induce less stability and lower methane production 130 

compared with the mesophilic process (Mao et al. 2015). 131 

 132 

Biogas production 133 

Currently, AD is implemented in various ways worldwide. In the Western world there are, to date, about ten 134 

thousands of operational AD plants (Yousuf et al. 2016; Vasco-Correa et al. 2018). A comparable amount can be 135 

found in Asia, where rural communities use small-scale household digesters for domestic necessities (Surendra 136 

et al. 2014). Similar small-scale digesters have also been installed in rural regions of Latin America and Africa 137 

during the last few years (REN21, 2016). Laws on the subject of environmental protection and waste treatment, 138 

as well as new emerging candidate substrates and innovative technologies, will surely guide the evolution of AD. 139 

Different compositions of mixed substrates have been reported to increase the production of biogas, such as 140 

mixing municipal solid waste with industrial sludge (Ağdağ and Sponza 2007) or olive mill wastewater with 141 

olive mill solid waste (Fezzani and Cheikh 2010). In addition, co-digestion has been proved to stabilize reactor 142 

performance (Lo et al. 2010; Beyene et al. 2018). Interestingly, the use of this approach with substrates rich in 143 

carbon has been proposed as a solution to reduce ammonia and other toxic substances (Rajagopal et al. 2013; 144 

Fitamo et al. 2017). Moreover, co-digestion is an efficient strategy to degrade those kinds of waste that are 145 

difficult to process as a unique substrate. Recently, Park et al. (2016) tested different mixtures in order to 146 

optimize the processing of sewage sludge, obtaining optimal results in combination with food waste. As a further 147 

solution, Shen et al. (2017) proved that the combination of sewage sludge and pyro-biochar can improve 148 

biomethane production, compared with the digestion of sewage sludge alone. 149 

As an example, the Korean government recently solicited the use as an AD substrate of organic waste from 150 

ocean dumping or landfill, with the aim to produce renewable energy; this raises the issue of efficiently 151 

degrading septage and sewage sludge, and the consequent investigation of different mixtures for co-digestion 152 

approaches (Park et al. 2016). Otherwise, good availability of a specific kind of waste can turn it into a candidate 153 

substrate. In Colombia, for example, the massive production of coffee generates a large amount of coffee 154 

mucilage, a crop residue rich in carbohydrates. This organic matter has been successfully used in co-digestion 155 

with pig manure to produce biohydrogen, taking advantage of two types of organic waste readily available in the 156 
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same geographical region (Hernández et al. 2014). Finally, technical innovations will help the scale-up of 157 

currently experimental systems. 158 

Biohythane is a promising sustainable alternative to hythane. It is more environmentally friendly, requires a 159 

shorter fermentation time and offers better energy recovery than traditional biogas. Despite research interest in 160 

the production of this gas, numerous challenges have still to be addressed in order to allow large-scale 161 

production of biohythane by means of AD (Liu et al. 2018). Similarly, technical improvements are needed for 162 

the realization of full-scale three-stage AD plants. Hitherto, an in-lab preliminary study has proved that this 163 

approach could considerably improve the production of methane (Zhang et al. 2017). A further promising 164 

strategy to increase biogas yield and system performance is the application of selected microbial consortia, often 165 

taken from another operating plant. However, more accurate knowledge concerning adaptation of the inoculum 166 

is required in order to maximize the potential advantages of this approach (Wojcieszak et al. 2017). 167 

 168 

Archaea, Bacteria and Eukarya communities in anaerobic digestion processes 169 

Integration of microbial aspects within the framework of AD is critical to achieve the desired performance and 170 

biogas production. The microbiome as an entity does not work as a randomized mix, and scientific efforts focus 171 

largely on linking operational and performance parameters with the structure of microbial communities. Here, 172 

we highlight engineering of the microbiome, focusing on the most crucial Archaea, Bacteria and Eukarya 173 

groups. 174 

 175 

Abundance, structure and dynamics of the microbiome in anaerobic digestion processes 176 

Microbial ecologists and engineers have shown increasing interest concerning insight into the microbiome in 177 

anaerobic digesters. So far, the most crucial microorganisms have been identified although few authors have 178 

linked operational and performance parameters and microbiome response at laboratory or full-scale conditions 179 

(Carballa et al. 2011; Werner et al. 2011; Carballa et al. 2015; Gonzalez-Martinez et al. 2016b; De Vrieze et al. 180 

2017; Kundu et al. 2017; Wang et al. 2018). Since a strong syntrophic relationship exists between acetogenic and 181 

methanogenic organisms involved in AD, biomonitoring of the system could be an important feature for 182 

engineers to obtain a highly efficient microbiome and to predict and prevent system failure (Amani et al. 2010). 183 

For example, Kundu et al. (2013) showed that a high degree of microbial diversity could be indicative of stable 184 

AD performance. Recently, a methodological approach to link microbial and operational data has also been 185 

described (de Los Reyes III et al. 2015). 186 

The development of next-generation sequencing technologies has offered an opportunity to describe the 187 

microorganisms present (DNA) or active (RNA) in engineered ecosystems as well as their abundance (Muñoz-188 

Palazon et al. 2018). Nevertheless, a combined DNA–RNA approach would result in a more accurate 189 

methodology to link the microbial community’s structure and its metabolic ability requirements (Kaever et al. 190 

2014; Maus et al. 2016). Identification of the critical representative species by means of these techniques can 191 

help to increase the efficiency and stability of AD (Venkiteshwaran et al. 2015; Dang et al. 2017).  In this sense, 192 

the presence of sulphate-reducing bacteria in AD can decrease methane production because of substrate 193 

competition and sulphide inhibition of the methanogenic community (Chen et al. 2008; Sasaki et al. 2011). Thus, 194 

biomonitoring tools can help to prevent inefficiencies in AD. 195 
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The AD process comprises four interdependent steps in which microorganisms responsible for a specific 196 

stage provide the intermediates for the next. Microbial community structure and dynamics are important to 197 

sustain functional redundancy and to maintain a well-balanced process (Allison and Martiny 2008; Ziganshin et 198 

al. 2013). Archaea, Bacteria and Eukarya communities form the microbiome of the anaerobic digester and 199 

change during the stages of the AD process (Matsubayashi et al. 2017). 200 

Archaea play a central role during methanogenic processes of AD, and it has been reported that these 201 

microorganisms can be related to different operational parameters (Zhang et al. 2012; Smith et al. 2014; Hao et 202 

al. 2016). Synthesis of CH4 is carried out both by acetoclastic (e.g. Methanosaeta, Methanosarcina and 203 

Methanothrix) and hydrogenotrophic methanogens (e.g. Methanobacterium, Methanomicrobium, 204 

Methanococcus, Methanobrevibacter, Methanomassilii and Methanospirillum) using acetic acid, or by using H2 205 

and CO2 or methyl compounds to synthesize CH4 (Calderón et al. 2013; Gonzalez-Martinez et al. 2016b). The 206 

characteristics and properties of the main methanogens involved in an AD as well as their substrates and 207 

products have been reported (McHugh et al. 2003; Amani et al. 2010; Goswani et al. 2016; Kundu et al. 2017). 208 

In most of the studies in the literature, Archaea diversity decreases with temperature elevation (Kundu et al. 209 

2012; Guo et al. 2014), an effect more remarkable than changes in OLR which abrupt increase (from 1 to 8 g VS 210 

L-1 d-1) seemed to have little influence on the microbial community (Gou et al. 2014). Hao et al. (2016) 211 

compared the effect of total solid (TS) concentrations on archaeal diversity in sludge-fed digesters. Under high 212 

TS conditions (TS > 44 g/L), the relative abundance of Methanosarcinaceae and Methanobacteriaceae families 213 

increased whereas when digesters operated at lower-TS (TS ≤ 44 g/L) only Methanosaetaceae family was 214 

favoured. Under the use of continuous lab and full-scale reactors and food waste substrate the genus 215 

Methanosarcina is dominant under thermophilic conditions, with abundance higher than 80%, although 216 

Methanothermobacter and Methanoculleus are also favoured (Cho et al. 2013; Wang et al. 2018), whereas 217 

Methanosaeta is dominant under mesophilic conditions (accounting for>25% of relative abundance) (Gonzalez-218 

Martinez et al. 2016b). On the other hand, Methanosaeta instead of Methanosarcina is favoured under low acid 219 

concentrations. Since VFA accumulation results in lower values for pH, Guo et al. (2014) showed a decrease in 220 

archaeal diversity when VFAs produced in the hydrolytic step are not consumed by methanogens. In fact, 221 

acetoclastic methanoarchaea have a positive correlation with VFAs and NH4
+ (Lin et al. 2012). Methanogen 222 

diversity is also sensitive to a pH value lower than 6.5, particularly during acid and acetate accumulation (Bräuer 223 

et al. 2006). In general, lower hydraulic retention time values decrease archaeal diversity by selecting organisms 224 

with a high growth rate and poor substrate affinity. In this sense, Methanosaetaceae (slower growth rate) 225 

predominate when HRT> 5 days, while Methanosarcinaceae, Methanobacteriales and Methanomicrobiales 226 

(faster growth rate) become dominant at HRT< 2 days (Padmasiri et al. 2007; Chelliapan et al. 2011). Regueiro 227 

et al.(2014) reported that Methanosaeta is crucial for reaching stable reactor performance although the archaeal 228 

community structure is affected by substrate type. Moreover, taking into account operational performance 229 

parameters, Kundu et al. (2017) indicated Methanosaetaceae as the best candidate for biomonitoring based on its 230 

sensitivity to fluctuations in the AD process. 231 

The presence of bacterial genera such as Desulfotomaculum, Desulfovibrio, Syntrophobacter, 232 

Syntrophomonas, Syntrophospora, Clostridium, Bacteroides, Bifidobacterium, Butyrivibrio, Pseudomonas, 233 

Bacillus, Streptococcus and Eubacterium has been related to acid formation and hydrogen release (Yamada et al. 234 

2006; Gonzalez-Martinez et al. 2016a), and synergistic cooperation with methanogenic archaeal groups in 235 
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methanogenesis bioreactors has also been considered (Demirel and Scherer 2008). González-Martinez et al. 236 

(2016b) studied archaeal and bacterial community dynamics of a bench-scale two-stage anaerobic digester. An 237 

overview of the response of key archaeal and bacterial phylotypes to changes in performance parameters is 238 

presented in Fig. 1a and 1b, respectively. 239 

In the acidogenic phase, organic matter is biodegraded to VFAs by bacterial communities. During this phase, 240 

Bacteroidetes, Chloroflexi, Cloacimonetes, Firmicutes and Proteobacteria are the predominant phyla. Moreover, 241 

Microthrix spp. are usually associated with operational dysfunction while Firmicutes species in the digesters are 242 

important acetogens utilizing simple and complex carbohydrates (Tracy et al. 2012). Synergistetes spp. can 243 

utilize amino acids as an energy source to produce VFAs for methanogens (Vartoukian et al. 2007), whereas 244 

Proteobacteria have been recognized as one of the main consumers of VFAs (Ariesyady et al. 2007). Moreover, 245 

Syntrophomonas strains are present during this phase and are able to syntrophically degrades straight-chain fatty 246 

acids (4–8 carbon atoms) into propionate, acetate and methane in co-culture with methanogens (Zhang et al. 247 

2005). 248 

Changes in operational and performance parameters influence bacterial diversity. Hao et al. (2016) found that 249 

under high TS conditions, the relative abundance of Thermoanaerobacteraceae, Syntrophomonadaceae, 250 

Rhodobacteraceae, Comamonadaceae and Xanthomonadaceae families were enriched. In contrast, digesters at 251 

lower-TS favoured Syntrophaceae, Syntrophobacteraceae, Anaerolineaceae, Rikenellaceae and WCHB01-69 252 

and Candidatus Cloacamonas families. Under thermophilic and mesophilic conditions, Guo et al. (2014) found 253 

that Firmicutes was the common phylum appearing at both temperatures, accounting for 10–20% of relative 254 

abundance. Thermotogae (60–80% of relative abundance) and Bacteroidetes (5–45% of relative abundance) 255 

were the dominant taxa under both conditions, respectively. Proteobacteria were present in limited amounts and 256 

only in thermophilic AD whereas Synergistetes appeared in both reactors. Although the relative abundance of 257 

Chloroflexi, Actinobacteria and Spirochaetes was higher than that in thermophilic AD, they were poorly 258 

represented, accounting for <3% of relative abundance. Finally, Gelria, uncultured Lachnospiraceae, 259 

Ruminococcaceae Incertae Sedis, Sporanaerobacter, Tepidanaerobacter, Petrobacter and Anaerobaculum were 260 

related to performance variations with OLR elevation. 261 

Adaptation of bacterial communities during the start-up stage of thermophilic and mesophilic AD was 262 

explored by Wu et al. (2016) and González-Martínez et al. (2016b), respectively. Under thermophilic conditions, 263 

the relative abundance of Firmicutes increased gradually; on the contrary, Proteobacteria and Thermotogae 264 

decreased. Under mesophilic conditions, the more abundant microorganisms were related to Clostridiaceae 265 

(21.49%), Treponema (5.10%), Synergistetes (4.11%) and Paenibacillaceae (3.25%) whereas Cloacamonas and 266 

Comamonas were present at >3% abundance only at the beginning of AD, decreasing after that. Zhang et al. 267 

(2016a) analysed the microbial community in the anaerobic co-digestion of food waste and sewage sludge. 268 

Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria were found as the predominant phyla in the 269 

bacterial community. Firmicutes increased significantly on day 5 at acidification phase corresponding to VFAs 270 

accumulation. After that, the abundance of Firmicutes and Bacteroidetes increased much more from day 12 at 271 

the active methane production phase. Proteobacteria and Actinobacteria decreased significantly during the 272 

experimental period. The greatest changes in these four dominant phyla all appeared on day 5, which could be an 273 

indicator of the acidification phase corresponding to VFA accumulation. Hydrolytic bacteria are known to have a 274 

lower sensitivity to changes in environmental factors, such as pH and temperature, than methanogens. 275 
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Although the role of eukaryotes in performance, predation on bacteria and excess sludge production has been 276 

reported during aerobic treatment processes (Ntougias et al. 2011), it is also important to investigate the 277 

diversity, roles and functions of eukaryotes in AD. Few authors have reported on diversity and roles/functions in 278 

AD (Luo et al. 2005; Matsubayashi et al. 2017). Under mesophilic AD, Rotifera and Phragmoplastophyta are the 279 

most representative phyla and the majority of eukaryal phylotypes belong to Fungi (42.2%), followed by 280 

Animalia (28.8%), Protista (13.3%) and finally Plantae (8.9%). In addition, Luo et al.(2005) described the 281 

microeukaryotic community in anaerobic sulphide- and sulphur-rich springs, whereas Matsubayashi et al. (2017) 282 

constructed clone libraries by sequencing the 18S rRNA gene in anaerobic sludge digesters (Table 1). The latter 283 

study suggested that prokaryotic and eukaryotic community structures do not work independently, and that the 284 

functional features of both communities are closely related. 285 

Very limited information on the physiology of anaerobic or facultative anaerobic eukaryotic organisms is 286 

available to date. Some of the Fungi found in AD contribute to the degradation of some organic matter in 287 

anaerobic environments and they could be implicated in the hydrolysis of organic matter in anaerobic sludge 288 

digestion processes. Previous studies have demonstrated that phylotypes in Plantae, Animalia and Fungi can 289 

produce CH4 (Liu et al. 2015; Gorrasi et al. 2014). 290 

Regarding the dynamics of the microbiome during AD, contrasting results have been obtained, showing large 291 

changes (>25%) from bench-scale mesophilic anaerobic digesters inoculated with sludge from wastewater 292 

treatment plants (Schauer-Gimenez et al. 2010; De Vrieze et al. 2013) or high consistency from reactors with an 293 

upflow configuration with anaerobic granular biomass (Werner et al. 2011). Given the presence of a wide variety 294 

of microorganisms in the influent of AD, dynamic changes in community diversity are likely the result of 295 

proliferation of organisms that are adapted to the selective pressures in each bioreactor. However, a core 296 

microbiome dominates the reactors, showing the strong selective pressures present in this type of environment 297 

(Town et al. 2014; Gonzalez-Martinez et al. 2016b). Maspolim et al. (2015) compared the microbial community 298 

dynamics in single-stage and 2-phase anaerobic AD systems treating municipal sludge and the analysis revealed 299 

that microbial adaptation occurred as the sludge formed a different community in each reactor at 30 d HRT but 300 

no significant microbial changes occurred at lower HRTs. Engineering of the microbiome by adjusting 301 

operational parameters leads to a stable microbial structure (Vanwonterghem et al. 2014; De Vrieze et al. 2016). 302 

Accurate monitoring of the microbial community requires that the metabolic potential and mode of interaction 303 

between the different microorganisms are distinguished from sudden unwanted changes related to unfavourable 304 

operational conditions. While generalist microorganisms are able to occupy a broad range of niches based on 305 

their greater phenotypic plasticity (van Tienderen 1997), specialists occupy only a limited number of niches and 306 

show high levels of specificity. The former can be considered as keepers of process stability (Matias et al. 2013) 307 

whereas the latter may drive evolution towards new traits in the microbial community and could be of direct 308 

interest in the search for new potential. 309 

The dynamics of prokaryotic organisms have been described during the start-up stage of AD (Gonzalez-310 

Martinez et al. 2016b) as showing substantial changes under unstable conditions. Thus, a challenge exists to 311 

develop a useful biomonitoring tool for environmental engineers. Many studies have indicated that 312 

Methanosaeta and Methanosarcina are competitive genera in the AD process. During the acidification phase, 313 

Methanosaeta, an acetoclastic methanogen, is the dominant genus but its abundance decreases significantly 314 

during the methane production phase. In the latter phase, the acetoclastic methanogen Methanosarcina increases 315 
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significantly. Methanosarcina is more tolerant to inhibitors than Methanosaeta (Cho et al. 2013). At the end of 316 

AD, Methanoculleus, a hydrogenotrophic methanogen, becomes dominant because of the exhaustion of acetic 317 

acid. Previous studies have reported that for continuous and fed-batch systems, bacterial community dynamics 318 

show larger changes than those for the archaeal community, but there is similar diversity, and VFA-producers 319 

show greater relative abundance. Generally considered, the hydrolysing bacterial groups Bacteroides, 320 

Cloacamonas, Clostridiaceae and Rikenellaceae are dominant at the beginning of AD and finally change to 321 

other bacterial groups such as Clostridiaceae, Fervidobacterium, Paenibacillus and Spirochaetes (Ghasimi et al. 322 

2015;Gonzalez-Martinez et al. 2016b). 323 

 324 

Microbial and Eukaryal groups involved in biogas production 325 

AD for methane production has already been widely adopted (Cavinato et al. 2013; Carrere et al. 2016) using 326 

methanogenic microorganisms able to utilize simple organic substrates, such as acetate, CO2/H2, methanol and 327 

formate (de Bok et al. 2004). A deep insight into the main archaeal and bacterial phylotypes of AD involved in 328 

biogas production under different operational conditions can be seen in Hao et al. (2016). There are three main 329 

types of methanogen, namely acetoclastic, hydrogenotrophic and methylotrophic. Most archaea produce methane 330 

by the hydrogenotrophic route and only those belonging to the order Methanosarcinales produce it by the 331 

acetoclastic route. Methanobacterium, Methanothermobacter, and Methanospirillum are the most commonly 332 

identified hydrogenotrophic methanogens in the AD process. Acetoclastic methanogens belong to two genera: 333 

Methanosaeta and Methanosarcina (Venkiteshwaran et al. 2015; Gonzalez-Martinez et al 2016b). Methanosaeta 334 

can be considered a key methanogen in the AD process, given its unique morphology and physiology (De Vrieze 335 

et al. 2012; 2015), catalysing renewable energy production from organic waste streams. 336 

Bacteria can support methane production during the process of methanogenesis by hydrolysation of organic 337 

matter. Positive correlation of Cytophaga, Herbaspirillum, Symbiobacterium, Comamonas  and Allochromatium 338 

with biogas production has been found (Gonzalez-Martinez et al. 2016b). The genera Cytophaga and 339 

Symbiobacterium are important organic matter degraders in AD in the hydrolysis and acidogenesis processes, 340 

respectively (Panichnumsin et al. 2012; Yi et al. 2014).The importance of Herbaspirillum sp. remains widely 341 

unclear due to its inability to carry out fermentation (Schmid et al. 2006), but its relationship to biogas 342 

production (Gonzalez-Martinez et al. 2016b) and degradation of complex organic matter has been reported (Guo 343 

et al. 2015). 344 

The role of Eukarya in the production of methane remains largely unknown although Plantae, Animalia and 345 

Fungi eukaryal phylotypes have been reported to direct produce CH4,even in the presence of oxygen (Liu et al. 346 

2015; Gorrasi et al. 2014). However, the mechanisms involved in this pathway remain largely unclear and it has 347 

been proposed that CH4 originates from organic methyl-type compounds in response to environmental stresses. 348 

Although it is estimated that plants could contribute around 3–24% to the global CH4 budget, an estimate of CH4 349 

production by animals and fungi is still lacking. Consequently, Eukarya are not considered as a CH4 source by 350 

the Intergovernmental Panel on Climate Change (IPCC), and their role in biogas production could be useful for 351 

better quantitation of the global CH4 budget. The influence of rumen fungi for improvement of biogas production 352 

from animal manure on anaerobic digesters have gained attention as a biological pre-treatment option of various 353 

polymeric substances. These microorganisms are able to effectively digest lignocellulosic compounds, providing 354 

energy due to symbiotic associations with rumen microorganisms (Yıldırım et al. 2017). For instance, Gorrasi et 355 
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al. (2014) demonstrated the potential application of chitinolytic fungi to obtain H and Ma et al. (2015) 356 

determined that rumen microorganisms have higher hydrolytic and acidogenic activity than other microbial 357 

species using lignocellulosic biomass as substrates. 358 

 359 

Future implications and prospective biotechnologies 360 

New advances in monitoring AD will require the application of control strategies to redirect the microbiome to 361 

reach a stable functionality. Until now, microbial process control actions have usually taken place by altering 362 

basic operational parameters, such as pH and temperature. For example, increases in AD efficiency were done 363 

using different ways: bioaugmentation, as a suitable alternative to increase VFA removal (Town and 364 

Dumonceaux 2016) or hydrolysis (Martin-Ryals et al. 2015); microwave (MW) pre-treatment, as an effective 365 

way of enhancing biogas production and solids removal (Coelho et al. 2011). However, to engage direct steering 366 

of the microbiome to sustain process stability, this knowledge has to be integrated into advanced monitoring and 367 

control strategies. For example, the ratio of syntrophic acetate-oxidizing bacteria or methanogenic archaea to 368 

total bacteria has been suggested as a possible microbial community monitoring strategy for AD (De Vrieze et 369 

al. 2012). This has to be based on specific genes and/or their transcripts, such as the methyl co-enzyme M 370 

reductase (mcrA) gene for methanogens (Wilkins et al. 2015) and the formyl tetrahydrofolate synthetase 371 

(FTHFS) gene for syntrophic acetate-oxidizing bacteria (Akuzawa et al. 2011; Hori et al. 2011). 372 

The study of biogeochemical cycles in natural ecosystems can drive innovation in bioenergetics applications 373 

to support improvements of AD. In this sense, Izzo et al. (2014) explored the potentials offered by the structural 374 

and functional microbial biodiversity in hypertrophic lagoons characterised by rapid and huge biomass blooms 375 

and decomposition. They selected the microbial communities as inoculum and successfully tested for hydrogen 376 

production on different kinds of organic wastes. 377 

To decrease the cost of the treatment is of vital importance in AD. This can be achieved by using raw 378 

material with lower water content and running the process with a higher dry matter content. The biogas produced 379 

can often be utilized to cover the need for process energy. Thus, the economy of a biogas plant is directly linked 380 

to the amount of biogas produced per unit of raw material treated in the plant. In short, advanced and direct 381 

monitoring of the microbiome is possible through the application of different microbial techniques. Accurate and 382 

quick decision tools have to be developed. The integration of existing physicochemical techniques and 383 

microbiome-based monitoring is necessary to increase product recovery and the overall energy efficiency of 384 

microbial processes. 385 
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Table 1 Main eukaryal phylotypes found in anaerobic digesters. Data were taken from Matsubayashi et al. (2017). 716 

Kingdom/ Superphylum Phylum  

Alveolata Perkinsozoa A31 

Amoebozoa 
Discosea Order Dactylopodida 

Gastrotricha Chaetonotus cf. 

Animalia Gastrotricha Chaetonotus cf. 

Archaeplastida 

Chlorophyta ANI-3 

Chlorophyta Family Chlorellaceae 

Chlorophyta Prototheca zopfi 

Ciliophora Acaryophrya sp. 

Ciliophora Vorticellides aquadulcis 

Fungi 

Arthropoda Allonothrus sp. 

Arthropoda Boletoglyphus sp. 

Arthropoda Naidacarus arboricola 

Arthropoda Rhizoglyphus sp. 

Ascomycota Candida sp. 

Ascomycota Exophiala equine 

Ascomycota Family Dipodascaceae 

Ascomycota Penicillium chrysogenum 

Ascomycota Phoma sp. 

Ascomycota Xenobotrytis sp. 

Basidiomycota Lentinus sp. 

Basidiomycota Trichosporum cutaneum 

Cryptomycota LKM11 

Cryptomycota LKM15 

Metazoa 
Platyhelminthes Gieysztoria sp. 

Rotifera Brachionus calyciflorus 

Rhizaria Cercozoa Rhogostoma minus 

Stramenopiles Hyphochytriomycetes 
Rhizidiomyces 

apophysatus 
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Figure legends 718 

 719 

Fig. 1 Multivariate redundancy analyses relating performance parameters (dried sludge, volatile dried sludge, 720 

pH, acid/alkalinity ratio AC/AL, O2, CO2 CH4 and biogas production) with changes in diversity or abundance of 721 

the most representative archaeal (a) and bacterial (b) phylotypes in anaerobic digestion. Data were taken from 722 

González-Martínez et al. (2016b) 723 


