A model to explain the angular distribution of J/ψ and $\psi(2S)$ decay into $\Lambda \Lambda$ and $\Sigma^{0} \Sigma^{0}$

To cite this article: M. Alekseev et al 2019 Chinese Phys. C 43 023103

View the article online for updates and enhancements.
A model to explain the angular distribution of J/ψ and $\psi(2S)$ decay into $\Lambda\Xi$ and $\Sigma^0\Xi^0$

M. Alekseev1,2, A. Amoroso1,2, R. Baldini Ferroli3, I. Balossino4,5, M. Bertani6, D. Bettoni4, F. Bianchi1,2, J. Chai7, G. Cibinetto7, F. Cossio6, F. De Mori1,2, M. Destefanis1,2, R. Farinelli1,2, L. Fava7,2, G. Felici3, I. Garzia8, M. Greco1,2, L. Lavezzii2,5, C. Leng2, M. Maggiora1,2, A. Mangoni6,7,8, S. Marcelli1,2, G. Mezzadri4, S. Pacetti8,9, P. Patteri3, A. Rivetti1,2, M. Da Rocha Rolo1,2, M. Savrie6, S. Sosio1,2, S. Spataro1,2, L. Yan1,2

1Università di Torino, I-10125, Torino, Italy
2INFN Sezione di Torino, I-10125, Torino, Italy
3INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy
4INFN Sezione di Ferrara, I-44122, Ferrara, Italy
5Institute of High Energy Physics, Beijing 100049, People's Republic of China
6Università di Ferrara, I-44122, Ferrara, Italy
7Università del Piemonte Orientale, I-15121, Alessandria, Italy
8Università di Perugia, I-06100, Perugia, Italy
9INFN Sezione di Perugia, I-06100, Perugia, Italy

Abstract: BESIII data show a particular angular distribution for the decay of J/ψ and $\psi(2S)$ mesons into $\Lambda\Xi$ and $\Sigma^0\Xi^0$ hyperons: the angular distribution of the decay $\psi(2S) \rightarrow \Sigma^0\Xi^0$ exhibits an opposite trend with respect to the other three channels: $J/\psi \rightarrow \Lambda\Xi$, $J/\psi \rightarrow \Sigma^0\Xi^0$, and $\psi(2S) \rightarrow \Lambda\Xi$. We define a model to explain the origin of this phenomenon.

Keywords: J/ψ and $\psi(2S)$ hadronic decays, effective Lagrangian model, polarization parameters

PACS: 12.38.Aw, 13.25.Gv DOI: 10.1088/1674-1137/43/2/023103

1 Introduction

Since their discovery, charmonia, i.e., $c\bar{c}$ mesons, have become unique tools for extending our knowledge of strong interaction dynamics at low and medium energies. In the case of lightest charmonia, their decay mechanisms can only be studied by means of effective models, since, due to their low-energy regime, these processes are beyond the perturbative description of quantum chromodynamics.

We study the decays of J/ψ and $\psi(2S)$ mesons into baryon-antibaryon pairs $\psi(B\bar{B}) = \Lambda\Xi$, $\Sigma^0\Xi^0$. The differential cross section of the process $e^+e^- \rightarrow \psi(B\bar{B})$ has the well known parabolic expression in $\cos\theta$ [1]

$$\frac{dN}{d\cos\theta} \propto 1 + \alpha_B \cos^2\theta,$$

where α_B is the so-called polarization parameter and θ is the baryon scattering angle, i.e., the angle between the outgoing baryon and the beam direction in the e^+e^- center-of-mass frame. As pointed out in Ref. [2], only the decay $J/\psi \rightarrow \Sigma^0\Xi^0$ has a negative polarization parameter α_B.

Figures 1 and 2 show the BESIII data [3] for the angular distribution of the four decays: $J/\psi \rightarrow \Lambda\Xi$, $J/\psi \rightarrow \Sigma^0\Xi^0$, and $\psi(2S) \rightarrow \Lambda\Xi$, $\psi(2S) \rightarrow \Sigma^0\Xi^0$.

2 Amplitudes and branching ratios

The Feynman amplitude for the decay $\psi \rightarrow B\bar{B}$ can be written in terms of the strong magnetic and Dirac form factors as

$$M_{\psi \rightarrow B\bar{B}} = -i e^\mu(p_1)\Gamma_{\psi}(p_2),$$

where the matrix Γ_{ψ} is defined in Eq. (A2), e^μ is the polarization vector of the ψ meson, and the four-momenta follow the labelling of Eq. (A1). The branching ratio (BR) is given by the standard form for the two-body decay

$$B_{\psi \rightarrow B\bar{B}} = \frac{1}{8\pi} \frac{1}{M_\psi^2} |\Gamma_{\psi}(p_2)|^2.$$
The EM breaking effect is related to the fact that the breaking is proportional to the Gell-Mann matrix. This matrix can be expressed in terms of the Sachs couplings, written in terms of the Sachs couplings, the spurion matrix [5]

\[S_m = \frac{g_m}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}, \]

where \(g_m \) is the effective coupling constant. This matrix describes the mass breaking effect due to the mass difference between \(s \) and \(u \) and \(d \) quarks, where the SU(2) isospin symmetry is assumed, so that \(m_u = m_d \). This SU(3) breaking is proportional to the 8th Gell-Mann matrix \(\lambda_8 \). The EM breaking effect is related to the fact that the photon coupling to quarks, described by the four-current

\[B \rightarrow B B = \left| M_{\psi \rightarrow BB} \right|^2 = \frac{4}{3} M_{\psi}^2 \left(|g_{M1}|^2 + \frac{2 M_{BB}^2}{M_{\psi}^2} |g_{E1}|^2 \right). \]

we obtain the BR as

\[B_{\psi \rightarrow BB} = \frac{M_{\psi \beta}}{12 \pi \Gamma_{\psi}} \left(|g_{M1}|^2 + \frac{2 M_{BB}^2}{M_{\psi}^2} |g_{E1}|^2 \right). \] (1)

Since it does not depend on \(\alpha_B \), it cannot be used to determine the polarization parameter.

The above expression for BR can be written as the sum of the moduli squared of two amplitudes

\[B_{\psi \rightarrow BB} = |A_{M1}|^2 + |A_{E1}|^2, \] (2)

where, comparing with Eq. (1),

\[A_{M1} = \frac{M_{\psi \beta}}{12 \pi \Gamma_{\psi}} g_{M1}, \quad A_{E1} = \frac{M_{\psi \beta}}{6 \pi \Gamma_{\psi}} g_{E1}. \]

It follows that the polarization parameter of Eq. (A3) can also be written as

\[\alpha_B = 1 - 2 |A_{M1}|^2 / |A_{E1}|^2; \]

\[\alpha_B = 1 + 2 |A_{E1}|^2 / |A_{M1}|^2. \]

3 Effective model

The SU(3) baryon octet states can be described in matrix notation as follows [4]

\[O_B = \begin{pmatrix} \Lambda / \sqrt{6} + \Sigma^0 / \sqrt{2} & \Sigma^- & \Xi^- & n \\ \Lambda / \sqrt{6} - \Sigma^0 / \sqrt{2} & \Sigma^+ & \Xi^0 & -2 \Lambda / \sqrt{6} \end{pmatrix}, \]

\[O_B = \begin{pmatrix} \bar{\Lambda} / \sqrt{6} + \bar{\Sigma}^0 / \sqrt{2} & \bar{\Sigma}^- & \bar{\Xi}^- & \bar{n} \\ \bar{\Lambda} / \sqrt{6} - \bar{\Sigma}^0 / \sqrt{2} & \bar{\Sigma}^+ & \bar{\Xi}^0 & -2 \bar{\Lambda} / \sqrt{6} \end{pmatrix}, \]

where the first matrix is for baryons and the second for antibaryons. We can consider \(J/\psi \) and \(\psi(2S) \) mesons as SU(3) singlets. In view of the SU(3) symmetry, the zero level Lagrangian density should have the SU(3) invariant form \(L_0 \propto \text{Tr}(BB) \). Moreover, we consider two sources of SU(3) symmetry breaking: the quark mass and the EM interaction. The first can be parametrized by introducing the spurion matrix [5]
\[\frac{1}{2} \tilde{q} \gamma^\mu (\lambda_3 + \lambda_8 / \sqrt{3}) q, \]
is proportional to the electric charge. This effect can be parametrized using the following spurion matrix
\[S_e = \frac{g_e}{3} \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \]
where \(g_e \) is the effective EM coupling constant.

The most general SU(3) invariant effective Lagrangian density is given by [5]
\[\mathcal{L} = g \text{Tr}(O O_B) + d \text{Tr}(O, O_B) S_e + f \text{Tr}([O O_B] S_e) + d' \text{Tr}(O, O_B) S_m + f' \text{Tr}([O, O_B] S_m), \]
where \(g, d, f, d' \) and \(f' \) are coupling constants. We can extract the Lagrangians describing the \(J/\psi \) and \(\phi(2S) \) decays into \(\Lambda \bar{\Lambda} \) and \(\Sigma^0 \bar{\Sigma}^0 \)
\[\mathcal{L}_{\Sigma^0 \bar{\Sigma}^0} = (G_0 + G_1) \Sigma^0 \bar{\Sigma}^0, \quad \mathcal{L}_{\Lambda \bar{\Lambda}} = (G_0 - G_1) \Lambda \bar{\Lambda}, \]
where \(G_0 \) and \(G_1 \) are combinations of coupling constants, i.e.,
\[G_0 = g, \quad G_1 = \frac{d}{3} (2 g_m + g_e). \]

Using the structure of Eq. (2), the BRs can be expressed in terms of the electric and magnetic amplitudes as
\[\mathcal{B}_{\phi \rightarrow \Sigma^0 \bar{\Sigma}^0} = |A_{E}^2|^2 + |A_{M}^0|^2, \]
\[\mathcal{B}_{\phi \rightarrow \Lambda \bar{\Lambda}} = |A_{E}^2|^2 + |A_{M}^0|^2. \]

Moreover, as obtained in Eq. (3), the amplitudes can be further decomposed as combinations of leading, \(E_0 \) and \(M_0 \), and sub-leading terms, \(E_1 \) and \(M_1 \), with opposite relative signs, i.e.,
\[\mathcal{B}_{\phi \rightarrow \Sigma^0 \bar{\Sigma}^0} = |E_0 + E_1|^2 + |M_0 + M_1|^2 \]
\[= |E_0|^2 + |E_1|^2 + 2 |E_0||E_1| \cos (\rho_E) \]
\[+ |M_0|^2 + |M_1|^2 + 2 |M_0||M_1| \cos (\rho_M), \]
\[\mathcal{B}_{\phi \rightarrow \Lambda \bar{\Lambda}} = |E_0 - E_1|^2 + |M_0 - M_1|^2 \]
\[= |E_0|^2 + |E_1|^2 - 2 |E_0||E_1| \cos (\rho_E) \]
\[+ |M_0|^2 + |M_1|^2 - 2 |M_0||M_1| \cos (\rho_M), \]
where \(\rho_E \) and \(\rho_M \) are the phases of the ratios \(E_0/E_1 \) and \(M_0/M_1 \).

4 Results

In this work, we have used the data from precise measurements [3, 6] of the branching ratios and polarization parameters, reported in Table 1, based on the events collected with the BESIII detector at the BEPCII collider. These data are in agreement with the results of other experiments [7-11]. Since for each charmonium state we have six free parameters (four moduli and two relative phases) and only four constrains (two BRs and two polarization parameters), we fix the relative phases \(\rho_E \) and \(\rho_M \). The values \(\rho_E = 0 \) and \(\rho_M = \pi \) appear as phenomenologically favored by the data. Indeed, (largely) different phases would give negative, and hence unphysical, values for the moduli \(|E_0|, |E_1|, |M_0| \) and \(|M_1| \). Moreover, as shown in Fig. 5, where the four moduli for \(J/\psi \) and \(\phi(2S) \) are represented as functions of the phases with \(\rho_E \in [\pi/2, \pi/2] \) and \(\rho_M \in [\pi/2, 3\pi/2] \), the obtained results are quite stable, and the central values \(\rho_E = 0 \), \(\rho_M = \pi \) maximise the hierarchy between the moduli of leading, \(E_0 \) and \(M_0 \), and sub-leading amplitudes, \(E_1 \) and \(M_1 \). These values for \(|E_0|, |E_1|, |M_0| \) and \(|M_1| \) are reported in Table 2 and shown in Fig. 3. The corresponding values of \(|g_{\Sigma^0}|, |g_{\Lambda|^0} \) are reported in Table 3 and shown in Fig. 4. The large sub-leading \(J/\psi \) amplitudes \(|E_1|, |M_1| \) (see Table 2 and Fig. 3) are respons-
Fig. 5. (color online) Red and black bands represent moduli of leading and sub-leading amplitudes, respectively. The vertical width indicates the error. Top left: moduli of amplitudes E_0 and E_1 for J/ψ. Top right: moduli of amplitudes M_0 and M_1 for J/ψ. Bottom left: moduli of amplitudes E_0 and E_1 for $\phi(2S)$. Bottom right: moduli of amplitudes M_0 and M_1 for $\phi(2S)$.

<table>
<thead>
<tr>
<th>Decay</th>
<th>BR</th>
<th>Pol. par. σ_β</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J/\psi \to \Sigma^0\Sigma^0$</td>
<td>$11.64 \pm 0.04 \times 10^{-4}$</td>
<td>-0.449 ± 0.020</td>
</tr>
<tr>
<td>$J/\psi \to \Lambda\Xi$</td>
<td>$19.43 \pm 0.03 \times 10^{-4}$</td>
<td>0.461 ± 0.009</td>
</tr>
<tr>
<td>$\phi(2S) \to \Sigma^0\Sigma^0$</td>
<td>$2.44 \pm 0.03 \times 10^{-4}$</td>
<td>0.71 ± 0.11</td>
</tr>
<tr>
<td>$\phi(2S) \to \Lambda\Xi$</td>
<td>$3.97 \pm 0.03 \times 10^{-4}$</td>
<td>0.824 ± 0.074</td>
</tr>
</tbody>
</table>

Table 2. Moduli of the leading and sub-leading amplitudes.

<table>
<thead>
<tr>
<th>Ampl.</th>
<th>J/ψ</th>
<th>$\phi(2S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_0</td>
<td>$(2.16 \pm 0.02 \times 10^{-2})$</td>
<td>$(0.42 \pm 0.07 \times 10^{-2})$</td>
</tr>
<tr>
<td>E_1</td>
<td>$(0.42 \pm 0.02 \times 10^{-2})$</td>
<td>$(0.03 \pm 0.05 \times 10^{-2})$</td>
</tr>
<tr>
<td>M_0</td>
<td>$(3.15 \pm 0.02 \times 10^{-2})$</td>
<td>$(1.72 \pm 0.02 \times 10^{-2})$</td>
</tr>
<tr>
<td>M_1</td>
<td>$(0.90 \pm 0.02 \times 10^{-2})$</td>
<td>$(0.23 \pm 0.02 \times 10^{-2})$</td>
</tr>
</tbody>
</table>

Table 3. Moduli of the strong Sachs form factors

<table>
<thead>
<tr>
<th>FFs</th>
<th>J/ψ</th>
<th>$\phi(2S)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>g^E_{\Sigma^0}</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>g^T_{\Sigma^0}</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>g^E_{\Lambda}</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>g^T_{\Lambda}</td>
<td>$</td>
</tr>
</tbody>
</table>

Table 1. Branching ratios and polarization parameters from Ref. [3]. The value of σ_β for the decay $J/\psi \to \Lambda\Xi$ is from Ref. [6].

5 Conclusions

The Λ and Σ^0 angular distributions can be explained using an effective model with the SU(3)-driven Lagrangian.
The interplay between the leading G_0 and sub-leading G_1 contributions to the decay amplitude determines the sign and value of the polarization parameter α_B.

In particular, the different behavior of the $J/\psi \to \Sigma^0(1385)$ angular distribution is due to the large values of the sub-leading amplitudes $|E_1|$ and $|M_1|$. This implies that the SU(3) mass breaking and EM effects, which are responsible for these amplitudes, play a different role in the dynamics of the J/ψ and $\psi(2S)$ decays.

It is interesting to note that the angular distributions of $\Sigma^0(1385)$ and $\Sigma^+(1385)$, measured by BESIII [12, 13], show the same Σ^0 behavior.

The process $e^+e^- \to J/\psi \to \Sigma^+\Sigma^-$ is currently under investigation [14]. The behavior of its angular distribution could add important information to the knowledge of the J/ψ decay mechanism.

Appendix A: Production cross section

We consider the decay of a charmonium state, a σ^* vector meson ψ, produced via e^+e^- annihilation, into a baryon-antibaryon $B\overline{B}$ pair, i.e., the process
\[
e^- (k_1) + e^+ (k_2) \to \psi (q) \to B(p_1) + \overline{B}(p_2),
\]
where the 4-momenta are given in parentheses. The Feynman diagram is shown in Fig. A1 and the corresponding amplitude is
\[
M_{e^+e^- \to \psi \to \overline{B}B} = -ie^2 f_B D_\psi \bar{\tau}(k_2) \gamma_\mu u(k_1),
\]
where $f_B = \frac{M_B}{M_B}$ and $D_\psi (q^2)$ is the baryonic four-current, $D_\psi (q^2)$ is the ψ propagator, which includes the $\gamma\phi$ electromagnetic (EM) coupling, and $\bar{\tau}(k_2) \gamma_\mu u(k_1)$ is the leptonic four-current. The four-momenta follow the labelling of Eq. (A1). The Γ^ν matrix can be written as [15]
\[
\Gamma^\nu = -i f_B^\nu + (i e^2 f_B^\nu),
\]
where M_B is the baryon mass and f_B^ν and f_B^ν are constant form factors that we call “strong” Dirac and Pauli couplings; they weigh the vector and tensor parts of the $\psi B\overline{B}$ vertex [1]. We introduce the strong electric and magnetic Sachs couplings [16]
\[
\hat{s}_E^B = f_1^B - \frac{M_B^2}{4M_B^2} f_2^B, \quad \hat{g}_E^B = f_1^B + f_2^B.
\]
that have the structure of the EM Sachs form factors [17]. M_0 is the mass of the charmonium state. The four quantities f_1^B, f_2^B, \hat{s}_E^B and \hat{g}_E^B are in general complex numbers. The differential cross section of the process $e^+e^- \to \psi \to B\overline{B}$ in the e^+e^- center-of-mass frame, in terms of the two Sachs couplings, reads
\[
\frac{d\sigma}{d\cos \theta} = \frac{\alpha^2}{2M_B^2} \left(\hat{s}_E^B \hat{g}_E^B + 4M_B^2 \hat{g}_E^B \hat{g}_M^B \right) \left(1 + \alpha_B \cos^2 \theta \right),
\]
where
\[
\beta = \sqrt{1 - \frac{4M_B^2}{M_0^2}}
\]
is the velocity of the out-going baryon at the ψ mass, θ is the scattering angle, and the polarization parameter α_B is given by
\[
\alpha_B = \frac{M_B^2 \hat{g}_E^B \hat{g}_M^B - 4M_B^2 \hat{g}_M^B \hat{g}_E^B}{M_B^2 \hat{g}_M^B \hat{g}_M^B + 4M_B^2 \hat{g}_M^B \hat{g}_E^B},
\]
$\alpha_B \in [-1, 1]$ and depends only on the modulus of the ratio $\hat{g}_E^B / \hat{g}_M^B$.

Fig. A2. (color online) Polarization parameter α_B for $\psi = J/\psi$ as function of the ratio $|g_E^B|/|g_M^B|$. The masses are from Ref. [18].

e.g., Fig. A2 shows the behavior of α_B in the case of $\psi = J/\psi$ as function of $|g_E^B|/|g_M^B|$. The strong Sachs and Dirac and Pauli couplings are related through α_B. Let us consider three special cases. With maximum positive polarization, $\alpha_B = 1$, the strong electric

1) When the non-constant matrix Γ^ν is introduced to describe the EM coupling $\gamma\phi B\overline{B}$, the tensor term contains also the anomalous magnetic moment, that, in this case where Γ^ν parametrizes the strong vertex $\gamma\phi B\overline{B}$, has been embodied in the strong Pauli coupling.
Sachs coupling vanishes, i.e.,

$$\alpha_B = 1 \rightarrow s^B_E = 0, \quad \beta^B_1 = -\frac{M^2_B}{4M^2_B} \beta^B_2,$$

the relative phase between \(f^B_1 \) and \(f^B_2 \) is \(i\pi \), and the ratio of the moduli is \(M^2_B/(4M^2_B) \).

With maximum negative polarization we have

$$\alpha_B = -1 \rightarrow s^B_M = 0, \quad \beta^B_1 = -\beta^B_2.$$

so that in this case the strong magnetic Sachs coupling vanishes, the relative phase between \(f^B_1 \) and \(f^B_2 \) is \(-i\pi \) and the ratio of the moduli is one.

Finally, in the case with no polarization, \(\alpha_B = 0 \), we obtain the modulus of the ratio between the Sachs couplings

$$\alpha_B = 0 \rightarrow \left| \frac{\beta^B_1}{\beta^B_2} \right| = \frac{M_B}{2M_B}.$$