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Abstract. The evolution of vineyard diseases, such as downy mildew, are depending by
temperature, humidity and rain. Fungicides are used to control these pathologies, with
considerable economic costs, negative effects on environment, human health and wine quality.
In order to identify fungicide sprays periods, several forecasting models were proposed. These
tools require accurate knowledge of meteorological variables. These models give great
contribution to farmers and technicians, nevertheless, do not consider the quality of the input
data in terms of evaluation of measurement uncertainty and traceability to the reference sensors.
The inclusion of the sensors’ calibration and the influence of weather instrument positioning,
affects the disease prediction up to 5 days. Therefore, the choice of instrument position and
calibration procedure becomes a matter of importance in agriculture.

1. Introduction

The evolution of vineyard diseases, such as downy mildew, are depending by temperature (T), relative
humidity (RH) and rain [1]. The pathologies are controlled with the use of fungicides, which has
considerable economic costs, negative effects on environment, human health and wine quality [2,3].
Accurate meteorological data are needed to better predict vineyards diseases. Moreover, Vineyards and
other agricultural sites are often positioned on slopes and close to forests where the canopy influences
weather conditions in the vicinity. This enforces a non-ideal position for installing weather instruments
and the resulting data do not take into account the effect of slope, the proximity of trees or intensity of
solar radiation [4]. Generally, the contributions of measurement uncertainties arising from these
conditions are not considered. Metrological approach should be applied on agricultural studies.

1.1. Metrology.

As stated by th8ureau International des Poids et Mesu(B&M), the metrology is The science of
measurement, embracing both experimental and theoretical determinations at any level of uncertainty
in any field of science and technolod¥]. A task of the BIPM as well of the Metrology Institutes is to
ensure worldwide uniformity of measurements and their traceability to the International System of Units
(SI). Traceability, calibration and uncertainty are fundamental concepts in metrology.

1.1.1. Traceabilitylnvolves the chain of measurements and accuracy transfers that connect the national
standards, as maintained by National Metrology Institutes, with the measurements made in research,
manufacturing and in fieldlraceability is thus defined as the property of the result of a measurement
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related to references through an unbroken chairoofparisons all having stated uncertainties.
Traceability makes possible the comparison of amuof measurements worldwide, according to a
standardized procedure for estimating measurenme@rtainty.

1.1.2. Calibration.The term calibration means the act of comparisoarnoinstrument to a reference
standard with a known uncertainty and accuracydamas not include any subsequent adjustment of the
instrument. Accuracy is defined as an agreementdet the measured value and the true value. The
precision instead is the closeness of multiple mm@msents values. Thus, an instrument can be precise
but not accurate.

1.1.3. UncertaintyThe Guide to the expression of Uncertainty in Measient (GUM), define the
uncertainty as the “Parameter, associated withrélselt of a measurement, that characterizes the
dispersion of the values that could reasonablytiidated to the measuran[$,7].

The GUM publishes by BIPM, asses that the word éutainty” means doubt, and thus in its broadest
sense “uncertainty of measurement” means doubttaheuwvalidity of the result of a measurement.
Therefore, we cannot take as valid the value medduwy an instrument if this parameter is not asgeci
with it. The parameter can be, for example, a stehdeviation called standard uncertainfy) of an
interval having a probability of coverage estaldishThe coverage factdris a numerical factor
typically in the range 2, where it is assumed thatvalues fall within an interval having a levél o
confidence of approximately 95 %. The uncertaintypot an error. Error is the difference between the
measured value and the true value of the quargitygbmeasured.

1.1.4. Metrology for agricultureSince the quality of the measurements is determibgdthe
development of metrology for the specific sectbe imetrology can be usefully applied in agriculture
field. Indeed, the main objectives of this reseaneh

e Improving both the meteorological observationsl dhe forecasting models, achieved by
inclusion of measurement uncertainties in the invaliies

« Disseminating techniques, methods and developingedures for the calibration of weather
stations sensors.

e The installation in the agricultural sites ofibedted and traceable automatic weather stations
(AWS) and the evaluation of the uncertainty thayrheng to optimize the use of pesticides
with a positive impact on the environment, heahld arops, towards a better management of
agricultural risks.

These objectives are linked on the availability refiable and accurate weather and climate
measurements. Weather and climate data are alsbins#ne Decision Support System (such as
informational systems that supports farms, compabi@sed on decision-making software). These
systems were developed also in compliance witlEtirepean Directive n. 128 [8] that establishedsule

for the use of pesticides in order to reduce thlesrto human health and the environment.

1.2. Forecasting models

One important rule of the European Directive isithprovement of the forecasting models. These are
tools able to transform the relations between cdipease and the surrounding environment into
mathematical equations. In general, the modelsigganformation about the onset and evolution of a
disease and alert farmers and technicians to asiskeatment can take on time. These tools requir
accurate knowledge of meteorological variables.ddineless, these models do not consider the quality
of the input data in terms of evaluation of measwmet uncertainty and traceability to the reference
sensors [9]. Calibration of weather stations itetalin agricultural sites is usually performed by
comparison, positioning the reference sensors &iraat period close to the station under calibratio
This procedure was metrologically evaluated andaveldorelevant weak points [10,11].
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Forecasting models have been developed world-widled last decades [12], in particular for diseases
affecting viticulture, such as the grapevine dowmildew, an infection strictly depending by
temperature, humidity and rain, caused by the faR@smopara viticold1].

The disease is defined by two kinds of infectidme primary infection will occur when specific
conditions take place such as temperature at 1 Hyher, at least 10 mm of precipitation overla 2
hour period. Spores released from the leaf litgngnates inside the leaves forming the charatieris
oil spots symptoms. The secondary infection ocdurgng warm nights where the temperature is over
14 °C, humidity is greater than 90 %rh. The fungpgears as a white mould and spread still on grapes

1.3. Agrometeorology

The objective of agrometeorology, the branch ofaordlogy that deals with the relationships among
weather and climate on crop, soil management ameivironment, as stated in the Guide n. 134 of
World Meteorological Organization (WMO) [13], is &ssist farmers the agricultural practices through
agrometeorological services. The meteorology foricatiure — agro-meteorology — can play a
significant role in reducing the negative impacetssed by pests and diseases. An appropriate, qiofer
integrated, pest management system using metearalaata can reduce losses appreciably.

There is a need for testing various types of sengbeir calibration, and to evaluate the measunéme
uncertainty related the meteorological quantitied jn order to improve vineyard disease prediction
and reduce the use of chemicals in agriculture.

2. Materialsand Methods

Two AWS were installed in a vineyard located in Nemato (North Italy) and the outcomes data were
analysed metrologically in order to evaluate theautainty related to the positioning of the sensmis

the influence on meteorological measurements. Téeonological data were also used as input values
for an epidemiological forecasting model.

The two selected AWS (VA and VB) were specific &gricultural purpose and it composed by the
following sensors: air temperature and relativehaimidity (combined as thermo-hygrometer), rain
gauge, solar radiation, soil temperature and saoisture, wind speed and direction. The thermo-
hygrometer was calibrated in the laboratories efithlian Metrology Institute (INRiM).

2.1. Sensor’s calibration

The calibration results for the temperature anatirngd humidity sensors are shown in Table 1 andeTab
2, and in Figure 1a and 2b. The calibration cuftsfor temperatur®H.acfor relative humidity) were
obtained by applying a quadratic polynomial functio the data gathered from the sensor in calmati
and the reference sensty,(following the equation 1:

teate = @ taws 2+ (b4 Dty + ¢ (1)

Where:tcarc is the calculated dathywsis the sensors under calibration @t andc are the coefficients
of the polynomial fitted equation.

The expanded uncertaintid$ @nd Uky) is expressed as standard uncertainty multipietthé coverage
factork = 2. TheU;and Lkn evaluated were lower than the calibration targeeudtainties proposed for
the temperature and humidity, that was in the omded.3 °C and 5%, respectively. The statistical
contributionU; was calculated following the Equation 2:

U, = (=)’ @

Where:tc is the reference sensdtsaic- tc) is a residue (the differences between the medstakeies
and those calculated with the polynomial functianjld the degrees of freedom.
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Table 1. Components of the calibration uncertainty budgette temperature sensors

Source of uncertainty budget (T)

Contribute (°C)

Resolution of sensor in calibration 0.1
Uncertainty related to the position 0.03
Reference sensor uncertainty ( 0.01
Interpolation uncertainty 0.035
Standard uncertainty; 0.055
Expanded uncertainty: (k = 2) 0.11

Table 2. Components of the calibration uncertainty budgetdtative humidity sensors

Source of uncertainty budget (RH)

Contribute (%rh)

Resolution of sensor in calibration 0.1
Repeatability of sensor in calibration 0.08
Reference sensor uncertainBH) 0.01
Interpolation uncertainty 0.70
Standard uncertaintyru 1.23
Expanded uncertaintyry (k = 2) 2.5
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Figure 1. Calibration curve obtained by a polynomial fittegliation for temperature (a) and relative
humidity sensors (b) in VA (as example)

2.2. Forecasting model
For this study, the forecasting models choose Wwa€P| - Etat Potentiel d’Infection [15], one oéth
most studied models and still widely used; This eiptike others, has improved the quality of the
output data, but do not considers the quality efitiput data in terms of evaluation of measurement
uncertainty and sensors calibration. The modebfad the whole life cycle of the pathogen, the EPI
index value depends on the sum of a componentdcgligtential energy” that needs climate data and
another called "kinetic energy" which use weatre®dA risk situation is marked when the index is
greater than -10 and this increases constantheifiallowing three days. The situation risk aléarsner



1st Workshop on Metrology for Agriculture and Forestry (METROAGRIFOR) IOP Publishing
IOP Conf. Series: Earth and Environmental Science 275 (2019) 012020  doi:10.1088/1755-1315/275/1/012020

on a potential infection, in order to make a trezin the vineyard. The model equation were vidida
based on the meteorological trend of the last l&rsyeusing the data provided by tBervizio
fitosanitario della Regione Piemonte

In order to presume the period of spores’ germimaéind the period of primary infection (PPI), the
length of incubation period was calculated goingkwzard from the date of primary infection symptoms
(DPIS) onset (Figure 2a). An equation temperaturg lumidity dependent was used (Figure 2b).
Taking into account also the precipitations thaeghe right conditions to spores to spread ir¢hee,
the germination was calculated between the 6 asfdApril (Table 3).

_ 25
P Incubation all — High RH (>65%) b
: low humidity : 520 —Low RH (<65%)
" i ~
E ; L Es
" [ , [ =
' : Incubation ' £
| * " higt humidity = .
i PPI DPIS
}H. f 0
N "
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Figure 2. Scheme of period of primary infection (PPI) andedait primary infection symptoms (DPIS)
calculation (a); temperature and humidity dependengtion (b).

Table 3. Event that lead to infection (precipitations), perbf primary infection (PPI) and date of
primary infection symptoms (DPIS) onset.

PPI
Precipitation Beginning of  Sporangia Day of DPIS
germination formed infection
4 April 6 April 30 April 1 May 9 May
5April 7 April 1 May 1 May 10 May

3. Results

3.1. Simulation and forecast

In Figure 3 and Table 4 are represented the se@eaasos focused on period in which is recommended
to make a treatment. The seven simulations wette avitvithout the inclusion, in the input values of
the model, of the measurement uncertainties inipiper and lower limits of the confidence intervat,
temperature and humidity, and the outcomes aredifieyent among the scenarios. The simulation that
better predicted the germination was that one wimclude uncertainties in upper limit for both
temperature and relative humidity.
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Figure 3. EPI indexes that reached the values -10 for eaxhlation, the rhombus marks highlighted
the day in which is highly recommended starts teatiment.

Table 4. EPI index value focused on period in which is hjgldcommended make a treatment, data
used are without uncertainty (column 2) and witleartainty in input values (columns 3-4-5-6-7-8).
Dark grey boxes indicate the day in which EPI indexched value -10; light grey boxes the days in
which the values increases progressively. Red fraatie pointed at the better simulation.

DATA No unc T-up T-down RH-up RH-downT RH-up T_RH-down

05-apr -13 -13 -16 -13 -11 -12 -14
06-apr -12 -12 -15 -12 -10 -11 -13
07-apr -11 -11 -14 -11 -9 -10 -12
08-apr -11 -11 -14 -11 -9 -9 -12
09-apr -11 -11 -14 -11 -9 -8 -12
10-apr -11 -11 -14 -11 -9 -7 -12
11-apr -11 -11 -14 -11 -9 -7 -12
12-apr -11 -11 -14 -11 -9 -7 -12
13-apr -10 -10 -13 -10 -8 -6 -11
14-apr -9 -10 -13 -9 -7 -5 -10
15-apr -8 -9 -12 -8 -6 -4 -9
16-apr -7 -8 -11 -7 -5 -3 -8
17-apr -7 -8 -11 -7 -4 -3 -7
18-apr -6 -7 -10 -6 -3 -2 -6
19-apr -5 -6 -9 -5 -2 -1 -5
20-apr -4 -5 -8 -4 -1 0 -4
21-apr -3 -4 -7 -3 0 1 -3
22-apr -3 -4 -7 -3 1 1 -2

23-apr -2 -3 -6 -2 2 2 -1
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If the predictions of the simulation without un@enties was followed, the pesticide treatments woul
be carried out a week later, when germination wesady begun. Moreover, considering to the
potentially washout rains of the following dayse thungicide sprays would have been useless, with
significant costs in terms of loss of fungicidesitan labour and the final product.

3.2. Position simulation and forecast

Vineyards or other cultures sometimes are positiane slopes that force a non-ideal positioning of
weather instruments. Therefore, we investigatethertemperature and humidity measurements effects
on pathogen growth, due to the weather statiortiposig. In the same vineyard was installed a sédcon
calibrated AWS, the first (coded VA) was installach sun-exposed place while the second (coded VB)
was installed in proximity of trees (approx. 8 abd m), where the canopy influenced weather
measurements.

Based on the observed symptoms for this secondsethee beginning of germination was calculated
around 28 and 29 April. The simulations performeatenfour, considering the two position and data
with or without the inclusion of the calibrationrea: VA and VB without inclusion of calibration
uncertainties in the input values (VA-NC and VB-N€spectively); VA and VB with inclusion of the
calibration uncertainty for temperature and relatiwmmidity (VA-C and VB-C, respectively). A fifth
simulation were performed (V-SP) as a control, gighre data gathered from an AWS handled by the
Servizio Fitosanitario della Regione Piemantkose to the vineyard.

The results of the simulations shown that forengstiithout inclusion of the calibration curves pgotd
from four to five days in advance the real sponergeation (Figure 5Figure 4), while the simulations
with inclusion of calibration curves overlappedra estimate period of infection.

VA-NC —VA-C

EPI Index

\a \a \a \'a \al \al \a \a & \&) & &
N N N N o i N\ N B9 N\ N N
TN
2 £ 2 §F & & § § = ™ 4@ =8
Date (day)

Figure 4. EPI indexes which give estimates of risk for thienary infections. The dashed line is the
threshold in which the value reached the criticahp-10.

Pesticide treatments carried out when the riskofes’ germination was not occurred yet or wasadlye
occurred by a week if we consider the simulatiothwhe data gathered from the phytosanitary service
network.
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3.3. Secondary infection

In previous studies, the model shown a tendenayésestimate the risk for the secondary infection
[16]. In this study, we decide to investigate dtie aspect. It could be noticed that using astimplues

of the model the data from calibrated sensorsdisestimation was reduced. Indeed, the symptoms
observed around 19-20 June were classified of ey the base of the European for Plant Protectio
scale [17], that correspond to a severity of disedH-25%.

In the same period, the EPI index produces a vafuabout 47 and 35 in VB-NC and VA-NC,
respectively, compared to the lower values obtawld the calibrated data of 29 and 33 in VA-C and
VB-C, respectively (Figure 5). The severities af thisease foreseen are listed in Table 5:

Table 5. EPI index values, percentage of infection and seegiof the disease foreseen based on
EPPO scale for the four scenarios.

Simulation Epiindex Infection EPPO

degree
VB-NC 46 67% 5
VA-NC 37 50% 5
VB-C 33 47% 4
VA-C 28 36% 4
» 70 I
E VB-NC; 67%- |
= 60 VA-NC:50% I
= [
50 VB-C; 47% 1
VA-C;36%
40
30
1
20 !
1
10 '

e L L L L L v L L &
NS NG B DN N ~\ N N NN N
~ [22) ~ N o) _:. :7 l»:,) l\\‘ S

VA-NC —VA-C —VB-NC — VB-C Date (day)

Figure5. EPI index values and percentage of secondary iofetdr the four scenarios: VA and VB
without inclusion of calibration uncertainties hetinput values (VA-NC and VB-NC, respectively);
VA and VB with inclusion of the calibration uncertty (VA-C and VB-C, respectively) for
temperature and relative humidity.

The simulation with calibrated data reduced thk ifisVA and in VB of 20 and 14%, respectively.
Considering the position only, the reduction isladut 11%.
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4. Conclusionsand Futureworks

The forecasts provided by calibrated data overldpe estimated period of infection, confirmingttha
the inclusion of measurement uncertainties prodiata closer to the real value of the measurand.
Focusing on the simulations without inclusion o imcertainties and calibration curves in the input
data, the pesticide treatments will be carriedwhen the diseases was already occurred or notrectur
yet, that can be translated in more costs in tafgbour, chemicals waste, with consequenceshfor t
human health and environment. Moreover, using ateudata, the overestimation of secondary
infection risk was reduced.

The inclusion of the sensors calibration and weaithgtrument positioning contributions, affects the
disease prediction up to 5 days. Therefore, thécehaf instrument position and calibration procedur
becomes a matter of importance in agriculture. Mesments should be based on fully documented
traceability and forecasting models should inclaggasurement uncertainties in the input values, to
improve output data reliability

The WMO Guide to Agricultural Meteorological prams n. 134 has valuable information on basic
aspects of agrometeorological observationsghmre is a lack of metrological approach on datdyais,
instrument calibration, traceability, and unceraievaluations.

The establishment of the metrological requiremémtshe agrometeorological services and observing
systems might allow improving the accuracy in maonity of local meteorology changes. This is
particular true in the vison of a potential creatiof a Reference surface-based observing network
Measurements performed at different times and sweslld be reliably comparable since all
measurements would be traceable to the Sl.

Metrological approach is needed, also for accuratmsurement of soil moisture for a better
management of the water supply to the crops as alfor Land-surface temperature and soil
temperature. Potential variables to be includethalist of the Essential Climate Variables (ECVSs).
That critically contributes to the characterizatmfnEarth’s climate as defined by the Global Clienat
Observing System (GCOS).
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