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Abstract

The theoretical formalism of inclusive lepton-nucleus scattering in the two-
nucleon emission channel is discussed in the context of a simplified approach,
the modified convolution approximation. This allows one to write the 2p2h re-
sponses of the relativistic Fermi gas as a folding integral of two 1p1h responses
with the energies and momenta transferred to each nucleon. The idea behind
this method is to introduce different average momenta for the two initial nucle-
ons in the matrix elements of the two-body current, with the innovation that
they depend on the transferred energies and momenta. This method treats
exactly the two-body phase space kinematics, and reduces the formulae of the
response functions from seven-dimensional integrals over momenta to much sim-
pler three-dimensional ones. The applicability of the method is checked by
comparing with the full results within a model of electroweak meson-exchange
currents. The predictions are accurate enough, especially in the low-energy
threshold region where the average momentum approximation works the best.
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1. Introduction

The electromagnetic nuclear response for intermediate momentum and en-
ergy transfer is dominated by particle-hole excitations in the vicinity of the
quasielastic peak, located around the energy transfer ω =

√
q2 +m2

N − mN

needed to knock-out a nucleon initially at rest with momentum transfer q. But
for higher energies other channels open and the 1p1h description becomes in-
sufficient; in particular the two-particle two-hole channel starts to play a role as
was first noticed in [1, 2, 3].

In the last decade the increasing interest in the role of multi-nucleon emis-
sion in the electroweak nuclear responses has revealed once more its importance
in describing the kinematical region of the quasielastic peak and above, and it
is at present an active focus of research both in neutrino and electron scattering
studies [4, 5, 6, 7, 8, 9]. In particular, in charged-current (CC) quasielastic neu-
trino scattering (νµ, µ

−), the two-particle two-hole (2p2h) channel is now being
considered an essential part in the analysis of the long baseline experiments
[10, 11, 12, 13, 14, 15].

In electron scattering the (e, e′p) and (e, e′pp) reactions were recently mea-
sured [16, 17, 18, 19] with the hope of extracting information on high-momentum
components of the reaction dynamics involving differences between ejection of
np and pp pairs of nucleons. These experiments have also revitalized interest in
developing models to describe the inclusive 2p2h response function [20, 21, 22].
More evidence of two nucleon emission of correlated nucleon pairs has been
thought to be found in the ArgoNeuT neutrino scattering experiment [23]. This
has generated theoretical discussions [24, 25], and it is still under debate. The
most recent theoretical developments of the 2p2h response functions in neutrino
and electron scattering with the shell model has been reported in [26, 27].

The first model of 2p2h excitations in the nuclear response can be traced
back to the works of Van Orden et al., [1, 2] who computed the two-body meson-
exchange currents (MEC) contribution in the non-relativistic Fermi gas model.
Later on, Alberico et al. used the same model, by adding pionic correlation cur-
rents [3], obtaining a satisfactory description of the transverse response functions
after including the important enhancement produced by 2p2h excitations. The
first shell model calculations of the inclusive (e, e′) response in the two-nucleon
emission channel with MEC were done by Amaro et al. [28, 29]. Several other
improvements including correlation currents, random-phase approximation and
effective interaction were made in [30, 31].

All of these models were non-relativistic and therefore cannot be applied to
the high energy and momentum transfers of interest for the current experiments,
for which a relativistic description is mandatory. The first fully relativistic
approach to the MEC 2p2h response function of 56Fe by Dekker et al. [32, 33, 34]
was followed by the Torino model [35, 36], where the relativistic effects and
the scaling properties of the transverse electromagnetic response were studied.
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The effect of pionic correlations was evaluated in [37]. The validation of the
relativistic MEC model for (e, e′) scattering has been recently made in [38].
These models were extended to the weak sector in [39] to compute the five CC
response functions and the neutrino inclusive cross section [40]. In these fully
relativistic models the presence of the ∆ excitation peak without pion emission
is evident , which the non-relativistic models cannot describe in the static limit
where the ∆ propagator is constant.

The calculation of the inclusive 2p2h response implies the sum over all the
2p2h final states. This involves an integration over all of the momenta of par-
ticles and holes and sums over spin and isospin. In general, the complexity of
the antisymmetrized two-body current matrix element prevents the reduction
of the dimensionality of the integrals involved below seven dimensions. But
simplifications can be done in the non-relativistic case, if one neglects the inter-
ference terms between direct and exchange current matrix elements [2], where
the integrals are reduced to two dimensions to be performed numerically.

In the present applications to the neutrino oscillation experiments the neu-
trino energy is not fixed and an integral over the neutrino flux has to be done;
this complicates the already cumbersome calculation of the 2p2h contribution.
Therefore, an important goal in such studies is to find simpler approximations
to these response functions in order to reduce the computational time while
keeping the accuracy of the results. This is the motivation of the present work.

Recently we have developed an approximation which highly simplifies the
calculation of the 2p2h responses, the frozen nucleon approximation. It consists
in neglecting the momentum of the initial nucleons inside the integrals [42], thus
allowing one to perform analytically a six-dimensional integral over two holes.
Assuming the initial nucleons at rest — or frozen — inside the nucleus may seem
an excessively crude assumption, yet the frozen approximation works amazingly
well for momentum transfers above q > kF , especially for intermediate and high
energy transfer. This was checked by comparing with the exact results in a fully
relativistic model of MEC.

However the frozen approximation fails in the description of the very low
energy transfer region, close to the two-nucleon emission threshold in the rela-
tivistic Fermi gas. For low excitation energy only the nucleons with momenta
close to the Fermi momentum, kF , contribute. Therefore the frozen assumption
is not appropriate in this energy region. Thus in this work we examine an alter-
native procedure, that we have named the modified convolution approximation

(MCA), to describe 2p2h excitations, with good properties in the low energy
region. It consists in taking an average value for the momentum of the initial
nucleons in the excitation amplitudes, but treating exactly the kinematics in
the phase space. The average momentum approximation allows one to write
the 2p2h response function, namely the imaginary part of the Lindhard func-
tion of a nucleon pair, in terms of the Lindhard functions related to each of the
two nucleons, which are computed analytically.

Several prescriptions for the the average momentum approximation are pos-
sible. In [41], the photo-absorption cross section in nuclei was computed by
taking the prescription for the average value, 〈h〉 =

√
3/5kF . In electron scat-
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tering the same prescription was taken in [31] and then for neutrino scattering
in [6]. This last model includes relativity and it is considered as benchmark
model in the Monte Carlo codes.

However, the average value
√
3/5kF is not appropriate for very low energy

transfer, where the momentum of the nucleons is close to kF . In the MCA used
in this paper we use a different prescription for the mean value of the initial
momenta, which is compatible with the corresponding energy and momentum
delivered to each one of the two initial nucleons, and therefore it changes with
the kinematics. Thus we consider that the two nucleons ejected have averaged
momenta 〈h1〉, 〈h2〉 6= 0, for given values of the energy and momentum transfer
(ω1,k1) and (ω2,k2) to each one of them, respectively, with

ω = ω1 + ω2 (1)

q = k1 + k2, (2)

where the values of the momenta 〈hi〉 depend on (ωi,ki).
The MCA discussed here embodies additional and interesting features. First

our formalism allows one to include the exchange diagrams under the average
momentum approximation, which is far from trivial in the formalism of [6, 31,
41]. Moreover with our formalism we are able to provide for the first time a test
of the average momentum approximation made in [6, 31, 41] for a wide range of
kinematics by comparing with the exact result using a specific model of MEC.
This check was only made in a particular kinematics for photon absorption in
[41].

The structure of the work is as follows. In Sect. 2 we review the formal-
ism of neutrino and electron scattering and the 2p2h response functions in the
relativistic Fermi gas. In Sect. 3 we describe in detail the MCA. In Sect. 4
we describe the MEC model. In Sect. 5 we discuss the treatment of the ∆
propagator. In Sect. 6 we compute the 2p2h response functions and compare
with the exact calculation. In Sect. 7 we draw our conclusions.

2. Formalism of neutrino scattering

2.1. Neutrino cross section

In this work we follow the notations of [43, 44]. Here we summarize the
formalism for neutrino scattering. The case of electron scattering can be easily
inferred from this by considering only the relevant longitudinal and transverse
response functions. Thus we consider charged-current inclusive quasielastic
(CCQE) reactions in nuclei induced by neutrinos and antineutrinos, focusing
on the (νµ, µ

−) and (νµ, µ
+) cross sections. The relativistic energies of the

incident (anti)neutrino and detected muon are ǫ = Eν , and ǫ′ = mµ + Tµ,
respectively. Their momenta are k and k′. The four-momentum transfer is
kµ − k′µ = Qµ = (ω,q), with Q2 = ω2 − q2 < 0. The lepton scattering angle,
θ, is the angle between k and k′. The double-differential cross section can be
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written as

d2σ

dTµd cos θ
(Eν) =

(
M2

W

M2
W −Q2

)2
G2 cos2 θc

4π

k′

ǫ
v0 [VCCRCC+

+2VCLRCL + VLLRLL + VTRT ± 2VT ′RT ′ ] . (3)

Here G = 1.166×10−11 MeV−2 is the Fermi constant, θc is the Cabibbo angle,
cos θc = 0.975, and the kinematical factor v0 = (ǫ+ǫ′)2−q2. The VK coefficients
depend only on the lepton kinematics and do not depend on the details of the
nuclear target:

VCC = 1 + δ2
Q2

v0
(4)

VCL =
ω

q
− δ2

ρ′
Q2

v0
(5)

VLL =
ω2

q2
−
(
1 +

2ω

qρ′
+ ρδ2

)
δ2
Q2

v0
(6)

VT = −Q
2

v0
+
ρ

2
+
δ2

ρ′

(
ω

q
+

1

2
ρρ′δ2

)
Q2

v0
(7)

VT ′ = − 1

ρ′

(
1− ωρ′

q
δ2
)
Q2

v0
, (8)

where we have defined the dimensionless factors δ = mµ/
√
|Q2|, proportional

to the muon mass mµ, ρ = |Q2|/q2, and ρ′ = q/(ǫ+ ǫ′).
Inside the brackets in Eq. (3) there is a linear combination of the five nuclear

response functions, where (+) is for neutrinos and (−) is for antineutrinos.
The response functions, RK(q, ω), are defined as suitable combinations of the
hadronic tensor,Wµν , in a reference frame where the z axis (µ = 3) points along
the momentum transfer q, and the x axis (µ = 1) is defined as the transverse (to
q) component of the (anti)neutrino momentum k lying in the lepton scattering
plane; the y axis (µ = 2) is then normal to the lepton scattering plane. The
usual components are then

RCC = W 00 (9)

RCL = −1

2

(
W 03 +W 30

)
(10)

RLL = W 33 (11)

RT = W 11 +W 22 (12)

RT ′

= − i

2

(
W 12 −W 21

)
. (13)

The hadronic tensor is the core of our calculation.

2.2. Hadronic tensor

The inclusive hadronic tensor is constructed from bilinear combinations of
matrix elements of the current operator Jµ(Q), summing over all the possible
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final nuclear states with excitation energy ω = Ef − Ei

Wµν =
∑

f

∑

i

〈f |Jµ(Q)|i〉∗〈f |Jν(Q)|i〉δ(Ei + ω − Ef ). (14)

In this work we consider the (non-interacting) relativistic Fermi gas model
of the nucleus. The nuclear states are Slater determinants constructed with
single-particle (Dirac) plane waves states. All states with momentum h < kF
are occupied in the ground state. Within this model the final nuclear states can
be one-particle one-hole (1p1h), 2p2h, and so on. Therefore the hadronic tensor
can be expanded as

Wµν =Wµν
1p1h +Wµν

2p2h + · · · (15)

The simplest excited states, 1p1h, are constructed by raising a particle above
the Fermi level, with momentum p′ > kF , leaving a hole with momentum h <
kF . These final states contribute to the typical quasielastic peak shape of the
hadronic tensor Wµν

1p1h in the impulse approximation, where the current Jµ(Q)
is a one-body operator.

In this work we focus on the 2p2h part of the hadronic tensor, which con-
tributes to two-nucleon emission. To get this we need a two-body current oper-
ator, whose matrix elements are given by

〈P ′
1P

′
2|Jµ(Q)|H1H2〉 =
(2π)3

V 2
δ(p′

1 + p′
2 − q− h1 − h2)

m2
N√

E′
1E

′
2E1E2

jµ(p′
1,p

′
2,h1,h2), (16)

where V is the volume of the system and we have defined the four-vectors of
the particles and holes, as P ′

i = (E′
i,p

′
i), and Hi = (Ei,hi), respectively, for i =

1, 2. Note that the above matrix element conserves three-momentum because
our wave functions are plane waves. The relativistic boost factors (mN/E)1/2

are factorized out of the spin-isospin dependent two-body current functions
jµ(p′

1,p
′
2,h1,h2), which are defined by the above expression.

Inserting this expression into the definition of the hadronic tensor for 2p2h
final states and taking the thermodynamic limit V → ∞, we obtain

Wµν
2p2h =

V

(2π)9

∫
d3p′1d

3p′2d
3h1d

3h2
m4

N

E1E2E′
1E

′
2

×wµν(p′
1,p

′
2,h1,h2) δ(E

′
1 + E′

2 − E1 − E2 − ω)

×Θ(p′1, h1)Θ(p′2, h2)δ(p
′
1 + p′

2 − q− h1 − h2) , (17)

where V/(2π)3 8
3πk

3
F = Z for symmetric nuclear matter with the Fermi momen-

tum kF . Here we have defined the Pauli blocking function Θ as the product of
step-functions

Θ(p′, h) ≡ θ(p′ − kF )θ(kF − h). (18)

The function wµν(p′
1,p

′
2,h1,h2) represents the hadron tensor for the ele-

mentary 2p2h transition of a nucleon pair with given initial and final momenta,
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summed up over spin and isospin,

wµν(p′
1,p

′
2,h1,h2) =

1

4

∑

s1s2s′1s
′

2

∑

t1t2t′1t
′

2

jµ(1′, 2′, 1, 2)∗Aj
ν(1′, 2′, 1, 2)A ,

(19)

which is written in terms of the antisymmetrized two-body current matrix ele-
ments

jµ(1′, 2′, 1, 2)A ≡ jµ(1′, 2′, 1, 2)− jµ(1′, 2′, 2, 1) . (20)

The factor 1/4 in Eq. (19) accounts for the antisymmetry of the two-body wave
function. Note that the exchange 1 ↔ 2 in the second term implies implicitly
the exchange of momenta, spin and isospin quantum numbers.

To compute the inclusive 2p2h response functions we integrate over p′
2 using

the momentum delta-function, finally obtaining

RK
2p2h =

V

(2π)9

∫
d3p′1d

3h1d
3h2

m4
N

E1E2E′
1E

′
2

Θ(p′1, h1)Θ(p′2, h2)

×rK(p′
1,p

′
2,h1,h2) δ(E

′
1 + E′

2 − E1 − E2 − ω), (21)

where p′
2 = h1 +h2 +q−p′

1 by momentum conservation. The five elementary
response functions for a 2p2h excitation rK are defined in terms of the elemen-
tary hadronic tensor wµν as in Eqs. (9–13), forK = CC,CL,LL, T, T ′. The five
inclusive responses embody a global axial symmetry around the z axis defined by
q. This allows us to fix the azimuthal angle of one of the particles. We choose
to integrate over the angle of the particle p′

1 setting φ′1 = 0. Consequently
the integral over φ′1 gives a factor 2π. Furthermore, the energy delta-function
enables analytical integration over p′1, and so the integral in Eq. (21) can be
reduced to seven dimensions. In the “exact” results shown in the next section,
this 7D integral has been computed numerically using the method described in
[46].

An approximation was made in [42], consisting in setting h1 = h2 = 0,
and E1 = E2 = mN and thereby allowing one to perform the integral over
h1,h2. This limit corresponds to the frozen nucleon approximation, which does
not properly describe the threshold region for small values of ω. The frozen
response functions RK

frozen, are given by

RK
frozen =

V

(2π)9

(
4

3
πk3F

)2 ∫
d3p′1

m2
N

E′
1E

′
2

rK(p′
1,p

′
2, 0, 0)

× δ(E′
1 + E′

2 − 2mN − ω) Θ(p′1, 0)Θ(p′2, 0). (22)

This integral can be reduced to one dimension, which is convenient for applica-
tions to neutrino scattering, at least at high ω.

In this work we are interested in improving this frozen approximation, by
treating exactly the phase space dependence implied by the energy-conserving
delta-function, which in the frozen approximation neglects the motion of the
initial nucleons, and therefore modifies the argument of the delta-function.
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3. The modified convolution approximation

In the MCA we introduce an average momentum for the initial nucleons, but
we treat exactly the energy balance between the particle and hole momenta, con-
trary to the frozen approximation where the initial momenta are approximated
by zero also in the kinematics.

The procedure consists in splitting the energy delta-function into an integral
of two delta-functions over the energy transfer ω1 to the first nucleon:

δ(E′
1 +E′

2 −E1 −E2 −ω) =

∫ ω

0

dω1δ(E
′
1 −E1 −ω1)δ(ω1 +E′

2 −E2 −ω). (23)

Inserting this relation in Eq. (21) we can write the response function as

RK
2p2h =

∫
d3p′1d

3h1d
3h2Θ(p′1, h1)Θ(p′2, h2)

×
∫ ω

0

dω1δ(E
′
1 − E1 − ω1)δ(ω1 + E′

2 − E2 − ω)fK , (24)

where we use the short notation for the integrand containing the elementary
hadronic tensor and phase space factors

fK ≡ V

(2π)9
m4

N

E1E2E′
1E

′
2

rK(p′
1,p

′
2,h1,h2). (25)

Now for h1 fixed we change the variable p′
1 → k1, the momentum transfer to

the first nucleon. Thus

p′
1 = h1 + k1 (26)

p′
2 = h2 + q− k1. (27)

Performing this change in Eq. (24) and reordering the integrations we obtain

RK
2p2h =

∫
d3k1

∫ ω

0

dω1

∫
d3h1Θ(|h1 + k1|, h1)δ(E′

1 − E1 − ω1)

∫
d3h2Θ(|h2 + q− k1|, h2)δ(ω1 + E′

2 − E2 − ω)fK . (28)

Now we assume that the elementary pair response function rK can be approx-
imated by its value at some average momenta 〈h1〉 and 〈h2〉 to be specified
below:

〈rK〉 ≡ rK(p′
1,p

′
2, 〈h1〉, 〈h2〉) , (29)

where now
p′
1 = 〈h1〉+ k1, p′

2 = 〈h2〉+ q− k1. (30)

Then the integrals over h1 and h2 can be performed separately, yielding

RK
2p2h =

V

(2π)9
m4

N

∫
d3k1dω1〈rK〉R1p1h(k1, ω1)R1p1h(k2, ω2) , (31)
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where we have defined k2 and ω2 as the momentum and energy transferred to
the second nucleon

k2 = q− k1, ω2 = ω − ω1 (32)

and the (dimensionless) elementary 1p1h response function is given by

R1p1h(q, ω) =

∫
d3hΘ(|h+ q|, h) 1

EhE|h+q|
δ(E|h+q| − Eh − ω). (33)

Note that this elementary response function is proportional to the imaginary
part of the relativistic Lindhard function, for symmetric matter, which can be
found in Appendix B of [48]:

R1p1h = −
(

2π

mN

)2

ImUR(q, ω). (34)

Equation (31) corresponds to the MCA of the 2p2h inclusive responses. They are
written as a convolution of the elementary 1p1h responses for single excitation
of each nucleon, modified by a weight function. This represents the average
excitation response of the pair, 〈rK〉. Each 1p1h response carries the correct
energy and momentum applied to each nucleon, globally sharing the total energy
and momentum transferred to the pair, (q, ω).

This formula allows one to relate directly the 2p2h model of [39] with the
diagrammatic formalism of [6, 31, 41], which in an alternative way also factorizes
the separate Lindhard functions for the direct many-body diagrams by using the
Cutkosky rules. Thus it will be useful to compare results from these two different
formalisms. Note that Eq. (31) also includes the exchange diagrams, which are
implicit in the pair elementary responses.

In summary, the prescription of [6] was to use a constant average value
〈h1〉 = 〈h2〉 = (3/5)1/2kF . On the contrary, in this approach we specify a
different prescription, with different average values for h1 and h2, that depend
on the kinematics, as explained below.

3.1. Value of the averaged momentum

To obtain a proper value of the average hole momentum it is convenient
briefly to recall the essential points of the analytical integration of the 1p1h
response function in a relativistic Fermi gas.

We start from Eq. (33) by changing variables (h, θ, φ) → (E,E′, φ), where

E2 = h2 +m2
N (35)

E′2 = (h+ q)2 +m2
N = m2

N + h2 + q2 + 2hq cos θ. (36)

The volume element becomes

d3h =
EE′

q
dEdE′dφ. (37)

9



Then the integral over φ gives 2π and the response function is

R1p1h =
2π

q

∫ EF

mN

dE

∫ Eh+q

Eh−q

dE′δ(E′ − E − ω)θ(E′ − EF ) , (38)

where EF is the relativistic Fermi energy. Integrating the δ-function one has
E′ = E + ω and

R1p1h =
2π

q

∫ EF

mN

dEθ(Eh+q − E − ω)θ(E + ω − Eh−q)θ(E + ω − EF ). (39)

The first two step-functions inside the integral imply the following inequalities

Eh−q < ω + E < Eh+q , (40)

which is just a consequence of energy-momentum conservation. This can be
shown to be equivalent to the single condition

κ
√
1 + 1/τ − λ < ǫ , (41)

where for convenience we use dimensionless variables defined by

ǫ =
E

mN
, κ =

q

2mN
, λ =

ω

2mN
, τ = κ2 − λ2. (42)

On the other hand, the last step-function inside the integral implies that

ǫF − 2λ < ǫ , (43)

where ǫF = EF /mN is the Fermi energy in units of the nucleon mass. Perform-
ing the change of variable E → ǫ = E/mN , the above integral can be written
as

R1p1h =
2π

q
mN

∫ ǫF

ǫ0

dǫθ(ǫF − ǫ0) =
π

κ
(ǫF − ǫ0)θ(ǫF − ǫ0) , (44)

where we have defined the lower limit as

ǫ0 = Max
{
κ
√
1 + 1/τ − λ, ǫF − 2λ

}
. (45)

From Eq. (44) it is evident that the initial energy of the nucleon is restricted
to fall between the limits

ǫ0mN < E < ǫFmN . (46)

The mean value of the energy in this interval is

〈E〉 = ǫ0 + ǫF
2

mN , (47)

and this provides our choice for the average hole momentum in the MCA

〈h〉2 = 〈E〉2 −m2
N . (48)
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It is also convenient to write the 1p1h response function in terms of the scaling
variable defined by

ψ2 =
ǫ0 − 1

ǫF − 1
< 1 (49)

or equivalently
ǫ0 = 1 + ψ2ξF , (50)

where ξF = ǫF − 1 is the Fermi kinetic energy in units of nucleon mass. Then
we obtain

R1p1h =
π

κ
ξF (1 − ψ2)θ(1 − ψ2). (51)

As a function of ψ2 the response function is an inverted parabola in the region
−1 < ψ < 1 and it is zero outside this interval. The maximum corresponds
to the center of the quasielastic peak, for ψ = 0 or ǫ0 = 1. This implies
that the momentum of the nucleon at the QE peak can take on all the values
between zero and kF . When we depart from the center and approach the borders
defined by ψ = ±1, the value of ǫ0 approaches ǫF , and therefore the value of
the momentum h of the hole is more restricted below kF . At the borders it is
exactly kF . Therefore there exists a region of ω values close to the borders of
the QE peak where the momentum of the hole is always larger than (3/5)1/2kF ,
which is the average value employed in [6, 31, 41].

Following the average momentum definition, Eqs. (47,48), in the MCA we
compute two different momenta, 〈h1〉 and 〈h2〉, depending on the momentum
and energy transfer to each nucleon, ki, ωi. To compute 〈hi〉, we must evaluate
the minimum nucleon energy in Eq. (45) using the dimensionless variables in
Eq. (42) for q = ki and ω = ωi.

3.2. Direction of the averaged momentum

In this subsection, for simplicity, we use the notation hi for the averaged
hole momenta. The above discussion allows us to determine the modulus of the
averaged momenta hi. Concerning its direction, it is only possible to determine
the angle between hi and ki. By imposing energy conservation for an on-shell
nucleon with initial momentum hi,

E′
i = Ei + ωi =

√
m2

N + (hi + ki)2, (52)

and, taking the square

(Ei + ωi)
2 = m2

N + h2i + k2i + 2hiki cos θi, (53)

we get the angle between hi and ki:

cos θi =
ω2
i + 2Eiωi − k2i

2hiki
. (54)

By construction of the MCA average momentum 〈hi〉 given by Eqs. (47,48),
the above value of the angle is within the correct limits −1 ≤ cos θi ≤ 1. Note
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x

z
q

νµ µ

W+

Figure 1: Geometry defining the lepton scattering plane and the two cones spanning the
possible momenta of the two holes around the momenta transferred to each nucleon, ki. The
cones are determined by the energy transferred ωi to each nucleon and by the average hole
momenta, hi. The final momenta p′

i
= hi + ki are not shown for simplicity.

that using a constant average momentum such as
√
3/5kF there are kinematics

in (ki, ωi) where the above angle is undefined because it is outside the region
allowed by energy conservation.

For the total determination of the averaged momenta, hi, one should know
in addition the azimuthal angles with respect to the ki vectors. But from
the 1p1h response function R1p1h(ki, ωi) there are not restrictions over the az-
imuthal angles. Energy-momentum conservation only provides restrictions for
the magnitude of the initial momenta and their angles with respect to ki. For
a given angle θi between hi and ki, Eq. (54), the vector form of hi is

hi = hi(cos θik̂i + sin θiui), (55)

where k̂i is the unit vector in the direction of ki and ui is an unit vector
perpendicular to ki. The vectors hi generate two cones around the ki vectors,
as depicted in Fig. 1. In our reference frame (see below) the vector ki can be
considered in the scattering plane, spanned by the x, z directions, as shown in
Fig. 1, given by

ki = (kxi , 0, k
z
i ). (56)

Therefore the general form of the unit vector in the plane perpendicular to ki

is

ui = ± (−kzi , αi, k
x
i )√

(kzi )
2 + α2

i + (kxi )
2
, (57)

where αi is a real parameter that determines the y component of hi.
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There are no restrictions over the values of the two parameters α1, α2. In
practice what we do is to choose several options for these parameters guided by
simplicity of the calculation. The simplest option is to choose α1 = α2 = 0,
but any other election is possible. In the results section we compare several
options and discuss which is the best one according to the comparison with the
full results, and study how the results depend on the values of αi.

3.3. MCA Integration limits

To evaluate the MCA expression for the 2p2h responses, Eq. (31), it is
convenient to change the integration variable θk1

(the angle between k1 and q)
to the magnitude, k2, of the momentum transfer to the second nucleon

cos θk1
−→ k2 = |q− k1|. (58)

The Jacobian of the transformation gives

k21dk1d cos θk1
dφk1

=
k1k2
q

dk1dk2dφk1
. (59)

Due to the azimuthal symmetry of the inclusive response functions, the integra-
tion over the angle φk1

can be reduced to multiplication by 2π and evaluation
of the integrand for φk1

= 0, as a particular case. The MCA reduces to a
three-dimensional integral given by

RK
2p2h =

V

(2π)9
2πm4

N

q

∫ (k1)max

0

dk1k1

∫ q+k1

|q−k1|

dk2k2

∫ (ω1)max

(ω1)min

dω1〈rK〉R1p1h(k1, ω1)R1p1h(k2, ω − ω1). (60)

1. To obtain the maximum value of k1 we first take into account that the
maximum energy allowed for particle no. 1 is

E′
1 ≤ ω + EF (61)

i.e., all the energy is transferred to particle no. 1, initially with h1 = kF .
The corresponding maximum momentum for this on shell particle is

p′1 ≤
√
(ω + EF )2 −m2

N . (62)

Therefore the momentum transfer to the first particle is bound from above
by

k1 = |p′
1 − h1| ≤ p′1 + h1 (63)

and

(k1)max =
√
(ω + EF )2 −m2

N + kF . (64)
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Figure 2: Graphs of the two 1p1h response functions R1p1h(k1, ω1) and R1p1h(k2, ω − ω1)
appearing inside the MCA integral as a function of ω1. The six possible configurations are
shown. In cases a, b they do not overlap. In cases c, d they overlap, and finally, in cases e, f,
one domain is inside the domain of the other one.
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2. Taking into account the fact that the 1p1h elementary response functions
R1p1h(ki, ωi) = 0 for ωi > ki, we can restrict the integration over ω1

between the limits

(ω1)max = min(k1, ω), (ω1)min = max(0, ω − k2). (65)

3. For a given value of ki, there is an additional restriction for the 1p1h
responses, which are zero outside the interval allowed by the Pauli principle
(see Appendix A for the proof)

ωmin
i =

√
(kF − ki)2 +m2

N − EF (= 0 if ki < 2kF )

ωmax
i =

√
(kF + ki)2 +m2

N − EF . (66)

Therefore the integration limits over ω1 in Eq. (60) can be further con-
strained by taking into account that, inside the integral, two 1p1h re-
sponse functions are being multiplied, and both of them must be differ-
ent from zero simultaneously to contribute. The first response function
R1p1h(k1, ω1) is different from zero if

ωmin
1 < ω1 < ωmax

1 . (67)

On the other hand, R1p1h(k2, ω − ω1) is different from zero if

ω′
1
min < ω1 < ω′

1
max , (68)

where

ω′
1
min = ω − ω2

max (69)

ω′
1
max = ω − ω2

min . (70)

The intersection of the two above intervals defines the final integration
range. This is determined by identifying the six different possibilities
shown in Fig. 2. In the figure we show with thick lines the resulting
integration interval, which depends on the values of k1, k2 and ω.

4. Electroweak meson-exchange currents

In this section we specify a model for the two-body current matrix elements
jµ(1′, 2′, 1, 2) entering in the elementary 2p2h hadronic tensor, Eq. (19). This
will allow us to investigate the validity of the MCA, by comparing to the full
integration, following the lines of [46, 39]. The MEC model contains the Feyn-
man diagrams depicted in Fig. 3. The different contributions have been taken
from the pion production model of [49]. Our MEC is given as the sum of four
two-body currents: seagull (diagrams a,b), pion in flight (c), pion-pole (d,e) and
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Figure 3: Feynman diagrams for the electroweak MEC model used in this work.

∆(1232) excitation (f,g,h,i). Their expressions are given by

jµsea =
[
I±V

]
1′2′,12

f2

m2
π

V
s′1s1
πNN (p′

1,h1)

× ūs′
2
(p′

2)

[
FV
1 (Q2)γ5γ

µ +
Fρ

(
k22
)

gA
γµ

]
us2(h2) + (1 ↔ 2) (71)

jµπ =
[
I±V

]
1′2′,12

f2

m2
π

FV
1 (Q2)V

s′1s1
πNN (p′

1,h1)V
s′2s2
πNN (p′

2,h2) (k
µ
1 − kµ2 ) (72)

jµpole =
[
I±V

]
1′2′,12

f2

m2
π

Fρ

(
k21
)

gA

Qµūs′
1
(p′

1) 6Qus1(h1)

Q2 −m2
π

V
s′2s2
πNN (p′

2,h2)

+(1 ↔ 2) (73)

jµ∆ =
f∗f

m2
π

V
s′2s2
πNN (p′

2,h2)ūs′
1
(p′

1)
{[
U±
F

]
1′2′,12

kα2Gαβ(h1 +Q)Γβµ(h1, Q)

+
[
U±
B

]
1′2′,12

kβ2 Γ̂
µα(p′1, Q)Gαβ(p

′
1 −Q)

}
us1(h1) + (1 ↔ 2). (74)
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Figure 4: Feynman diagrams for neutron-proton emission with the seagull current.

In these equations we have introduced the πNN vertex function and the pion
propagator into the definition of the following spin-dependent function:

V
s′1s1
πNN (p′

1,h1) ≡
ūs′

1
(p′

1) γ5 6k1 us1(h1)

k21 −m2
π

. (75)

We have also defined the following two-particle isospin operators

I±V = (IV )x ± i(IV )y (76)

IV = i [τ (1)× τ (2)] , (77)

where the +(−) sign refers to neutrino (antineutrino) scattering. The forward,
U±
F = UFx±iUFy, and backward, U±

B = UBx±iUBy, isospin transition operators
are obtained from the Cartesian components defined by

UFj =

√
3

2

∑

i

(
TiT

†
j

)
⊗ τi (78)
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Figure 5: Feynman diagrams for proton-proton emission with the seagull current.

UBj =

√
3

2

∑

i

(
Tj T

†
i

)
⊗ τi, (79)

where ~T is an isovector transition operator from isospin 3
2 to 1

2 .
In Figs. 4 and 5 we show the charge-dependent Feynman diagrams con-

tributing to the np and pp emission channels of CC neutrino scattering in the
case of the seagull current as an example. They involve direct and exchange
contributions. Each current operator contributes analogously. These figures
illustrate the complexity of the elementary 2p2h responses rK , which here are
computed numerically.

We use the πNN (f = 1) and axial (gA = 1.26) coupling constants. The
electroweak form factors FV

1 and Fρ in the seagull and pionic currents are those
of the pion production amplitudes of [49]. Finally, we use the πN∆ coupling
constant f∗ = 2.13. We also apply strong form factors (not written explicitly
in the MEC) of dipole form in all the NNπ and N∆π vertices.

For simplicity in this work we only include the dominant terms in the weak

18



N → ∆ transition vertex tensor in the forward current, Γβµ(P,Q)

Γβµ(P,Q) =
CV

3

mN

(
gβµ 6Q−Qβγµ

)
γ5 + CA

5 g
βµ. (80)

We have kept only the CV
3 and CA

5 form factors and neglected the smaller
contributions of the others. They are taken from [49]. On the other hand, for
the backward current, the vertex tensor is

Γ̂µα(P ′, Q) = γ0 [Γαµ(P ′,−Q)]
†
γ0 . (81)

Finally the ∆-propagator takes into account the finite decay width of the
∆ (1232) by the prescription

Gαβ(P ) =
Pαβ(P )

P 2 −M2
∆ + iM∆Γ∆ +

Γ2
∆

4

. (82)

In this work we consider both the real and imaginary parts of the denominator
of this propagator. The projector Pαβ(P ) over spin-

3
2 on-shell particles is given

by

Pαβ(P ) = −(6P +M∆)

[
gαβ − 1

3
γαγβ − 2

3

PαPβ

M2
∆

+
1

3

Pαγβ − Pβγα
M∆

]
. (83)

We do not take into account possible off-shellness effects in this projector.

5. Treatment of the ∆-propagator

Using an average value for the hole momenta inside the MCA integral will
be valid only if the elementary 2p2h response functions depend slowly on h1

and h2. This is not the case for the forward ∆ diagram, which presents a sharp
maximum due to the pole structure of the ∆ propagator,

G∆(H +Q) ≡ 1

(H +Q)2 −M2
∆ + iM∆Γ∆ +

Γ2
∆

4

, (84)

where Hµ = (Eh,h) is the four-momentum of the hole. Taking an average
value for the momentum instead of computing the full integral modifies the
pole position, and this distorts the shape and strength of the 2p2h ∆ peak. Due
to this effect, the present MCA approach is not as accurate as in the low-energy
region far from the ∆ peak. In this work we compare the results of different
methods to improve the description of the ∆ peak:

1. the full ∆ propagator, Eq. (84), but using the corresponding average
momentum;

2. the Fermi-averaged or frozen ∆ propagator;
3. the cone-averaged ∆ propagator.

These averaged propagators are explained below.
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5.1. The frozen ∆ propagator

This is a propagator averaged over the momentum distribution of the Fermi
gas. This produces a smearing of the ∆ peak. This was proven to be an
excellent approximation in the case of the frozen approximation of [42], where
the momentum of the hole was approximated by zero. Therefore this choice
amounts to compute the average integral, by taking the non-relativistic limit
for the energies of the hole (Eh ≃ mN ),

Gfrozen(Q) =
1

4
3πk

3
F

∫
d3h θ(kF − |h|)
a− 2h · q+ ib

, (85)

=
1

4
3πk

3
F

π

q

{
(a+ ib) kF

2q
(86)

+
4q2k2F − (a+ ib)2

8q2
ln

[
a+ 2kF q + ib

a− 2kF q + ib

]}
,

where the parameters a, b are defined by

a ≡ m2
N +Q2 + 2mN(ω +Σ)−M2

∆ +
Γ2

4
(87)

b ≡ M∆Γ . (88)

They depend on two parameters, Γ and Σ, that correspond to an effective width
and shift of the smeared ∆ peak. These parameters are adjusted to reproduce
the full results with the 7D integral, and depend on the momentum transfer q.
They are given in Table 1. Note that Γ is slightly different from the values fitted
in [42]. The latter is because in this fit we use the MCA instead of the frozen
approximation used in [42].

q (MeV/c) Σ (MeV) Γ (MeV) Γc (MeV)
300 20 110 145
400 65 135 138
500 65 125 134
800 80 100 128
1000 100 80 125
1200 115 60 123
1500 150 20 120
2000 150 0 105

Table 1: Values of the free parameters of the Fermi-averaged ∆-propagator for different values
of the momentum transfer q.

5.2. Cone-averaged ∆-propagator

In the present MCA approach the moduli of the momenta hi, and the angles
θi between hi and ki are fixed, and therefore the vectors hi belong to the cones
shown in Fig. 1. However the azimuthal angles in the cones are not determined,
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qφ

θ θq

Figure 6: Scheme defining the geometry for the cone-averaged integration of the ∆ propagator.
The z′ axis is defined by the direction of the partial momentum transfer k to the hole h. The
modulus h and cone angle θ are fixed by the kinematics of the 1p1h response. The azimuthal
angle φ is undetermined and is integrated around the z′ axis for the average. The result
depends on the cone geometry and on the angle θq between k and the momentum transfer q

as well.

and here we choose different prescriptions to fix them. By doing that, the ∆-
peak position is altered with respect to the exact value obtained in the full 7D
integral. The cone-averaged propagator introduced here is defined by smearing
the ∆ propagator by averaging only in the cone instead of averaging over the
full Fermi sea:

G∆(H +Q) → Gcone ≡
1

2π

∫
dφ

ac − 2h · q+ ibc
, (89)

where the integration variable φ is the azimuthal angle around the cone shown
in Fig. 6, k is the partial momentum transfer to the hole h and q is the total
momentum transfer. The cone-averaged propagator depends on the parameters
in the denominator, ac, bc, defined by

ac ≡ m2
N +Q2 + 2Ehω −M2

∆ +
Γ2
c

4
(90)

bc ≡ M∆Γc . (91)

These cone parameters are independent of φ. The φ dependence is hidden in
the scalar product h ·q. To obtain this dependence we use Fig. 6 in the rotated
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coordinate system, x′z′, in the scattering plane, where the z′ axis points along
k. In this system the scalar product is

h · q = hq(sin θ sin θq cosφ+ cos θ cos θq) , (92)

where θ is the angle between h and k, defining the cone, and θq is the angle
between k and q. The cone-averaged propagator can be expressed as the integral

Gcone =
1

2π

∫
dφ

W − C cosφ
, (93)

with

W = ac + ibc − hq cos θ cos θq (94)

C = hq sin θ sin θq. (95)

Note that C > 0 and W is a complex number. The above integral is performed
analytically in Appendix B.

The values of the effective width in the cone-averaged propagator, Γc, are
tabulated as a function of q in Table 1.

6. Results

In this section we present results for the 2p2h response functions for inclusive
neutrino scattering. In this work we do not provide comparisons with the exper-
imental data. This requires one to describe simultaneously the quasielastic and
inelastic (including pion emission) channels. In previous works [38, 40] we have
provided this comparison within the superscaling approach plus a MEC model
derived from the one used in the present work. This model describes the (e, e′)
cross section of 12C and the global set of neutrino scattering quasielastic with-
out pions (CC0π) measurements made in the neutrino accelerator experiments.
Therefore the model we are starting with is realistic for describing two-nucleon
emission with neutrinos for the kinematics of interest.

In particular we investigate the validity of the MCA approach presented so
far, by evaluating the 2p2h response functions and comparing with the full re-
sults obtained with the 7D integration. The interest of this investigation is to
determine the consistency between different approaches to the 2p2h emission
channel, namely the model of [6, 10]. This is a first step towards the reconcil-
iation between apparently different approaches. This study is a necessary step
forward in reducing the systematic errors in the oscillation parameters coming
from the theoretical uncertainties. Moreover it is interesting by itself to find
alternative approximations that allow a reduction of the computational time
of the two-nucleon emission without large loss of numerical precision. Finally
we remark that the MCA allows us to make an easier connection between our
results and the predictions provided by other authors [6].

We consider the case of the nucleus 12C, and, unless otherwise stated, the
Fermi momentum is chosen to be kF = 228 MeV/c. We show results for several
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Figure 7: Phase space function computed for three values of the momentum transfer, as a
function of ω. Results obtained with the full 7D integral are compared to the MCA approach
with only 3D integrations.
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Figure 8: Transverse 2p2h response function as a function of ω for several values of the
momentum transfer. The results of the RFG with the full 7D integration are compared to the
MCA with the full ∆ propagator and with the Fermi-averaged or frozen ∆ propagator.
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kinematics in the range of momentum transfer between 300MeV/c and 2 GeV/c,
of interest for the neutrino oscillation experiments.

We start by computing the phase-space function obtained from Eq. (21) for
rK = 1, except for a constant factor. This is a universal function for the RFG
that only depends on the kinematics of the 2p2h excitations and not on the
MEC model:

F (q, ω) =

∫
d3p′1d

3h1d
3h2

m4
N

E1E2E′
1E

′
2

Θ(p′1, h1)Θ(p′2, h2)

δ(E′
1 + E′

2 − E1 − E2 − ω). (96)

This universal function is well established and was fully studied in [46, 47].
Therefore the comparison with this function is a required consistency check in
any calculation of the 2p2h response, and furthermore it provides a valuable
precision check of the multidimensional integrations. In fact the phase space
determines the global behavior of the 2p2h responses, on top of the additional
modifications introduced by the particular model of two-body current operator.
The main one is produced by the Q2 dependence of the electromagnetic form
factors and the structure of the different diagrams, which are dominated by the
forward ∆ excitations. The remaining (q, ω) dependence of the MEC diagrams
is found to be smoother.

The results in Fig. 7 confirm numerically that the MCA approach treats
exactly the phase space in all energy regions, obtaining essentially the same
results except for numerical errors in the integration procedure. This comparison
also allows us to determine the optimal integration steps in the MCA.

In Fig. 8 we compare the transverse 2p2h response function of the RFG
computed by performing the full 7D integration with the MCA results for two
different prescriptions for the ∆ propagator. Using the full ∆ propagator in
the MCA produces a peak that is about 30% smaller than the full result, and
slightly shifted and distorted. This is due to the approximation made for the
averaged momentum of the hole, and to the chosen values of the azimuthal
angles in the cones shown in Fig. 1. These results have been obtained for
α1 = α2 = 0, corresponding to both holes contained in the scattering plane
on the same side of the cone, and corresponding to choosing the + sign in
Eq. (57). Therefore the position and the value of the maximum due to the
forward ∆ propagator is altered by the average in the MCA. This problem is
dealt with in this example by using the smeared frozen ∆ propagator averaged
over the RFG momentum distribution, as also shown in Fig. 8 with dotted
lines, which are quite similar to the full results, after fitting the two parameters
of the effective width and shift, (Γ,Σ), shown in Table 1. Note that for low
transferred energy, far from the resonance position, and especially at threshold,
all the results coincide independently of the ∆-propagator treatment. Thus,
globally, the MCA results using the frozen ∆ propagator are quite satisfactory.

Nonetheless the quality of the agreement relies on using the fitted values
for the width and shift, which depend strongly on q. However, notice that this
procedure may limit the predictability of the present approach in so far as its
reliability is linked to the knowledge of the full results.
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Figure 9: Transverse 2p2h response function as a function of ω for several values of the
momentum transfer. The results of the RFG with the full 7D integration are compared to the
MCA with the cone averaged ∆ propagator and with the frozen ∆ propagator.
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Figure 10: 2p2h transverse response function plotted against transferred energy, ω, for different
q-values (q = 500 MeV/c on the left side and q = 1000 MeV/c on the right one) and for
different average momenta orientations, labelled by the keys defined in Fig. 11.

An alternative solution is to use the cone-averaged propagator, which only
depends on one parameter Γc with a milder dependence on q, as shown in Table
1, which oscillates between 145 and 105 MeV in the q range considered, more
or less around the free ∆ width, Γc = 125± 20. On the other hand, the frozen
width Γ changes in the larger range between 135 and zero. Results with the
cone-averaged ∆ propagator are shown in Fig. 9. They are similar to the
exact results and the quality of this approximation is at least as good as using
the frozen ∆ propagator. However the cone-averaged approximation has the
advantage of having only one free parameter, the Γc width, which is also closer
to the ∆ free width. The agreement with the full results is remarkable in the
full range of momentum transfer explored in this work.

From now on all the results of the MCA shown will be calculated using the
cone-averaged ∆ propagator, with the parameters displayed in the last column
of Table 1.

In Fig. 10 we study the dependence of the MCA results on the chosen value
for the azimuthal angles of the initial hole momenta. As was shown in Fig.
1, each averaged momentum hi is arranged in the lateral surface of the corre-
sponding cone depicted in the figure. The precise value of the azimuthal angle
measured with respect to ki (the cone axis) is determined by the parameters
αi in Eq. (57) and the sign of the unit vector ui. Any combination of pairs of
azimuthal angles between 0 and 2π is possible. In Fig. 10 we show different
pairs of choices and compare the corresponding T responses. In Fig. 11 we show
the configurations chosen for this study, viewed from the cone bases. In the (a)
case the two holes are in the scattering plane but we change their positions
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h2 h1 (α1, α2, sign1, sign2)

(0, 0,+,+)

(0, 0,−,−)

(0, 0,+,−)

(0, 0,−,+)

(a) Configurations for initial holes’ mo-
menta on the scattering plane, labelled by
the key indicating their (α1, α2) values and
their signs corresponding to Eq. (57).

h2 h1 (α1, α2)

(+∞,+∞)

(−∞,−∞)

(+∞,−∞)

(−∞,+∞)

(b) Configurations for initial holes’ mo-
menta out of the scattering plane, labelled
by the key indicating their (α1, α2) values
and their signs corresponding to Eq. (57).

Figure 11: Different initial holes’ configurations considered in this work.

among the two possible sides of the cones, corresponding to αi = 0, and sign ±
for ui. In the (b) case the hole momenta are out of the scattering plane with
the maximum angle allowed, corresponding to αi = ±∞. As we see, the re-
sults depend mildly on the different choices, and we can identify configurations
which are particularly stable with little dependence on the chosen values. In
particular, the MCA results computed for αi = ±∞ are all quite similar to the
full 7D response function, all of them being in an interval around ∼ 5% above
the full result. The same can be said for the (0, 0,−,−) configuration, while
the worst results occur for (0, 0,−,+). This is related to the fact that we are
constraining the two hi momenta to be the closest to the momentum transfer q,
as can be seen in Fig. 11. This restricts the possible arrangements of the hole
pairs in the average momenta approximation. We conclude that the maximum
uncertainty of the MCA methods comes from this choice. Note that of all these
configurations, only the case (0, 0,+,+) was fitted to the full response, while
the others are not fitted, and are computed with Γc parameter fixed to this case.

In Fig. 12 we show an example of how the present MCA results behave
when the value of the Fermi momentum is changed. Note that in all cases the
nucleus considered is 12C, but the Fermi momentum is increased up to kF = 300
MeV. In a different nucleus, these results should be rescaled with the number of
particles in addition to the increase observed in the figure when kF is enlarged.
In fact the RT 2p2h response per nucleon is almost a factor of two when kF
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Figure 12: 2p2h transverse response function of 12C, for q = 800 MeV/c, plotted against ω,
for different values of the Fermi momentum kF .
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Figure 13: Comparison of the MCA and full results for the CC, T and T ′ 2p2h response
functions of 12C, and for two values of the momentum transfer.

changes from 228 to 300 MeV/c. More precisely, the ratio between the maxima
of the two responses is about 1.75, in agreement with the results of [50], where
it was shown that the 2p2h response functions scale as k2F . As we see the MCA
results are quite stable in this range of kF , yet the parameter Γc was fitted
for one particular kF = 228 MeV/c. And this is why the results worsen a
bit for higher kF . These results show that the MCA approach can be applied
to heavier nuclei. Although not presented here, the present formalism can be
extended with small changes to the case of N 6= Z nuclei, with different Fermi
momenta for protons and neutrons. This will allow one to compute the 2p2h
cross sections for neutrino scattering from detectors made of different nuclei
(typically C, O, Ar) such as the ones used in ongoing neutrino experiments.

Finally, in Fig. 13 we show that the MCA approach works quite well for
the 2p2h response functions of the different kinds, although the parameters
have been fitted only for the T response. The worst agreement occurs for the
small RCC , which partially cancels with the CL and LL responses. The main
contribution to neutrino scattering thus comes from the T and T ′ responses,
which are well described in the MCA approach.
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7. Conclusions

In this work we have introduced a simplified approach, the modified con-
volution approximation (MCA), which allows one to write the 2p2h response
functions as a convolution of two single-particle response functions weighted
with the average 2p2h elementary responses. The approach treats exactly the
kinematics of the 2p2h excitation and therefore it works the best for low en-
ergy transfers. The resulting approximation allows one to reduce the number
of integrals from seven to three dimensions, with a considerable saving in com-
putational effort. Our formalism includes the interference between direct and
exchange diagrams.

After introducing the general formalism in this approach, we have tested
its quality and precision by comparing with the full results using a specific
model of relativistic two-body MEC operators. The approach works well when
an appropriate smearing of the ∆ propagator, obtained by averaging it over
the hole momenta, is used. This approximation requires to choose the specific
direction of the average momenta for the initial nucleons in the current matrix
elements, which is contained over the surface of a cone. We have found that
a simple averaged propagator over the azimuthal angle of the hole momentum
around the cone gives quite good results for all the values of the kinematics.
The ambiguities in the model related to the prescription for the direction of the
hole over the cone surface are found to be mild.

The MCA presented here can also be considered as the natural generalization
of the pioneering non-relativistic formalism of [2] to the relativistic case, which
requires to add an additional integral over the energy ω1 transferred to the first
nucleon.

Furthermore the present approach provides an integral representation of the
2p2h responses which is similar to the model of Valencia [6] and therefore this
can yield a comparison of the compatibility with the approach of the Torino
model [39]. Moreover getting the 2p2h responses written in terms of two 1p1h
response functions (or Lindhard functions) allows us to include a phenomeno-
logical scaling function instead of the Lindhard function of the free Fermi gas to
evaluate the 2p2h responses. This opens the possibility to extend the free Fermi
gas 2p2h response functions to what is expected from an interacting nucleus.
In addition, this can be also seen as an alternative way to include finite-size ef-
fects in the Fermi gas 2p2h responses instead of the more common local density
approximation [29].
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Appendix A. Boundaries of the 1p1h responses

In this appendix we derive the ω-limits of the RFG response function, Eq.
(51).

We use the following result, which is easy to prove and states that if an on-
shell particle with momentum p inside the Fermi gas takes energy-momentum
(ω, q), then the limit cases, p parallel or anti-parallel to q, correspond to the
condition

Ep−q = E + ω
or

Ep+q = E + ω



 ⇔ κ

√
1 + 1/τ − λ = ǫ. (A.1)

For fixed q, the limits of the quasielastic peak correspond to the scaling variable
ψ2 = 1; see Eq. (51).

From the definition of ψ, Eq. (49), this corresponds to ǫ0 = ǫF , that is,
a particle with Fermi momentum. In the non-Pauli blocked regime, from Eq.
(45), the minimum energy for the particle is exactly ǫ as given in Eq. (A.1).
This implies that

κ
√
1 + 1/τ − λ = ǫF ⇔





EkF−q = EF + ω
or

EkF+q = EF + ω
. (A.2)

From this latter equation, by isolating ω, one obtains the upper and lower ω-
limits given in Eq. (66).

Appendix B. Cone-averaged propagator

Here the integral appearing in the cone-averaged ∆ propagator is computed

I(W,C) ≡
∫ 2π

0

dφ

W − C cosφ
, (B.1)

where C > 0 and W is a complex number. We transform the integral into a
contour integral in the complex plane on the variable z = eiφ. By multiplying
and dividing by z inside the integral we obtain

I(W,C) =

∫ 2π

0

eiφdφ

Weiφ − C e2iφ+1
2

= 2i

∮
dz

Cz2 − 2Wz + C
, (B.2)

where the last integral is made along the unit circle counterclockwise. The
integral is evaluated by computing the poles inside the circle. The poles are
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given by the roots of the second degree polynomial in the denominator, written
in factorized form as

Cz2 − 2Wz + C = C(z − z1)(z − z2) (B.3)

where obviously z1z2 = 1 is satisfied, and

z1 =
W

C
+

1

C

√
W 2 − C2 (B.4)

z2 =
W

C
− 1

C

√
W 2 − C2. (B.5)

If z1 is the pole inside the circle, then z2 is automatically outside because |z1z2| =
1. Therefore there is only one pole inside the circle. The integral is then
computed as the residue at the pole

I(W,C) =
2i

C
2πi Res

|zi|<1

1

(z − z1)(z − z2)
. (B.6)

In the case |z1| < 1, this gives

I(W,C) = −4π

C

1

z1 − z2
= − 2π√

W 2 − C2
. (B.7)

In the other case, |z1| > 1, the pole inside the circle is z2, and the result is

I(W,C) = −4π

C

1

z2 − z1
=

2π√
W 2 − C2

. (B.8)
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