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Abstract

Atmospheric clusters are weakly bound and can fragment inside the measuring in-
struments, particularly, mass spectrometers. Since the clusters accelerate under electric
fields, the fragmentation cannot be described in terms of rate constants under equilib-
rium conditions. Using basic statistical principles, we have developed a model for
fragmentation of clusters moving under an external force. The model describes an en-
ergy transfer to the cluster internal modes caused by collisions with residual carrier gas
molecules. As soon as enough energy is accumulated in the cluster internal modes it
can fragment. The model can be used for interpreting experimental measurements by

Atmospheric Pressure interface Mass Spectrometers.



1 Introduction

The mass spectrometer and ion mobility spectrometer are effective tools for studying at-
mospheric clusters, e.g., measuring their composition and to some extent concentration.!™
These instruments are capable of resolving the elemental composition of sub-3-nm parti-
cles.*% High-resolution and high-sensitivity mass spectrometers have increased our knowl-
edge of individual charged clusters at ambient concentrations. However, some clusters might
not be stable enough to survive severe conditions inside the instruments, and this might
alter the detected distribution. Therefore, it is possible that measurements do not give a
true picture of the clusters in both the atmospheric and laboratory experiments.

The trajectory of ions in mass spectrometers and ion mobility spectrometers is mostly
defined by parameters like electric field, number concentration of the carrier gas, its temper-
ature, flux, etc. The use of models such as ACDC (Atmospheric Cluster Dynamic Code)®
to describe cluster transformations inside mass spectrometers is it not possible. The ACDC
model has been designed to describe the kinetics of formation and growth of atmospheric
clusters. The model assumes the environment to be in equilibrium, but this is not the case
in the mass spectrometer measurements. Although comparison with experiments has shown
it to be quite successful,! there are still uncertainties in interpreting the atmospheric mea-
surements and experimental results. Often, the discrepancies observed between the clusters
distribution predicted by models such as ACDC and those measured by mass spectrometers
have been attributed to possible cluster fragmentation inside the mass spectrometer.” The
ionic clusters inside a mass spectrometer are accelerated under an electric field and expe-
rience collisions with carrier gas molecules. These collisions lead to energy redistribution
between the colliding molecules, and between the translational, rotational and vibrational
modes of the ionic clusters. As soon as the vibrational modes accumulate enough energy,
the ionised clusters can get fragmented. This process resembles collision-induced dissociation
(CID). CID is used in tandem mass spectrometry mainly to elucidate the structure of the

analysed ions.® An essential difference between a cluster and a molecule is in the strength of



the bonds, so it is misleading to use the term dissociation for non-covalently bound molecular
clusters when they fragment.

The cluster distribution measured by a mass spectrometer can be different from the one
in the atmosphere due to collision induced cluster fragmentation (CICF) in the instrument.
To investigate this possible artefact, we have developed a model for studying the influence
of collisions between ionic clusters and carrier gas molecules on the clusters’ fragmentation
in Atmospheric Pressure interface Time of Flight (APiTOF) mass spectrometers. The ionic
clusters are guided by electric fields inside the Atmospheric Pressure interface (APi) through
a series of three vacuum chambers before arriving to the Time Of Flight (TOF) mass spec-
trometer. A detailed description of the instrument is reported elsewhere.® Using a trimer
cluster consisting of two sulphuric acid molecules and a bisulphate anion as an example, we
model collision induced energy transfer between the translational, rotational and vibrational
modes of the cluster, which can lead to cluster fragmentation.

Besides the introduction this article has four more sections: theoretical background of
the model, details of simulations, results and discussion, and conclusion. Some material is
placed in the supporting information (SI). In particular, we have included a list of symbols

in the SI.

2  Theoretical background of the model

2.1 General description of the model

The simplest setup for modelling CICF in some part of the mass spectrometer is as depicted
in Figure 1. The negatively charged ionised cluster (later we usually refer to it as ’cluster’
omitting ’ionic’ or ’ionised’) moves under an applied constant and uniform electric field from
one point to another. The electric field is along the z axis, the particular choice of direction
of z- and y-axes is unimportant. The cluster also experiences collisions with the carrier gas

molecules. Usually the carrier gas in APiITOF mass spectrometers is air. Typically, exper-



iments are performed at stationary conditions when the flux, pressure and temperature do
not depend on time at any point in any of the chambers of the mass spectrometer. Thus we

have chosen to model the stationary conditions. We focus on the description of the collisions
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Figure 1: General setup of the model.

of the clusters with carrier gas molecules, energy transfer at collisions and energy redistri-
bution during the time between the collisions which can lead to fragmentation. To avoid
additional complications when developing the framework of the model, we keep the electric
field constant in time and uniform in space and we also assume the velocity distribution of
the carrier gas molecules to be Maxwellian. Alternating electric fields, magnetic fields and
deviations from the Maxwellian distribution can be straightforwardly included in the model.

We simulate the trajectory of the clusters moving from one electrode to another. The
travelling trajectory is defined by the electric field and random collisions with the carrier gas
molecules. Each cluster is considered individually. Its velocity, angular velocity, trajectory
and vibrational energy are monitored, and the probability of fragmentation is calculated

along the trajectory. There are two possible fates for each cluster: 1) it can reach the



second electrode or 2) get fragmented earlier. The aggregate data on the parameters along
the trajectory as well as cluster’s final fate is called a realisation of the random process.
After running a statistically significant set of realisations we calculate the proportion of the
fragmented clusters. Each realisation includes several events and situations that can be
viewed as random. They are related to collision, energy transfer at collisions and possible
fragmentation. We consider these three processes and derive the related probability density

functions (PDF) in the next three subsections.

2.2  Collision probability density functions

In this subsection, we determine PDF, which provide the random values for the velocity
vector of the carrier gas molecule colliding with the cluster, for the point of collision on the
cluster surface, and for the time between the collisions. We treat both the cluster and the
carrier gas molecule as spheres of radii R and R, respectively. When calculating the collision
frequency, we consider the collision of the effective sphere with radius R = R + R, and a
point-like particle. The mass of the effective sphere M is equal to the mass of the cluster
and the mass of the point-like particle m is equal to the mass of the carrier gas molecule.
Substitution of the two colliding spheres problem with the problem of the collision of a sphere
with the point-like particle does not change the value of the collision frequency.

The PDFs of the velocity component of the carrier gas molecule normal to the cluster
surface u,, of the polar angle between the the cluster velocity vector and the vector drawn
from the centre of the cluster to the point of collision € (see Figure 2), and of the time
between collision ¢ can be found by solving the collision frequency of the cluster moving with
velocity v through a Maxwellian carrier gas. The solution can be found in the SI, here we
present only the results. The PDF of the normal component of the carrier gas velocity u,

and of the angle 6 at collision is
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Figure 2: Illustration of the angles defining the point of collision between the carrier gas
molecule and the cluster on its surface. The point of collision is marked wth a black dot.

where n is the number density of the carrier gas, k is the Boltzmann constant, 7" is the
temperature, v is the cluster velocity and T is the total collision frequency given by the

following formula

kT [ m [ 2K mu?
N " ((mv U) ert ( 2kT U> ™m P ( 2kT)> ’ 2)

where erf is the error function. Naturally, T is approaching WRQH\/% at small v ( to
calculate the limit one needs to expand erf into a Taylor series). This corresponds to the
collision frequency of Maxwellian gas with a motionless sphere. In the opposite limiting case,
T is approaching mR?nv at very large v, which corresponds to collision of the sphere moving
with velocity v through a motionless gas. The dependence of the collision frequency on the
velocity of the cluster is presented in Figure 3. The PDF of the azimuth angle ¢ (see Figure

2) is even, and the PDF of the component of the carrier gas molecule velocity tangential to
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Figure 3: Dependence of the collision frequency of the the cluster with the Maxwellian gas
at 300 K on the velocity of the cluster.

the cluster sphere obeys a two-dimensional Maxwell distribution.

The PDF of the time between collisions is

¢
f =T | - [ 100 3)

0
The total collision frequency Y (¢) depends on time because the velocity of the cluster moving

in the electric field is not constant. Between the collisions the velocity is defined by

T

7 = + ﬁt, (4)

where u¢ is the velocity right after the previous collision, or at the beginning of the simulation,

q is the charge of the cluster, and ? is the electric field.



2.3 Enmergy transfer at collisions

At first we consider the timescales of the processes related to collisions. The collision of
clusters with carrier gas molecules is possible only in the first two chambers of the APiTOF
mass spectrometer. The pressure there ranges from 1 to 200 Pa. The voltages between the
consecutive electrodes there do no exceed 17 V. Thus, we can estimate the upper limit of
the velocity v for a cluster with a mass of about 300 au to be about 3000 m/s. Therefore,
considering that the typical time between the collisions of the cluster with the carrier gas
molecules equals 1/Y, we estimate it to be in the range between 107° and 107® s (see Eq.
(2) and Figure 3). When collision happens, the cluster and the carrier gas molecule form a
"collisional complex". Since the interaction between the colliding parties is weak, the lifetime
of the "collisional complex" can be determined either by the time for the carrier gas molecule
needed to pass 1 — 2 A or by the lowest vibrational frequencies of the cluster. In both cases
we obtain the lifetime of the "collisional complex" to be an the order of 1072 s.

The energy transfer at collision of two molecules as well as energy redistribution after
collisions have been intensively studied for many years. Quantum effects are essential in the
collision of molecules. The vibrational frequencies are relatively high, and the gaps between
the energy levels are usually much higher than k7. In case of clusters, the situation is
different. Some frequencies are low, and even at room temperatures quite many vibrational
modes are unfrozen. As one can see from the SI, already twelve vibrational modes of the
trimer under study are unfrozen at room temperates. Thus, the energy spectrum even at
room temperature is continuous, and energy transfer between the modes is not hindered. For
any amount of transferring energy, there are always available energy states. We assume that
the microcanonical principle holds, so that all states having the same energy can be observed
with an equal probability. Therefore, the amount of energy transferred to the vibrational
modes of the cluster is defined by the densities of states and the conservation of momentum,
angular momentum and energy. The rotational and vibrational degrees of freedom of the

carrier gas molecules are neglected.



Similarly to molecular rotational frequencies, the rotational frequencies of the cluster
are much lower than the vibrational ones. Therefore, post-collisional energy transfer in
the cluster is much faster for vibrational-vibrational energy exchange than for rotational-
vibrational energy exchange. This has been confirmed by a molecular dynamics study® of
argon clusters. Translational-vibrational and vibrational-vibrational energy transfer occurs
at the timescales comparable to reverse vibrational frequencies, while rotational-vibrational
energy transfer takes 10 - 100 times longer. It was noted in the same study that the tan-
gential component of the colliding molecule’s velocity mostly enhances rotation rather than
vibration. Therefore, when writing equations for the normal components, we do not con-
sider rotational-vibrational energy transfer. Similarly, for the tangential components, we do
not consider energy transfer from the translational mode of the carrier gas molecule to the
vibrational motion of the cluster. After collision, we consider energy redistribution between
vibrational and rotational degrees of freedom of the cluster, as this happens on a much
faster timescale than the time between collisions of the cluster and carrier gas molecules.
The timescales of the energy transfer and redistribution are summarised in Figure 4.

The different timescales of the processes allow us to build a simple model for describing
energy transfer at collisions. In this model, they can be characterised as "instant inelastic
collisions". It is convenient to consider the collision in the system of coordinates where the
cluster centre of mass is at rest just before the collision. Since the rotational-vibrational
energy interchange can be neglected during the lifetime of the "collisional complex", we can
split our system, consisting of the motional modes of the cluster and the carrier gas molecule,
into two closed subsystems for which conservation of energy can be considered separately.
The first subsystem includes the component of the carrier gas molecule translational motion
normal to the cluster surface, and the vibrational modes of the cluster. The second subsystem
includes the component of the carrier gas translational motion tangential to the cluster
surface and the rotational modes of the cluster.

The collision time (lifetime of the "collisional complex") is very short, so the position
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Figure 4: Timescales of the processes related to collision of the cluster (blue sphere) with
the carrier gas molecule (green sphere), energy transfer process induced by the normal and
tangential components of the carrier gas molecule velocity, and energy redistribution.

of the carrier gas molecule and the cluster do not noticeably change while they stay to-
gether in the "collisional complex". We assume the same for orientation of the "collisional
complex" and this is in line with the timescales of the processes shown in Figure 4. When
the "collisional complex" decays, we assume that in the first subsystem the direction of the
velocities of the cluster and the carrier gas are collinear with the velocity component of the
carrier gas molecule normal to the cluster surface just before the collision. The additional
physical assumption made here is that the cluster vibrational modes return the energy to
the translational motion of the carrier gas molecule along the same line as they receive it.
Note that this assumption affects only the direction of the motion after collisions, not the
amount of energy transferred to the cluster.

First, we consider the conservation laws for the first subsystem. According to the conser-

vation of momentum and energy, the carrier gas molecule sticks to the cluster, so that the

"complex" acquires the velocity v/,,, = 3/~ u;, and energy uu, '2/2. where pu = m]‘fw is the
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reduced mass, and prime in the notations of the velocities means that they are measured in
the system of coordinates moving with the same velocity as the centre of mass of the clus-
ter just before the collision. Since we do not consider rotational-vibrational energy transfer
during the lifetime of the "collisional complex", we can omit rotational energy, and write the
energy of the complex E.om = €, + uu;? /2, where €,, is the vibrational energy of the cluster
just before the collision. After the cluster and the carrier gas molecule separate, part of the
energy F.om goes to the translational energy of the relative motion of the separating parties,
while the rest stays in the vibrational modes of the cluster. According to microcanonical
principle this division is defined by the density of states. The combined density of states of

vibrational and relative translational motion can be written as

Ecom
pcom<Ecom) = / /%(Q)/%(Ecom - et)dEta (5>

where p,(€,) is the density of states of the relative translational motion of the cluster and the
carrier gas molecule, p,(€,) is the vibrational density of states of the cluster, Eeom = €, + €,
€, is the vibrational energy of the cluster right after collision, and ¢, is the energy of the
relative translational motion of the cluster and the carrier gas molecule. The energy is
counted from the zero-point energy of the cluster. The integrand, when normalised, is the
PDF to observe a certain energy in the relative translational motion of the cluster and carrier
gas molecule after collision f,(¢,) (for a more detailed derivation of this PDF see the SI).
The normalisation constant is pem(Eeom). The density of states of the relative translational

motion can be written as!©

_4\/77TVM3/2\/E
pile) = 2rh)3 (6)

where V' is the volume of the system, and h is the reduced Planck constant. The cluster

vibrational density of states can be calculated numerically (for description of the method see
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subsection 3). Hence,
,Ou(Ecom - €t>\/a
fOE pu(Ecom - Ez)\/adﬁt

When making simulations we draw a random value of ¢, from the distribution given by

fn(et) =

(7)

Eq. (7). Due to conservation of energy the vibrational energy of the cluster right after

collision is

€, = €,0 + ,uu;?/Q — ¢, (8)

The convenient system of coordinates for considering conservation laws for the second
subsystem is formed by the mutually orthogonal unit vectors 7, 7 and k depicted in Figure

5. Note that the j-component of the angular velocity of the cluster (7) stays unchanged

Figure 5: Directions of the axes i, 7, k. The dashed tangential line drawn through the point
of collision (black dot) is in the plane formed by vector of the cluster velocity and by the
vector drawn from the centre of the sphere to the point of collision. The direction of the
axis ¢ is collinear with the vector of the tangential velocity of the carrier gas molecule u,.

during the collision, and does not affect the velocities of either the cluster or the carrier gas
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molecule. The other components are involved in two independent sets of equations

Rmul, + Iw,, = Iw,+ Rmu]

muy, = Muv + mu! (9)
mu?  Iw?, mu?  Iw?  Muv?
7 _|_ — i + + i
2 2 2 2 2

and

Iw, = Iw,+ Rmu,

0 = Mv, +mu, (10)
Tw? _ mu?  Tw? n Muv,?
2 2 2 2

where the index 0 indicates that the value is taken just before the collision and

[=2MR? (11)
5

is the moment of inertia of the cluster (solid sphere). The sets of Egs. (10) and (11) imply
that collisions occur under conditions when there is no sliding of the carrier gas molecule
over the cluster. This maximises the energy transfer between the translational and rotational
modes of motion. The solution of these sets of equation gives the components of the velocity

and angular velocity for the cluster right after collision with the carrier gas molecule:

- 4m(u20 — kaR)
' 2M +Tm
10m(ul, — wioR)
_ : 12
K T e T T RO T Tm) (12)
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and

oo dmw, R
. 2M + Tm
(2M — 3m)w;,
= ) 1
Wi 2M +Tm (13)

Naturally, the solution of the sets of Egs. (10) and (11) gives also values of the velocities of
the carrier gas molecules. Since we do not use them in this study they are not presented.
We neglect the effect of collisions with clusters on the velocity distribution of the carrier gas
molecules. Egs. (12) and (13) allow one to calculate the change of rotational energy of the
cluster at the collision. Suppose that just before the collision the rotational energy of the

cluster has the value ¢,,. Then, the rotational energy of the cluster right after collision is

I(w? — W? I(w? — w?
ET:€T0+ (wz 2 wzo) + (wk 2 wko)' (14)

Redistribution of energy between rotational and vibrational degrees of freedom can be

described similarly to translational-vibrational energy exchange considered earlier. The ro-

tational density of states is!?

3/2
ey =2 e (15)

Assuming the microcanonical principle to work for rotational-vibrational microstates of the

cluster, we can write the PDF of the rotational energy of the cluster:

_ pE-e)VE
frle) = P p(F —e)yede, (16)

where F = €, +¢, is the cluster internal energy. If fragmentation does not happen before the
next collision, the rotational energy just before the next collision is determined by a random

value obtained from the PDF of Eq. (16).

The ionised clusters in mass spectrometers accelerate under electric fields. The centre
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of charge of the cluster does not necessarily coincide with its centre of mass. This leads
to pendulum type vibration around the centre of charge. Indeed, if we use the coordinate
system attached to the centre of charge, the centre of mass experiences an inertial force Ma,
where a is acceleration of the cluster. Hence, we observe a physical pendulum vibration
with frequency on the order y/a/l, where [ is the distance between centres of charge and
mass. This frequency at accelerations typical for mass spectrometers is about one order of
magnitude smaller than rotational frequencies of the clusters under study. In some conditions
this type of motion can be important, and should not be forgotten, but in the present study

these vibrations are neglected.

2.4  The cluster fragmentation rate

Due to the intra-cluster energy exchange between the modes, a large part of the internal
energy can be localised in particular bonds. This can lead to the cluster fragmentation.
RRKM ! theory of unimolecular reactions provides a tool for calculation of the frag-
mentation rate.!®> The probability that enough energy to break the cluster or molecule is
accumulated in the weakest bonds is one of the key values in this theory. In terms of the
phase-space theory, ¢ the cluster is considered to be broken when a specific area of the phase
space is reached. In the present study, we use mostly the language of phase-space theory of
chemical reactions, however, we sometimes invoke RRKM language for illustrative purposes.
Accompanied with the detailed balance approached developed by Weisskopf!” for description
of neutron escape from a potential well, the phase space theory of chemical reactions allows
one to calculate the cluster fragmentation rate.!8

The detailed balance approach allows one to express the fragmentation rate through the
reverse reaction of sticking of the fragmentation products. In our case, the cluster is the

trimer AAB, where A stands for sulphuric acid HySO,, and B denotes the bisulphate anion

15



HSO, . The prevailing fragmentation channel of this cluster is

AAB — AB + A. (R1)

The fragmentation energy for reaction (R1) is 29.3 kcal/mol. Other fragmentation path-
ways, having fragmentation energies 58.1 and 76.4 kcal/mol, can hardly be observed in the
mass spectrometer!?). The energy required for detachment of the electron from B is 109.5
kcal /mol.?® This makes the detachment of the electron from the cluster to be also improbable
in the mass spectrometer.

As was mentioned in subsection 2.3, we count the internal energy of the cluster £ from
the zero-point energy of the cluster. However, the zero-point energy of the products is higher,
and the difference between the zero-point energies is the fragmentation energy Ey. If ' < Ef
fragmentation cannot happen. For the total energy of the products (including their relative
translational, rotational and vibrational motions) it is convenient to introduce the energy e
counted from the zero-point energy of the products. Since energy is conserved in the process
of fragmentation £y +¢ = E.

Suppose we have a microcanonical ensemble consisting of Ny isolated clusters having
the same internal energy E. Each cluster is placed in a box with volume V', clusters can
be fragmented, and the products of the fragmentation can merge again to form the initial
cluster. If we wait long enough, we observe a detailed balance between the initial clusters

and products, which can be written as

V(E)N(Ef +¢) = ky(e) Ny (€), (17)

where y(e) is the fragmentation rate constant, k,(e) is the rate of the reverse process of
cluster formation from the fragmentation products, N(Ef +¢) is the number of boxes where
the cluster is intact and N,(¢) is the number of boxes where the cluster is fragmented. Eq.

(17) is a sum of similar equations for individual microstates for both the left and the right
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hand side. Since the boxes are isolated energy, momentum and angular momentum are
conserved. The reverse of reaction (R1) (recombination of the fragmentation products) is
thought to be barrierless,?! and the reaction rate simply equals the collision rate. Therefore,
taking into account that the time between collisions of clusters with carrier gas molecules
ranges between 107 and 107® s (see subsection 2.3) it is natural to assume that the phase
space of the system is properly explored. This allows us to assume that the ergodicity holds
and all microstates having the same energy can be observed with equal probability like in

the microcanonical ensemble. Hence, we can write

N(E;+¢e) p(Ef+¢)
Niot — p(Ef+¢) + proi(€) (18)
and
Np(&“) — pP(S) (19)

Nio p(Ef +¢€) + punle)’
where p(Ef+¢) and p,(¢) are the densities of states, corresponding to the intact cluster and

the fragmented cluster, respectively. Using Eqgs (18) and (19) we can rewrite Eq. (17)

1()p(Ef + &) = kp(e)p,(e). (20)

Eq. (20) allows us to calculate y(E), but first we have to calculate p(E), p,(E) and ky(e).
It is convenient to consider fragmentation in the system of coordinates, which moves
with the same velocity as the centre of mass of the cluster. Therefore, only rotational and
vibrational densities of states are taken into account when calculating the total density of
states of the cluster. Fragmentation occurs when too much energy is localised in a particular
bond of the cluster, thus breaking it. The sources of this energy are other vibrational modes
and rotational motion. As was mentioned in the previous subsection the energy exchange
between rotational and vibrational modes is much slower than the energy exchange between

different vibrational modes. In this case, the fragmentation rate constant can be written

17



as a product of two factors: the first is the probability of a certain distribution of energy
between the rotational and vibrational modes of the cluster f,(e,) defined by Eq. (16), and
the second is the fragmentation rate constant (e — €,) at this certain energy distribution
between the modes. All possible energy distributions must be summed up. We can thus

write

v(e) = /fr(er)%(e —¢,)de,, (21)

Eq. (21) defines a fragmentation rate constant which is independent of the rotational energy
of the cluster. The rate constant vo(e — €,) is independent of rotational energy, hence it
describes the fragmentation of cluster which does not have angular momentum, indicated
by index 0. The influence of the angular momentum on the fragmentation rate is taken into
account through averaging of the rate constant vy(e — €,) over the PDF to observe a certain

rotational energy. For the rate vy(¢ — €,) a similar equation to Eq. (20) can be written

To(e —€)p.(Ef +e—€) = k(e —e)p,(e —€). (22)

Now we have eliminated the translational and rotational motions from consideration, so the
task to calculate the fragmentation rate constant has been reduced to the case when total
momentum and angular momentum are zeros. Therefore, to complete the calculation of
the fragmentation rate constant we need to find the formation rate constant when the total
momentum and angular momentum of the products are zeros, and the total energy of the
products equals to € — ¢,. We have previously assumed that the energy exchange between
rotational and vibrational modes is much slower than the energy exchange between different
vibrational modes, and that the recombination of the fragmentation products is barrierless.
This considerably simplifies accounting for the angular momentum conservation. In more
a general case, when the recombination reaction goes through a transition state and has a
barrier, it requires much more efforts. 2?27

When a cluster having no rotational and translational modes breaks into two fragments,

18



six of its vibrational degrees of freedom transfer to rotational and translational degrees of
freedom of the products. We illustrate this using the fragmentation reaction studied in this
work. The cluster AAB has 54 vibrational degrees of freedom, the fragmentation product
AB has 33 vibrational degrees of freedom and the product A has 15. The products altogether
thus have 48 vibrational degrees of freedom, and the remaining six degrees of freedom have
been transformed into rotational and translational degrees of freedom. Due to conservation
of momentum and angular momentum, twelve translational and rotational degrees of freedom
of the two products turn to six, since the total momentum and angular momentum are zeros.

We start by writing expressions for the rotational and translational energy of the prod-
ucts. For simplicity, we consider both fragmentation products as spheres, so that any di-
rections can be selected to designate the principal moments of inertia, and we then use the
observer’s coordinates to write the expression for the rotational energy. The collision be-
tween the products is schematically depicted in Figure 6. Index 1 is related to A and index

%
2 to AB. We select the direction of the & axis as opposite to the direction of the relative

Figure 6: Schematic depiction of the product collision. The radius vectors of the colliding
parties are drawn from the centre of mass, which is marked with a red dot.
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%
velocity of the products U = vt — U5. The other two axes ﬁ and ( are perpendicular to
_)
each other and to ¢, and collision occurs in the plane £(. With such an arrangement, using
the law of conservation of momentum and Eq. (24), we can write the conservation laws of

angular momentum and energy in the form

Lig+ Ly = 0

L177+L277+\/2up5tb = 0
L1C+L2< = O

g, +e. +e, = FE—e, (23)

where L¢, Ly, L¢ are the components of the angular momentum along the corresponding
axes, labeled with indexes 1 and 2 for the fragmentation products A and AB, respectively.
Their relative velocity v is expressed through the translational energy of the relative motion
of the fragmentation products ¢, and their reduced mass p, as

2¢,

v = , (24)
Ky

g, is the sum of vibrational energies of the products, b is the impact parameter as depicted
in Figure 6, and the combined rotational energy of the products is

2 r2 r2 r2 2 72
Ly Ly, L Ly Ly | L

_ 2 25
“Ton Ton o 2L oL 2L (25)

where I, I, are the moments of inertia of the fragmentation products. After some algebra
with the set of Egs. (23) and Eq. (25), we can write the combined rotational energy of the

products as

L + Ilb\ / 2/Jp€t 2
1n I +1> L%C 1, b2

2
5r:g+ + =+ Er (26)
21, 21, 2, ' I + I
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where we have introduced a notation

1 1 1
= 4= 27
AR (27)

The translational and rotational energies of the products are now expressed through three
components of the angular momentum of one of the the products and the energy of the
relative translational motion of the products, which also has three components.

According to kinetic gas theory, the collision rate of the fragmentation products can be
written as

dky(e —€,) = drdPy(e4, €.l — €,). (28)

The probability of collision per unit time is

dr = %da, (29)

where the collision cross section do can be expressed through the impact parameter b (see
Figure 6)
do = 27wbdb. (30)

The probability dPy,(e,, €,|e—¢,) to observe a certain energy distribution between the degrees
of freedom of the fragmentation products, provided that their total energy is equal to ¢ —€,,

can be calculated as

de,de,

e =) (31

dPu(ei,e.le — €,) = ppu(€)pur(er) ppu(e — € — €, — &)

where p,.(g,), p,r(€.) and p,,(¢ — €. — e, — ¢,) are the densities of states of the relative and

combined rotational and vibrational motions of the products, respectively. Using Eqgs. (24),
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(28) - (31) we can write the cluster formation rate as

2
ke —e,) = (E_E”M [l vEmuConeinnic e —e - cdedeav. (32
oser e

Integration over b in Eq. (32) is limited by the maximal impact parameter b, leading
to the formation of the cluster. Since AB is an ion and A has a dipole moment u, and
polarisability a,, the maximal impact parameter can be considerably higher than the sum of
the radii of the colliding parties. Due to the attractive interaction the value of b,,., depends
on the translational and rotational energies of the fragmentation products.

The next step is to explicitly write the translational and vibrational densities of states.
We can use an analogue of Eq. (6) for the density of states of the relative translational

motion of the products
N2V e
Pye(€0) = (27h)3 :

(33)

Since rotations of the two bodies are coupled due to angular momentum conservation it is
sufficient to find the density of states of only one product. In this case, it is advantageous to
express the rotational density of states through the components of the angular momentum

rather than through the rotational energy, as was done in Eq. (15), resulting in?®

_ dLigdLydLic

h3 (34)

por(e:)de,

Using Eqs. (22), (32),(33) and (34), we obtain the fragmentation rate of a non-rotating

cluster

24,
€—¢€)= X
Yol ) 7r2h6pv(Ef +e—¢,)
/ _ /atbppv(g — €, —&,,)de,dLy¢d Ly, d Ly db, (35)
OSE'I‘tSE*ET
0<b<bmax
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where

I+1> L L b2
= L 36
e 21+ o1, +21+< +11+[2)€ (36)

is the sum of translational and rotational energies of the products (see Eq. (26)). It is

i ( L+ by e >2

convenient to carry out a transformation of coordinates: ¢, — &, = <1 + I“ 1 i )5“ Lie —

Lie = Li¢, Ly = Lyy = Ly + 11— ”lfzpst and Ly — Lic = Li¢c. The set of three variables

{171/5, Ij;?, Ijlvg} constitute the cartesian coordinates, and we can make a transformation to

the spherical coordinate system. In spherical coordinates, integration over the angles can be
performed. After changing variables and denoting

—~ 9 ~ 9 ~ 9

s Ly Ly, Ly

" 21, 21, 21,

(37)

Eq. (35) reduces to

8V
kS, (Ef e —¢,)

L+ I = IO
/// (I1 LT upr) bENE, p,o(e — €, — &, + £,)dE,dE, db. (38)

0<ér+ér<e—ep
0<b<bmax

Yo(e =€)

As mentioned, the value of b,,,, depends on translational and rotational energies of the
products due to interaction of the colliding parties. The lower the energies, the higher is b,,,..
Only this coupling prevents the analytical integration of Eq. (38) over b. We investigated
how strongly the rate constant the rate constants depend on b,,,,. First, we set b,..,, = co in

all cases. Then Eq. (38) transforms to

W2+ ) y
hop, (B + ¢ —¢,)

// EE (e — € — B+ £ )dEdE (39)

0<ét+er<e—er

Yo(e — €)=
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We have compared Eqgs. (38) and (39) using a relation, presented in the literature, between
the microcanonical collision rate and the energies of colliding parties experiencing ion-dipole
interaction. The microcanonical collision rate calculated by variational rate theory has been
compared to numerical classical trajectory calculations.? The results of the theory are only
about 10 % higher than the numerical results. As we shall see later, even much larger
variations in the fragmentation rate constant do not affect the main conclusions. Adapting
the expression for the microcanonical capture rate constant calculated with variational rate

theory to our notations we can write

where k, = 2mq,/a, 11, is the Langevin rate constant, and

T (8w? — 20w — 1+ (8w + 1)%2), 0<w<2
g(w) = » (41)
L (20902 + 3w + 132 + (3w +2) (6w + D (3w —1))"*, 2 <w < oo,
where
W 20, (e, + €T1)’ (2)

[ip
and ,, is the rotational energy of A. Note that the rotational energy of AB is not included in
Eq. (42), as the charge is considered to be at the centre of mass, and thus the rotation of AB
does not affect the interaction of the products. Eqs. (40), (41) and (42) allow us to perform a
numerical integration of Eq. (38), taking into account the dependence of b,,,,, on translational
and rotational energies of the products due to the interaction between them. The comparison
of Egs. (38) and (39) in Figure 7 shows that the difference is negligible. Therefore, we have
used Eqgs. (39) in numerical calculations since it takes much less computing time than is
required for integrating Eq. (38).

The rate constant (Eq. (21)) calculated with Egs. (16) and (39) allows us to obtain the
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Figure 7: Dependence of the fragmentation rate constant of the cluster with zero angular
momentum calculated on internal energy. It is calculated for two cases: (1) maximal impact
parameter is infinite and (2) depends on the rotational and translational energies of the
products.

probability for the cluster to stay intact until a certain time ¢

Pin(t) = exp(—7(e)t). (43)

Hence the cumulative probability to get fragmented by time ¢ is F(t) = 1 — Pi(t). Thus,

the PDF of the fragmentation time can be written as

dFy(t)

£,(0) = S = () exp(=1(2)0), (14)
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3  Details of the model and simulations

3.1 The cluster and the products parameters and the vibrational

densities of states

We have sampled the AAB potential energy surface by first creating 2800 input structures
by randomly distributing molecules in space.?® The structures were subsequently optimised
using the semi-empirical PM6 method.3! All converged structures were then re-optimised at
the PW91/6-31+G* level of theory.3? Different conformers were characterised based on elec-
tronic energies and dipole moments. 120 different structures were re-optimised and their fre-
quencies were calculated using the PW91/6- 311-++G** level of theory, and for the resulting
conformers we computed zero-point-energy-corrected (ZPE-corrected) electronic energies. 3

Since different levels of theory might yield different global minima, we selected 22 ZPE-
corrected local minimum energy conformers. These structures were optimised and thermo-
chemical parameters were calculated using the PW91 functional with a large aug-cc-pVQZ
basis set. The lowest energy conformer for AAB was selected, and the normal mode vi-
brational frequencies as well as rotational constants for the principal axes were calculated
approximating the cluster as a rigid rotor and harmonic oscillator. The electronic energy
corrections were calculated on top of the DFT structure using the DLPNO-CCSD(T) /aug-
cc-pVTZ level of theory with a tight pair natural orbital criteria.343% The electronic energy
corrections were computed using the Orca 4.0.1.2 program. 3% The fragmentation product AB
was treated similarly. The vibrational frequencies and rotational constants are presented in
the SI.

The vibrational densities of the states both for the cluster and the products have been
calculated using the Beyer-Swinehart algorithm.3” The algorithm is based on an exact recur-
rent relation, and the accuracy relies upon the width of energy bins for defining the density
of states. They are recommended?® to be smaller than 1 cm™!. Thus, we use a value of 1 K

(1 em™! ~ 1.44 K). Additionally, we checked that densities of states calculated with Beyer-
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Swinehart algorithm match the ones calculated with direct counting method at low energies,
and the densities of states calculated with an analytical formula'® at high energies. The

principal moments of inertia have obtained from rotational constants ©; using the relation

(45)

where i = (3,0, A correspond to the principal rotational axes. When calculating the fragmen-
tation rate constants and considering collisions, we approximate the cluster and the products
of fragmentation as spheres. Therefore, it is reasonable to define the radius of the sphere
using the relation (see Eq. (11) )

9 3
(EMR2> = 13151, (46)

where Ig, I5, I are the cluster principal moments of inertia. Eq. (46) yields R = 3.47 A for
the AAB cluster.

The radii of the Ny and O, molecules were calculated from the van der Waals volumes
taken from a handbook.?® For nitrogen, the radius is 2.49 A and for oxygen it is 2.33 A.
Therefore, the average radius of the carrier gas molecule, according to the relative abundance
of Ny and O, in the atmosphere, is R, = 2.46 A. The air molecules interact with the cluster
by ion-induced-dipole interactions. However, the effect of this long-range interaction on the
collision frequency is negligible based on the values of the polarisability of Ny and O,.%°

The fragmentation rate constant was calculated as described in Subsection 2.4 by numer-
ical integration for the values of energy separated by intervals of 1 K. The values of the rate
constant inside these intervals has been obtained by linear interpolation. The temperature
of the carrier gas was kept at 300 K. We average over 2000 realisations when calculating the

fraction of fragmented clusters.
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3.2 Simulation of random values

In our simulations, we frequently need to obtain the value of a random variable obeying some
PDF. These functions are denoted by f with some index throughout this text (see Egs. (3),
(7), (16), (44). We use a standard technique in all these cases. Suppose we have PDF f(x)
for the random variable y defined in the interval from d to h. The cumulative probability

F(x) is defined by

F(x) = / F(X)dx. (47)
d

To obtain the value of the random variable x we generate a random number ¢ in the interval

from 0 to 1, then solve the equation

F(x) =c. (48)

The solution of this equation y, is the value of the random variable obeying the PDF f(x).
In practice, to solve Eq (48), we numerically integrate Eq. (47) until the integral reaches c,
which gives us the value of the random variable. The method to obtain random values from

two-dimensional PDF is based on probability theory,*! and is described in the SI.

3.3 The scheme of simulation

1. We assign initial values for the coordinates, velocity, angular velocity and vibrational
energy of the cluster. We have used random values from the Maxwell distribution at 300 K
for the initial velocities of the cluster. Similarly, for initial angular velocity and vibrational
energy of the cluster, we have used random values from the Boltzmann distribution at 300
K.

2. We calculate the time of the next collision using the PDF defined by Eq. (3). Before the
collision, the cluster accelerates under an electric field.

3. We check whether the cluster is fragmented or not using the PDF defined by Eq. (44).

If yes, we start from the item 1 for the new realisation. If no, we calculate a new rotational
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energy using PDF (16) (changes due to rotational-vibrational energy exchange) and continue
with item 4.

4. We define the point of collision on the surface of the cluster by the angle 6 (Figure 2)
using the PDF defined by Eq. (1) and the angle ¢ using an even PDF from 0 to 27. Using
the PDF defined by Eq. (1) and a two-dimensional Maxwellian PDF, we simulate normal
and tangential components of the velocity of the colliding carrier gas molecule, respectively.
Using an even PDF from 0 to 27, we obtain the direction of the tangential component of
the colliding carrier gas molecule (angle « in Figure 5). To consider the consequences of
collision, we determine the direction of axes i, j, k, and define the projection of the cluster
angular velocity onto these axes. We calculate new energies, velocity and angular velocity
of the cluster as described in the subsection 2.3, and transfer the new velocity to laboratory
coordinates.

5. We continue with items 24 until the cluster is fragmented or reaches the end point intact.
6. We start a new realisation with item 1.

7. We calculate the fraction of the intact clusters after completing all realisations.

4 Results and discussion

In our model, the three essential factors determining the fragmentation of the ionised clusters
are the number of collisions, the amount of energy transferred to the internal modes of the
cluster at collisions and the fragmentation rate constant as a function of energy. First, we
consider the fragmentation rate constant.

The dependence of the rate constant (Eq. (21)) on internal energy is presented in Figure
8. Figure 8 can be used to estimate the internal energy the cluster needs to be fragmented.
As discussed in subsection 2.3, the time between the collisions of the cluster with carrier
gas molecules at the conditions of an APiTOF mass spectrometer is in the interval 1075 —

107® s. Therefore, according to Eq. (43), we can expect a high probability for the cluster

29



—_

o
—
)]

—_

o
—
o

-
o
o

Fragmentationrate constant, s -

—_
o.
—_
o
—
1

4
S
o
o

0.5 1 1.5 2
K x10*

Figure 8: The dependence of the fragmentation rate on the internal energy. The meaning of
parameter B is described in the text.

fragmentation when the rate constant is roughly in the interval 10° — 10® s. We can see

from Figure 8 that such values are reached when the cluster’s energy is from 2000 to 5500
K higher than the fragmentation energy (14744 K).

To study how the variation of the fragmentation rate constant affects the results of our
model, we have multiplied it by an uncertainty factor B ranging from 1072 to 103. The
new rate constant 7/(¢) = B~y(¢) has been fed to the model. The resulting fragmentation
probabilities are presented in Figure 9. Changing the rate constant by one order of magni-
tude alters the degree of fragmentation by roughly 10 %. Such a variation of the results is
not significant, as it is close to the experimental error in studying the fragmentation inside
mass spectrometers.!® The weak effect of the rate constant variation can be explained by the
relatively high amount of energy transferred in one collision. For example, in the conditions

of Figure 10 the vibrational energy change per collision is about 1000 K just before fragmen-
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Figure 9: The effect of the uncertainty factor B of the fragmentation rate constant on the
survival fraction.

tation. In the conditions of Figure 10b the change is about 4000 K. This range of changes
is typical for conditions of the APiTOF mass spectrometer. Because of such big leaps, the
exact value of the limiting energy at which the cluster is fragmented is not significant. Figure
8 shows that the energies at which the rate constants 7/(¢) and v(¢) have the same value in
the interval 10° — 108 s, differ roughly by 1000 K when B = 10 or B = 0.1. We can conclude
that the results show moderate sensitivity to the values of the fragmentation rate constant.

The dependence of the degree of cluster fragmentation on pressure and the electric field
are presented in Figure 11 . The figure shows that the clusters are fragmented at pressures
ranging from 1 to 150 Pa with the travelled distance set to 2 mm. At higher than 150
Pa pressures, the clusters collide with carrier gas molecules frequently enough to establish
a steady state drag velocity for the cluster. Hence, the translational energy of the cluster
only fluctuates within certain limits, thus constraining also the internal energy to the certain

limits. At lower pressures than 1 Pa the clusters practically do not collide with carrier gas
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Figure 10: The cluster energy fluctuations during one realisation at the carrier gas pressure
and electric field: a) 40 Pa and 4000 V/m, b) 6 Pa and 5200 V/m, c¢) 100 Pa and 5200 V/m,
d) 100 Pa and 3200 V/m respectively. In all cases, except d) the cluster is fragmented.

molecules while travelling the distance of 2 mm, so there is no chance for the translational
energy to be transferred to internal energy, and fragmentation does not occur. The depen-
dence of the fragmentation degree on the electric field is natural. The stronger the electric
field, the more energy can be transferred to the internal modes of the cluster, increasing its
chances to be fragmented.

As we can see from Figure 12, lengthening the travelled distance increases the degree of
fragmentation. However, the rate of growth is different at low and high pressures. Comparing

the curves of growth for two pressures having similar rates at short distances, we observe
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Figure 11: The dependence of the cluster fragmentation on pressure at different values of
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that the curve corresponding to lower pressure displays significantly higher fragmentation at
long distances. There are two factors enhancing the fragmentation with lengthening travelled
distances at low pressures. First, the longer the distance, the higher the probability to meet
a collision partner. Second, the longer the distance, the higher the translational energy
of the cluster at low pressures (see Figures 10a,b), because the steady state level for both
translational and internal cluster energies is not reached before the cluster gets fragmented.
Additionally, the higher the cluster translational energy, the more energy is transferred to its
internal modes in one collision. We have observed that at pressures around or lower than 1
Pa, the amount of energy transferred in one collision to the internal modes reaches the level
of 10000 - 15000 K when electric field is 5200 V/m. This is often enough for the cluster to
fragment. At pressures 0.2 - 0.4 Pa, the amount of energy transferred in one collision reaches

30000 - 40000 K with the same electric field value.
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Figure 12: The dependence of the cluster fragmentation on the travelled distance at different
pressures. The electric field is: a) 4100 V/m, b) 8300 V/m.

At high pressures the picture is different. As we can see from Figure 13, the right
borderline between the presence and absence of fragmentation shifts towards higher pressures
much slower than the left borderline shifts towards the lower pressures when we increase the

travelled distance. At high pressures, the cluster rather quickly reaches the steady state drag

1
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Figure 13: The dependence of the cluster fragmentation on pressure at different travelled
distances. The electric field is: a) 4100 V/m, b) 8300 V/m.

velocity. As we can see from Figure 10c, in this case the rotational and vibrational energy

of the cluster do not grow either, they just fluctuate so that sometimes the internal energy
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is higher than the fragmentation energy and the cluster can be fragmented. Such situations
correspond to the slow growth of fragmentation with increasing travelled distance. If the
pressure is high enough (or the electric field is rather low), both the steady state level of
the cluster internal energy and the amplitude of its fluctuation are such that fragmentation
cannot happen. An example of this situation is presented in 10d. Therefore, in this case the
right borderline between fragmentation and non-fragmentation does not shift towards higher
pressures with increasing travelled distance at all.

This observation has practical importance. Simulations are quite time consuming at high
pressures. To make a conclusion on the possible fragmentation there is no need to simulate
the whole region between the electrodes, which can be several centimetres. It is enough to
explore a small part of it, mapping whether or not the travelling cluster is in the steady-state

regime, and whether or not its internal energy can reach the fragmentation level.

5 Conclusion

We have developed a model for studying the influence of collisions between ionic clusters
and carrier gas molecules on the cluster fragmentation rate in Atmospheric Pressure interface
Time of Flight (APiTOF) mass spectrometers. The model simulates the collision of a cluster
with carrier gas molecules as it moves through the chambers of the mass spectrometer under
an electric field. The translational energy can be transferred to the cluster internal modes
in the collisions. If the cluster internal modes accumulate enough energy, the cluster can
be fragmented. The collision, energy transfer and fragmentation have been considered as
random processes. Appropriate probability density functions have been calculated for all of
them.

The probability density function for the collisions has been derived from kinetic gas
theory. Energy transfer is governed by probability density function based on conservation

laws and the microcanonical principle. The rotational and vibrational energy spectra of the
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cluster are practically continuous at the conditions of the mass spectrometer experiments.
Therefore, energy transfer between the modes is not hindered, and it is defined by the
densities of states. The latter have been calculated using the rigid-rotor-harmonic-oscillator
approximation for the cluster minimum energy structures, which has been obtained from
quantum chemistry calculations.

The probability of fragmentation is based on the fragmentation rate constant. The mi-
crocanonical fragmentation rate constant has been calculated on the basis of phase space
theory for chemical reactions and the detailed balance principle. To take momentum and
angular momentum conservation into account, we have assumed that rotational-vibrational
energy exchange is much slower than vibrational-vibrational exchange. This has allowed
us to reduce the problem to the calculation of the rate constant when the cluster angular
momentum is zero. This considerably reduces the computational effort.

We have used the trimer consisting of two sulphuric acid molecules and one bisulphate
anion as a model object for the fragmentation study inside the mass spectrometer. The
dependence of the degree of cluster fragmentation on the distances between the electrodes,
applied electric field and the residual carrier gas pressure has been examined. We have
determined the pressure interval for typical APiTOF mass spectrometer electric fields and
distances between the electrodes, at which the clusters may not survive. The clusters can
be fragmented when the pressure is between 1 and 150 Pa. At higher than 150 Pa pressures,
collisions are frequent enough to establish steady-state conditions for the internal cluster
energy, which does not reach the level at which fragmentation is possible. At lower than 1
Pa pressures, collisions are too rare for fragmentation to occur in noticeable amounts.

The developed model has been successfully applied to the description of the experiments
on the cluster fragmentation inside the APiTOF mass spectrometer. The results are to be

published elsewhere.!?
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