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Abstract 118 

Background: Accelerated reproductive aging, in women indicated by early natural menopause, 119 

is associated with an increased risk of coronary heart disease (CHD) in observational studies. 120 

Genomic variants for age at natural menopause (ANM) have been implicated in genome 121 

stability, immune function and mitochondrial biogenesis, which are not sex-specific processes. 122 

We aimed to establish the causal association between reproductive aging and (non-)fatal CHD 123 

and CHD risk factors using ANM variants as a measure for genetically determined reproductive 124 

aging in women and in men, since genome-wide association studies (GWAS) for reproductive 125 

aging traits in men are lacking.  126 

Methods: We performed a 2-sample Mendelian Randomization (MR) using four methods: the 127 

simple median-based method, the weighted median-based method, the standard inverse-variance 128 

weighted (IVW) regression and the MR-Egger regression. Summary statistics were pooled from 129 

three studies with together 417,579 participants from European descent, including 49,150 CHD 130 

cases. Publicly available GWAS and EPIC-CVD were pooled for total cholesterol, high density 131 

lipoprotein cholesterol, triglycerides, HbA1c, and glucose.  132 

Results: Our MR analyses show no association between genetically determined reproductive 133 

aging and CHD risk in women (Relative Risk Estimate (RRE)IVW=0.99, 95% confidence interval 134 

(CI): 0.97;1.01), or any of the CHD risk factors. No associations were found in men.  135 

Conclusion: Reproductive aging is not causally associated with CHD risk or CHD risk factors in 136 

women, nor in men. The association between early menopause and CHD risk in observational 137 

studies might be the result of residual confounding, reverse causation, or reflect a shared 138 

aetiology that results in both earlier menopause and higher CHD risk.  139 

 140 
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 143 

Key messages: 144 

 Genetically determined reproductive aging is not associated with coronary heart disease 145 

in women.  146 

 Genetically determined reproductive aging is not associated with coronary heart disease 147 

in men, although the validity of the genetic instrument is not established in men.  148 

 Genetically determined reproductive aging is not associated with cardiovascular risk 149 

factors (total cholesterol, high density lipoprotein cholesterol, triglycerides, 150 

apolipoprotein A1, apolipoprotein B, C-reactive protein, glucose and HbA1c).  151 

  152 
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Introduction   153 

Cardiovascular disease (CVD) is the leading cause of death in both men and women(1). 154 

Accelerated reproductive aging, as indicated by early menopause in women, has been associated 155 

with increased risk of CVD(2–5). The mechanisms underlying these associations are not fully 156 

understood yet; deterioration of traditional CVD risk factors, in particular cholesterol, has been 157 

suggested to play a role(6,7). Although men do not experience an abrupt start or stop of their 158 

reproductive period, there is limited evidence that in men reproductive functions, such as erectile 159 

dysfunction, sperm motility and morphology, and semen volume, also decline with aging(8–10). 160 

Some of these, e.g. erectile dysfunction and decreasing testosterone levels, sometimes referred to 161 

as andropause, have been associated with increased CVD risk as well(11,12). Since male 162 

reproductive aging is a gradual process into old age, it is more complicated to study health 163 

effects of accelerated reproductive aging in males.  164 

 In observational studies, it is difficult to disentangle the potential independent effect of 165 

accelerated reproductive aging on CVD risk from the effect of general aging, as residual 166 

confounding can still be present. Furthermore, reversed causality can also play a role here, as 167 

women with an unfavourable CVD risk profile have been reported to experience accelerated 168 

reproductive aging(13). Mendelian Randomization (MR) designs, exploiting the principle of 169 

random independent segregation of alleles at meiosis, are a means to establish causality in 170 

situations where randomized clinical trials are impossible(14,15). In MR studies, single 171 

nucleotide polymorphisms (SNPs) associated with the exposure as found in genome-wide 172 

association studies (GWAS) are used as instrumental variables. 173 

To date, GWAS have been conducted for the reproductive aging trait age at natural 174 

menopause (ANM) in women, while GWAS for male reproductive aging traits are not available. 175 
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The ANM GWAS reported 56 SNPs that are mainly implicated in genome stability (DNA 176 

repair), immune function and mitochondrial biogenesis(16). As these mechanisms are not 177 

specific for women, we hypothesized that these mechanisms underlie reproductive aging in men 178 

as well.  179 

A recent study in three cohorts suggested a harmful effect of ANM, genetically 180 

determined by the 56 SNPs, on CVD and CHD risk in women, but not in men. However, the 181 

sample size was small. Replication in a large sample size using publicly available data, 182 

conducted in women only, gave a null finding (17). This study did not investigate cardiovascular 183 

risk factors as an outcome.   184 

The aims of the present study are to establish the causal association between reproductive 185 

aging and fatal or non-fatal CHD, and to gain more insight in possible mechanisms underlying 186 

the association between genetically determined reproductive aging and cardiovascular risk 187 

factors in women, using 56 SNPs associated with earlier ANM. Furthermore, we aim to establish 188 

whether the same mechanisms are associated with CHD and traditional cardiovascular risk 189 

factors in men as well. We used the same 56 ANM variants as a measure for genetically 190 

determined reproductive aging in men, postulating common genetic mechanisms of reproductive 191 

aging. 192 

  193 
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Methods 194 

Study populations and outcomes 195 

Fatal or non-fatal CHD 196 

We used data from 417,579 participants of European descent (including 49,150 CHD cases) 197 

from three studies: the UK Biobank(18), a modified version of the CARDIoGRAMplusC4D 198 

consortium (m-CARDIoGRAMplusC4D) since we could only include those studies that 199 

provided us with sex-specific summary data (Cardiogenics, Thiseas, AMC-PAS, Duke 2, CCGB 200 

2, ITH 2, OHGS A2, OHGS B2, OHGS C2, Germifs I, Germifs II, Germifs III, Germifs IV, 201 

LIFE-Heart and LURIC(19)), and the EPIC-CVD case-cohort study(20). Details of the three 202 

studies (UK Biobank, m-CARDIoGRAMplusC4D and EPIC-CVD), including definitions of 203 

fatal or non-fatal CHD in each study, can be found in supplement 1.  204 

Traditional CHD risk factors 205 

For the associations between genetically determined reproductive aging and CHD risk factors, 206 

we again used data from EPIC-CVD and combined these with publicly available GWAS 207 

summary statistics of the Global Lipids Genetics Consortium(21) (total cholesterol, high density 208 

lipoprotein (HDL) cholesterol, triglycerides) and MAGIC(22,23) (HbA1c, fasting glucose). 209 

Details on these consortia can be found in supplement 1.We did not have access to sex-specific 210 

data for these risk factors. Therefore, we could only perform a pooled MR analyses for men and 211 

women combined.  212 

 213 

Genotyping and SNP selection 214 
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Genotyping in the UK Biobank was performed using the Affymetrix UK BiLEVE Axiom array 215 

and the Affymetrix UK Biobank Axiom Array(18,24). The m-CARDIoGRAMplusC4D studies 216 

have used various genotyping methods as described previously(19). EPIC-CVD participants 217 

were genotyped with the Human Core Exome array, Illumina 660 Quad array, and Omni Exome 218 

Express array. The Global Lipids Genetics Consortium and MAGIC also used different assays as 219 

described previously(21–23).   220 

 A recent genome-wide meta-analysis identified 56 SNPs associated with younger ANM 221 

among European descendants, 54 common HapMap SNPs and two Exome chip SNPs(16). All 222 

SNPs passed the threshold of p<5e-6, but not all the threshold of p<5e-8. No linkage 223 

disequilibrium (LD) at R
2
>0.9 was present among these 56 SNPs. Pleiotropic effects were 224 

investigated by searching the NHGRI-EBI GWAS Catalog(25) and Phenoscanner(26) for the 225 

SNPs or their proxies (R
2
>0.8). We used the 56 ANM variants as a measure for genetically 226 

determined reproductive aging in both women, and in men, since GWAS for reproductive aging 227 

traits in men are lacking. 228 

 229 

Statistical analyses  230 

We verified whether the ANM variants were a valid instrument for the MR analysis in women by 231 

calculating the F-statistic according to the method described previously(27), using the SD (5.8 232 

years) for ANM from the imputed data in the EPIC-CVD subcohort and the beta’s for the ANM 233 

variants from the GWAS(16).  234 

Regarding the outcome CHD, for UK Biobank and m-CARDIoGRAMplusC4D, odds 235 

ratios and standard errors for the SNP-CHD relations were derived through contact persons. For 236 
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EPIC-CVD, Prentice-weighted Cox proportional hazards regression adjusted for age, country, 237 

the first two principal components and array was used to calculate hazard ratios and standard 238 

errors for the EPIC-CVD case-cohort set. Regarding CHD risk factors, we derived effect 239 

estimates and standard errors for the cardiovascular risk factors (Global Lipids Genetics 240 

Consortium(21) for total cholesterol, HDL cholesterol and triglycerides, and MAGIC(22,23) for 241 

HbA1c and fasting glucose) using Phenoscanner(26). In the random subcohort of EPIC-CVD, we 242 

first imputed the missing observational data of EPIC-CVD (non-genetic data only) using 243 

multiple imputation with the MICE package in R(28) with 10 imputations and 50 iterations, 244 

including the CVD risk factors, SNPs and other baseline characteristics as predictors. 245 

Subsequently, we derived regression coefficients with linear regression in the subcohort only, 246 

separately in each imputation, using the same adjustments as for CHD. Thereafter we pooled the 247 

results with Rubin’s Rule(29).  248 

We performed a 2-sample MR using four separate methods to estimate causal effects for 249 

binary (CHD) and continuous (total cholesterol, HDL cholesterol, triglycerides, apolipoprotein A 250 

(apoA1), apolipoprotein B (apoB), C-reactive protein (CRP), glucose and HbA1c) outcomes: the 251 

simple median-based method, the weighted median-based method, the standard inverse-variance 252 

weighted (IVW) regression and the MR-Egger regression using the ‘Mendelian Randomization’ 253 

package in R(30). The IVW provides a consistent estimate and assumes that all assumptions of 254 

the instrumental variable are met, the median based and MR-Egger methods provide estimates 255 

under weaker assumptions, with the MR-Egger additionally providing an intercept that 256 

represents the average pleiotropic effect(31,32). When unbalanced horizontal pleiotropy is 257 

absent, results of all methods are expected to be consistent(33). We first conducted sex-specific 258 

MR analyses for CHD in all three studies (UK Biobank, m-CARDIoGRAMplusC4D, EPIC-259 
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CVD) separately. Subsequently, we pooled the estimates with a fixed effect model as is standard 260 

in MR studies. Similarly, MR analyses were performed for each cardiovascular risk factor in 261 

each study separately (EPIC-CVD, Global Lipids Genetics Consortium, MAGIC) and then 262 

pooled using a fixed effects model. Sex-specific analyses were possible in EPIC-CVD only, 263 

therefore we pooled the results for both sexes for combining with Global Lipids Genetics 264 

Consortium and MAGIC). All analyses were conducted with R version 3.2.0(34). 265 

  266 
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Results 267 

Table 1 provides an overview of the numbers of cases and non-cases in UK Biobank, m-268 

CARDIoGRAMplusC4D, and EPIC-CVD.  269 

 270 

(Table 1 here) 271 

 272 

The F-statistic for genetically determined reproductive aging in women was 93.7. Table 2 shows 273 

the results for the association between genetically determined reproductive aging and CHD per 274 

MR method stratified by sex and by study (UKBiobank, m-CARDIoGRAMplusC4D, and EPIC-275 

CVD). In women, the IVW analyses in each study separately showed no causal association 276 

between genetically determined reproductive aging and CHD, nor when studies were pooled 277 

together (Relative Risk Estimate[RRE]IVW=0.99; 95% confidence interval [CI]=0.97;1.01). The 278 

MR-Egger method indicated no pleiotropic effects (intercept=0.004, p=0.318) and resulted in an 279 

RRE of 0.97 (95%CI=0.94;1.02) in the pooled data. Similar results were found for men with a 280 

pooled RREIVW of 1.00 (95%CI=0.97;1.02), also indicating no pleiotropic effects (RREMR-281 

Egger=1.00 (95%CI=0.95;1.05), intercept=0.000, p=0.948).  282 

 283 

(Table 2 here) 284 

 285 

Table 3 shows the IVW results for the association between genetically determined reproductive 286 

aging and cardiovascular risk factors, with sex-specific estimates only from the EPIC-CVD 287 

subcohort and the sex-combined pooled estimates from both publicly available GWAS data and 288 

the EPIC-CVD subcohort. For each one-year decrease in genetically determined reproductive 289 
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aging, total cholesterol levels decreased with 0.025 mmol/L in women in IVW-analysis, however 290 

this was not statistically significant (95%CI= -0.056;0.005). Similarly, genetically determined 291 

reproductive aging was not causally associated with total cholesterol in men (betaIVW=0.024 292 

mmol/L, 95%CI= -0.011;0.059), nor in the pooled sex-combined results (pooled betaIVW=-0.005 293 

mmol/L, 95%CI= -0.007;0.017). Again, no pleiotropic effects were detected (supplement 2). 294 

Furthermore, no causal association was found for HDL cholesterol, triglycerides, ApoA1, ApoB, 295 

CRP, glucose, and HbA1c (table 3).  296 

 297 

(Table 3 here) 298 

 299 

  300 
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Discussion 301 

This study did not find a causal association between reproductive aging and CHD risk or CHD 302 

risk factors, including cholesterol levels, in women. Furthermore, this study does not provide 303 

evidence for a causal association between reproductive aging and CHD risk or CHD risk factors 304 

in men.  305 

 Strengths of this study are that, to the best of our knowledge, this is the largest MR study 306 

of associations between reproductive aging and CHD to date with 20,169 CHD events in women 307 

and 27,397 in men. We used several methods for MR analyses all yielding consistent results for 308 

the tested hypotheses, and in women the instrument we used was strong (F-statistic 93.7). Some 309 

limitations need to be acknowledged. First, we cannot establish whether the ANM risk score is a 310 

valid instrument for reproductive aging in men. The F-statistic is calculated using observed 311 

menopausal age in women, but men do not have a similar trait with an abrupt stop in 312 

reproductive potential. Since the SNPs we used are mainly implicated in mechanisms that are not 313 

specific for women, we hypothesized that there are common mechanisms of reproductive aging 314 

for women and men, and that, therefore, the same variants can be used as marker for genetically 315 

determined reproductive aging in men. However, it needs to be acknowledged that corresponding 316 

phenotypic traits in men need to be further investigated. Second, the GWAS on ANM included 317 

women with an ANM between 40 and 60 years only and therefore did not include women with 318 

an extremely early menopause (<40) or premature ovary insufficiency (POI). Most of the 319 

observational studies did include women with an extremely early menopause or POI, and two 320 

recent systematic reviews and meta-analyses of observational studies showed that POI is 321 

associated with both fatal and non-fatal CHD and CVD(35,36). Although we could not study an 322 

effect of extremely early menopause in our MR study, a recent GWAS on early menopause 323 
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revealed no new genetic variants for early menopause and showed that the genetic aetiology of 324 

early menopause overlaps with that of ANM. Thus early menopause is at least partly explained 325 

by the same polygenic variants as ANM(37). Third, our analyses with glucose were based on 326 

both fasting (MAGIC) and non-fasting estimates (EPIC-CVD). Although both are associated 327 

with an increased CVD risk(38,39) it might not be appropriate to combine them, since different 328 

SNPs might drive the association and underlying mechanisms could be different.   329 

 Our findings regarding CHD are partly in contrast with one previous study investigating 330 

the association between ANM SNPs and CHD death, which reported a significantly increased 331 

risk of CHD death with a weighted genetic risc score (wGRS) in women, but not in men(17). 332 

However, our findings are in line with those of the MR analysis in women, presented in the same 333 

paper, using CARDIoGRAMplusC4D data only, which was also null. The discrepancy between 334 

the wGRS and MR findings is potentially due to the fact that the wGRS analysis was adjusted for 335 

several known CVD risk factors (current smoking, body mass index, hypertension, type 2 336 

diabetes, total cholesterol, and lipid treatment). This might induce a biased association between 337 

the genetic variant and the outcome through confounder(s), also known as collider bias(40,41). 338 

In addition, the number of cases used for the wGRS analyses was small (only 541 CHD deaths in 339 

women), so a chance finding cannot be ruled out either. 340 

Our MR-study suggests that the association between genetically determined reproductive 341 

aging and CHD is not causal. However, most observational studies do find an association 342 

between early age at menopause and CHD in women. We suggest several explanations for this 343 

finding. First, observational studies are susceptible to residual confounding and reverse 344 

causation. It is possible that residual confounding is still present. Postmenopausal women are by 345 

definition older than premenopausal women, making it challenging to separate the effects of 346 
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biological aging from the various phases of the reproductive aging process.  Hence, residual 347 

confounding due to age may still be present in observational studies. Second, reverse causation is 348 

another potential problem in observational studies. Although most studies assume that an early 349 

ANM increases CHD risk, it might be possible that an unfavourable cardiovascular risk profile, 350 

or accelerated vascular aging, causes an early ANM. One previous study showed indeed that 351 

higher cholesterol levels prior to menopause were associated with earlier menopause(13). 352 

However, another study found no association between premenopausal CVD and subsequent age 353 

at menopause(42). If anything, women who developed CVD before menopause had a lower risk 354 

of becoming postmenopausal than women without premenopausal CVD (HR=0.98 for CVD and 355 

HR=0.90 for MI), indicating that menopause occurred later in these women(42), but none of 356 

these results were statistically significant due to the small number of premenopausal cases.  357 

MR uses SNPs, that are randomly assigned by birth, as instrumental variables, and as 358 

such provides a method to assess causality(43). However, an MR study makes several 359 

assumptions, that have to be taken into account(44). The first assumption is that the genetic 360 

marker is associated with the exposure. The SNPs used in our study were all associated with 361 

ANM at a p-value <5e-6 in the latest and largest GWAS(16) . As discussed above, this may not 362 

be true in men. The second and third assumptions are that the association between the genetic 363 

marker and the outcome is explained exclusively through the exposure of interest and is 364 

unconfounded. This is often referred to as the absence of pleiotropy, which means that the 365 

genetic variant is not associated with other phenotypes. Although our Phenoscanner search 366 

showed that a few of the SNPs are associated with age at menarche or sex hormone levels, and 367 

thus that some pleiotropy may be present, our MR-Egger analysis showed no indication of 368 
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pleiotropy, since all intercepts were zero or very close to zero and non-significant(32). We 369 

therefore assume that our results are not biased by pleiotropy.  370 

  In summary, we found no evidence that reproductive aging is causally associated with 371 

CHD and CHD risk factors in women, nor in men. The association between early menopause and 372 

CHD risk in observational studies might be the result of residual confounding, reversed 373 

causation, or reflect a shared aetiology that results in both earlier menopause and higher CHD 374 

risk.     375 

 376 

  377 
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