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Dynamical stability and instability of Ricci-flat metrics

Robert Haslhofer and Reto Müller

Abstract

In this short article, we improve the dynamical stability and instability re-
sults for Ricci-flat metrics under Ricci flow proved by Sesum [12] and Haslhofer
[7], getting rid of the integrability assumption.

1 Introduction

Let M be a compact manifold. A Ricci-flat metric on M is a Riemannian metric
with vanishing Ricci curvature. Ricci-flat metrics are fairly hard to construct, and
their properties are of great interest, see [1, 8, 9] for extensive information. They
are the critical points of the Einstein-Hilbert functional, E(g) =

∫

M RgdVg, the fixed
points of Hamilton’s Ricci flow [6],

∂tg(t) = −2 Rcg(t), (1.1)

and the critical points of Perelman’s λ-functional [10],

λ(g) = inf
f∈C∞(M)∫
M
e−fdVg=1

∫

M

(

Rg + |∇f |2g
)

e−fdVg. (1.2)

In this article, we are concerned with the stability properties of Ricci-flat metrics
under Ricci flow. This stability problem has been studied previously by Sesum [12]
and Haslhofer [7], generalizing in turn previous work by Guenther-Isenberg-Knopf
[5]. The main theorems established there are the dynamical stability theorem [12,
Thm. 3], [7, Thm. E], and the dynamical instability theorem [7, Thm. F]. The
dynamical stability theorem says that if a Ricci-flat metric is a local maximizer of
λ and if all its infinitesimal Ricci-flat deformations are integrable, then every Ricci
flow starting close to it exists for all times and converges (modulo diffeomorphisms)
to a nearby Ricci-flat metric. The dynamical instability theorem says that if a
Ricci-flat metric is not a local maximizer of λ and if all its infinitesimal Ricci-flat
deformations are integrable, then there exists a nontrivial ancient Ricci flow emerging
from it. However, the integrability assumption is rather strong and it is natural to
ask whether or not this assumption can be weakened or even removed. In the present
article, we prove that it is indeed possible to completely remove this integrability
assumption imposed by Sesum and Haslhofer, i.e. we prove the following.
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Theorem 1.1 (Dynamical stability)
Let (M, ĝ) be a compact Ricci-flat manifold. If ĝ is a local maximizer of λ, then
for every Ck,α-neighborhood U of ĝ (k ≥ 2), there exists a Ck,α-neighborhood V ⊂ U

such that the Ricci flow starting at any metric in V exists for all times and converges
(modulo diffeomorphisms) to a Ricci-flat metric in U.

Theorem 1.2 (Dynamical instability)
Let (M, ĝ) be a compact Ricci-flat manifold. If ĝ is not a local maximizer of λ, then
there exists a nontrivial ancient Ricci flow {g(t)}t∈(−∞,0] that converges (modulo
diffeomorphisms) to ĝ for t→ −∞.

Theorems 1.1 and 1.2 describe the dynamical behavior of the Ricci flow near a given
Ricci-flat metric. In fact, they show that dynamical stability and instability are
characterized exactly by the local maximizing property of λ, observing whether or
not λ ≤ 0 in some Ck,α-neighborhood of ĝ (k ≥ 2). Indeed, the converse implications
follow immediately from Perelman’s monotonicity formula [10], i.e. if the conclusion
of Theorem 1.1 holds, then ĝ it is a local maximizer of λ; if the conclusion of Theorem
1.2 holds, then ĝ is not a local maximizer of λ.

Remark. Another related notion is linear stability, meaning that all eigenvalues of the
Lichnerowicz Laplacian Lĝ = △ĝ + 2 Rmĝ are nonpositive. If ĝ is a local maximizer
of λ, then it is linearly stable [2, Thm. 1.1]. If ĝ is linearly stable and integrable,
then it is a local maximizer of λ, c.f. [7, Thm. A].

In addition to applying to the more general nonintegrable case, the proofs that we
give here are substantially shorter than the previous arguments from [12, 7]. In out-
line, we start by proving the following  Lojasiewicz-Simon inequality for Perelman’s
λ-functional, which generalizes [7, Thm. B] to the nonintegrable case:

Theorem 1.3 ( Lojasiewicz-Simon inequality for λ)
Let (M, ĝ) be a closed Ricci-flat manifold. Then there exists a C2,α-neighborhood U

of ĝ in the space of metrics on M and a θ ∈ (0, 12 ], such that

‖Rcg + Hessg fg‖L2(M,e−fgdVg)
≥ |λ(g)|1−θ , (1.3)

for all g ∈ U, where fg is the minimizer in (1.2) realizing λ(g).

Theorem 1.3 can be used as a general tool to study stability and convergence ques-
tions for the Ricci flow, and might thus be of independent interest. A key step
in our proof of Theorem 1.1 is then to modify the Ricci flow by an appropriate
family of diffeomorphisms so that we can on the one hand exploit the geometric
inequality (1.3) and on the other hand retain the needed analytic estimates. This is
quite related to the proof by Sun-Wang of the stability of positive Kähler-Einstein
metrics under the normalized Kähler-Ricci flow [14]; the details about handling the
diffeomorphism group are somewhat different, however. The proof of Theorem 1.2
is related to the proof of [7, Thm. F], again with some modifications.
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2 The  Lojasiewicz-Simon inequality for λ

Proof of Theorem 1.3. By the Ebin-Palais slice theorem [4], there exists a C2,α-
neighborhood U of ĝ in the space of metrics on M and a σ > 0 such that every
metric in U can be written as the pullback of a metric in the slice

Sĝ := {ĝ + h|h ∈ ker divĝ, ‖h‖C2,α < σ}. (2.1)

Since both sides of (1.3) are diffeomorphism invariant, it thus sufficies to prove the
inequality (1.3) for the metrics g in the slice Sĝ.

The proof is now, with a couple of little tweaks, along the lines of the classical proof
due to Leon Simon [13]. For our purpose it is most convenient to apply the variant
of Simon’s theorem that can be found in Colding-Minicozzi [3, Thm. 6.3]. To apply
this theorem, we have to observe that the restricted functional λR : Sĝ → R is ana-
lytic and that its gradient and its Hessian satisfy certain properties:

(1) As pointed out by Perelman [10], by substituting w = e−f/2 in (1.2) one sees that
λ(g) is the smallest eigenvalue of the Schrödinger operator −4△g + Rg. Since the
smallest eigenvalue is simple, λ depends analytically on g, c.f. [11]. In particular,
the restriced functional λR is analytic.

(2) The L2(M,e−fgdVg)-gradient of λ is ∇λ(g) = −(Rcg + Hessg fg) by Perelman’s
first variation formula [10]. Recall that ∇λ(ĝ) = 0. Furthermore, note that the
gradient satisfies the estimates

‖∇λ(g1) −∇λ(g2)‖C0,α ≤ C‖g1 − g2‖C2,α (2.2)

‖∇λ(g1) −∇λ(g2)‖L2 ≤ C‖g1 − g2‖W 2,2 (2.3)

for all g1, g2 ∈ Sĝ. Indeed, these estimates follow from basic elliptic theory using
the eigenvalue equation (−4△g +Rg)e

−fg/2 = λ(g)e−fg/2. Since the gradient of the
restriced functional can be obtained from the gradient of the unrestricted functional
by projecting to the slice, the estimates (2.2) and (2.3) also hold for ∇λR.

(3) The linearization of ∇λR at ĝ is given by Lĝ = 1
2△ĝ+Rmĝ, see e.g. [7, Lem. 4.2].

We write (ker divĝ)Ck,α for the space of Ck,α symmetric two tensors with vanishing
divergence. By ellipticity, the operator

Lĝ : (ker divĝ)C2,α → (ker divĝ)C0,α (2.4)

is Fredholm. Clearly, it also satisfies the estimate ‖Lĝh‖L2 ≤ C‖h‖W 2,2 .
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We can now apply [3, Thm. 6.3] and obtain that λR satisfies the inequality ‖∇λR‖ ≥
|λR|

1−θ for some θ ∈ (0, 12 ]. Together with ‖∇λR‖ ≤ ‖∇λ‖ and the reduction due
to diffeomorphism invariance from the first paragraph this proves the theorem.

3 Dynamical stability and instability

Proof of Theorem 1.1. We write Br for the Ck,α-ball of radius r around ĝ. Let ε > 0
such that Bε ⊂ U, λ ≤ 0 in Bε, and (1.3) holds in Bε. We will choose V = Bδ, where
δ ≪ ε is small enough such that everything in the following works.

Given any g0 ∈ Bδ, let T ∈ (0,∞] be the maximal time such that the solution g(t)
of the Ricci flow (1.1) starting at g0 exists for t ∈ [0, T ) and there exists a family of
diffeomorphisms ψt such that ψ∗

t g(t) ∈ Bε for all t ∈ [0, T ).

Choosing δ small enough we can assume that the Ricci-DeTurck flow (see e.g. [6])
stays in Bε/4 up to time one; in particular T ≥ 1 and there exists a diffeomorphisms
ψ1 such that ψ∗

1g(1) ∈ Bε/4.

By the definition of T we have uniform curvature bounds

sup
M

|Rmg(t)|g(t) ≤ C, ∀t ∈ [0, T ). (3.1)

By standard derivative estimates (see e.g. [6]) this implies

sup
M

|∇ℓ Rmg(t)|g(t) ≤ Cℓ, ∀t ∈ [1, T ). (3.2)

Since fg solves the elliptic equation (−4△g +Rg − λ(g))e−fg/2 = 0 we also get

sup
M

|∇ℓfg(t)|g(t) ≤ C̃ℓ, ∀t ∈ [1, T ). (3.3)

Note that the estimates (3.1), (3.2) and (3.3) are diffeomorphism invariant.

Define {ϕt : M → M}t∈[1,T ) to be the family of diffeomorphisms generated by
X(t) = −∇fψ∗

1
g(t) with ϕ1 = idM and let {ψt = ψ1 ◦ ϕt}t∈[1,T ) with ψ1 from above.

Then the pulled-back metrics {g̃(t) := ψ∗

t g(t)}t∈[1,T ) satisfy

∂tg̃(t) = −2
(

Rcg̃(t) + Hessg̃(t) fg̃(t)
)

, (3.4)

with g̃(1) ∈ Bε/4. Let T ′ ∈ [1, T ] be the maximal time such that g̃(t) ∈ Bε for all
t ∈ [1, T ′). By interpolation, using the bounds (3.2) and (3.3), we obtained

‖∂tg̃‖Ck,α ≤ C‖∂tg̃‖
1−η
L2 (3.5)

for η > 0 as small as we want; in particular, we can assume σ := θ − η + θη > 0.
Using Perelman’s monotonicity formula in the form

d

dt
λ(g̃(t)) = ‖Rcg̃(t) + Hessg̃(t) fg̃(t)‖

1+η
L2 ‖∂tg̃(t)‖

1−η
L2 , (3.6)
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as well as the assumption λ(g̃(t)) ≤ 0, we obtain from Theorem 1.3 and (3.5)

−
d

dt
|λ(g̃(t))|σ = σ|λ(g̃(t))|σ−1 ·

d

dt
λ(g̃(t))

= σ|λ(g̃(t))|(θ−1)(1+η) · ‖Rcg̃(t) + Hessg̃(t) fg̃(t)‖
1+η
L2 · ‖∂tg̃(t)‖

1−η
L2

≥
σ

C
‖∂tg̃(t)‖Ck,α .

(3.7)

Hence, by integration,

∫ T ′

1
‖∂tg̃(t)‖Ck,αdt ≤ C

σ |λ(g̃(1))|σ ≤ C
σ |λ(g0)|σ ≤

ε

4
, (3.8)

provided we choose δ small enough. Thus, T ′ = T = ∞ and g̃(t) converges in Ck,α to
a limit g∞ for t→ ∞. Since ∇λ(g∞) = 0, the limit g∞ is Ricci-flat. By construction
it is a limit modulo diffeomorphism of the Ricci flow.

Proof of Theorem 1.2. Pick a sequence of metrics gi → ĝ in Ck,α with λ(gi) > 0.
Let gi(t) be the Ricci flow starting at gi and let g̃i(t) = ψ∗

t gi(t) with {ψt} as in
the proof of Theorem 1.1, i.e. for t ∈ [0, 1] the pulled-back metrics solve the Ricci-
DeTurck flow, while for t ≥ 1 they solve the modified flow (3.4). Then we still have
g̃i := g̃i(1) → ĝ in Ck,α and λ(g̃i) > 0, but also uniform estimates for all higher
derivatives of g̃i (with respect to the background metric ĝ). Thus, after passing to
a subsequence, we get g̃i → ĝ in Cℓ,α for ℓ ≫ k as large as we want. Moreover, for
t ≥ 1 we have uniform estimates as in (3.2) and (3.3).

Let ε be small enough such that (1.3) holds in the Ck,α-ball B2ε around ĝ. On the
one hand, g̃i(t) stays close to ĝ for longer and longer times, but on the other hand,
since λ(gi) > 0 the Ricci flow becomes singular eventually by Perelman’s evolution
inequality dλ

dt ≥ 2
nλ

2 [10]. Let ti be the first time when ‖g̃i(ti) − ĝ‖Cℓ,α = ε. Then
ti → ∞ and, always assuming i is large enough,

‖g̃i(ti) − ĝ‖Cℓ,α ≤ Cλ(g̃i(ti))
σ, (3.9)

for some σ > 0, which is obtained by the same reasoning as in the proof of Theorem
1.1, using in particular the  Lojasiewicz-Simon inequality (1.3).

Shifting time, we obtain a family of flows {g̃si (t) := g̃i(t + ti)}t∈[Ti,0], with Ti =
1 − ti → −∞, that solve the equation (3.4) and satisfy

‖g̃si (t) − ĝ‖Cℓ,α ≤ ε ∀t ∈ [Ti, 0], (3.10)

λ(g̃si (0)) ≥ c > 0, (3.11)

g̃si (Ti) → ĝ in Cℓ,α. (3.12)

After passing to a subsequence, {g̃si (t)} converges in Ck,αloc (M×(−∞, 0]) to an ancient
solution {g̃(t)}t∈(−∞,0] of (3.4). Define {ϕt : M → M}t∈(−∞,0] to be the family of
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diffeomorphisms generated by X(t) = ∇fg̃(t) with ϕ0 = idM . Then {g(t) := ϕ∗

t g̃(t)}
is an ancient Ricci flow. Since λ(g(0)) ≥ c, this Ricci flow is nontrivial, i.e. not a
stationary solution.

Finally, we have to prove that for t → −∞ the Ricci flow {g(t)} converges modulo
diffeomorphism to ĝ. To this end, for Ti ≤ t using again in particular (1.3) we
estimate

‖ĝ − g̃(t)‖Ck,α ≤ ‖ĝ − g̃si (Ti)‖Ck,α + ‖g̃si (Ti) − g̃si (t)‖Ck,α + ‖g̃si (t) − g̃(t)‖Ck,α

≤ ‖ĝ − g̃si (Ti)‖Ck,α + Cλ(gi(t+ ti))
σ + ‖g̃si (t) − g̃(t)‖Ck,α . (3.13)

Since λ(gi(t+ ti)) is bounded up to t = 0 and dλ
dt ≥ 2

nλ
2, we see that λ(gi(t+ ti)) is

very small for very negative t. Thus, g̃(t) = (ϕ−1
t )∗g(t) → ĝ in Ck,α as t→ −∞ and

this finishes the proof of the theorem.
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