First Report of Downy Mildew Caused by Peronospora arthurii on Common Evening Primrose (Oenothera biennis) in Italy

This is a pre print version of the following article:

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1664759 since 2019-03-29T09:46:45Z

Published version:
DOI:10.1094/PDIS-07-17-0932-PDN

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.
First Report of Downy Mildew Caused by *Peronospora arthurii* on Common Evening-Primrose (*Oenothera biennis*) in Italy.

A. Garibaldi, D. Bertetti, S. Matić and M. L. Gullino, Centre of Competence for the Innovation in the Agro-Environmental Sector (AGROINNOVA), Largo P. Braccini 2, 10095 Grugliasco, Italy.

Common evening primrose (*Oenothera biennis* L.) belonging to the family Onagraceae is a low-maintenance biennial plant which was widely used as a border for blooming in the late spring and summer in parks and gardens in northern Italy. During spring 2017, symptoms of a downy mildew were observed on about 400 plants of *O. biennis* growing in mix borders as well as in pots, in a private garden near the city of Biella (northern Italy). In this garden plants of *O. biennis* have been reproduced by seeds for about 10 years and symptoms of downy mildew never appeared before. Infected leaves showed yellow, vein-limited lesions on the upper surface. As the disease progressed, affected leaves turned necrotic and plants lost their aesthetic value. The abaxial surface of affected leaves was covered by grey conidiophores and conidia in areas delimited by veins. Conidiophores measured 218 - 374 (average: 295) μm. Conidiophores branched dichotomously 4-6 times with terminal branches arranged at right angles and with curved ultimate branchlets that measured 7.6 - 20.2 (average: 12.8) μm. Conidia were light grey, elliptic to ovoid, and measured 21.1 - 27.4 × 16.1 - 20.2 (average: 24.4 × 18.1) μm. These morphological characteristics correspond to those described by Mulenko and Gosztyla (1997) for *Peronospora arthurii*. The ITS region (Internal Transcribed Spacer) of rDNA was amplified using primers ITS1/ITS4 (White et al. 1990) and sequenced. BLAST analysis (Altschul et al. 1997) of 730 bp sequence (GenBank accession number MF370230) revealed 99% similarity to that of *P. arthurii* AY198284. Pathogenicity was confirmed by gently pressing affected leaves of *O. biennis* with conidia of *P. arthurii* onto moistened leaves of three 4-month-old healthy plants of the same host. Nine affected leaves (three for each inoculated plant) were used. Leaves of three control plants were moistened with sterilized water. All plants were kept in a humid chamber located outside, at temperatures ranging from 9 to 27°C (17 h daylight, 7 h dark) for 7 days. First yellowing appeared after 10 days only on inoculated plants. As the disease progressed, the same conidiophores and conidia described above were observed on affected leaves. *P. arthurii* on *O. biennis* has been reported in Austria, Canada, Czech Republic, US (Farr and Rossman 2017) and Poland (Mulenko and Gosztyla 1997). This is the first report of *P. arthurii* on *O. biennis* in Italy. The economic importance of this disease is at present limited, although it could spread due to the increasing planting of *O. biennis* in low maintenance gardens.

References