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Abstract

We analyze a simple stochastic model of economic growth in which physical and health
capital accumulation jointly contribute to determine long run economic growth. Health
capital is subject to random shocks via the effects of behavioral changes: unpredictable
changes in individuals’ attitude toward healthy behaviors may reduce the effectiveness of
health services provision; this in turn, by reducing the production of new health capital,
lowers economic production activities negatively affecting economic growth. Unlike the
extant literature, we assume that the probability with which such random shocks occur
is not constant but state-dependent. Specifically, the probability that behavioral changes
will negatively impact on health capital and economic growth depends on the level of
economic development, proxied by the relative abundance of health capital with respect
to physical capital. We show that our model’s dynamics can be converted into an iter-
ated function system with state-dependent probabilities which converges to an invariant
self-similar measure supported on a (possibly fractal) compact attractor. We develop a
numerical method to approximate the invariant distribution to illustrate its features in
specific model’s parametrizations, exemplifying thus the effects of state-dependent prob-
abilities on the model’s steady state.

Keywords: Health Capital; Iterated Function Systems; State-Dependent Probabilities;
Foias Operator
JEL Classification: C61, C63, O40

1 Introduction

The importance of random shocks for economic outcomes and macroeconomic dynamics is well
known since the seminal work by [7]. A large body of studies analyze from different points of
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view the implications of uncertainty on economic growth (see [26] for a survey). Several of these
papers analyze the random dynamics associated with economic growth models showing that
they can eventually converge to invariant measures supported on fractal sets [23]. The fractal
nature of the steady state of such stochastic growth models has been extensively analyzed lately,
both in purely dynamic setting ([17], [27]) and in frameworks with agents’ optimization ([19],
[20], [21], [22]), showing that the support of the invariant measure can take the form of different
fractal sets, including the Cantor set ( [23], [19], [20], [21], [22] and [13]), the Sierpinski gasket
([12], [13]) or the Barnsley’s fern ([15],[16]). To the best of our knowledge, all these works rely
upon the assumption that the probability with which shocks occur is constant over time. Even
if this setting is useful to characterize macroeconomic dynamics in a simple and intuitive way,
it precludes us from analyzing the implications of important phenomena, and in particular how
the stage of economic development affects the probability with which shocks may occur. Sev-
eral studies argue that developing countries are more vulnerable to shocks than industrialized
economies [31], and thus that the entire process of economic development may be characterized
by path-dependency ([10], [25], [18]): after a certain level of development is achieved, further
development is more likely to occur. Understanding thus the implications of path-dependency
for economic development and macroeconomic outcomes is crucial to develop a realistic the-
ory of economic growth. This paper wishes to make a first contribution in this direction by
proposing a simple stochastic growth model in which probabilities are state-dependent. State-
dependent probabilities are a straightforward generalization of constant probabilities which
allow to explain the path-dependency phenomenon and to enrich the set of possible outcomes
for the model, shedding some light on the mutual links between economic shocks and economic
development.

Specifically, we analyze a simple two-sector stochastic purely dynamic model of economic
growth in which physical and health capital accumulation jointly contribute to determine long
run economic growth ([32], [1], [4]). Health capital measures the health status of the popula-
tion which can be improved through the purposive provision of health services. Health capital
determines the level of productivity of the labor force and thus it represents an important
input in economic production activities. Both the final consumption good and health services
are produced by combining physical and health capital, but the production of health services
is subject to random shocks via the effects of behavioral changes: unpredictable changes in
individuals’ attitude toward healthy behaviors may reduce the effectiveness of the health ser-
vices provided; this in turn, by reducing the production of new health capital, lowers economic
production activities negatively affecting economic growth in the long run. The probability
with which these shocks occur endogenously depends on the economy’s level of development
measured by the relative abundance of health capital with respect to physical capital, meaning
that according to its specific development stage an economy may be more or less likely to face a
negative shock with detrimental effects on long run economic growth. We show that this model
can be converted into a contractive iterated function system (IFS) with state-dependent prob-
abilities (SDP) which, under rather general conditions, converges to an invariant self-similar
measure supported on a (possibly fractal) compact attractor. Iterated function systems with
state-dependent probabilities (IFSSDP) have received much attention in the mathematics liter-
ature, mostly in the context of state-dependent Markov processes with invariant measures ([3],
[29], [14]), but to the best of our knowledge they have never been discussed in economics. In
this paper we develop a novel application of IFSSDPs in macroeconomic theory to shed some
light on the effects of state-dependent probabilities on the economic dynamics and the steady
state of a stochastic growth model.

The paper proceeds as follows. Section 2 reviews some well-known concepts on the IFS
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theory and it focuses in particular on the theory of IFSSDP. Section 3 introduces our stochastic
growth model with state-dependent probabilities and, after a brief discussion on the dynamical
features of its deterministic counterpart, shows how its random dynamics can be converted into
an affine IFSSDP. Section 4 presents a numerical method to approximate the invariant measure
of affine IFSSDPs, which is then applied in Section 5 to illustrate, for a given parameterization
of the growth model, how the characteristics of the invariant measure associated to our IFSSDP
are affected by different choices of the state-dependent probability generating it. Section 6 as
usual presents concluding remarks and highlights directions for future research.

2 Iterated Function Systems

In this section we review some basic concepts and results in the theory of iterated functions
systems. We first discuss the case in which probabilities are constant, and since this case is
well-known we will try to be as brief as possible (similar but more detailed discussions can
be found in [13], [16]). We then move to the less-known case in which probabilities are state
dependent, and we will discuss with more depth the implications of such state-dependency.

2.1 Constant Probabilities

Let (X, d) be a compact metric space. An N -map Iterated Function System (IFS) on X,
w = {w1, . . . , wN}, is a set of N contraction mappings on X, i.e., wi : X → X, i = 1, . . . , N ,
with contraction factors ci ∈ [0, 1) (see [2], [8], [11]). Associated with an N -map IFS, one can
construct the following set-valued mapping ŵ on the space H (X) of nonempty compact subsets
of X:

ŵ (S) :=
N
⋃

i=1

wi (S) , S ∈ H (X) .

The distance between sets can be measured by means of the Hausdorff distance h defined on
H (X) as follows:

h (A,B) = max

{

sup
x∈A

inf
y∈B

d (x, y) , sup
x∈B

inf
y∈A

d (x, y)

}

.

The pair (H (X) , h) is a compact (and then complete) metric space.

Theorem 1 ([8]). For A,B ∈ H (X),

h (ŵ (A) , ŵ (B)) ≤ cH (A,B) where c = max
1≤i≤N

ci < 1.

The following result states the contractivity of the operator ŵ with respect to the Hausdorff
distance.

Corollary 1. There exists a unique set Ā ∈ H (X), the attractor of the IFS w, such that

Ā = ŵ
(

Ā
)

=
N
⋃

i=1

wi

(

Ā
)

.

Moreover, for any B ∈ H (X), h
(

Ā, ŵtB
)

→ 0 as t → ∞.
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An N -map iterated function system with (constant) probabilities (w,p) is an N -map IFS w
with associated probabilities p = {p1, . . . , pN},

∑N

i=1 pi = 1.
Let M (X) denote the set of probability measures on (Borel subsets of) X and dMK the

Monge-Kantorovich distance on this space. For µ, ν ∈ M (X) the Monge-Kantorovich metric
is defined as

dMK (µ, ν) = sup
f∈Lip1(X)

[
∫

f dµ−

∫

f dν

]

,

where Lip1 (X) = {f : X → R : |f (x)− f (y)| ≤ d (x, y)}. The metric space (M (X) , dMK) is
compact (and then complete) [2], [8]. IfX is not compact but only complete then a first-moment
condition needs to be imposed to guarantee the completeness of (M (X) , dMK).

Associated with an N -map IFSP is a mapping M : M → M, often referred to as the Foias
operator, defined as follows. Let ν = Mµ for any µ ∈ M (X). Then for any measurable set
S ⊂ X,

ν (S) = (Mµ) (S) =
N
∑

i=1

pi µ
(

w−1
i (S)

)

.

Theorem 2 ([8]). For µ, ν ∈ M (X),

dMK (Mµ,Mν) ≤ c dMK (µ, ν) .

Corollary 2. There exists a unique measure µ̄ ∈ M (X), the invariant measure of the IFSP
(w,p), such that

µ̄ (S) = (Mµ̄) (S) =
N
∑

i=1

piµ̄
(

w−1
i (S)

)

. (1)

Moreover, for any ν ∈ M (X), dMK (µ̄,M tν) → 0 as t → ∞.

Theorem 3 ([8]). The support of the invariant measure µ̄ of an N -map IFSP (w,p) is the
attractor Ā of the IFS w′ = {wi : pi > 0}, i.e.,

supp µ̄ = Ā.

Example 1. The following two-map IFS on X = [0, 1],

w1 (x) =
1

2
x, w2 (x) =

1

2
x+

1

2
,

has attractor A = [0, 1]. Let p1 ≡ p2 ≡ 1/2. It is well known that the invariant measure µ̄ of
this IFSP is the (uniform) Lebesgue measure on [0, 1]. This is simple to see by verifying (1) for
S = [a, b] ⊆ [0, 1].

Note that, while in this paper we assume that all the maps wi in the IFS are contractive,
the contractivity of M only requires average contractivity,

∑

i pici < 1 [30].

2.2 State-Dependent Probabilities

We now consider the case in which the probabilities, pi, 1 ≤ i ≤ N , associated with an N -map
IFS w are state-dependent, i.e., pi : X → [0, 1] such that

N
∑

i=1

pi (x) = 1, for all x ∈ X. (2)
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In the literature a lot of attention has been devoted to IFSs with state-dependent probabilities
in particular in the context of state-dependent Markov processes with invariant measures [29].

The result is an N -map IFS with state-dependent probabilities (IFSSDP).

Example 2 (Affine probability functions). In the special case X = [0, 1] ⊂ R with affine
probabilities pi (x) = ξix+ ηi, substitution into (2) along with the fact that the functions x and
1 are linearly independent over [0,1] yields the following conditions on the ξi and ηi,

N
∑

i=1

ξi = 0 ,
N
∑

i=1

ηi = 1. (3)

Only two other conditions must be imposed, namely, (i) 0 ≤ pi (0) ≤ 1 and 0 ≤ pi (1) ≤ 1 for
1 ≤ i ≤ N , which lead to the following additional constraints,

0 ≤ ηi ≤ 1, 0 ≤ ξi + ηi ≤ 1, 1 ≤ i ≤ N. (4)

These constraints also imply that −1 ≤ ξi ≤ 1. In the special case ξi = 0, 1 ≤ i ≤ N , the
IFSSDP reduces to an IFSP with constant probabilities pi = ηi, 1 ≤ i ≤ N .

Associated with an N -map IFSSDP, (w,p), there is a Foias operator M : M (X) → M (X),
defined as follows. Let ν = Mµ for any µ ∈ M (X). Then for any measurable set S ⊂ X,

ν (S) = Mµ (S) =
N
∑

i=1

∫

w−1
i (S)

pi (x) dµ (x) . (5)

Theorem 4 ([14]). Given M as defined in (5), then M maps M (X) to itself. In other words,
if µ ∈ M (X), then ν = Mµ ∈ M (X).

Under appropriate conditions, the above Foias operator can be contractive with respect to
the Monge-Kantorovich metric.

Theorem 5 ([14]). Let (X, d) be a compact metric space and (w,p) an N -map IFSSDP with
IFS maps wi : X → X with contraction factors ci ∈ [0, 1). Furthermore, assume that the
probabilities pi : X → R are Lipschitz functions, with Lipschitz constants Ki ≥ 0. Let M :
M (X) → M (X) be the Foias operator associated with this IFSSDP, as defined in (5). Then
for any µ, ν ∈ M (X),

dMK (Mµ,Mν) ≤ (c+KDN) dMK (µ, ν) , (6)

where c = maxi ci, K = maxi Ki and D = diam (X) < ∞. If c + KDN < 1 then there
exists a unique measure µ̄ ∈ M (X), the invariant measure of the IFSSDP, such that Mµ̄ = µ̄.
Moreover, for any ν ∈ M (X), dMK (µ̄,M tν) → 0 as t → ∞.

However, the operatorM needs not to be contractive with respect to the Monge-Kantorovich
metric in order to have a fixed point. In fact, by the Schauder fixed point theorem, as long
as all the pi (x)s are continuous there is at least one invariant measure for M . The following
examples exhibit more than one invariant measure.

Example 3. We return to the two-map IFS on X = [0, 1] of Example 1,

w1 (x) =
1

2
x, w2 (x) =

1

2
x+

1

2
, (7)

and consider two state dependent probabilities p1 (x) = 1 − x and p2 (x) = x. In this case the
two Dirac measures δ0 and δ1, concentrated at the points 0 and 1 respectively, are both fixed
points and thus it is not possible for the Foias operator to be contractive. Moreover, for any
ξ ∈ [0, 1], the measure µ = ξδ0 + (1− ξ) δ1 is a fixed point of the Foias operator.
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We now describe the so-called Chaos Game for an IFS with probabilities. Start with x0 ∈ X,
and define the sequence xt ∈ X by

xt+1 = wσt
(xt) ,

where σt ∈ {1, 2, . . . , N} is chosen according to the probabilities pi (xt) (that is, P [σt = i] =
pi (xt)). We note that the sequence (xt) is a Markov chain with values in X.

The following theorem (from results in [3], [9]) gives conditions as to when the IFSSDP has
a unique stationary distribution µ̄ and the Chaos Game “converges” to µ̄ in a distributional
sense.

Theorem 6 ([3], [9]). Suppose that there is a δ > 0 so that pi (x) ≥ δ for all x ∈ X and
i = 1, 2, . . . , N and suppose further that the moduli of continuity of the pis satisfy Dini’s con-
dition (see [3], [9]). Then there is a unique stationary distribution µ̄ for the Foias operator.
Furthermore, for each continuous function f : X → R,

1

t+ 1

t
∑

h=0

f (xh) →

∫

X

f (x) dµ̄ (x) . (8)

where the sequence {xh}
t

h=0 is generated by the Chaos Game described above, that is xh+1 =
wσh

(xh), and σh ∈ {1, 2, . . . , N} is chosen according to P [σh = i] = pi (xh).

Theorem 6 can be used to show the following result.

Corollary 3. Suppose that the IFSSDP {w, pi} satisfies the hypothesis of Theorem 6. Then
the support of the invariant measure µ̄ of the N -map IFSSDP (w,p) is the attractor Ā of the
IFS w, i.e.,

supp µ̄ = Ā.

Example 4. Modifying Example 3 slightly by using

p1 (x) = 1− β − (1− 2β) x, and p2 (x) = (1− 2β) x+ β,

for 0 < β < 1, we obtain an IFSSDP which satisfies the conditions of Theorem 6 and thus has
a unique invariant measure. Notice that the probability functions from Example 3 correspond
to the case β = 0.

Notice that if pi are not continuous then the IFSSDP might have more than one invariant
measure (in fact, continuity is not enough – see [29]).

The following theorem allows us to characterize the singularity of the self-similar measure
associated to an IFS with state-dependent probability in the case of two linear maps having the
same slope. The proof follows by noticing that whenever the common slope λ satisfies λ < 1/2
the invariant measure µ̄λ is supported on a Cantor set with zero Lebesgue measure.

Proposition 1. Take the two-map IFS {λx, λx+ (1− λ)} on X = [0, 1] where λ ∈ (0, 1) along
with the two probability functions p1 (x) = p (x) and p2 (x) = 1 − p (x) on [0, 1]. Assume that
inf {p (x) : 0 ≤ x ≤ 1} > 0 and that and that p is Hölder continuous. Let µ̄λ be the invariant
measure of this state-dependent IFS. If 0 ≤ λ < 1/2 then µ̄λ is singular with respect to the
Lebesgue measure.
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3 The Model

We propose a discrete time stochastic growth model driven by physical and health capital
accumulation: while physical capital is a rival good, health capital is a nonrival good. Our
novel contribution consists of allowing the probabilities with which shocks occur to be state-
dependent. As our main goal is to analyze the effects of such state-dependent probabilities on
the dynamics of the economic system, for the sake of simplicity we completely abstract from
agents’ optimization and we focus on a purely dynamic Solow-type [28] setting. The unique
final consumption good, yt, is produced through a Cobb-Douglas production function employing
health capital, ht, and a certain share of physical capital, kt, as follows: yt = θ (ukt)

α h1−α
t ,

where θ > 0 is a fixed productivity parameter, 0 < α < 1 is the physical capital share of GDP
and 0 < u < 1 an exogenously given share of physical capital allocated to final good production.
Physical capital is accumulated through investment activities, to which an exogenous share of
output is devoted: kt+1 = syt, where 0 < s < 1 is the saving rate. Health capital accumulates
thanks to the provision of health services, gt, as follows: ht+1 = gt. Health services are produced
through a Cobb-Douglas production function employing the existing level of health capital and
the share of physical capital not used in the production of the final good. This represents a
situation in which the provision of health services is relatively intensive in physical capital,
meaning that in order to achieve further improvements in the health status of the population
it is important to invest in physical infrastructure (hospitals, machines, medical equipment).
However, such production activities are also subject to multiplicative random shocks, zt, so
that the total production of health services is gt = zt [(1− u) kt]

β h1−β
t , where 0 < β < 1 is

the elasticity of health services production with respect to physical capital, and zt is a random
component measuring the effect of behavioral changes which may reduce the effectiveness of
activities aimed to improve the overall health status in the population resulting in increases
in the health capital. Indeed, the diffusion of antivax sentiments, the spread of risky sexual
behavior and the growing reliance on junk food are all examples of how changes in individuals’
health attitude can affect the effectiveness of health services potentially harming the entire
economy. For the sake of simplicity, we abstract from physical and health capital depreciation
without loss of generality.

3.1 The Deterministic Dynamics

As the dynamics characterizing our model present a sufficiently rich scenario already in the
deterministic version, we deem it worth spend in a few words on this setting before analyzing
how random shocks may affect such dynamics. Assuming that zt ≡ 1, over through time, the
model’s dynamics are determined by the following system of difference equations:







kt+1 = sθ (ukt)
α h1−α

t

ht+1 = [(1− u) kt]
β h1−β

t

k0 and h0 > 0 given.

(9)

According to the specific model’s parametrization, three scenarios are possible and the
system (9) may exhibit:

1. convergence to a unique non trivial steady state whenever parameters s, θ, u and α satisfy
a certain condition; such a steady state, however, depends on the initial conditions k0 and
h0;

2. sustained growth of both kt and ht if the saving rate s is larger than the threshold value
characterizing the previous scenario;
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3. asymptotic extinction of the economy, i.e., kt → 0+ and ht → 0+ as t → ∞, if the saving
rate s is smaller than the threshold value characterizing the first scenario.

Specifically, any steady state (k∗, h∗) for system (9) must satisfy:

{

k∗ = sθuα (k∗)α (h∗)1−α

h∗ = (1− u)β (k∗)β (h∗)1−β ⇐⇒



















(

h∗

k∗

)1−α

=
1

sθuα

(

h∗

k∗

)β

= (1− u)β
⇐⇒















h∗

k∗
=

1

(sθuα)
1

1−α

h∗

k∗
= 1− u.

The last system of equations can be satisfied only if

(sθuα)−
1

1−α = 1− u,

that is, only if the saving rate satisfies:

s̄ =
1

θuα (1− u)1−α
. (10)

Note that, as 0 < u < 1 and 0 < s̄ < 1 must hold, the following condition must be met:

θ >
1

uα (1− u)1−α
, (11)

which implies necessarily that θ > 1.
The steady state h∗/k∗ ≡ 1−u represents a situation of balanced development in which the

input ratio (i.e., the health to physical capital ratio) is constant. This steady state is globally
stable and the economy naturally tends to converge to such a long run situation of balanced
development. Whenever the physical capital ratio is different than the constant 1 − u, then
it will change over time. Specifically, when ht/kt > 1 − u there is an excessive level of health
capital with respect to physical capital and the former decreases while the latter increases as
time elapses; the opposite occurs when ht/kt < 1−u. This represents a situation of unbalanced
development in which the input ratio keeps changing over time. The effects of unbalances on
economic growth have been analyzed by several studies ([24], [5], [6]), and our model as we shall
clarify later suggests that such unbalances may occur endogenously through the realization of
shocks. To see how the transition towards the steady state works let us compute the growth
rates of kt and ht:

γ̄k
t =

kt+1 − kt
kt

=
s̄θuαkα

t h
1−α
t

kt
− 1 =

θuα

θuα (1− u)1−α

(

ht

kt

)1−α

− 1 =

(

1

1− u

ht

kt

)1−α

− 1 (12)

γ̄h
t =

ht+1 − ht

ht

=
(1− u)β kβ

t h
1−β
t

ht

− 1 = (1− u)β
(

kt
ht

)β

− 1 =

[

(1− u)
kt
ht

]β

− 1, (13)

where in the second equality of the first line we used (10). From the expressions above it is
immediately seen that whenever ht/kt > 1 − u the physical capital exhibits a positive growth
rate and, at the same time, the health capital exhibits a negative growth rate, while the signs
of the growth rates are the opposite if ht/kt < 1 − u; this establishes that the steady state is
globally stable.

There is, however, a caveat: as the steady state h∗/k∗ ≡ 1−u is defined by the ratio between
health and physical capital, any pair h∗, k∗ having ratio 1 − u defines a steady state, possibly
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corresponding to values of h∗ and k∗ very far apart. By the (opposite) monotonicity of the
transition dynamics of kt and ht defined by their growth rates in (12) and (13), we deduce that
each different steady state (h∗, k∗) depends on the initial conditions, (k0, h0). In other words,
only economies starting with high levels of both physical and health capital converge to steady
states envisaging high stationary values of physical and health capital. We may thus claim that
the deterministic version of our model under the assumption that the saving rate satisfies (10)
exhibits indeterminacy in the sense that there exist a continuum of stable steady states, each
dependent on the initial condition (k0, h0).

Finally, having in mind the introduction of random shocks to our dynamical system in the
next Subsection, it is interesting to study the dynamics (9) for values of the saving rate different
than that defined in (10). To this purpose it is useful to explicitly introduce the new variable
health to physical capital ratio:

χt =
ht

kt
. (14)

Using (14), system (9) can be reduced to a one-dimensional dynamic in the variable χt:

χt+1 =
ht+1

kt+1

=
(1− u)β kβ

t h
1−β
t

sθuαkα
t h

1−α
t

=
(1− u)β

sθuα

(

ht

kt

)λ

= Λχλ
t (15)

where

Λ =
(1− u)β

sθuα
and λ = α− β.

In the following we shall assume that α > β > 0 so to always have 0 < λ < 1, which, in turn,
implies that the one-dimensional dynamic defined by (15) has a unique globally stable steady
state defined by:

χ∗ = Λ
1

1−λ =
(1− u)

β

1−λ

(sθuα)
1

1−λ

=
(1− u)

β

1−α+β

(sθuα)
1

1−α+β

. (16)

The growth rates of k∗
t and h∗

t along the steady state χ∗ = h∗
t/k

∗
t defined in (16) turn out

to be the same:

γk
t =

k∗
t+1 − k∗

t

k∗
t

= sθuα

(

h∗
t

k∗
t

)1−α

− 1 = sθuα (χ∗)1−α − 1 = sθuα (1− u)
β(1−α)
1−α+β

(sθuα)
1−α

1−α+β

− 1

= (sθuα)
β

1−α+β (1− u)
β(1−α)
1−α+β − 1 (17)

γh
t =

h∗
t+1 − h∗

t

h∗
t

= (1− u)β
(

k∗
t

h∗
t

)β

− 1 = (1− u)β
(

1

χ∗

)β

− 1 = (1− u)β
(sθuα)

β

1−α+β

(1− u)
β2

1−α+β

− 1

= (sθuα)
β

1−α+β (1− u)
β(1−α)
1−α+β − 1, (18)

which is consistent with the property of balanced development in steady state, χ∗ = h∗
t/k

∗
t ,

that is both variables k∗
t and h∗

t must grow at the same rate over time. Specifically, if s > s̄ we
have:

s > s̄ =
1

θuα (1− u)1−α
⇐⇒ sθuα (1− u)1−α > 1 ⇐⇒ (sθuα)

β

1−α+β (1− u)
β(1−α)
1−α+β > 1,

which implies that both growth rates of k∗
t and h∗

t in (17) and (18) are positive, that is, when
s > s̄ system (9) describes an economy that asymptotically converges to a balanced growth path
in which both health and physical capital grow at the same positive constant rate. Conversely,
if s < s̄ both growth rates of k∗

t and h∗
t in (17) and (18) are negative and the economy

asymptotically converges to a balanced growth path that lead to extinction as t → ∞.
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3.2 Adding Random Shocks to Health Capital Production

We first assume that a shock, measured by a coefficient 0 < r < 1, affects health capital
production multiplicatively; that is, the second difference equation in (9) becomes

ht+1 = r [(1− u) kt]
β h1−β

t ,

while everything else remains the same. Under the assumption that the coefficient r is constant
over time it is straightforward to establish the following features along the same arguments
discussed in the previous Subsection 3.1.

1. The globally stable steady states, each depending on the initial conditions (k0, h0), are

defined as h∗/k∗ ≡ r
1
β (1− u) = (sθuα)−

1
1−α whenever the saving rate is defined by

s̄r =
1

θuαr
1−α
β (1− u)1−α

, (19)

provided that

θ >
1

uαr
1−α
β (1− u)1−α

. (20)

2. If the saving rate s is larger than the threshold value s̄r in (19) kt and ht asymptotically
converge to a balanced growth path exhibiting sustained growth.

3. If the saving rate s is smaller than the threshold value s̄r in (19) kt and ht asymptotically
converge to a balanced growth path eventually leading the economy to extinction.

As r
1
β (1− u) < 1−u, when the saving rate satisfies condition (19) all steady states (h∗, k∗)

envisage a health to physical capital ratio strictly smaller than those occurring without the
shock r and for the saving rate defined in (10); moreover s̄r > s̄. The dynamics of the health
to physical capital ratio variableχt = ht/kt now is defined as

χt+1 = rΛχλ
t

with unique globally stable steady state

χ∗
r = (rΛ)

1
1−λ =

[

r (1− u)β

sθuα

]
1

1−λ

=

[

r (1− u)β

sθuα

]
1

1−α+β

, (21)

which is clearly strictly smaller than the steady state χ∗ in (16) for the model without shock.
We are now ready to introduce the multiplicative shock affecting health capital produc-

tion randomly. The stochastic model’s dynamics are summarized by the following system of
difference equations:







kt+1 = s (ukt)
α h1−α

t

ht+1 = zt [(1− u) kt]
β h1−β

t

k0, h0 > 0 and z0 ∈ {r, 1} given.

(22)

The random shock {zt}
∞

t=0 is a Bernoulli process taking values 0 < r < 1 and 1 with probabilities
p (ht/kt) and 1− p (ht/kt), respectively. Therefore, at each time t, zt can take only two values
with state-dependent probabilities; specifically, the fact that probabilities depend on the health
to physical capital ratio implies that the realization of shocks is related to the past evolution
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of both types of capital, implying a path-dependency in the macroeconomic dynamics. In
particular, what matters in determining the probability of shocks is the relative abundance of
the two forms of capital which is a proxy for the level of economic development. As mentioned
earlier, economic development is balanced if the physical to health capital ratio remains constant
over time, while it is unbalanced when the ratio changes over time. The fact that the probability
of shocks depends on the physical to health capital ratio implies that unbalanced development
is the result of the realizations of random shocks. By recalling that random shocks represent the
effects of behavioral changes, our model suggests that the effectiveness of public activities aimed
to improve the overall health status in the economy changes with the level of development. For
example, more developed economies may be conductive to the diffusion of junk foods with
detrimental effects on health capital accumulation (i.e., p′ < 0), or conductive of safer sexual
behavior with beneficial effects on health capital accumulation (i.e., p′ > 0). It is not so clear
which of these cases is more realistic to consider, thus in the following we will not impose
a priori any restriction on the relation between p(·) and economic development, but we will
analyze how the results will change when p′ R 0.

The one-dimensional dynamic of the reduced model expressed by the health to physical
capital ratio variable χt = ht/kt, to which the probability p (ht/kt) actually depends, becomes:

χt+1 = Λztχ
λ
t (23)

with Λ = (1− u)β / (sθuα) and λ = α − β, satisfying α > β > 0 so to always have 0 < λ < 1.
The one-dimensional dynamics described by (23) is straightforward: it has an attractive set to

which the system is eventually being trapped defined as the interval [χ∗
r, χ

∗] =
[

(rΛ)
1

1−λ ,Λ
1

1−λ

]

,

whose endpoints are the globally stable steady states of the model with constant shock r
affecting health capital production defined in (21) and that without shock defined in (16). As
t → ∞ the variable χt jumps from one feasible value to another in the interval [χ∗

r, χ
∗] according

to a stochastic process governed by the state-dependent probabilities p (χt) and 1− p (χt) that,
as it will be shown in the sequel, eventually converges to an invariant measure whose support
may be the whole interval [χ∗

r, χ
∗] or some (fractal) subset of it.

However, recasting the original dynamics followed by the pair (kt, ht) is not simple: from
the previous discussion on the deterministic model counterparts—that without shocks and that
with a constant shock 0 < r < 1—we know that the pattern followed by such dynamics depends
on the relative value of the saving rate s with respect to the values of parameters θ, u, r and
α [see conditions (10) and (19)]. Specifically, assuming that condition (20)—which implies
condition (11)—holds and that 0 < p (χt) < 1, three scenarios may occur.

1. If s̄ ≤ s ≤ s̄r, that is, if

1

θuα (1− u)1−α
≤ s ≤

1

θuαr
1−α
β (1− u)1−α

,

when the time t shock realization is zt = 1 the system finds itself on a transition trajectory
that, if zt = 1 were to hold forever, would eventually approach a balanced growth path
characterized by sustained growth (or to some steady state defined by χ∗ = h∗/k∗ ≡ 1−u
if s = s̄). However, as 0 < p (χt) < 1, at some future date τ1 > t the realization zτ1 = r
must occur with probability 1; at such date the system jumps on a different type of
transition trajectory that, if zt = r were to hold forever, would eventually converge to
balanced growth path leading to extinction (or to some steady state defined by χ∗

r =

h∗/k∗ ≡ r
1
β (1− u) if s = s̄r). The economy, however, cannot vanish entirely [or converge

11



to the smaller steady state χ∗
r = r

1
β (1− u) if s = s̄r] as there is another future date τ2 > τ1

at which zτ2 = 1 again and the system reverses back to a new transition trajectory pushing
toward sustained growth (or toward the larger steady state χ∗ = 1− u if s = s̄) Because
all jumps from one regime to the other—sustained growth vs. decay—happen from ever
changing values of (kt, ht), depending on how many times the shock value zt remained
constant before, the system actually wander around in an unpredictable way.

2. If s > s̄r the system exhibits features that, at least qualitatively, are easier to classify, as in
this case both deterministic models—that without shocks and that with a constant shock
0 < r < 1—foresee convergence to paths characterized by sustained balanced growth.
The system actually jumps from transition trajectories converging to sustained balanced
growth at different constant rates depending on the shock realization zt, with a smaller
constant growth rate associated to the (constant) zt = r realization and a larger constant
growth rate associated to the (constant) zt = 1 realization.

3. Similarly, if s < s̄ both deterministic models—that without shocks and that with a con-
stant shock 0 < r < 1—foresee convergence to balanced paths characterized by constant
decay implying that the economy vanishes asymptotically regardless of the realization
of the Bernoulli process of shocks {zt}

∞

t=0. The latter process realization establishes a
path characterized by jumps between transition trajectories converging to balanced paths
defined by different rates of decay, the faster associated to the occurrence of zt = r
realizations and the slower associated to the occurrence of zt = 1 realizations.

3.3 The associated log-linearized dynamics

Let us focus on the simpler one-dimensional random dynamical system defined by (23): χt+1 =
Λztχ

λ
t . Recall that Λ = (1− u)β / (sθuα) and λ = α − β, with α > β > 0 so that 0 < λ <

1. Through an appropriate log-transformation it is possible to recast it into a topologically
equivalent one. Specifically, defining the new variable:

xt = −
1− λ

ln r
lnχt + 1 +

lnΛ

ln r
, (24)

the new random dynamic system becomes:

xt+1 = λxt + (1− λ)

(

1−
ln zt
ln r

)

,

which can be rewritten as follows:
{

xt+1 = λxt with probability p̃ (xt)
xt+1 = λxt + (1− λ) with probability 1− p̃ (xt) ,

(25)

where

p̃ (xt) ≡ p (χt) = p

(

ht

kt

)

= p
[

(rΛ)
1

1−λ

(

r−
1

1−λ

)xt
]

, (26)

which follows from (24) since

lnχt =
ln r + lnΛ

1− λ
−

ln r

1− λ
xt =

ln (rΛ)

1− λ
−

ln r

1− λ
xt = ln

[

(rΛ)
1

1−λ

]

+ ln
[(

r−
1

1−λ

)xt
]

= ln
[

(rΛ)
1

1−λ

(

r−
1

1−λ

)xt
]

,
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which, in turn, implies that

χt = (rΛ)
1

1−λ

(

r−
1

1−λ

)xt

.

From the results in Section 2.2 we know that the IFSSDP (25) defined on the spaceX = [0, 1]
converges to a unique invariant measure µ̄λ supported on the attractor Ā defined in Corollary
1 whenever inf {p̃ (x) : 0 ≤ x ≤ 1} > 0 and p̃ is Hölder continuous. Moreover, according to
Proposition 1, if λ < 1/2 the attractor Ā is a Cantor-like set and the invariant measure µ̄λ is
singular with respect to the Lebesgue measure.

In the rest of the paper we will focus on the IFSSDP given by (25), in which the maps are
linear. In the next section we develop a numerical method to approximate its invariant measure
and show the implications of state-dependent probabilities on the fractal steady state of our
stochastic growth model.

4 A Method to Approximate the Invariant Measure

In this section we focus on the affine IFSSDP {w1 (x) , w2 (x) , p (x)} defined by

{

w1 (x) = λx with prob. p (x)
w2 (x) = λx+ (1− λ) with prob. 1− p (x)

(27)

on X = [0, 1] where λ ∈ (0, 1/2] and p : [0, 1] → (0, 1) is a Hölder continuous function
representing the state-dependent probability p (xt−1) of moving from xt−1 ∈ [0, 1] to xt =
w1 (xt−1) = λxt−1 after the tth iteration of the IFSSDP, while 1 − p : [0, 1] → (0, 1) represents
the state-dependent probability 1 − p (xt−1) of moving from xt−1 ∈ [0, 1] to xt = w2 (xt−1) =
λxt−1+(1− λ) after the tth iteration of the IFSSDP. In other words, the function p (x) denotes
the probability of reaching the lowest of the two maps in (27), w1 (x), after one period when in
t− 1 the system is on x, while 1− p (x) denotes the probability of reaching the highest of the
two maps in (27), w2 (x), after one period when in t − 1 the system is on x. The assumption
that 0 < λ ≤ 1/2 implies that the IFSSDP is (almost) non overlapping, i.e., whenever λ < 1/2
the images of the maps w1, w2 do not overlap and the attractor of the system is a Cantor-like
set, that we will denote by λ-Cantor set, while when λ = 1/2 the images of the maps w1, w2

overlap only on the (zero Lebesgue measure) point 1/2 and the attractor of the system is the
full interval [0, 1].

Our aim is to provide an iterative algorithm capable of approximating the unique invariant
measure µ̄λ supported on the attractor of the IFSSDP (27). To this purpose we exploit the
very intuitive process defined by the Chaos game according to the random dynamics described
by (27). Let B [0, 1] be the σ-algebra of Borel measurable subsets of [0, 1] and P [0, 1] the space
of probability measures on B [0, 1]. Recall the following definitions of the Hutchinson and Foias
operators respectively, W : [0, 1] → [0, 1] and M : P [0, 1] → P [0, 1]:

W (A) = w1 (A) ∪ w2 (A) , for all A ⊆ [0, 1] , (28)

Mµ (B) =

∫

w−1
1 (B)

p (x) dµ (x) +

∫

w−1
2 (B)

[1− p (x)] dµ (x) , for all B ∈ B [0, 1] (29)

where wσ (A) denotes the image of the set A through wσ and w−1
σ (B) denotes the set

{x ∈ [0, 1] : wσ (x) ∈ B}, σ = 1, 2.
The algorithm starts from the uniform density on [0, 1], µ0 (x) ≡ 1 for a.e. x ∈ [0, 1], and

then applies iteratively the Foias operator in (29) to generate the tth marginal distribution of
the system supported over the tth pre-fractal generated by the Hutchinson operator in (28). To
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keep the algorithm simple and efficient we approximate each iteration of M , µt (·) = Mµt−1 (·),
by measuring the mass produced by M on each component (sub-interval) of the tth pre-fractal
and originating from the masses supported over each component of the pre-fractals generated
by the same iteration of W applied on the (t− 1)th pre-fractal. Specifically, we first generate all
components of the pre-fractal after the tth iteration of W starting from A0 = [0, 1] and then we
put a uniformly distributed mass on each component according to Mµt−1, where µt−1 is the set
of rectangular masses on the components of the pre-fractal obtained after the (t− 1)th iteration
of M , starting with the rectangle [0, 1]2 representing the uniform distribution µ0 (x) ≡ 1 over
A0 = [0, 1]. Indeed, the algorithm is based on the following two core procedures.

1. The following recursion produces the tth pre-fractal as union of the images of the maps
w1, w2 evaluated on the (t− 1)th pre-fractal according to

A0 = [0, 1]

A1 = w1 (A0) ∪ w2 (A0) = w1 ([0, 1]) ∪ w2 ([0, 1]) = [0, λ] ∪ [1− λ, 1]

A2 = w1 (A1) ∪ w2 (A1) = w1 ([0, λ] ∪ [1− λ, 1]) ∪ w2 ([0, λ] ∪ [1− λ, 1])

=
[

0, λ2
]

∪
[

λ− λ2, λ
]

∪
[

1− λ, 1− λ+ λ2
]

∪
[

1− λ2, 1
]

...

At = w1 (At−1) ∪ w2 (At−1)

=
[

0, λt
]

∪
[

λt−1 − λt, λt−1
]

∪ · · · ∪
[

1− λt−1, 1− λt−1 + λt
]

∪
[

1− λt, 1
]

. (30)

Each pre-fractal At is made up of 2t components (sub-intervals), each of size (Lebesgue
measure) λt; such components are disjoint (they do not overlap) whenever λ < 1/2, in
which case limt→∞At is the λ-Cantor set. Each component is thus an interval that we
will denote by [xt,i, xt,i+1] of length xt,i+1 − xt,i = λt, for i = 1, 3, 5, . . . , 2t+1 − 1. The

key step in each iteration is the split of each component of the (t− 1)th pre-fractal with
length λt−1, [xt−1,i, xt−1,i+1] into two smaller components of length λt in the tth pre-fractal,
corresponding to its two distinct images through the maps w1 and w2. As we keep track
of all components in each pre-fractal by their endpoints, xt,i, xt,i+1, the idea is to exploit
the recursion (30) so as to let the procedure generate four endpoints, xt,j, xt,j+i, xt,j+2,
xt,j+3, corresponding to two components of the tth pre-fractal, out of the originating
unique preimage [xt−1,i, xt−1,i+1] through one of the maps wσ, for σ = 1, 2, which is one

single component of the (t− 1)th pre-fractal. In other words, we generate the two new
components in the tth pre-fractal as the intervals [xt,j , xt,j+i] = [xt−1,i, xt−1,i + λt] and
[xt,j+2, xt,j+3] = [xt−1,i+1 − λt, xt−1,i+1], which is nothing else than the standard procedure
to generate the λ-Cantor set: to remove the middle interval from each component in the
(t− 1)th pre-fractal. Note that, besides the counter t, in this first part two indexes are
needed: i and j, the former increasing by 2 after each split of the (t− 1)th component
into the two tth components (the next left endpoint of the (t− 1)th component is i + 3)
and the latter increasing by 4 (the next first left endpoint of the third component born
after the tth iteration is j + 5).

2. While the generation of all components [xt,i, xt,i+1] in the tth pre-fractal is pursued sequen-
tially according to recursion (30), the building of the marginal probabilities (‘rectangular
masses’) supported on them is obtained by computing the two masses originating from
the same (t− 1)th rectangular mass supported on one single (t− 1)th component as they
are being transformed into new masses over the two intervals corresponding to the images
of each map w1 and w2. Thus, such newly born pairs of masses are put on intervals which
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are far apart: one in the first half of [0, 1], to which Im (w1) belongs, and the other in
the second half of [0, 1], to which Im (w2) belongs. Specifically, the rectangle denoting
the mass supported on each component [xt−1,i, xt−1,i+1] of the (t− 1)th pre-fractal is being
split into two masses, each supported on the two distinct components of the tth pre-fractal
corresponding to the image sets w1 ([xt−1,i, xt−1,i+1]) and w2 ([xt−1,i, xt−1,i+1]), according
to the weights defined by the fixed state-dependent probabilities p (y) and 1 − p (y) re-
spectively,1 both with y ∈ [xt−1,i, xt−1,i+1]. Let us denote by µt−1,i the (constant) mass
supported on the component [xt−1,i, xt−1,i+1]—that is, the area of the rectangle with base

[xt−1,i, xt−1,i+1]—in the (t− 1)th pre-fractal. Hence, in principle the Foias operator in (29)
would define the two masses µt,i and µt,2t−1+i, supported respectively on the components
w1 ([xt−1,i, xt−1,i+1]) and w2 ([xt−1,i, xt−1,i+1]) of the tth pre-fractal, as2

µt,i =

∫ xt−1,i+1

xt−1,i

p (y)µt−1,i dy = µt−1,i

∫ xt−1,i+1

xt−1,i

p (y) dy

µt,2t−1+i =

∫ xt−1,i+1

xt−1,i

[1− p (y)]µt−1,i dy = µt−1,i

∫ xt−1,i+1

xt−1,i

[1− p (y)] dy .

That is, as is apparent from the right hand sides above, µt,i and µt,2t−1+i are origi-
nated by the same (constant) mass µt−1,i, but are weighted according to the integrals
∫ xt−1,i+1

xt−1,i
p (y) dy and

∫ xt−1,i+1

xt−1,i
[1− p (y)] dy respectively. However, as the interval of in-

tegration, [xt−1,i, xt−1,i+1], has length λt−1 < 1 and the state-dependent probabilities
p (y) and 1 − p (y) sum up to 1 for any y ∈ [xt−1,i, xt−1,i+1], the two integral values
∫ xt−1,i+1

xt−1,i
p (y) dy and

∫ xt−1,i+1

xt−1,i
[1− p (y)] dy necessarily sum up to a number which is strictly

less than 1: it is the area of the rectangle [xt−1,i, xt−1,i+1]× [0, 1] = λt−1 < 1. This implies
that in the formulation above the sum of µt,i and µt,2t−1+i turns out to be strictly less
than the original mass µt−1,i, which is impossible as that whole mass must be transferred
on either w1 ([xt−1,i, xt−1,i+1]) or w2 ([xt−1,i, xt−1,i+1]) in the tth pre-fractal and a correction
factor of 1/λt−1 must be introduced in both expressions above, yielding the final formulas

µt,i =

∫ xt−1,i+1

xt−1,i
p (y)µt−1,i dy

λt−1
=

µt−1,i

λt−1

∫ xt−1,i+1

xt−1,i

p (y) dy

µt,2t−1+i =

∫ xt−1,i+1

xt−1,i
[1− p (y)]µt−1,i dy

λt−1
=

µt−1,i

λt−1

∫ xt−1,i+1

xt−1,i

[1− p (y)] dy .

Finally, the heights of the newly born rectangles with areas µt,i and µt,2t−1+i are computed
by dividing the numbers above by the length λt of the tth pre-fractal components: mt,i =
µt,i/λ

t and mt,2t−1+i = µt,2t−1+i/λ
t. In this second part again two indexes, i and j, are

needed, but now the former increases by 2 after each split of the µt−1,i mass into the
two newly born masses µt,i and µt,2t−1+i because it denotes the two endpoints of the
interval [xt−1,i, xt−1,i+1] on which the single original mass µt−1,i is supported, while the
latter increases only by 1 because it refers to the single mass µt−1,i.

The following algorithm summarizes the whole procedure.

1From now on we will denote by y the argument of the place-dependent probabilities to avoid confusion with
the endpoints xt−1,i and xt−1,i+1 of the pre-fractal components, which in the sequel will assume the role of
extrema of integration.

2Note that, as we deal with masses represented by rectangles, we implicitly assume that the probability
measure supported on each pre-fractal component is represented by a (constant) density, which allows for the
Riemann definite integrations.
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Algorithm 1 (Approximates marginal distributions for the IFSP (27)).

Step 1 (Initialization): Set the number n of iterations, the contraction factor 0 < λ ≤ 1/2
and the functional form for the state dependent probability 0 < p (y) < 1 for y ∈ [0, 1].
Moreover set the initial endpoints x0,1 = 0 and x0,2 = 1 of the t = 0 interval (pre-fractal)
A0 = [0, 1], and the initial (uniform) mass on it, µ0,1 = 1.

Step 2 (Generate pre-fractals and ‘rectangle masses’): For t from 1 to n do:

1. set i = 1 and j = 1,

2. while i ≤ 2t and j ≤ 2t+1 do:

(a) (define endpoints of tth pre-fractal components) set xt,j = xt−1,i,
xt,j+1 = xt−1,i + λt, xt,j+2 = xt−1,i+1 − λt, xt,j+3 = xt−1,i+1,

(b) (update indexes i and j and move to the next component on the (t− 1)th pre-
fractal) set i = i+ 2, j = j + 4;

3. reset i = 1 and j = 1,

4. while i ≤ 2t−1 and j ≤ 2t do:

(a) (split the mass µt−1,i on each component of the (t− 1)th pre-fractal into masses
on w1 ([xt−1,i, xt−1,i+1]) and w2 ([xt−1,i, xt−1,i+1]) of the tth pre-fractal) set
µt,i = (µt−1,i/λ

t−1)
∫ xt−1,j+1

xt−1,j
p (y) dy, µt,2t−1+i = (µt−1,i/λ

t−1)
∫ xt−1,j+1

xt−1,j
[1− p (y)] dy,

mt,i = µt,i/λ
t, mt,2t−1+i = µt,2t−1+i/λ

t,

(b) (update indexes i and j and move to the next mass on the (t− 1)th pre-fractal)
set i = i+ 1, j = j + 2.

Step 3 (Produce and plot the approximation of the nth marginal distribution):

1. Set i = 1, j = 1 and set (null vector of rectangles) X = [ ],

2. while i ≤ 2n−1 and j ≤ 2n do:

(a) (generate a vector of rectangles each representing the mass on each component
of the nth pre-fractal) add the rectangle [xn,i, xn,i+1]× [0,mn,j ] to the vector X,

(b) (update indexes i and j and move to the next rectangle on the nth pre-fractal)
set i = i+ 2, j = j + 1;

3. plot the vector X containing the rectangles just generated.

5 Applying Algorithm 1 to our Stochastic Growth Model

To be precise, Algorithm 1 uses the probabilities of the ‘linearization’ x of the reduced variable
χ = h/k according to the log-linear transformation (24), that is, those labelled as p̃ (x) in (26),
rather than the original probability function p (χ) associated to the reduced variable χ = h/k.
In the following examples we shall consider monotone state-dependent probabilities for the linear
IFSSDP (27), that, consistent with the notation adopted in Algorithm 1, will be denoted by
p̃ (y) rather than by p̃ (x), as the xt,is denote endpoints of the tth pre-fractal components.
Under the assumptions that inf {p̃ (y) : 0 ≤ y ≤ 1} > 0 and p̃ is Hölder continuous the results
in Section 2.2 guarantee that the IFSSDP (27) defined on the space X = [0, 1] converges to
a unique invariant measure µ̄λ supported on the attractor Ā defined in Corollary 1. We shall
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further assume that λ < 1/2, so that, according to Proposition 1, the attractor Ā is a Cantor-
like set and the invariant measure µ̄λ is singular with respect to the Lebesgue measure. Using
the probability transformation in (26) we can easily recover the state-dependent probability
governing the original nonlinear reduced variable χ = h/k as:

p (χ) = p̃ (y) = p̃

(

−
1− λ

ln r
lnχ+ 1 +

lnΛ

ln r

)

, (31)

where in the second equality we used (24). Note that probability p (χ) is defined on the same

space as that of the nonlinear system (23), that is, the interval
[

(rΛ)
1

1−λ ,Λ
1

1−λ

]

, whose end-

points are the two nontrivial fixed points of the maps w1 (χ) = rΛχλ and w2 (χ) = Λχλ respec-

tively. Moreover, inf
{

p (χ) : (rΛ)
1

1−λ ≤ χ ≤ Λ
1

1−λ

}

> 0, sup
{

p (χ) : (rΛ)
1

1−λ ≤ χ ≤ Λ
1

1−λ

}

< 1

and p is Hölder continuous because the argument y of p̃ in the RHS of (31) is a continuous,

strictly increasing function of χ (as− ln r > 0), being 0 when χ = (rΛ)
1

1−λ and 1 when χ = Λ
1

1−λ .
Therefore, the random dynamical system χt+1 = Λztχ

λ
t defined in (23) is an homeomorphism

conjugate to the linear system (25)—or, equivalently (27)—and thus itself converges to a unique
singular invariant measure supported on a distorted Cantor-like set contained in the interval
[

(rΛ)
1

1−λ ,Λ
1

1−λ

]

.

In order to shed some light on how the invariant measure may look like, and on how it is
affected by different state-dependent probabilities p̃ (y), in the sequel we run Algorithm 1 for
some examples of p̃ (y). We consider the following values for some of the parameters:

θ = 12, α = 0.67, β = 0.18, r = u = 0.5. (32)

All values above envisage a sufficiently large θ [see condition (20)] and allow for a range [s̄, s̄r]
for the saving rate s that permits to consider both the first and second scenarios at the end of
Subsection 3.2, that is, wandering randomly between one dynamic pushing toward sustained
growth and one leading to asymptotic extinction, and randomly jumping between two tra-
jectories both converging to balanced growth paths characterized by sustained growth but at
different growth rates. Specifically, according to (10) and (19) the values of the bounds s̄ and
s̄r become:

s̄ =
1

θuα (1− u)1−α
= 0.1333 and s̄r =

1

θuαr
1−α
β (1− u)1−α

= 0.4751,

so that, for example, when s = 0.3 the system is randomly being stretched between dynamics
asymptotically converging either to null or to sustained balanced growth, while if s = 0.6 the
system grows in time, although at (positive) growth rates that change as time elapses.

The values for α and β imply that λ = α− β = 0.49, just below 1/2, which means that the
linear IFSSDP (27) converges to a unique singular invariant measure supported over a Cantor
set that almost fills the whole interval [0, 1]. Such an assumption is justified by our interest
in thoroughly investigating the role of state-dependent probabilities: having pre-fractals that
almost cover [0, 1] in Algorithm 1 means that the state-dependent probabilities affect the system
on most points in their domain; in other words, their shape gives an important contribution
in determining the invariant measure µ̄λ. For such parameters’ values the trapping region of

the corresponding nonlinear system (23) becomes the interval [χ∗
r, χ

∗] =
[

(rΛ)
1

1−λ ,Λ
1

1−λ

]

=

[0.0067, 0.0262].
In the following examples we shall just assume that λ = 0.49, so that the economy described

by the parameters’ values in (32) belongs to the family of economies for which we aim at
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approximating their invariant measure. Note, however, that, as Algorithm 1 requires only the
parameter λ = α − β to work, our simulations turn out to be independent of all parameters’
values in (32) except of the difference α− β, moreover, they are also independent of the saving
rate; specifically, any value of saving rate 0 < s < 1 can be associated to our simulations,
including values s < s̄ = 0.1333 envisaging dynamics all leading to extinction, although at
different rates through time.

Figure 1 illustrates the working of Algorithm 1 by showing its first n = 9 iterations performed
by Maple for the state-dependent probability defined by p̃ (y) = 0.98y+0.01, satisfying p̃ (y) > 0
and 1− p̃ (y) > 0 for all y ∈ [0, 1], which is increasing and affine. Such a probability represents
a “smoothing” process that tends to concentrate the weight of the random variable xt of the
IFSSDP (25) on the fractal components that lie in the middle of the interval [0, 1]. Specifically,
it puts a smaller probability on the lower map w1—so that the probability of the higher map
w2 is larger—when xt is small, thus favoring higher values for xt+1 when xt approaches the
left endpoint of [0, 1], while it puts a higher probability on the lower map w1—so that the
probability of the higher map w2 is lower—when xt is closer to 1, thus favoring lower values
for xt+1 when xt approaches the right endpoint of [0, 1]. As confirmed by the plots in the
figure, such system concentrates most of the mass in the middle of the interval [0, 1], although
such mass is very irregularly distributed because the invariant measure is singular. Note that
already after the 5th iteration in Figure 1(e) the approximation of the marginal distribution µ5

assumes qualitative traits that are maintained in the subsequent iterations; this implies that
our algorithm exhibits the main characteristic traits that must feature in the limit invariant
measure µ̄λ, at least qualitatively.

Figure 2 shows the first n = 9 iterations of Algorithm 1 performed by Maple for the state-
dependent probability defined by p̃ (y) = 0.99− 0.98y, satisfying p̃ (y) > 0 and 1− p̃ (y) > 0 for
all y ∈ [0, 1], which is again affine but now is decreasing. Contrary to the previous example,
such probability represents a conservative process that polarizes the system by concentrating
the weight of the random variable xt close to the endpoints 0 and 1. Specifically, it puts a larger
probability on the lower map w—so that the probability of the higher map w2 is smaller—when
xt is small, while it puts a smaller probability on the lower map w1—so that the probability of
the higher map w2 is larger—when xt is closer to 1. As confirmed by the plots in the figure,
such a system increases inequality through time, concentrating most of the mass—but not all,
as p̃ (y) > 0 and 1− p̃ (y) > 0—on the endpoints of the interval [0, 1].

Figure 3 reports only the 9th iteration of Algorithm 1 implemented by Maple for four non-
linear variants of the previous two state-dependent probabilities. Specifically, in Figure 3(a) we
use p̃ (y) = 0.98y4 + 0.01, which is increasing and convex, concentrating most of the weight on
the higher map w2, thus favoring higher values for xt+1, when xt take values up to around 0.75,
while concentrating most of the weight on the lower map w1, thus favoring lower values for xt+1,
when xt take values closer to 1. The figure shows a measure that somewhat resembles the traits
of the measure in Figure 1(i), only concentrating more mass on the right part of the interval
[0, 1]; that is, consistent with the increasing monotonicity of p̃, this system tends to put most of
the mass on points which are interior to [0, 1], the convexity of p̃ implying a larger mass to the
right. A similar picture is provided by Figure 3(b), where p̃ (y) = 0.99− 0.98 (y − 1)4 has been
used, which is increasing and concave, concentrating most of the weight on the lower map w1,
thus favoring lower values for xt+1, when xt take values larger than 0.25, while concentrating
most of the weight on the higher map w2, thus favoring lower values for xt+1, when xt take
values closer to 0. Again the figure shows a measure that somewhat resembles the traits of the
measure in Figure 1(i), only concentrating more mass on the left part of the interval [0, 1]; that
is, consistent with the increasing monotonicity of p̃, this system tends to put most of the mass
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Figure 1: First 9 iterations of Algorithm 1 for λ = 0.49 and p̃ (y) = 0.98y + 0.01.

on points which are interior to [0, 1], the concavity of p̃ implying a larger mass to the left.
If a decreasing, convex state-dependent probability is used instead, like p̃ (y) = 0.98 (y − 1)4+

0.01 that concentrates most of the weight on the higher map w2, thus favoring higher values
for xt+1, when xt take values larger than 0.25, while concentrating most of the weight on the
lower map w1, thus favoring lower values for xt+1, when xt take values closer to 0, the measure
ends up concentrating most of the mass close to the right endpoint 1, as it is apparent from
Figure 3(c); it somewhat resembles the traits of the measure in Figure 2(i), only concentrating
mass almost exclusively around 1; that is, consistent with the decreasing monotonicity of p̃,
this system tends to put most of the mass close to the endpoints 0 and 1 of [0, 1], the convexity
of p̃ implying a larger mass to the right. Conversely, if a decreasing, concave state-dependent
probability is used instead, like p̃ (y) = 0.99 − 0.98y4 that concentrates most of the weight on
the lower map w1, thus favoring higher values for xt+1, when xt take values up to around 0.75,
while concentrating most of the weight on the higher map w2, thus favoring higher values for
xt+1, when xt take values closer to 1, the measure ends up concentrating most of the mass close
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Figure 2: First 9 iterations of Algorithm 1 for λ = 0.49 and p̃ (y) = 0.99− 0.98y.

to the left endpoint 1, as shown in Figure 3(d); again the traits of the measure in Figure 2(i) are
maintained, only concentrating mass almost exclusively around 0; that is, consistent with the
decreasing monotonicity of p̃, this system tends to put most of the mass close to the endpoints
0 and 1 of [0, 1], the concavity of p̃ implying a larger mass to the left.

Finally, in Figure 4 we tentatively attempt two comparisons between constant probabili-
ties at p̃ and 1 − p̃ values and the simplest state-dependent counterparts defined as piecewise
constant/affine functions: Figures 4(a) and 4(b) report the 9th iteration of Algorithm 1 imple-
mented by Maple for constant probabilities p̃ ≡ 0.333 and p̃ ≡ 0.667 respectively, while Figures
4(c) and 4(d) report the 9th iteration of Algorithm 1 implemented by Maple for the piecewise
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Figure 3: 9th iteration of Algorithm 1 for λ = 0.49 and a) p̃ (y) = 0.98y4 + 0.01, b)
p̃ (y) = 0.99− 0.98 (y − 1)4, c) p̃ (y) = 0.98 (y − 1)4 + 0.01, d) p̃ (y) = 0.99− 0.98y4 + 0.01.

probabilities defined as

p̃ (y) =







0.333 for 0 ≤ y < 0.49
16.7y − 7.85 for 0.49 ≤ y < 0.51
0.667 for 0.51 ≤ y ≤ 1

and (33)

p̃ (y) =







0.667 for 0 ≤ y < 0.49
8.85− 16.7y for 0.49 ≤ y < 0.51
0.333 for 0.51 ≤ y ≤ 1

(34)

respectively. The latter probabilities in (33) and (34) are continuous and constant on the two
components of the first pre-fractal, i.e. on the intervals [0, 0.49] and [0.51, 1], while they are
affine and steeply sloped—the former increasing and the latter decreasing—on the open interval
(0.49, 0.51), which turns out to be irrelevant for the iterations of Algorithm 1 as it contains
only points that will never appear in the chaos game. They are both Hölder continuous, so
that existence and uniqueness of the invariant measure µ̄λ is assured. Figures 4(a) and 4(b)
show the well-known features of two singular measures that concentrate more mass on the right
part and in the left part of [0, 1] respectively. Conversely, Figures 4(c) and 4(d) again exhibit a
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feature already encountered in the previous plots: depending on whether p̃ (y) is increasing or
decreasing (weakly in this case) the mass is being concentrated toward the inner part of [0, 1]
in the former case while it is being concentrated toward the endpoints of [0, 1] in the latter
case; that is, increasing probabilities have a “smoothing” effect cutting out the edges while
decreasing probabilities increase the polarization of the system. In this peculiar scenario both
also happen to transform the unbalanced measures in Figures 4(a) and 4(b), which are skewed
to the right and to the left respectively, into perfectly symmetric measures.
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Figure 4: 9th iteration of Algorithm 1 for λ = 0.49 and a) p̃ ≡ 0.333, b) p̃ ≡ 0.667, c) p̃ defined as a
piecewise function in (33), d) p̃ defined as a piecewise function in (34).

The above analysis allows us to derives some interesting conclusions. First, allowing prob-
abilities to be state dependent increases the number of possible outcomes. Second, assuming
simplistically that probabilities are constant does not necessarily provide us with an even rough
approximation of the outcome under state dependent probabilities. These results suggest that
formally taking into account the state-dependency of probabilities is important not only to
develop a more realistic framework to characterize economic outcomes, but also to understand
which outcomes may effectively occur.
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6 Conclusion

Several studies discuss how the degree of vulnerability to shocks changes from one economy to
the next according to their specific individual characteristics, suggesting the existence of path-
dependency in the process of economic development. In order to analyze path-dependency in
macroeconomic dynamics, we analyze a two-sector discrete time stochastic growth model driven
by physical and health capital accumulation in which shock probabilities are state-dependent.
State-dependent probabilities represent an interesting generalization of classical constant prob-
abilities both from a mathematical and an economic point of view, since they allow to enrich
the set of possible model’s outcomes and to describe more realistically economic dynamics.
We show that our model’s dynamics can be converted into an iterated function system with
state-dependent probabilities, which converges to an invariant self-similar measure supported
on a (possibly fractal) compact attractor. We develop a numerical method to approximate the
invariant measure of our iterated function system with state-dependent probabilities to illus-
trate the implications of such state-dependent probabilities on the steady state of our stochastic
growth model, and we show that the model’s long run outcome under state-dependent and con-
stant probabilities may be very different, suggesting that neglecting the state-dependence of
probabilities may lead to misleading conclusions about long run macroeconomic outcomes.

To the best of our knowledge this is the first paper introducing state-dependent probabilities
in economics. To exemplify the variety of possible outcomes that state-dependent probabilities
can lead to, we focus on a very stylized purely dynamic model, completely abstracting from
agents’ optimization. Introducing agents’ optimization adds a further layer of complexity to
the analysis since rational agents, by realizing that their decisions affect state variables and
thus probabilities, account for the eventual time evolution of probabilities in the determination
of their best choices. Analyzing the extent to which agents’ optimization in a framework with
state dependent probabilities differs from a traditional setting with constant probabilities is left
for future research.
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