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Detection and characterization of oil palm plantations through MODIS 14 

EVI time series 15 

Oil palm is a perennial tree that well fits the humid tropical climate; fresh fruit 16 

bunches (FFB) are the palm raw fruit for oil mills. Palm oil is the world highest 17 

yielding oil crop determining that palms are extensively planted in South-East 18 

Asia, especially in Malaysia, Thailand, and Indonesia where plantations have 19 

been spreading in response of the increasing market demand. Cultivation of oil 20 

palm in tropical countries is an important economic factor, but, it has already 21 

proved of endangering biodiversity and degrading environment with a global 22 

impact related to forest loss. Remote sensing well fits requirements of precision 23 

farming that many stakeholders involved in palm oil production are currently 24 

approaching to decrease or monitor environmental impacts. In this work, an EVI 25 

(Enhanced Vegetation Index) time series of 415 images was obtained from the 26 

MODIS Vegetation Index 16 days composite product (MOD13Q1-v5) to explore 27 

tropical vegetation changes.  The EVI time series covers a period of 18 years; it 28 

was processed aiming at mapping new oil palm plantations in the reference 29 

period, giving an estimate of their age, production and economic value. In this 30 

work, a new methodology for oil palm detection and characterization was 31 

presented based on local EVI temporal profile analysis. Pixel EVI temporal 32 

profile proved to be effective in describing both vegetation macro-phenology and 33 

forest loss at that position. Consequently, the proposed algorithm looks for abrupt 34 

changes along the local EVI time series (sudden decreasing). The minimum EVI 35 

value recorded in the detected changing period is assumed as predictor of the 36 

starting date of new plantations, being the latter reasonably related to forest loss 37 

and preliminary soil preparation. Starting date is then used by algorithm to 38 

estimate oil palm age and, consequently, the present local (potential) production. 39 



Accuracy assessment showed an overall accuracy in new palm oil plantations 40 

detection of about 94%. Starting age estimation proved to be accurate enough: 41 

76% of estimates, in fact, were placed in a range of uncertainty of 1 year. 42 

Keywords: Oil Palm, MODIS, EVI, Time Series Analysis, Plantation Age, Palm 43 

production, FFB, Palm Detection, Borneo. 44 

 45 

1. Introduction  46 

Palm oil is the world highest yielding oil crop. The consumption of palm oil over the 47 

world is growing through the years: 55 Million tons in 2012-2013, over 60 Million tons 48 

in 2015-2016 (Chong 2017). According to FAO (FAO 2018), presently, the two largest 49 

palm oil producing countries are Indonesia and Malaysia. Elaeis guineensis Jacq. is a 50 

palm species of the Arecaceae’s family commonly called Oil palm; it is planted 51 

extensively in South-East Asia, especially in Malaysia, Thailand, and Indonesia. In 52 

Indonesia plantations showed an increasing linear trend that brought the 4 million 53 

hectares in 2000 up to 11 million hectares in 2015 (Chong 2017).  Oil palm is a 54 

perennial tree that well fits the humid tropical climate (high precipitation rate, high solar 55 

radiation and warm temperature between 24–32 °C (Corley and Tinker 2008). Oil palm 56 

plantations, generally, have a triangular pattern (9 m row spacing), to optimize sunlight 57 

penetration (Basiron 2007). The majority of planted oil palms are a small mixture of 58 

hybrid clones, i.e. Dura x Pisifera, (Chong 2017), resulting in a uniform pattern at the 59 

ground; this makes oil palms different from other trees or forest in satellite imagery 60 

(Shafri et al. 2011). Cultivation of oil palm in tropical countries is an important 61 

economic factor, but, it greatly endangers biodiversity and degrades the environment 62 

with a global impact (Koh and Wilcove 2008). In these regions, in fact, the last world 63 



tropical forests are present (Iremonger et al. 1997), containing numerous endemic or 64 

rare species, many of which are restricted to forest habitats (Mittermeier et al. 2004; 65 

Sodhi et al. 2004; Koh 2007). Over-logged forests are often considered as degraded 66 

habitats by governments, just waiting for conversion to agriculture. This fact, has 67 

encouraged the transformation of secondary (logged) forests to oil palm plantations in 68 

Malaysia and Indonesia (McMorrow and Talip 2001).  From this point of view remote 69 

sensing can support a more efficient plantation strategy that takes into account 70 

environmental/ecological instances. Moreover, plantations monitoring by remote 71 

sensing well fits requirements of precision farming that many stakeholders are currently 72 

approaching to decrease environmental impacts of their practices. Private owners and 73 

local farmers are, in fact, interested in assessing crop conditions along its growing 74 

season; differently, governmental institutions and environmental associations long for 75 

the possibility of continuously monitoring the state of the national natural/crop capital. 76 

Among the available remotely sensed data, the NASA’s sensors MODerate resolution 77 

Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites have been 78 

widely used in a variety of studies (Testa et al. 2018; Colombo et al. 2011; Hmimina et 79 

al. 2013; Soudani et al. 2008; Zhang et al. 2003). Thanks to the two twin MODIS 80 

instruments, MODIS data are acquired globally averagely twice per day per instrument 81 

at the spatial resolutions of 250 m, 500 m and 1 km at nadir, depending on the 82 

considered spectral band. MODIS imagery is distributed at various pre-processing 83 

levels and, with respect to the temporal resolution, data are released as both daily and 84 

composites products, the latter generated at different compositing steps (8-day, 16-day, 85 

monthly). Composite data have some advantages in respect of daily data, since the 86 

compositing process strongly reduces cloud, snow and sensor noise effects (Solano et al. 87 

2010). In this work a time series of EVI (Enhanced Vegetation Index, Huete et al. 1999) 88 



maps, covering the period 2000–2018, was generated from the MODIS Vegetation 89 

Index products (MOD13Q1-v5) with the aim of automatically detecting new oil palm 90 

plantations and possibly giving an estimate of their age, production and economic value. 91 

EVI spectral index has proved to be more effective in mapping vegetation in those 92 

situations where atmospheric scattering and vegetation vigor are high, and background 93 

contribution to signal is not negligible (Hufkens et al. 2012; Xiao et al. 2003). These are 94 

exactly the conditions that can be found in the Borneo area, therefore suggesting the 95 

adoption of EVI in place of the ordinary NDVI (Normalized Difference Vegetation 96 

Index). It is worth to remind at this point, in this work authors, while mapping oil palm 97 

plantations, voluntarily did not refer to any of locally available data to test accuracy of 98 

deductions. One of requirements of this work was, in fact, to “objectively” map 99 

plantations in spite of any official existing data. This was mandatory since the method 100 

was intended to define a procedure to control the reliability of farmers/company 101 

communications about the size and position of their plantations to National Institutions. 102 

Consequently, only external data and self-conducted photointerpretations from available 103 

high resolution satellite images were taken into account to test accuracy of deductions.  104 

2.  Materials and Methods  105 

2.1 Study Area 106 

The study area is located in the South of Kalimantan Tengah (Central Kalimantan), a 107 

province of Indonesia belonging to the Borneo island (2°53'57.58"S - 112°22'6.47"E , 108 

WGS-84 reference frame). It was selected as representative of a wider area having 109 

similar features, based on landscape markers criteria (rivers, coast, etc.), resulting in 110 

about 2.95 million hectares (Fig. 1). According to Köppen classification, local climate is 111 

considered tropical rainforest. It is dominated by low-pressure system all over the year 112 



generating no thermal and moisture seasonality. According to USDA (United States 113 

Department of Agriculture) Soil Taxonomy, local soil is mainly labelled as Oxisol with 114 

a high aluminium and low phosphate content that could hinder plant growth. 115 

Morphology is generally flat without significant reliefs, even if some local microsites 116 

conditions could affect vegetative vigour of plantation. Nevertheless, edaphic conditions 117 

of area can be retained constant at the small scale. 118 

[Figure 1] 119 

2.2  Available Data 120 

An EVI (Enhanced Vegetation Index) image time series (hereinafter called ETS), 121 

composed of 415 images covering the period 18/02/2000 - 18/02/2018, was generated 122 

from the MOD13Q1-v5 dataset available from the NASA LPDAAC collection (Solano 123 

et al. 2010). According to Huete (1999) EVI is a vegetation index designed to enhance 124 

vegetation signal in high biomass regions (like equatorial rainforest) improving 125 

monitoring through a de-coupling of the background signal and a reduction of the 126 

atmosphere influence. EVI is computed according to Equation (1): 127 

𝐸𝑉𝐼 =
𝐺  (𝜌𝑁𝐼𝑅 − 𝜌𝑅𝐸𝐷)

(𝜌𝑁𝐼𝑅 + 𝐶1 𝜌𝑅𝐸𝐷 − 𝐶2 𝜌𝐵𝐿𝑈𝐸 + 𝐿)
                                                                             (1)  128 

where ρ are at-the-ground reflectances, L is the canopy background adjustment that 129 

addresses nonlinear, differential NIR and red radiant transfer through a canopy, and C1, 130 

C2 are the coefficients of the aerosol resistance term, which uses the blue band to 131 

correct aerosol influences in the red band. The coefficients adopted in the EVI 132 

algorithm are, L = 1, C1 = 6, C2 = 7.5, and G (gain factor) = 2.5.  As reference data to 133 

validate results from ETS processing, the Global Forest Change (GFC) 2000-2016 134 

dataset-v1.4 (Hansen et al. 2013) was obtained from the 135 



Hansen/UMD/Google/USGS/NASA system in raster format. GFC is divided into 10 x 136 

10 degree tiles, consisting of seven files per tile. All files are unsigned 8-bit having a 137 

spatial resolution of 1 arc-second per pixel (approximately 30 meters per pixel at the 138 

equator). Year of gross forest cover loss event grid (lossyear, hereinafter called GFC-139 

YL) is defined as a disaggregation of total forest loss to annual time scales. In this 140 

dataset, zero values mean “no forest loss”, values in the range 1–16 (2000-2016) 141 

indicate the year when a forest loss detection occurred. For this work, starting from 142 

native GFC-YL, a new forest cover loss 2000–2016 (hereinafter called GFC-L) layer 143 

was generated representing forest losses in the period 2000–2016, defined as both stand-144 

replacement disturbance, or changes from a forest to non-forest state. In GFC-L pixels 145 

where forest loss was detected are coded as 1, while the others were set to 0.  Both the 146 

GCF raster layers were preventively projected into the WGS84 UTM 49 S reference 147 

system, setting a Ground Sampling Distance (GSD) of 250 m. Image processing for oil 148 

palm plantations detection was achieved by a self-developed routine implemented in 149 

IDL 8.0 programming language. Results and intermediate steps were managed by free 150 

GIS software (QGIS 2.18.4 and Saga GIS 6.2). 151 

2.3 Mapping new oil palm plantations 152 

A new methodology for oil palm detection and characterization was developed and 153 

implemented based on temporal profile analysis of each ETS pixel. EVI temporal 154 

profile proved to be effective in describing dynamics of vegetation cover with particular 155 

concern on its macro-phenology. The detection algorithm analyzes local ETS profile 156 

looking for an abrupt change in EVI values (sudden decreasing) along the considered 157 

period (18 years). Candidate pixels, possibly representing new oil palm plantations, 158 

were detected with reference to the 1
st
 order polynomial (eq. 2) approximating EVI 159 

local time profile in the whole reference period; the estimated gain value of the 160 



computed regression line was assumed as predictor of new oil palm plantations and 161 

saved in a new image layer, hereinafter called G(x,y).  162 

 163 

𝐸𝑉𝐼(𝐷𝑂𝑌) = 𝐺(𝑥, 𝑦) ∙ 𝐷𝑂𝑌 + 𝑂(𝑥, 𝑦)           (2) 164 

 165 

where DOY is the generic Day of the Year, G(x,y) and O(x,y) the estimated gain and 166 

offset values at that position in the image (ETS). 167 

Theoretical assumption was that, in tropical areas, new oil palm plantations show a gain 168 

higher than natural vegetation, being the EVI values of the new cover significantly 169 

higher than the one ordinarily expressed by natural vegetation. The ideal EVI temporal 170 

profile of pixels interested by new plantations shows three periods of interest (Fig. 2). 171 

[Figure 2] 172 

In the first period (A), previously existing forest cover (natural or semi-natural 173 

vegetation like forest or secondary logged forest) is still present. In phase B, a sudden 174 

EVI decreasing indicates that a land cover change is taking place, probably related to 175 

the combined effect of pre-existing vegetation cut and consequent soil preparation 176 

activities, preceding palm seedlings planting. The point when the minimum value of the 177 

local ETS profile could be found, was assumed as the new plantation starting moment 178 

(see forward on and Fig. 2). The C phase is the one when new planted palms begin to 179 

improve their biomass and grow, determining a progressive increase of EVI values. The 180 

final (mature) stage of palm growing corresponds to a new higher plateau in ETS. This 181 

determines that, in this condition, the overall regression line shows higher and positive 182 

gain values than those that a persisting forest cover would have showed. In general, can 183 

be observed that when natural vegetation is constantly present, yearly EVI trend is 184 

slightly varying with no remarkable profile steep trait, determining gain values of 185 



regression line close to zero. Differently, if a new plantation occurs, EVI temporal 186 

profiles suddenly decreases at the moment of forest cut, but, after a transitional period, 187 

it reaches a new state of vigor corresponding to higher EVI values. The above 188 

mentioned succession well fits the ordinary practice for oil palm plantations, that mainly 189 

follows 3 steps (Carlson 2012): I) Forest or previous vegetation cutting; II) area burning 190 

(fires are considered to be a cheap and effective method to clear and maintain land for 191 

agricultural and plantation development (Marlier 2015); III) soil preparation and new 192 

seedlings planting. The abrupt EVI value decreasing that occurs when natural 193 

vegetation is cut, the consequent oil palm planting and growing determines a significant 194 

increasing of line gain, in general higher than 2.0. This reference value was found 195 

exploring the behaviour of 200 control points (CPs) testing in the area locations with 196 

and without oil palms. CPs were obtained by photointerpretation of 2 available Sentinel-197 

2 RGB true color composites (R: band 4, G: band 3; B: band 2) from the T49MFS and 198 

T49MFT tiles, respectively acquired on 2018/02/08 and 2018/02/13; 100 CPs were 199 

placed in evident OP areas and 100 in NOP ones (Fig. 3). The local value of G(x,y) was 200 

therefore extracted for each CP, determining two groups (OP and NOP) of G values. To 201 

test their a-priori separability a Jeffries-Matusita test (Richards and Richards, 1999) was 202 

achieved.  To select a proper threshold for G, the mean (µ) and the standard deviation 203 

(σ) values of G were computed for NOP points.  204 

[Figure 3] 205 

To map ETS pixels that potentially suffered from changes from natural vegetation to oil 206 

palm in the reference period, G(x,y) was thresholded to separate potential oil palm (OP, 207 

G(x,y) ≥ 2.0) pixels from the others (NOP, G(x,y) < 2.0), obtaining a rough map of 208 

potential new oil palm plantations (Fig. 6a and 6b) with the following codes: 1= Oil 209 

Palm (OP), 0 = Not-OP (NOP). Raster classification was vectorised and refined deleting 210 



(by ordinary GIS vector map editing tools) all those polygons smaller than 100 ha, 211 

being declared plantation average size in general higher of this value, typically 212 

following a rectangular pattern of 1000 m x 300 m (Fig. 4). 213 

[Figure 4 in the text, on the left] 214 

2.4 Estimating Starting Date and Age of Plantations 215 

The age of oil palm plantation is an important parameter for crop management: it is a 216 

good predictor of yearly yield and conditions the quality and quantity of the fresh fruit 217 

bunches (FFB). According to the above mentioned classification, ETS profile of all the 218 

OP pixel were analyzed at year level looking for the moment of the vegetation loss 219 

preceding oil palms plantation. The minimum EVI value along the local ETS was 220 

assumed as predictor for new plantations starting date. Unfortunately, many outliers 221 

along ETS made not possible to operate on the raw ETS, making desirable a preliminary 222 

ETS filtering aimed at minimizing effects of local EVI anomalous variations (Fig. 7).  223 

Filtering was achieved by a “customized” low pass filter having a kernel size of 15 224 

observations (7 preceding and 7 following the central one) running along ETS. The size 225 

of the kernel was set according to the expected detectable phenology of oil palm from 226 

ETS as reported in Lam Kuok Choy (2016), where about 6-7 months seem to represent 227 

the lasting of the “low vigour” phase of oil palm phenology. In this period sudden EVI 228 

variations could be reasonably related to anomalous values to be smoothed.  229 

Filter was applied selectively according to the difference between the EVI center value 230 

of the sliding window and its estimate from the local regression line. If difference was 231 

larger than 0.15 points of EVI filter was applied, otherwise it was not. The threshold of 232 

0.15 was selected in respect of repeated visual interpretation of reference EVI profiles 233 

randomly sampled from the image. Selective smoothing permitted to cut off short-term 234 

ETS fluctuations, enhancing long-term ones. With respect to the filtered ETS, for each 235 



OP pixel, the minimum EVI value was found and the correspondent year number saved 236 

in a new image layer (Fig. 8b). A new raster map was therefore generated representing, 237 

in the space domain, the time distribution of new plantations. The age of plantations 238 

was consequently computed at each position by differencing the estimated planting year 239 

with present (2018, Fig. 8a). This method proved to be able to detect the moment when 240 

extensively soil practices occurred (period III) making possible to overcome the 241 

uncertainty related to land cover changes possibly due to other reasons (agroforestry, 242 

forest logging, natural disturbances, etc,). In fact, many methods based on remotely 243 

sensed data are able to detect stand replacing disturbances resulting by land cover 244 

change (e.g. forest logging, period I) without making distinctions or explicit which step 245 

of land cover transition they detect. Analyzing some representative oil palm ETS pixel 246 

we found that the land cover transition, in general, proceeds on for more than one year 247 

before reaching the EVI minimum value determining a time lag between forest cut and 248 

plantation of new oil palm seedlings. For this reason, authors took into account only the 249 

period III as plantation starting moment and consequently it was used to calculate the 250 

strongly related age of plantation. 251 

2.5 Estimating oil palm production 252 

Oil palms produce FFB that represent the raw material for palm oil mills. Oil is 253 

extracted from the pulp of the fruit or from the kernel. Production can be affected by 254 

various internal and external factors. Internal factors include age and oil palm 255 

breeds/variety; external factors include rainfall, drought, disease, soil fertility and 256 

moisture, harvesting efficiency (Chong 2017). Thus, to give an estimate of production, 257 

all the above mentioned factors would have to be taken into consideration. 258 

Nevertheless, a good synthetic predictor of yield is the age of plantation itself. The 259 

relationship of yield of oil palm and age establishes a sigmoid shape, fitting a nonlinear 260 



regression growth model across its life cycle (Khamiz et al. 2005). Thus, by retrieving 261 

the age information of oil palms and the total planted area using remote sensing, the 262 

total FFB production of the mentioned area can be roughly estimated using a regression 263 

model (Khamiz et al. 2005). Ismail and his collaborators (2002) proposed a time 264 

dependent unitary production (UP) curve for oil palm (Fig. 5), relating FFB yearly yield 265 

(tons FFB ha
-1

 yr
-1

) with the age of plantation (annual basis). Consequently, authors 266 

used it as a look up table relating the estimated age of plantation to the expected UP in 267 

2018.  To give an estimation of local production (LP) UP was multiplied by the area of 268 

each MOD13Q1 pixel. A map of expected LP was, therefore, generated for the year 269 

2018 (Fig. 10a). 270 

[Figure 5] 271 

2.6 Economic value of oil palm plantations 272 

According to FAO dataset (FAO 2018), Indonesia FFB annual producer price (US 273 

Dollar tonFFB
-1

), in refers to 2016, is 111 US Dollar tonFFB
-1

. Later reference time 274 

(2017-2018) there are not available, nevertheless, actually FAO data is the most reliable 275 

data about FFB price. Therefore, a new estimate production map was generated. 276 

Multiplication between FFB annual producer price and LP until 2018 a new plantation 277 

economic value map (Fig. 10b) was generated and summarized in table 1. Total 278 

economic value of whole study area, in refers to 2018 yield and using 2016 FAO 279 

producer price,  is about  1.2 Billions USD. 280 

3. Results and Discussion 281 

In respect of the above mentioned procedure, oil palm plantations mapping was 282 

achieved computing the 1
st
 order polynomial approximating EVI local time profile in 283 

the whole reference period and mapping the correspondent gain value, G(x,y). OP were 284 



detected by thresholding G(x,y). According to the previously mentioned statistical 285 

analysis, the selected threshold to separate OP from NOP pixels was set to 2.0. 286 

The Jeffries-Matusita (JM) test was successful, indicating that OP and NOP control 287 

points were statistically separable. The JM score was, in fact, 1.93.  Concerning G(x,y) 288 

threshold selection,  the mean (µ) and standard deviation (σ) values of G were computed 289 

for NOP points. NOP µ and σ resulted respectively 0.109 and 0.913.  Considering a 290 

confidence interval of 95 % , corresponding to µ+2σ = 1.935, we admitted that OP 291 

pixels could be identified looking for local G values higher than this number.  292 

Consequently, a threshold value of 2.0 was selected  for G(x,y) to separate OP from 293 

NOP pixels.  OP detection results are shown in maps of figure 6. 294 

[Figure 6] 295 

Classification accuracy assessment was achieved with reference to GFC-L. Refined 296 

vector map was converted back to the raster format by nearest neighbour resampling, 297 

making it consistent with GCF-L (GSD = 250 m). It is worth to remind that GFC-L 298 

represents the forest loss occurred in the period 2000-2016, that authors assumed to be 299 

potentially and totally due to new oil palm plantations in the same period. In fact, in this 300 

region new palm plantations are the first reason of forest loss (Curran 2004), making 301 

this assumption reasonable. Concerning new oil palm plantation detection the proposed 302 

method, based on the thresholding of the gain value of the regression line computed 303 

along the whole ETS, proved to be effective: overall accuracy was found to be equal to 304 

94%. In the area about 545394 ha (18.5% of the whole study area) were converted from 305 

forest to oil palm plantations in the reference period (2000-2018). Gain value of the line 306 

interpolating the entire ETS at pixel level proved to be a good discriminant to map 307 

vegetation changes and, in particular, those where the following succession occurred: 308 

forest vegetation-cutting-oil palm plantation. In fact, replacement of forest with other 309 



surface types (e.g. urban or bare soil) would have determined lower, possibly negative, 310 

values of gain and not highly positive as the threshold value proposed in this work. 311 

Concerning plantations age estimates the maps of figure 8 were produced according to 312 

the proposed method, after selective filtering of the local EVI temporal profiles of OP 313 

pixels (an example of EVI profile for a generic OP pixel is reported in figure 7). 314 

[Figure 7]  315 

[Figure 8] 316 

Estimation of plantations age proved to be more critical; transition matrix was 317 

calculated by difference between map of plantations age estimates and GCF-YL. 318 

Correspondent cumulative frequency distribution of absolute differences is reported in 319 

figure 9.  It shows that only 47% of detected plantations present differences equal to 0, 320 

i.e. correctly dated. Nevertheless, it must be considered that the proposed method gives 321 

an estimate of the moment when soil preparation/new seedlings occurred. Differently,  322 

the reference dataset (GCF-LY), maps the moment of forest loss determining a time lag 323 

between the two estimates.  Considering that a time delay of one year between previous 324 

vegetation cutting and planting of new oil palm seedlings is reasonable,  all differences 325 

included in the range ±1 year have to be considered not significant. According to this 326 

approach it can be noted from figure 9 that 76% of the observations is included in this 327 

range, making age of plantations estimates satisfactorily accurate. 328 

[Figure 9] 329 

Size and economic value of present plantations that were started in the reference period 330 

were consequently estimated from the local estimate of the age of plantations as mapped 331 

at the previous step. Results are reported in figure 10a and 10b and table 1.   332 

[Figure 10] 333 



It is worth to remind that, results about potential production and economic value must 334 

be considered purely indicative. In fact, they can be highly moved from the expected 335 

value if unknown plant diseases or unfavorable microsite conditions are present in the 336 

area.      337 

[Table 1] 338 

3. Conclusions 339 

MODIS derived EVI time series proved to be effective to map and characterize new oil 340 

palm plantations.  Detection of new plantations based on local temporal profile analysis 341 

revealed to be accurate enough (overall accuracy = 94 %), suggesting that time 342 

discriminant is basic in assessing vegetation cover. It also proved to make possible give 343 

an approximate estimation of the starting date of new plantations and, consequently, of 344 

new productions in the area if a unitary production curve is available. The methodology 345 

proposed is useful to different oil palm stakeholder, i.e. local owners and farmers could 346 

help to optimize yield , reducing environmental impact and making timely practices  in 347 

the areas most needy in a precision agriculture contest. Also government authorities or 348 

environmental monitoring organizations could use this methodology to detect and 349 

assessing agricultural/natural capital and monitoring related environmental and socio-350 

economic impacts. Many limitations, at the moment, still persist: a) detected changes in 351 

vegetation cover can be also related to abiotic or biotic disturbance like wildfire, plant 352 

diseases, human clear cut. Auxiliary data from other map or institutional source could 353 

help to make result more reliable from this point of view; b) production estimates are 354 

based on a literature-derived curve of UP.  It is not clear if this curve must be better 355 

calibrated according to ground data specifically referring to the explored area; c) 356 

production estimates are strictly related to the estimate of the date of beginning of 357 



plantations. At the moment, the approximation in this estimate in our study area shows 358 

76% of accuracy using Hansen (2013) dataset as reference map. Actually it doesn’t 359 

know if the persisting error is due to time lag induces by reference method adopted or to 360 

our proposed method. Nevertheless, GFC dataset it is currently the only available and 361 

reliable one for tropical vegetation change detection  d) future experiences trying to 362 

apply the same methodology are expected to be based on MOD13Q1 version 6 datasets, 363 

since the version 5 is going to be dismissed from LPDAAC. 364 

 365 

Acknowledgements 366 

We thank  Dr. Costantin Sandu for assistance with forest change map. We thank our colleagues 367 

dr.Andrea Lessio and dr. Gianmarco Corvino who provided  insight and expertise that greatly 368 

assisted the research. 369 

Disclosure statement: No potential conflict of interest was reported by the authors. 370 

References  371 

Ismail, A., and Mamat, M. N. 2002. “The Optimal Age of Oil Palm Replanting”. Oil 372 

palm industry economic journal 2(1)/2002. 373 

Basiron, Yusof. 2007. "Palm oil production through sustainable plantations." European 374 

Journal of Lipid Science and Technology, 109(4), 289-295. 375 

https:/risc/doi.org/10.1002/ejlt.200600223 376 

Carlson, K. M., Curran, L. M., Ratnasari, D., Pittman, A. M., Soares-Filho, B. S., 377 

Asner, G. P., ... & Rodrigues, H. O. 2012. "Committed carbon emissions, 378 

deforestation, and community land conversion from oil palm plantation 379 

expansion in West Kalimantan, Indonesia." Proceedings of the National 380 

Academy of Sciences, 109(19), 7559-7564. 381 

https://doi.org/10.1073/pnas.1200452109 382 



Chong, K. L., Kanniah, K. D., Pohl, C., and Tan, K. P.2017 "A review of remote 383 

sensing applications for oil palm studies." Geo-spatial Information Science, 384 

20(2), 184-200. https://doi.org/10.1080/10095020.2017.1337317 385 

Colombo, R., Busetto, L., Fava, F., Di Mauro, B., Migliavacca, M., Cremonese, E., 386 

Galvagno, M., Rossini, M., Meroni, M., Cogliati, S., Panigada, C., Siniscalco, 387 

C., di Cella, U.M. 2011. “Phenological monitoring of grassland and larch in the 388 

Alps from Terra and Aqua MODIS images”. Italian Journal of Remote Sensing-389 

Rivista Italiana Di Telerilevamento 43, 83–96. 390 

https://doi.org/10.5721/itjrs20114336 391 

Corley, R. H. V., & Tinker, P. B. 2008. The oil palm. John Wiley & Sons.  392 

Curran, L. M., Trigg, S. N., McDonald, A. K., Astiani, D., Hardiono, Y. M., Siregar, P., 393 

Caniago I. , Kasischke E. 2004. “Lowland Forest Loss in Protected Areas of 394 

Indonesian Borneo”. Science, 303(5660), 1000-1003. 395 

https://doi.org/10.1126/science.1091714 396 

FAO - Food and Agriculture Organization of the United Nations. 2018. “FAOSTAT”. 397 

Accessed June 18, 2018 from http://www.fao.org/faostat/en/#home 398 

Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, 399 

D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. 400 

Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend. 2013. “High-401 

Resolution Global Maps of 21st-Century Forest Cover Change”. science, 402 

342(6160), 850-853. https://doi.org/10.1126/science.1244693 403 

Hmimina, G., Dufrêne, E., Pontailler, J. Y., Delpierre, N., Aubinet, M., Caquet, B., 404 

Gross, P. 2013. “Evaluation of the potential of MODIS satellite data to predict 405 

vegetation phenology in different biomes: An investigation using ground-based 406 



NDVI measurements”. Remote Sensing of Environment, 132, 145-158. 407 

https://doi.org/10.1016/j.rse.2013.01.010 408 

Huete, A., Justice, C., and Van Leeuwen, W. 1999. “MODIS vegetation index 409 

(MOD13)”. Algorithm theoretical basis document, 3, 213. 410 

https://doi.org/10.1016/s0034-4257(99)00022-x 411 

Hufkens, K., Friedl, M., Sonnentag, O., Braswell, B. H., Milliman, T., & Richardson, 412 

A. D. 2012. “Linking near-surface and satellite remote sensing measurements of 413 

deciduous broadleaf forest phenology”. Remote Sensing of Environment, 117, 414 

307-321. https://doi.org/10.1016/j.rse.2011.10.006 415 

Iremonger, S., C. Ravilious, and T. Quiton. 1997. “A Global Overview of Forest 416 

Conservation”. Center for International Forestry Research and World 417 

Conservation Monitoring Centre. Cambridge, U.K. CD-ROM. 418 

Khamis,A., Ismail,Z., Haron, K.,Tarmizi, A. 2005. “Nonlinear Growth Models for 419 

Modeling Oil Palm Yield Growth”. Journal of mathematics and statistics, 1(3), 420 

225-233. https://doi.org/10.3844/jmssp.2005.225.232 421 

Koh, L. P. 2007. “Potential habitat and biodiversity losses from intensified production 422 

of different biodiesel feedstocks”. Conservation Biology 21:1373-1375. 423 

https://doi.org/10.1111/j.1523-1739.2007.00771.x 424 

Koh, L. P., and D. S. Wilcove. 2008. “Is Oil Palm Agriculture Really Destroying 425 

Tropical Biodiversity?”. Conservation Letters 1 (2): 60–64. doi:10.1111/j.1755-426 

263X.2008.00011.x. 427 

Lam Kuok Choy.2016.” The  analysis  of  rainfall  variability  and  response  of  oil  428 

palm  phenology  in  tropical climate using MODIS vegetation index”. 429 

Proceedings of Geospatial World Forum 2016, The Netherlands. 430 



Marlier, M. E., DeFries, R. S., Kim, P. S., Koplitz, S. N., Jacob, D. J., Mickley, L. J., & 431 

Myers, S. S. 2015. “Fire emissions and regional air quality impacts from fires in 432 

oil palm, timber, and logging concessions in Indonesia”. Environmental 433 

Research Letters, 10(8), 085005. https://doi.org/10.1088/1748-434 

9326/10/8/085005 435 

McMorrow J., and  Talip M. A. 2001. “Decline of forest area in Sabah, Malaysia: 436 

Relationship to state policies, land code and land capability”. Global 437 

Environmental Change, 11(3), 217-230. https://doi.org/10.1016/s0959-438 

3780(00)00059-5  439 

Mittermeier, R. A. A., Gil, P. R., & Hoffman, M. 2004. “Hotspots Revisited: Earth’s 440 

biologically richest and most endangered ecoregions”. CEMEX/Agrupacion 441 

Sierra Madre. Sierra Madre. https://doi.org/10.5860/choice.38-0922 442 

Muratni, R., Hanafi, I., & Kurnaen, A. (2016). Analysis of Conversion of Forest Land to 443 

be Oil Palm Plantation Area in the District of North Barito Central Kalimantan 444 

Province. International Journal of Ecosystem, 6(1), 14-24. 445 

Shafri, H. Z., Anuar, M. I., Seman, I. A., & Noor, N. M. 2011. “Spectral discrimination 446 

of healthy and Ganoderma-infected oil palms from hyperspectral data”. 447 

International journal of remote sensing, 32(22), 7111-7129. 448 

https://doi.org/10.1080/01431161.2010.519003 449 

Sodhi, N. S., Koh, L. P., Brook, B. W., & Ng, P. K. 2004. “Southeast Asian 450 

biodiversity: an impending disaster”. Trends in ecology & evolution, 19(12), 451 

654-660. https://doi.org/10.1016/j.tree.2004.09.006 452 

Solano, R., Didan, K., Jacobson, A., & Huete, A. 2010. “MODIS vegetation index 453 

user’s guide (MOD13 series)”. Vegetation Index and Phenology Lab, The 454 

University of Arizona, 1-38. 455 



Soudani, K., Le Maire, G., Dufrêne, E., François, C., Delpierre, N., Ulrich, E., & 456 

Cecchini, S. 2008. “Evaluation of the onset of green-up in temperate deciduous 457 

broadleaf forests derived from moderate resolution imaging spectroradiometer 458 

(MODIS) data”. Remote Sensing of Environment, 112(5), 2643-2655. 459 

https://doi.org/10.1016/j.rse.2007.12.004 460 

Testa, S., Soudani, K., Boschetti, L., Borgogno-Mondino, E. 2018. “MODIS-derived 461 

EVI, NDVI and WDRVI time series to estimate phenological metrics in French 462 

deciduous forests”. International Journal of Applied Earth Observation and 463 

Geoinformation, 64, 132-144. https://doi.org/10.1016/j.jag.2017.08.006 464 

Xiao, X., Braswell, B., Zhang, Q., Boles, S., Frolking, S., & Moore III, B. 2003. 465 

“Sensitivity of vegetation indices to atmospheric aerosols: continental-scale 466 

observations in Northern Asia”. Remote Sensing of Environment, 84(3), 385-467 

392. https://doi.org/10.1016/s0034-4257(02)00129-3 468 

Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C., Gao, F., and 469 

Huete, A. 2003. “Monitoring vegetation phenology using MODIS”. Remote 470 

sensing of environment, 84(3), 471-475. https://doi.org/10.1016/s0034-471 

4257(02)00135-9 472 

 473 

 474 

 475 

 476 

MAIN TEXT WORD COUNT: 3741 words; 18 570 characters (spaces excused). 477 

 478 

 479 

 480 

https://doi.org/10.1016/s0034-4257(02)00135-9
https://doi.org/10.1016/s0034-4257(02)00135-9


 481 

 482 

 483 

 484 

 485 

 486 

Table 1.  Column 1: Estimated age of mapped new plantations. Column 2: Area 487 

percentage of new plantations at the i
th

 year in respect of the total. Column 3: Estimated 488 

production (Ton FFB yr-1 ) of the new plantations detected at the i
th

 year. Column 4: 489 

Estimated income from the new plantations detected at the i
th

 year. 490 

 491 

Class Age Area % (Tot OP) Ton FFB yr
-1

 for Class Age 
Producer Price 

(M USD tonFFB
-1

) 

18 6.03% 0.63 69.64 

17 3.84% 0.40 44.94 

16 6.79% 0.72 80.44 

15 8.13% 0.87 96.38 

14 10.75% 1.15 127.43 

13 10.71% 1.16 129.25 

12 17.30% 1.90 210.39 

11 21.76% 2.38 264.62 

10 8.83% 0.98 108.68 

9 3.30% 0.37 40.70 

8 1.46% 0.16 17.47 

7 0.66% 0.07 7.57 

6 0.26% 0.02 2.63 

5 0.02% 0.0014 0.16 

4 0.01% 0.0003 0.03 

3 0.13% 0.0031 0.34 

2 0.02% - - 

1 0.005% - - 

New Plantations 0.01% - - 

TOT OP 545394 ha 10.82 1200.66 
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 577 

Figure 1. The study area is located in the South of Kalimantan Tengah (Central 578 

Kalimantan), a province of Indonesia (Borneo island) (WGS84 reference frame). 579 

Figure 2. Oil palm ETS where the main management phases are indicated: A) 580 

previously existing forest cover; B) forest loss; C) palm growing phase. Red circle show 581 

the estimated plantation starting date. Dotted line is the 1
st
 order polynomial 582 

interpolating the yearly EVI profile of a generic OP pixel, EVI=G(x,y)∙DOY+O(x,y). 583 

G(x,y) is the local Gain value and O(x,y) the local offset value.  584 

 585 

Figure 3. A) Map showing the CPs position in the study area (WGS84 Reference 586 

Frame). B) Box plot of CPs gain value for OP and NOP pixels. 587 

 588 

Figure 4. Sentinel-2 RGB true colour composite (tile T49MFS, date of  acquisition is 589 

2018/02/08). It shows the typical landscape of oil palm plantations where a rectangular 590 

pattern of 1000 m x 300 m is the standard management scheme. 591 

Figure 5. Oil palm production curve relating oil unitary production and palms age 592 

(Ismail, 2002).  593 

Figure 6. A) Map showing the distribution of the estimated gain value of the 1
st
 order 594 

polynomial interpolating the local (pixel) EVI temporal profile; B) Map showing new 595 

oil palm plantation started between 2000-2018 (WGS84 Reference Frame) as classified 596 

by the proposed algorithm. 597 



Figure 7. EVI temporal profile of a generic OP pixel before (black line) and after (red 598 

line) selective filtering. 599 

Figure 8. A) Map of new plantations starting date; B) Map of new plantations age 600 

(WGS84 Reference Frame). 601 

Figure 9. Cumulative relative frequencies of absolute differences of transition matrix. 602 

Figure 10. A) LP map (Ton FFB ha
-1

 yr
-1

); B) Economic value of plantation (USD 603 

tonFFB
-1

ha
-1

) (WGS84 Reference Frame). 604 
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