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Knockdown of miR-128a induces Lin28a expression
and reverts myeloid differentiation blockage in acute
myeloid leukemia

Luciana De Luca*,1,9, Stefania Trino1,9, Ilaria Laurenzana1, Daniela Tagliaferri2, Geppino Falco2, Vitina Grieco3, Gabriella Bianchino3,
Filomena Nozza3, Valentina Campia4, Francesca D’Alessio5, Francesco La Rocca1, Antonella Caivano1, Oreste Villani6, Daniela Cilloni4,
Pellegrino Musto7,9 and Luigi Del Vecchio5,8,,9

Lin28A is a highly conserved RNA-binding protein that concurs to control the balance between stemness and differentiation in
several tissue lineages. Here, we report the role of miR-128a/Lin28A axis in blocking cell differentiation in acute myeloid leukemia
(AML), a genetically heterogeneous disease characterized by abnormally controlled proliferation of myeloid progenitor cells
accompanied by partial or total inability to undergo terminal differentiation. First, we found Lin28A underexpressed in blast cells
from AML patients and AML cell lines as compared with CD34+ normal precursors. In vitro transfection of Lin28A in NPM1-mutated
OCI-AML3 cell line significantly triggered cell-cycle arrest and myeloid differentiation, with increased expression of macrophage
associate genes (EGR2, ZFP36 and ANXA1). Furthermore, miR-128a, a negative regulator of Lin28A, was found overexpressed in
AML cells compared with normal precursors, especially in acute promyelocytic leukemia (APL) and in ‘AML with maturation’
(according to 2016 WHO classification of myeloid neoplasms and acute leukemia). Its forced overexpression by lentiviral infection
in OCI-AML3 downregulated Lin28A with ensuing repression of macrophage-oriented differentiation. Finally, knockdown of
miR-128a in OCI-AML3 and in APL/AML leukemic cells (by transfection and lentiviral infection, respectively) induced myeloid cell
differentiation and increased expression of Lin28A, EGR2, ZFP36 and ANXA1, reverting myeloid differentiation blockage. In
conclusion, our findings revealed a new mechanism for AML differentiation blockage, suggesting new strategies for AML therapy
based upon miR-128a inhibition.
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Acute myeloid leukemia (AML) is a heterogeneous hemato-
poietic stemcell neoplasm, characterized by rapid growth and/or
impaired differentiation of leukemic cells with abnormal
accumulation.1–3 Recurring chromosomal aberrations and gene
mutations contribute to AML pathogenesis and are the most
important tools for classification and prognosis assessment of
AML.2–4 Furthermore, there are some known deregulated
pathways involved in the maintenance of leukemic stem cells
such as hedgehog,5,6 tyrosine kinase receptors (e.g. Flt3),3,7

Wnt and Notch.8–11 Notwithstanding, a successful target
therapy is not yet available. Improving our current knowledge
on the biology of AML-associated leukemic processes repre-
sents a valuable tool to identify novel potential drug targets.
Lin28 is a conserved RNA-binding protein having an

important role in cancer stem cells.12,13 This protein is
expressed in embryonic stem cells14,15 and is capable, with
OCT4, SOX2 and NANOG, of converting fibroblasts in
induced pluripotent stem cells.16 Lin28, by physical interaction
with several RNA transcripts, exerts various forms of

regulation ranging from alternative splicing, turnover, localiza-
tion and translation.17–19 It has been demonstrated that altered
functionality of RNA-binding proteins, due to deregulated gene
expression or gene mutations, often results in genetic disease
and cancer.20

Several studies reported the existence of regulatory path-
ways between Lin28 and different miRNAs.15,21–23 In murine
model, overexpression of miR-125b leads to the downregula-
tion of Lin28A and the preleukemic state characterized by
overproduction of myeloid cells eventually progressing to a
myeloid leukemia.24–26 Conversely, ectopic expression of
Lin28B reprograms hematopoietic progenitor cells from adult
bone marrow (BM), endowing them to mediate multilineage
reconstitution.27 Moreover, Li et al.22 showed that miR-181
promotes megakaryocytic differentiation repressing Lin28 and
upregulating let-7 expression. Thus, Lin28 seems to be a
pivotal regulator of hematopoiesis. Interestingly, Lin28 is also
regulated by miR-128,28 a microRNA able to hold hemato-
poietic cells in an early progenitor stage, blocking their
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differentiation towards more mature cells.29,30 Moreover, this
microRNA was found associated with AML.31–33 Therefore, it
will be appealing to gain further insights into the role of
miR-128a/Lin28A axis in induction and maintenance of an
early differentiation status in AML.

Results

Lin28A expression was downregulated in myeloid
leukemic cells. To evaluate Lin28A expression in AML, we
performed quantitative real-time-PCR (qRT-PCR) in isolated
blast cell samples from 38 AML patients at diagnosis, 7 AML
cell lines (OCI-AML3, KG-1, Kasumi-1, NB4, CMK, ME-1 and
MOLM-14) and CD34+ purified samples from 13 healthy
donors. Lin28A (Po0.01) and cell lines (OCI-AML3 and KG-1
Po0.001, Kasumi-1, NB4, CMK and ME-1, Po0.01) showed
a significantly lower expression in AML patients as compared
with controls (Figure 1a). To support our data, we also
analyzed two independent publicly available gene expression
profiling data sets, one containing 16 CD34+ isolated
samples from healthy subjects (GSE 42519), and one with
251 AML patients with newly diagnosed AML (GSE 15434)
confirming a significant downregulation of Lin28A in AML
patients (230 BM and 21 PB) compared with healthy subjects
(Supplementary Figure 1a). Stratifying AML according to the
WHO classification,4 Lin28A value was found underex-
pressed in all AML subtypes (Figure 1b) compared with
controls. Stratifying AML cases according to the principal
genomic alterations detected in our cohort of patients and in
GSE 15434 data set, we found lower expression of Lin28A in
AML patients independent of their specific alterations
(Figure 1c and Supplementary Figure 1b). Moreover, we
evaluated Lin28A protein by cytometric analysis detecting a
lower percentage of Lin28A+ cells in AML blast cells
compared with normal hematopoietic myeloid precursors
(Po0.01) (Figure 1d). When we analyzed distinct subsets of
normal CD34+ cells, we observed a higher percentage of
Lin28A+ cells in normal myeloid precursors (CD33+) com-
pared with the erythroid (CD71+) (Po0.01) and lymphoid
(CD19+) (Po0.001) ones, suggesting its main involvement in
myeloid differentiation (Figure 1e).

Lin28A overexpression induced hematopoietic differen-
tiation in AML. To examine the effect of Lin28A in AML, we
transfected OCI-AML3 cells with Lin28A plasmid. The
significant increase of Lin28A protein expression was
confirmed by western blot and cytofluorimetric analysis
(Po0.01 at 24 h and Po0.05 at 48 h, in both cases)
(Figures 2a–d). Lin28A overexpression was associated with
the induction of monocyte/macrophage-like differentiation. In
fact, flow cytometric analysis revealed a higher percentage of
CD11b− (Po0.05 at 48 h) and CD14+ cells (Po0.01 at 24 h
and Po0.001 at 48 h) after Lin28A transfection (Figures
2e–h). Ectopic expression of Lin28A also significantly
increased p21 protein levels (Po0.001 at 24 h and Po0.05
at 48 h), inducing cell-cycle arrest in the S phase (Po0.01 at
24 h and Po0.001 at 48 h) (Figures 2a and i). Consistent to
the ability of Lin28A in inducing hematopoietic differentiation
in AML cells, we detected a significant increase of EGR2 and

ZFP36, two key regulators of monocyte/macrophage differ-
entiation (Figures 2j–k),34–36 and ANXA1, a gene normally
stored in inside macrophage cytosol (Figure 2l)37 after Lin28A
overexpression at 24–48 h.

Lin28A expression increased during PMA or ATRA
differentiation. To corroborate the involvement of Lin28A
in myeloid differentiation, we stimulate AML cell lines to
differentiate. In particular, we induced macrophage-like
differentiation treating ME-1/OCI-AML3 cell lines with phorbol
12-myristate 13-acetate (PMA) and MOLM-14 with all-trans-
retinoic acid (ATRA), and granulocyte-like differentiation
treating NB4 and KG-1 cell lines with ATRA. After treatment,
the cytometric data revealed a significant percent increase,
from 24 to 72 h, of CD11b+ cells and CD14+ cells in ME-1,
OCI-AML3 (Figures 3a and b) and NB4 (Supplementary
Figure 2a), of CD11b and CD11c in MOLM-14 (Figure 3c)
and of CD11b and CD15 in KG-1 (Supplementary Figure 2b).
To confirm cytometric analysis of cell differentiation, we
detected by qRT-PCR a significant augment, in all time
points, of EGR2, ZFP36 and ANXA1 in treated ME-1, OCI-
AML3, MOLM-14 (Figures 3d–f) and NB4 (Supplementary
Figure 2c).37 As expected, at the same time, we observed a
significant upregulation of Lin28A and an increased percen-
tage of Lin28A+ cells in all cell lines (Figures 3g–j and
Supplementary Figures 2d and e). Similarly to Lin28A
transfection, PMA and ATRA treatment of AML cell lines also
induced p21 expression (Figures 3g–i) and a significant cell-
cycle arrest in the G2 phase (ME-1: Po0.001 at 48 h,
Po0.05 at 72 h; OCI-AML3: Po0.01 at 24 h, Po0.05 at 48
and 72 h; KG-1: Po0.001 at 24 h, Po0.05 at 48 h, Po0.001
at 72 h) (Figure 3k and Supplementary Figure 2f), the G1
phase (MOLM-14: Po0.001 at 72 h) (Figure 3k) or the S
phase (NB4: Po0.001 at 24 h, Po0.01 at 48 and 72 h)
(Supplementary Figure 2f).

MiR-128a expression was upregulated in myeloid leuke-
mic cells. To further clarify Lin28A downregulation in AML,
we analyzed its regulator, miR-128a.28 We evaluated
miR-128a expression in the same cohort of AML patients
and in the AML cell line panel previously examined for Lin28A,
observing a significant overexpression of this microRNA
compared with healthy subjects (Figure 4a). Stratifying AML
cases for morphologic features, we found, at variance with
Lin28A, elevated expression levels of miR-128a in AML with
maturation and acute promyelocytic leukemia (APL) cases
compared with controls (Figure 4b). Furthermore, considering
patients for their gene mutations, we found a significantly
higher expression of miR-128a in patients with FLT3,
PML/RARα and other genomic alterations (Figure 4c).
Our results show different expression pattern ofmiR-128a in

MOLM-14 and AML samples, both carrying FLT3-ITD
(Figures 4a and c). Matsuo et al.38 demonstrated that
MOLM-14, along with FLT3-ITD, carries a series of genotypic
aberrancies, such as the insertion ins(11;9) with the fusion
hybrid MLL-AF9.38 This complex pattern could justify the
partially divergent behavior of MOLM-14 as compared with
fresh AML samples. Moreover, we also evaluated, by qRT-
PCR, miR-128a expression during macrophage- and
granulocytic-like differentiation detecting a significant
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downregulation of thismicroRNA from 24 to 72 h in treated cell
lines (Figure 4d and Supplementary Figure 3a). To determine
the role of miR-128a in myeloid differentiation, we transiently
transfected OCI-AML3 and ME-1 cells with anti-miR-128a.
After transfection, the inhibition of miR-128a (Figure 4e and
Supplementary Figure 4a) and the increase of ZFP36 were
confirmed by qRT-PCR assay (Figure 4f and Supplementary
Figure 4b), thus supporting a role of miR-128a in monocyte/
macrophage differentiation. Furthermore, to confirm a
miR-128/Lin28A axis, we evaluated Lin28A expression after
anti-miR-128a transfection, confirming its upregulation in both
cell lines (Figure 4g and Supplementary Figure 4c); we also
observed an increase of p21 in OCI-AML3 cells (Figure 4g).

MiR-128a overexpression altered macrophage- and
granulocytic-like differentiation. To examine the effect of
miR-128a in AML, we overexpressed by lentiviral infection its
microRNA precursor (pLKO.1_miR-128a) and, as a control,

an empty vector (pLKO.1_scr) in OCI-AML3 (Supplementary
Figure 5). After lentivirus infection, cells were treated with
PMA to differentiate in macrophage-like cells. Although
during differentiation miR-128a expression seemed to be
reduced in treated cells, its levels remained significantly
higher in pLKO.1_miR-128a cells than in pLKO.1_scr cells
(Po0.05 at 24 h, Po0.01 at 48 h and 72 h) (Figure 5a).
Concurrently, Lin28A expression increased as a conse-
quence of the induction culture, but it was significantly
downregulated in OCI-AML3 infected with miR-128a
(Po0.05 at 24–72 h) compared with control (Figure 5b).
Overexpression of miR-128a inhibited macrophage-like

differentiation markers. In fact, flow cytofluorimetric data
showed a reduction of CD11b+ and CD14+ cells after 24, 48
and 72 h of treatment with PMA (Figures 5c–e) in
pLKO.1_miR-128a cells compared with that in pLKO.1_scr
cells (Po0.05 at 72 h). These data were confirmed by
morphologic analysis with May–Grünwald Giemsa staining

Figure 1 Lin28A expression in leukemic blasts from AML patients. (a) qRT-PCR of Lin28A in 13 healthy controls, 38 AML patients and 7 AML cell lines (OCI-AML3, KG-1,
Kasumi-1, NB4, CMK, ME-1 and MOLM-14); ABL1 was used for normalization. Relative values were calculated on the basis of theΔCp method. Results are shown as mean±
S.E.M. (b) Expression of Lin28AmRNA in AML patients stratified for morphologic features (with minimal differentiation, n= 2; without maturation, n= 9; with maturation including:
n= 3 with maturation, n= 10 acute myelomonocytic leukemia, n= 2 acute monoblastic/monocytic leukemia; APL, n= 3; secondary AML, n= 3) was compared with 13 healthy
controls. Results are shown as mean±S.E.M. (c) Expression of Lin28A mRNA in AML patients with specific mutations (NPM1, n= 9; FLT3, n= 8; PML/RARα, n= 3 or with
other alterations, n= 26) was compared with 13 healthy controls. Results are shown as mean± S.E.M. (d) Percentage of Lin28A+ cells in 11 BM healthy controls and 9 AML
patients, by cytofluorimetric analysis. (e) Percentage of Lin28A+ cells in normal myeloid (CD34+ CD45+ CD33+), erythroid (CD34+ CD45+ CD71+) and lymphoid (CD34+ CD45+
CD19+) precursors, by cytofluorimetric analysis. Statistically significant analyses are indicated by asterisks: *Po0.05, **Po0.01 and ***Po0.001
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of infected cells, highlighting that miR-128a overexpression
led to lessmaturemacrophage-like cells (Figure 5f). Moreover,
lentiviral infection of miR-128a inhibited colony-forming
activity of colony-forming unit-macrophage (CFU-M) in colony
size and number (Figures 5g and h).

Inhibition of miR-128a improved myeloid differentiation
in AML BM HSPC. Since significantly increased miR-128a
expression was mainly observed in AML with maturation, we
investigated how miR-128a inhibition could influence myeloid
differentiation/maturation blockage. Lenti-miRZip-128a stably
expresses hairpins that have anti-miRNA activity. We used
BM HSPCs derived from two AML patients with maturation
(myeloblastic AML3 and myelomonocyte AML2, respec-
tively), both FLT3 mutated, and one APL patient (AML1)
(Supplementary Table S1). BM HSPCs were infected with
Lenti-miRZip-128a or Lenti-GFP and exposed to

macrophage-like induction culture. Flow cytometric analysis
showed a significant increased of CD11b and CD14
percentage of positive cells in AML HSPCs infected with
Lenti-miRZip-128a compared with the control (Figures 6a
and b). Lenti-miRZip-128a infection decreased the levels of
mature miR-128a (Figure 6c) and significantly enhanced the
expression of Lin28A, EGR2, ZFP36 and ANXA1 (Figure 6d).
These results demonstrated that miR-128a inhibition in AML
induce myeloid differentiation.

Discussion

AMLs are clonal diseases of hematopoietic progenitor cells,
characterized by marked heterogeneity in terms of phenoty-
pic, genotypic and clinical features.1,2,4,39 In this study, we
showed that Lin28A, an RNA-binding protein,12 was signifi-
cantly underexpressed in AML samples without any

Figure 2 Overexpression of Lin28A in OCI-AML3 cell line. (a) Western blotting (WB) analysis of Lin28A, p21 and β-actin in OCI-AML3 after 24 and 48 h of transfection with
pcDNA3.3_Ctrl or pcDNA3.3_Lin28A plasmids. (b) Absolute OD values of (a) were normalized to β-actin and shown as mean±S.D. from two independent experiments.
(c) Representative cytofluorimetric analysis of percentage Lin28A+ cells in OCI-AML3 after 24 and 48 h of transfection with pcDNA3.3_Ctrl or pcDNA3.3_Lin28A plasmids.
(d) Percentage of Lin28A+ OCI-AML3 cells after 24 and 48 h of transfection with pcDNA3.3_Ctrl or pcDNA3.3_Lin28A plasmids, by cytofluorimetric analysis. (e) Representative
cytofluorimetric analysis of CD11b+ cells in OCI-AML3 after 24 and 48 h of transfection with pcDNA3.3_Ctrl or pcDNA3.3_Lin28A plasmids. (f) Percentage of CD11b+ OCI-AML3
cells after 24 and 48 h of transfection with pcDNA3.3_Ctrl or pcDNA3.3_Lin28A plasmids. (g) Representative cytofluorimetric analysis of CD14+ cells in OCI-AML3 after 24 and
48 h of transfection with pcDNA3.3_Ctrl or pcDNA3.3_Lin28A plasmids. (h) Percentage of CD14+ OCI-AML3 cells after 24 and 48 h of transfection with pcDNA3.3_Ctrl or
pcDNA3.3_Lin28A plasmids, by cytofluorimetric analysis. (i) Cell-cycle analysis in OCI-AML3 after 24 and 48 h of transfection with pcDNA3.3_Ctrl or pcDNA3.3_Lin28A
plasmids. (j–l) qRT-PCR of EGR2 (j) ZFP36 (k) and ANXA1 (l) in OCI-AML3 after 24 and 48 h of transfection with pcDNA3.3_Ctrl or pcDNA3.3_Lin28A plasmids. The bar graphs
represented mean±S.D. from three independent experiments. Statistically significant analyses are indicated by asterisks: *Po0.05, **Po0.01 and ***Po0.001
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association with genotypic and phenotypic stratification.
Moreover, we found a higher percentage of Lin28A+ cells in
myeloid precursors compared with that in erythroid and
lymphoid normal precursors, suggesting a preferential invol-
vement of this protein in myeloid lineage differentiation.
Recently, Chaudhuri et al.26 demonstrated that the knock-

down of Lin28A in mouse hematopoietic system led to myeloid
cell expansion and decrease of B-cell number, thus triggering
an alteration of hematopoiesis. Furthermore, its overexpres-
sion in normal HSC produced a significant reduction of total
white blood cells, causing mice dead at 5 weeks, probably
because of the impaired hematopoietic development.26

Our data, instead, showed that Lin28A overexpression in
AML cells activated myeloid maturation. We observed, in fact,
an increase of myeloid differentiation markers and a cell-cycle
arrest with p21 expression augment. Literature data demon-
strated that p21, a cyclin-dependent kinase inhibitor, induced
cell-cycle arrest if overexpressed in progenitor cells favoring
macrophage differentiation because of the accumulation of
PU.1, a lineage-determining factor.40 Of importance, we also
detected a significant increase of macrophage-specific genes
like early growth response 2 (EGR2), an EGR protein involved
in macrophage growth and differentiation,34,41 tristetraprolin
(ZFP36), an anti-inflammatory and anticarcinogenic protein

that is also involved in monocyte/macrophage differentiation
processes and annexin A1 (ANXA1) an anti-inflammatory
protein stored in the macrophage cytosol.37,42 In addition, we
demonstrated that Lin28A is a positive regulator of granulo-
cytic- and macrophage-like differentiation. In fact, we
observed its significant increase simultaneously augmented
different myeloid-specific markers, stimulated by ATRA or
PMA treatment, in five AML cell lines with different genotype
and morphology.
Previous studies reported that Lin28A is a direct target of

miR-128,28 a microRNA involved in hematopoiesis.29,30

Different studies have associated miR-128a with leukemia,
showing that miR-128a belongs to a set of miRNAs with
stringent specificity for AML or ALL.31–33 Moreover, miR-128a
expression was found to be associated with a subgroup of
AML patients with high-risk molecular features, refractoriness,
relapse and death.31,33

In our study, we evaluated miR-128a expression in our
cohort of AML patients. Of interest, miR-128a showed a
significantly higher level in APL and AML with mature
phenotypes harboring FLT3 and/or other alterations. Qian
et al.28 sustained that miR-128 directly target BMI1, CSF1,
KLF4, LIN28A, NANOG and SNAIL. Some of these genes
are involved in self-renewal (Bmi1 and Nanog)43 and

Figure 3 Lin28A upregulation during macrophage-like differentiation in AML cell lines. (a and b) Percentage of CD11b+ and CD14+ cells in ME-1 (a) and OCI-AML3 (b) after
24, 48 and 72 h of treatment with PMA, by cytofluorimetric analysis. (c) Percentage of CD11b+ and CD11c+ cells of MOLM-14 after 24, 48 and 72 h of treatment with ATRA, by
cytofluorimetric analysis. (d–f) qRT-PCR of EGR2, ZFP36 and ANXA1 in ME-1 (d), OCI-AML3 (e) and MOLM-14 (f) after 24, 48 and 72 h of treatment with PMA or ATRA. (g–i)
Western blotting (WB) analysis of Lin28A, p21 and β-actin in ME-1 (g), OCI-AML3 (h) and MOLM-14 (i) after 24, 48 and 72 h of treatment with PMA. (j) Percentage of Lin28A+
ME-1, OCI-AML3 and MOLM-14 cells after 24, 48 and 72 h of treatment with PMA or ATRA, by cytofluorimetric analysis. (k) Cell-cycle analysis in ME-1, OCI-AML3 and MOLM-14
cells after 24, 48 and 72 h of treatment with PMA or ATRA. The line and bar graphs represented mean±S.D. from three independent experiments. Statistically significant
analyses are indicated by asterisks: *Po0.05, **Po0.01 and ***Po0.001
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differentiation (CSF1 and KLF4).44,45 Similar to Lin28A, they
are deregulated in AML.45–47 KLF4, for example, a lineage-
specific transcriptor factor that promotes monocyte differentia-
tion is downregulated in undifferentiated subtype M0 and in

FLT3-ITD and NPM1-mutant AML.45 BMI1, instead, a poly-
comb group protein involved in self-renewal is overexpressed
in different AML subtypes.46 Given that gene regulation is
complex and depend on different factors,45,48–50 the relative

Figure 4 MiR-128a expression in leukemic blasts from AML patients and its inhibition in OCI-AML3 cell line. (a) qRT-PCR ofMiR-128a in 10 healthy controls, 35 AML patients
and 6 AML cell lines (OCI-AML3, KG-1, Kasumi-1, NB4, CMK, ME-1 and MOLM-14); RNU44 was used for normalization. Relative values were calculated on the basis of theΔCp
method. Results are shown as mean±S.E.M. (b) Expression of miR-128a in AML patients stratified for morphologic features (with minimal differentiation, n= 1; without
maturation, n= 8; with maturation including: n= 3 with maturation, n= 9 acute myelomonocytic leukemia, n= 2 acute monoblastic/monocytic leukemia; APL, n= 3; secondary
AML, n= 3) was compared with 10 healthy controls. Results are shown as mean± S.E.M. (c) Expression of miR-128a in AML patients with specific mutations (NPM1, n= 8,
FLT3, n= 9 or with other alterations, n= 26) was compared with 10 healthy controls. Results are shown as mean± S.E.M. (d) qRT-PCR of miR-128a in OCI-AML3, ME-1 and
MOLM-14 cells after 24, 48 and 72 h of treatment with PMA or ATRA. The bar graphs represented mean±S.D. from three independent experiments. (e and f) qRT-PCR of
miR-128a (e) and ZFP36 (f) in OCI-AML3 after 24 and 48 h of scramble or anti-miR-128a transfection. The bar graphs represented mean±S.D. from three independent
experiments. (g) Western blotting (WB) analysis of Lin28A, p21 and β-actin in OCI-AML3 after 24 and 48 h of transfection with scramble or anti-miR-128a. Statistically significant
analyses are indicated by asterisks: *Po0.05, **Po0.01 and ***Po0.001
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upregulation of miR-128 could not be sufficient to repress all
these genes.
Various microRNAs have an important role in acute myeloid

leukemogenesis,50,51 because of their role in the different
stages of hematopoiesis.29,52 MiR-125b, for example, is over-
expressed in certain types of AML (C/EBPα, t(2;11)(p21;q23),
GATA1) and inhibits myeloid differentiation.50,53 Moreover, its
overexpression causes a dose-dependent myeloproliferative
disorder progressing to a lethal myeloid leukemia in mice.50

MiR-181 family, instead, was found abnormally upregulated in
AML patients, with t(8;21) and t(15;17) inhibiting granulocytic-
andmacrophage-like differentiations.54 Here, we demonstrated
thatmiR-128awas downregulated during induced granulocyte-
andmacrophage-like differentiation of AML cell lines.Moreover,
we showed a reduction of Lin28A- and myeloid-specific marker
expression following enforcedmiR-128a expression, in spite of
PMA treatment in vitro. Conversely, miR-128a transient
inhibition in two cell lines enhanced myeloid maturation and
Lin28A overexpression. Given the higher expression of

miR-128a in AML with mature phenotypes and with FLT3 or
PML/RARα alterations, we decided to inhibit miR-128a
maturation in leukemic cells of these subsets of patients to
stimulate further propensity to cell differentiation. In fact, Lenti-
miRZip-128a infection remarkably repressed miR-128a and
improved granulocytic/macrophage-like differentiation in
BM-derived AML blasts. Finally, we detected an augment of
Lin28A in all infected AML blasts patients, while an increase of
macrophage-specific genes occurred only in AML with FLT3
mutation and mature phenotypes.
Specific microRNAs with established oncogenic functions,

such as miR-155, miR-125b, miR-181 and miR-128a, appear
to be associated with particular AML subtypes.31,50,55

Selected sets of microRNAs could be used as a target therapy
tailored to specific biological and molecular features of AML.50

In particular, we hypothesize that in AML subtypes with t(8;21)
and inv16, differentiation block could be released bymiR-128a
knockdown in combination with differentiation agents. In this
setting, we previously demonstrated that G-CSF treatment of a

Figure 5 MiR-128a overexpression in OCI-AML3 cell line. (a and b) qRT-PCR of miR-128a (a) and Lin28A (b) in OCI-AML3 infected with pLKO.1_scr or pLKO.1_miR-128a
after 24, 48 and 72 h of PMA treatment. (c and d) Representative histogram plots of CD11b+ (c) and CD14+ cells (d) in OCI-AML3 infected with pLKO.1_scr or pLKO.1_miR-128a
after 24, 48 and 72 h of PMA treatment. (e) Percentage of CD11b+ and CD14+ OCI-AML3 cells infected with pLKO.1_scr or pLKO.1_miR-128a after 24, 48 and 72 h of PMA
treatment, by cytofluorimetric analysis. (f) May–Grünwald Giemsa staining of OCI-AML3 infected with pLKO.1_scr or pLKO.1_miR-128a after 24, 48 and 72 h of PMA treatment.
(g) Colony-forming assay of OCI-AML3 after infection with pLKO.1_scr or pLKO.1_miR-128a. Colonies were observed at day 14 of the semisolid culture under × 20 magnification.
(h) Count of CFU-M colonies. The line and bar graphs represented mean± S.D. from three independent experiments. Statistically significant analyses are indicated by asterisks:
*Po0.05 and **Po0.01
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patient with t(8;21) AML led to complete remission.56 More-
over, the combined inhibition of miR-128a and miR-155 could
be evaluated as a therapeutic option in high -isk AML patients
harboring FLT3 mutation.
In conclusion, we revealed a new regulatory axismiR-128a/

Lin28A that affects hematopoiesis, favoring AML develop-
ment. Our experiments suggest that the inhibition ofmiR-128a
could provide a new strategy for AML therapy.

Materials and Methods
Human samples. BM samples were obtained from 40 AML patients (37 de
novo and 3 secondary AML) at the time of diagnosis from the IRCCS CROB
Hospital. The clinical and biological characteristics of AML patients are summarized

in Supplementary Table S1. All patients gave written informed consent according to
the Declaration of Helsinki. BM and peripheral blood samples of 13 healthy donors
were also obtained from San Luigi Gonzaga Hospital of Turin. CD34+ cells of all
samples were purified from mononuclear cells with a CD34 Microbead Kit (Miltenyi
Biotec, Auburn, CA, USA). The purity of immunoselected cells routinely ranged
between 90 and 95% and it was assessed by flow cytometric analysis using an
allophycocyanin (APC) anti-CD34 (BD Pharmingen, San Jose, CA, USA).

Cell lines. The human AML cell lines, OCI-AML3, KG-1, Kasumi-1, NB4, CMK,
ME-1 and MOLM-14, were acquired from American Type Culture Collection
(Rockville, MD, USA) or Deutsche Sammlung von Mikroorganismen und
Zellkulturen (Braunschweig, Germany). AML cell line characteristics were reported
in Supplementary Table S2. OCI-AML3 cells were maintained in DMEM medium
(Gibco, Life Technologies, Carlsbad, CA, USA) supplemented with 20% fetal bovine
serum (FBS) (Gibco), 1% of penicillin–streptomycin (Gibco) and 4 mM of

Figure 6 Inhibition of miR-128a in leukemic cells from AML patients. (a and b) Percentage of CD11b+ (a) and CD14+ cells (b) from three AML patients (AML1, AML2 and
AML3) infected with Lenti-GFP or Lenti-miRZip-128a after 3 days of macrophage-like induction culture, by cytofluorimetric analysis. (c) qRT-PCR of miR-128a in AML patients
infected with Lenti-GFP or Lenti-miRZip-128a. (d) qRT-PCR of Lin28A, EGR2, ZFP36 and ANXA1 in AML patients infected with Lenti-GFP or Lenti-miRZip-128a after 3 days of
macrophage-like induction culture. Statistically significant analyses are indicated by asterisks: *Po0.05, **Po0.01 and ***Po0.001

The miR-128a/Lin28A axis in acute myeloid leukemia
L De Luca et al

8

Cell Death and Disease



L-glutamine (Gibco). KG-1, Kasumi-1, NB4, CMK, ME-1 and MOLM-14 cells were
maintained in RPMI-1640 medium (Gibco) supplemented with 10% FBS, 1% of
penicillin–streptomycin (Gibco) and 2 mM of L-glutamine (Gibco). Cells were grown
at 37 °C in 5% CO2.

Cell line differentiation assessment. Macrophage- or granulocytic-like
differentiation was induced in OCI-AML3 and ME-1 cell lines with PMA (Sigma-
Aldrich, St. Louis, MO, USA) at 100 nM concentration and in NB4 and KG-1 cells
with ATRA (Sigma-Aldrich) at 10 μM concentration. Cells were seeded at 400 000/
ml and were harvested after 24, 48 and 72 h to evaluate cell differentiation.

Induction culture of AML CD34+ cells. AML CD34+ cells were cultured
in StemMACS HSC Expansion medium with StemMACS HSC Expansion Cocktail
1x (Miltenyi Biotec). To induce macrophage-like differentiation 20 ng/ml M-CSF and
1 ng/ml IL-6 (Miltenyi Biotec) were used.

Flow cytometry. Cytofluorimetric analysis of intracellular Lin28A protein levels
was performed after fixation and permeabilization with the IntraCell Kit (Immuno-
step, Salamanca, Spain) followed by labeling with Lin28A (Cell Signaling
Technology, Danvers, MA, USA) or its isotypic control (Cell Signaling Technology)
in 11 BM healthy subjects and 9 AML patients. Lin28A protein expression was also
evaluated in myeloid, lymphoid and erythroid precursors of CD34+ cells of healthy
subjects by using the following fluorochrome-conjugated monoclonal antibodies and
their specific isotypic controls: peridin chlorophyll (PerCP) anti-CD45, phycoerythrin
(PE) anti-CD33, PE anti-CD19 and PE anti-CD71 (BD Pharmingen). The expression
of myeloid-specific antigens CD14, CD11b and CD15 on cell surface was
determined by direct immunofluorescent staining with the following fluorochrome-
conjugated monoclonal antibodies and their specific isotypic controls: APC anti-
CD14, PE anti-CD11b, PE anti-CD11c and PerCP anti-CD15 (BD Pharmingen). For
cell-cycle analysis, cells were fixed and permeabilized, and then labeled with
PI/RNase staining solution for 30 min. Cells were acquired by FACS Calibur (BD)
and analysis was performed using the ModFit LT Software (Verity Software House,
Topsham, ME, USA).

In vitro transfection of AML cell lines. Lin28A transfections were
performed in OCI-AML3 by using Lipofectamine 2000 (Life Technologies, Carlsbad,
CA, USA) in accordance with the manufacturer’s procedure. Transient transfection
of anti-miR-128a molecule (300 pmol) and negative control (Ambion, Applied
Biosistem, Foster City, CA, USA) was accomplished in OCI-AML3 and ME-1 cell
lines with Lipofectamine RNAi Max (Life Technologies) in accordance with the
manufacturer’s procedure.

RNA isolation and qRT-PCR for mRNA and miRNA quantifica-
tion. Mononuclear cells were obtained by Ficoll-Paque gradient centrifugation.
Total RNA was extracted using Trizol reagent (Life Technologies) according to the
manufacturer’s instructions. Reverse transcription was performed using 1 μg of total
RNA from each sample by High Capacity cDNA Reverse Transcription Kit (Applied
Biosistem, Foster City, CA, USA). qRT-PCR was performed as described
previously.57 Simultaneous quantification of ABL1 mRNA was used as a reference
for mRNA TaqMan assay data normalization. miR-128 expression was normalized
on RNU44. The comparative cycle threshold (Ct) method for relative quantification
of mRNA and miRNA expression (User Bulletin No. 2; Applied Biosystems) was
used to determine transcript levels.

Western blotting. Cells were lysed as reported previously.58 Total proteins
were extracted from AML cell lines. Equal amount of protein extract (60 μg) was
transferred to polyvinylidene difluoride membranes (Bio-Rad, Hercules, CA, USA).
The membranes were blocked for 1 h with 5% milk (Sigma-Aldrich) at room
temperature, and then incubated with primary antibodies directed toward Lin28A
(Santa Cruz Biotechnology, Santa Cruz, CA, USA), p21 (Merck Millipore, Billerica,
MA, USA) and β-actin (Sigma-Aldrich), followed by incubation with horseradish
peroxidase-conjugated secondary antibodies (Bio-Rad). Protein bands were
visualized and quantified as described previously.59

Lentivirus production and infection. MiR-128a expression vector were
made by cloning ~ 60 bp 5′ and 3′ of the pre-miRNA into the multiple cloning site for
pLKO.1 (Addgene, Cambridge, MA, USA). Lenti_GFP control and Lenti-miRZip-
128a were purchased by System Biosciences (Palo Alto, CA, USA). The virus
packaging was performed according to the manufacturer’s instructions. The virus

particles (lenti_128a, lenti_GFP control and Lenti-miRZip-128a) were harvested and
concentrated using PEG-it Virus Precipitation Solution (System Biosciences). Virus
titer was determined in 293TN cells using the global Ultrarapid Lentiviral Titer Kit
(System Biosciences). For transduction, AML primary cells and OCI-AML3 were
seeded onto 6-well plates at 800 000 cells per ml. Cells were infected with lentiviral
stocks at an MOI of 5 in the presence of polybrene. AML primary cells were sorted
for the expression of GFP using cell sorter MoFlo Atrios (Beckman Coulter, Brea,
CA, USA). OCI-AML3 cells were maintained with puromycin 0.5 μg/ml.

Colony-forming assay. OCI-AML3 cells infected with pLKO.1_scr or
pLKO.1_miR-128a were cultured in 35mm dishes in MethoCult Classic (Stem Cell
Technologies, Vancouver, BC, Canada) according to the manufacturer’s instruction.
CFU-M were visualized, measured and counted after being cultured in incubator at
37 °C for 14 days.

May–Grünwald Giemsa staining. OCI-AML3 cells infected with
pLKO.1_scr or pLKO.1_miR-128a were harvested at 24, 48 and 72 h after PMA
treatment and stained with May–Grünwald for 5 min and Giemsa for 30 min. The
cell smears were washed with water, air-dried and observed under optical
microscopy (Leica, Wetzlar, Germany).

Statistical analysis. Results are shown as mean± S.D. or S.E.M. Mann–
Whitney U-test was used to analyze two group comparisons (protein expression
qRT-PCR). Analyses of multiple groups (qRT-PCR of Lin28A and miR-128 in
patients and cell lines, Lin28A data set analysis) were performed by Dunn's multiple
comparisons test after one-way ANOVA with Kruskal–Wallis test. Cytofluorimetric
analyses (time course) and qRT-PCR at different time points were carried out by
two-way ANOVA followed by post hoc multiple comparisons using Sidak’s test. For
all tests, a P-value o0.05 was taken as statistically significant.
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