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Predicting the impact of natural disasters such as hurricanes on the trans-

mission dynamics of infectious diseases poses significant challenges. In this

paper, we put forward a simple modelling framework to investigate the

impact of heavy rainfall events (HREs) on mosquito-borne disease trans-

mission in temperate areas of the world such as the southern coastal areas of

the USA. In particular, we explore the impact of the timing of HREs relative

to the transmission season via analyses that test the sensitivity of HRE-induced

epidemics to variation in the effects of rainfall on the dynamics of mosquito

breeding capacity, and the intensity and temporal profile of human population

displacement patterns. The recent Hurricane Harvey in Texas motivates the

simulations reported. Overall, we find that the impact of vector-borne disease

transmission is likely to be greater the earlier the HREs occur in the trans-

mission season. Simulations based on data for Hurricane Harvey suggest

that the limited impact it had on vector-borne disease transmission was in

part because of when it occurred (late August) relative to the local transmission

season, and in part because of the mitigating effect of the displacement of

people. We also highlight key data gaps related to models of vector-borne

disease transmission in the context of natural disasters.

This article is part of the theme issue ‘Modelling infectious disease out-

breaks in humans, animals and plants: approaches and important themes’.

This issue is linked with the subsequent theme issue ‘Modelling infectious

disease outbreaks in humans, animals and plants: epidemic forecasting

and control’.
1. Introduction
It is now well understood that human-induced global warming is associated

with an increasing risk of extreme weather events [1]. Higher air temperatures

have two main effects on extreme weather events. Since warmer air contains

more water, extreme weather events increasingly involve high rain rates.

At the same time, higher air temperatures have led to atmospheric circulation

changes that include a decline in the translation speed of storms—by 10%

over the period 1940–2016 [2]. Together, these two effects increase the

frequency and intensity of heavy rainfall events (HREs). Although we expect

the flooding associated with HREs to have consequences for disease, the

short- and long-term effects of these events on the risk of infectious disease

epidemics driven by insect distribution patterns remain understudied [3].

In the USA, the frequency of HREs has increased with average temperatures

across the country during the past 3–5 decades—especially in the Northeast,
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Midwest and Great Plains [4]. Several factors make the USAvul-

nerable to disasters stemming from HREs [5]. The most

important of these is the fact that a large and growing popu-

lation segment (currently about 60 million people) live in

coastal cities, many of which are at high risk from hurricanes.

Hurricanes Katrina, Sandy, Harvey and Irma all impacted

high population density coasts, leaving many without access

to basic services like electricity and water. The resulting flooding

led to the displacement and death of many individuals.

Extreme weather events are recognized to pose special

health hazards [6], including the threat of infectious water-

related (e.g. cholera, leptospirosis) [7], soil-transmitted (e.g.

helminth infections) [8] and vector-borne infectious diseases

(e.g. dengue, chikungunya and Zika) [7]. In Southeastern

Texas and South Florida, local climatological conditions pro-

mote low-to-moderate abundance of the mosquito Aedes
aegypti and Aedes albopictus—the main vectors for a number

of arboviruses including dengue, chikungunya and Zika

[9]. Stagnant water left over from HREs leads to increased

abundance of mosquitoes in affected regions, while the

deterioration of public and private health regimes increases

the likelihood that people are infected. In the immediate after-

math of a disaster, individuals within the disaster zone may

be at increased risk of infection owing to the breakdown of

private and public preventive measures, the disruption of

healthcare delivery and increased mosquito densities.

While forecasting the extent and impact of HRE-induced

epidemics is challenging, well designed and parametrized

mathematical models can be used to simulate the potential

trajectory and severity of outbreaks, as well as the impact

of control interventions. In this paper, we employ a rainfall-

driven mathematical epidemic model to illustrate the poten-

tial impact of vector-borne diseases based on the timing of

the HREs (e.g. hurricanes) relative to the transmission

season, short-term dynamics of mosquito breeding capacity

in response to rainfall and the mitigating effect of population

displacement. The recent Hurricane Harvey in Texas motiv-

ates our transmission scenarios. We highlight key data gaps

related to models of vector-borne disease transmission in

the context of natural disasters.
2. The heavy rainfall event-induced epidemic
model

The model allows us to explore the potential impact of HREs on

vector-borne disease spread by incorporating key ingredients

of vector-borne disease transmission, human displacement

patterns, interventions, dynamic mosquito carrying capacity

in response to rainfall, case importation rates and the timing

of HREs relative to the transmission season. A key element in

a model of HRE-induced infectious disease transmission is

the change in population mobility and displacement during

and after the event [10]. Here, we model the temporal profile

of the human population in an affected area, i, as a function of

the baseline population, denoted NhiðtÞ, and the proportion

of the population displaced out of area i as a result of the

HRE, denoted HiðtÞ. Population displacement affects mos-

quito-borne epidemics in different ways. First, displacement

means that routine habitat control (e.g. emptying water con-

tainers) is neglected, which increases the mosquito carrying

capacity of the local environment, and hence the risk of being

bitten. Second, by reducing the size of the human population,
displacement reduces both the number of local infections and

the number of external case importations. The rate of external

case importations into the area in the absence of an HRE is

denoted ai, and with an HRE as the product aið1�HiðtÞÞ.
Although the external importation rate ai would be expected

to vary over the year, we take it to be constant over the interval

of the event. As a first approximation, we also assume that it is

the same across the area impacted by the HRE.

Population mixing patterns vary depending on the sever-

ity, spatial extent and duration of the event, as well as on

behaviour changes prompted by the evolving characteristics

of the event and any evacuation orders. In the immediate

aftermath of a disaster, individuals within the disaster zone

may be at increased risk of infection owing to the breakdown

of private and public preventive measures, the disruption of

healthcare delivery and increased mosquito densities.

(a) Short-term dynamics of mosquito breeding capacity
A number of studies have found a significant link between

local climatological factors and the risk of vector-borne dis-

ease outbreaks (e.g. [11,12]). For example, an increase in

dengue outbreak risk has been associated with increasing

minimum temperatures (e.g. [13,14]) and excess rainfall

occurring one to two months earlier [13]. Following an

HRE, initial flooding and high winds may negatively affect

existing mosquito breeding sites [7]. However, as the surface

runoff and flooding recede, the number of water-holding con-

tainers increases, which directly amplifies mosquito breeding

capacity. After the storm, laid eggs hatch, larvae mature and

pupae develop into adult mosquitoes (approx. two weeks

later). Following a case importation, new cases of the disease

may then occur after a generation interval of the disease of

about two to three weeks [15]. While a number of studies

have shed light on the effects of temperature on the develop-

ment, survival, reproduction and disease-transmitting

capacity of mosquitoes [11], the complex mechanisms

through which temperature and rainfall affect the risk of mos-

quito-borne epidemic outbreaks remain poorly studied. Here,

the rainfall-dependent mosquito carrying capacity in location

i is given by KiðtÞ and bounded by a maximum mosquito–

host ratio denoted by mmax. The corresponding rate of

change equation is given by

dKiðtÞ
dt
¼ c1Nhi Jiðt� tÞ � c2ð1�HiðtÞÞKiðtÞ KiðtÞ, mmaxNhi

�c2ð1�HiðtÞÞKiðtÞ otherwise

�
,

where Nhi denotes the human population residing in area

i and JiðtÞ denotes the time-dependent rainfall in location

i. Because the effects of rainfall on mosquito breeding capacity

are not instantaneous but depend on how quickly surface

runoff and flooding recede [7], the parameter t models the

delayed impact of rainfall on the generation of new mosquito

breeding grounds. Further, the parameter c1 quantifies the per

capita rate of production of new breeding sites from rainfall,

whereas c2ð1�HiðtÞÞ quantifies the rate at which mosquito

breeding sites are destroyed (e.g. emptying water containers

around the household), which depends on the proportion of

the displaced population in a given area i.

(b) Vector-borne infectious disease transmission
dynamics

We expanded the baseline compartmental SEIR-type model

of arboviral transmission dynamics introduced by Huber
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Figure 1. (a) Daily temperature and rainfall curves employed for assessing the impact of the timing of the HRE on the epidemic attack rate. We assumed four
different 4-day North Atlantic hurricanes characterized by sustained rainfall at 50 cm per day occurring on 1 June, 1 July, 1 August or 1 September and a baseline
(nonhurricane) rainfall per day at 0.5 cm, together with a temperature cycle that is consistent with that of the evacuation counties in Texas during Hurricane Harvey.
(b) Daily temperature and rainfall time series for each of the mandatory evacuation counties in Texas (Arkansas, Brazoria, Calhoun, Jackson, Matagorda, Refugio, San
Patricio and Victoria) used for Hurricane Harvey simulation scenarios.
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et al. [16]. In this model, the authors linked the effects of

temperature to mosquito reproduction, development, survi-

val and transmission capacity [11]. Local temperature

strongly modulates the reproduction, development and dis-

ease-transmitting capacity of the mosquitoes. While

temperature-dependent risk does not fluctuate substantially

in the Tropics where temperature cycles are weak, in temper-

ate areas of the world, including the southern coastal areas of

the USA, with well-defined temperature cycles and an Atlan-

tic hurricane season running from 1 June to 30 November,

mosquito-borne disease transmission is expected to depend

on the timing of the HRE. For example, in the context of a

well-defined temperature cycle (figure 1), we can expect a

higher epidemic risk following a hurricane that occurs near

the peak temperature cycle; whereas a lower epidemic risk

may be expected for hurricanes that make landfall near the

end of the hurricane season. For illustration, figure 1a
shows hypothetical scenarios for six different 4-day North

Atlantic hurricanes characterized by sustained rainfall at

50 cm d21 relative to a seasonal temperature cycle, which is

consistent with that of southeast Texas.

We adapted the Huber model in several ways.

First, the population was divided into spatial areas

(e.g. counties) to account for spatial heterogeneities in

human population size (NhiðtÞ), mosquito population size

(Nvi (t)), temperature (TiðtÞ), precipitation (JiðtÞ), profile of

population displacement relative to the HRE (HiðtÞ) and

external disease importation rates (ai), but we assumed

this parameter constant across areas in our simulations.

Moreover, the human population in a given area i was

classified into four epidemiological states: susceptible

(ShiðtÞ), exposed (EhiðtÞ), infectious (IhiðtÞ) and recovered

(Rhi ðtÞ), with the cumulative number of infectious humans

given by ChiðtÞ, while the mosquito population is classified
into three states: susceptible (Svi ðtÞ), exposed (EviðtÞ) and

infectious (IviðtÞ).
Second, local susceptible mosquitoes were assumed

to be infected from local infectious humans in area i and

to a lesser extent from the influence of infectious humans

visiting from other areas. For simplicity, we assumed

that the rate of transmission from area j into area i decays

exponentially with the Euclidean distance between their

respective county centroids denoted by dij. Hence, the

spatial contact matrix was scaled by e�qdij , where para-

meter q quantifies the extent of local spatial transmission.

That is, small values of q lead to broad spatial transmis-

sion influence, whereas large values of q emphasize local

spread. More elaborate forms of the contact matrix are

discussed in [17].

Third, the dynamic adult mosquito carrying capacity,

KiðtÞ, was taken to respond to the rainfall dynamics as

described earlier.

Fourth, because a displaced population resulting from the

HRE affects the local mosquito reproduction rate, we also

scaled the number of eggs laid per female per day

(EFDðTiÞ) and the local force of infection for mosquitoes by

the proportion of the population remaining in area i, which

is given by (1�HiðtÞ).
Finally, we accounted for an external disease importation

rate given by ai(1�HiðtÞ), where ai is the baseline disease

importation rate in the absence of an HRE.

The temperature-dependent functional responses of

A. aegypti and A. albopictus and dengue transmission traits

are driven by empirical data, which were directly informed

by prior work (table 1 in [16]). Briefly, these parameters are

as follows: the biting rate (aðTiÞ), the number of eggs laid

per female per day (EFDðTiÞ), the probability of mosquito-

egg-to-adult survival (pEAðTiÞ), the mosquito-egg-to-adult
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development rate (MDRðTiÞ), the adult mosquito lifespan

(1=mðTiÞ), the probability of mosquito infectiousness (bðTiÞ),
the probability of mosquito infection (pMIðTiÞ) and the

virus extrinsic incubation rate (PDRðTiÞ). Further, the average

intrinsic incubation period and the average host infectious

period are denoted by 1/k and 1/g, respectively.

The full spatial model of vector-borne disease trans-

mission dynamics is given by the following system of

ordinary differential equations (electronic supplementary

material, figure S1)

dSvi

dt
¼ ð1�HiðtÞÞEFDðTiÞpEAðTiÞMDRðTiÞmðTiÞ�1Nvi

� log
KiðtÞ
Nvi

� �
� aðTiÞpMIðTiÞSvið1�HiðtÞÞ

�
Xn

j¼1

e�qdij
Ihj

Nhi

0
@

1
A� mðTiÞSvi ,

dEvi

dt
¼ aðTiÞpMIðTiÞSvið1�HiðtÞÞ

�
Xn

j¼1

e�qdij
Ihj

Nhi

0
@

1
A� ðPDRðTiÞ þ mðTiÞÞEvi ,

dIvi

dt
¼ PDRðTiÞEvi � mðTiÞEvi ,

dShi

dt
¼ �ð1�HiðtÞÞ Shi aðTiÞbðTiÞ

Ivi

Nhi

þ ai

� �
,

dEhi

dt
¼ ð1�HiðtÞÞ Shi aðTiÞbðTiÞ

Ivi

Nhi

� �
� kEhi ,

dIhi

dt
¼ kEhi þ ð1�HiðtÞÞai � gIhi ,

dRhi

dt
¼ gIhi

and
dChi

dt
¼ kEhi þ ð1�HiðtÞÞai:

(c) Mobility analysis for Hurricane Harvey based on
tweet data

A critical component of the adapted model is the proportion

of the population displaced by the disaster. There are no

direct measures of displacement. Indirect measures include

the proportion of the population in evacuation zones together

with the existence of evacuation orders, or observations of the

number of houses damaged or destroyed. While the first of

these could be used to estimate an upper bound on displace-

ment, it is less useful when evacuation is optional or when

there is only partial compliance with mandatory evacuation

orders. Similarly, while property damage could be used to

estimate the number of people forced out of their homes,

this is not the same as being forced out of the area. One

option that might capture physical displacement is the

number of geo-referenced contributions to social media. To

calibrate this element of the model, we acquired a large

tweet dataset from GNIP [18]. In addition to the text content

of the tweets, the dataset provided metadata including the

time of the tweet, the ID and the screen name of the user

account, as well as location information. Location was pro-

vided in the form of point coordinates (specified in latitude

and longitude) and/or ‘place’ information encoded in the

form of a place name and a bounding box. Per Twitter
specifications, the ‘place’ information encoded in the tweet

does not necessarily correspond to where the tweet origi-

nated from, but may instead represent the spatial context of

the content of the tweet, so we dropped all tweets that did

not contain precise point coordinates. The data, which were

originally formatted as a JSON file, were stored and indexed

in MongoDB and queried using Python. To identify tweets

originating from a given county, we used the county-level

bounding boxes.

For the mobility analysis, we used R [19] and the follow-

ing packages: Tigris [20], Leaflet [21] and Raster [22]. In order

to analyse the mobility of people tweeting within the manda-

tory evacuation counties, we analysed all tweets (26 million)

generated during the period 1 January 2017 to 15 October

2017 from users geo-located in the following states: Texas,

Oklahoma, Alabama, Mississippi, Arkansas, Louisiana,

Georgia, South Carolina, North Carolina, Florida and Tennes-

see. While Twitter users in the dataset have specified that

their location is in the previously mentioned states, only

1 985 401 tweets contain the actual geo-location where the

tweet was originated. We then focused our study period

from 17 July 2017 (one month before the first Harvey-related

alert was issued) to 15 October 2017, which includes 16 764

geo-referenced tweets within the mandatory evacuation

counties in Texas (Arkansas, Brazoria, Calhoun, Jackson,

Matagorda, Refugio, San Patricio and Victoria) (electronic

supplementary material, figure S2) [23].

To estimate the number of Twitter users who mobilized

out of the evacuated counties, we first identified users who

lived in those counties based on their tweeting activity

during the pre-hurricane period: 17 July 2017 to 20 August

2017. We restricted each user to have at least two tweets

within those counties to adjudicate their place of residence

[24]. We then analysed their tweeting activity during the hur-

ricane period: 21 August 2017 to 3 September 2017 (last day

of hurricane warnings [25]) in order to analyse any tweeting

activity within the evacuation counties and in any of the USA

states included in our database. Finally, based on tweeting

activity, we also estimated the number of users who had

returned to their residence in the evacuation counties by 15

October 2017 (end of the dataset).

We chose to model HiðtÞ, describing the proportion of

the displaced population in a given area i relative to the

timing and duration of the HRE, using two logistic

functions: (i) the proportion of the displaced population

rapidly starts to increase on 21 August 2017 until a maxi-

mum displacement level Hmax is reached 1 day later and (ii)

the proportion displaced gradually declines from Hmax until

baseline pre-disaster levels return 100 days later. The values

of Hmax were informed by our tweet-based analyses

(figure 2).
(d) Baseline parameter values and initial conditions
Simulations start on 15 May 2017 and end on 15 December

2017. The initial mosquito carrying capacity in an area i
prior to the HRE event (parameter Kbi ) is given by the pro-

duct of the pre-HRE ratio of mosquitos per person (denoted

by m) and the human population size, Nhi . Further, the initial

adult mosquito population was assumed to be at carrying

capacity and entirely susceptible. Because we focus on

short-term epidemic dynamics following HREs, we assume

a constant and initially completely susceptible host
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the proportion of the displaced population in a given area i relative to the
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tions: (i) the proportion of the displaced population rapidly starts to increase
on 21 August 2017 until a maximum displacement level Hmax is reached 1 day
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by our tweet-based analyses suggesting that the proportion of the displaced
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population before five initial infectious humans are intro-

duced in the county of Aransas, Texas. This is consistent

with the fact that only small autochthonous outbreaks of

dengue and Zika have been documented in the region [26].

The average intrinsic incubation period (1=k) and the average

host infectious period (1=g) were fixed at 5.9 days and 5 days,

respectively, as in [16]. Other model parameter values and

their uncertainty ranges are given in table 1.
(e) Simulations for model testing, verification and
assessing the impact of the timing of the heavy
rainfall event on the epidemic attack rate

We simulated outbreaks for four different hypothetical 4-day

hurricane scenarios characterized by sustained rainfall at

50 cm d21 occurring on 1 June, 1 July, 1 August or 1 Septem-

ber and a baseline (non-hurricane) rainfall per day at 0.5 cm,

together with a temperature cycle that is consistent with

that of the evacuation counties in Texas during Hurricane

Harvey (figure 1a). For these simulations, we modelled a

single population of 100 000 people.

Baseline simulations of no-HREs were obtained by

assuming a constant rainfall level at 0.5 cm d21 and assuming

no population displacement (i.e. HiðtÞ ¼ 0 for all i).
( f ) Simulations specifically tailored for Hurricane Harvey
in Texas

The model was parametrized on data from Hurricane

Harvey, Texas, 2017. This affected the Greater Houston

Area in Southeast Texas with a population of around 2.3

million [27]. The population includes many people of low

socio-economic status, known to be at high risk of arboviral

diseases (e.g. West Nile Virus, dengue, chikungunya and

Zika) transmitted by A. aegypti and A. albopictus mosquitoes

[27,28]. The hurricane, the most severe extreme rainfall
event in USA history, crossed the coast of Texas on 24

August 2017 as a category-4 hurricane, bringing torrential

rain of over 127 cm on parts of the greater Houston area

over the course of 4 days, and leading to flood damage esti-

mated at $125 billion [25]. We focus our study on the

geographical area in Texas comprised by the counties with

a mandatory evacuation order: Arkansas, Brazoria, Calhoun,

Jackson, Matagorda, Refugio, San Patricio and Victoria [23].

Annual population size estimates in mid-year as well as

daily mean temperature and precipitation across counties

for 2017 were obtained from United States Census Bureau

[29] and the PRISM Climate Group [30], respectively. We

retrieved county-level latitude and longitude coordinates

[31] to estimate inter-county Euclidean distances. The

county-level population size, mean temperature and total

precipitation are shown in electronic supplementary material,

figure S3. Daily temperature and rainfall time series for

the evacuation counties in Texas for Hurricane Harvey

simulation scenarios are shown in figure 1b.

Baseline simulations of no-HREs were obtained by limit-

ing the daily rainfall level to 4 cm and assuming no

population displacement (i.e. HiðtÞ ¼ 0 for all i) while par-

ameter q quantifying the extent of local transmission was

varied in the range 0.01–0.00001 (electronic supplementary

material, figure S4).

(g) Uncertainty and sensitivity analyses
We conducted uncertainty and sensitivity analyses to assess

the effects of six uncertain parameters: a, c1, c2, t, m and

mmax on the total number of cases occurring during our

study period (table 1). For this purpose, we generated 1000

samples of the parameters using a uniform Latin hypercube

sampling design (parameter ranges given in table 1) and hold-

ing other parameters fixed to their baseline values. For each set

of parameter values and different timing of the HRE, we simu-

lated incidence curves and recorded the total number of

infectious humans during our study period. We ranked the

sensitivity of the parameters based on their effect on the cumu-

lative number of cases according to their partial rank

correlation coefficients (PRCC) [32]. Model simulations were

generated using the ode45 function in Matlab (Mathworks).
3. Results
We found that the primary drivers of the impact of HREs on

mosquito-borne infectious disease include the timing of those

events relative to the transmission season, and the proportion

of the population displaced during an HRE event. The risk of

outbreaks is highest if an HRE occurs early in the trans-

mission season, and lowest if it occurs late in the season.

For instance, the cumulative number of cases decreases by

70% for the scenario with an HRE occurring on 1 July relative

to the scenario with an HRE occurring on 1 June in the

absence of population displacement. Since the net effect of

population displacement on disease risk is negative—the

more people displaced the lower the risk to those who

remain—risk is decreasing in the proportion of the displaced

population. The relation between the timing of an HRE event

and the proportion of the displaced population is shown in

figure 3. Low displacement during events that occur early

in the transmission season are associated with the highest

number of cases (figure 3).



Table 1. Baseline and uncertainty ranges for model parameters.

parameter definition baseline value range

a average case importation rate (1/day) 1/14 0 – 1/7

c1 per capita rate or production of new breeding sites from rainfall (1/( person � rainfall)) 0.02 0.01 – 0.2

c2 rate at which people destroy mosquito breeding sites (1/day) 0.02 0.01 – 0.2

t delayed impact of rainfall on the generation of new mosquito breeding grounds (days) 14 14 – 21

m initial mosquito – host ratio prior to the HRE 0.2 0.1 – 1

mmax maximum mosquito – host ratio 8 6 – 10

q parameter quantifying the extent of local transmission (1/km) 0.0001 0.01 – 0.00001
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For the parametrization associated with Hurricane

Harvey, we found that our baseline simulations (no-HRE

events) did not yield sustained outbreaks. This is consistent

with the historic evidence of only small, autochthonous out-

breaks of dengue and Zika in Texas [26]. Nor did the addition

of an HRE event parameterized on the temperature and rain-

fall conditions brought by Hurricane Harvey change this.

While the event increased the carrying capacity of the local

system for Aedes species, population displacement reduced

the number of imported cases (electronic supplementary

material, figure S5). Given temperature and other conditions

associated with the timing of the event—Hurricane Harvey

crossed the coast of Texas on 24 August 2017—the net

effect involved no increase in the risk of local transmission.

Four different time snapshots of tweeting activity before,

during and after Hurricane Harvey are shown in figure 4,

while the corresponding total number of tweets is shown in

figure 5. From our mobility analysis, we identified 103 unique

users living in the evacuation counties during the pre-hurricane

period and estimated that 82 of those users had left the evacua-

tion counties as they did not have any tweeting activity within

those counties during the hurricane period. Moreover, out of

those 82 users, 39 users tweeted at least once outside the evacua-

tion counties. Hence, this suggests that the proportion of the

displaced population during Hurricane Harvey ranged from
38% (39/103) to 80% (82/103). In addition, we found that

only 12 of the 83 users (12%) had returned to their residence

in evacuation counties by 15 October 2017.

To identify the conditions that would have yielded

an epidemic, we conducted sensitivity analyses around six

parameters (a, c1, c2, t, m and mmax, table 1). We found that

a number of these parameters significantly influence the epi-

demic size ( p , 0.05), albeit in different ways as shown in

electronic supplementary material, figure S6A. Parameters

c1, c2, relating to the creation and removal dynamics of the

mosquito carrying capacity, had the most influence on cumu-

lative cases. As expected, the parameter c1 has a positive

impact on the epidemic size, whereas the parameter c2 has

a negative impact. The case importation rate (a) also had sub-

stantial positive impact on the epidemic size, and the

corresponding PRCC increased slightly with later timing of

the HRE (electronic supplementary material, figure S6A).

Further, the parameter t negatively influenced epidemic

size, which increased slightly with a later timing of the

HRE, while the initial vector–host ratio (m) played a more

significant role on epidemic size (PRCC ¼ 0.38–0.49) than

the maximum vector–host ratio mmax (PRCC ¼ 0.06–0.13).

Our findings from sensitivity analyses substantiate a signifi-

cant decline in the median epidemic size, the later the HRE

occurs (electronic supplementary material, figure S6B).
4. Discussion
It is widely recognized that natural weather disasters, includ-

ing HREs, have the potential to increase mosquito-borne

disease transmission by changing the availability of breeding

sites. Depending on the species of mosquito involved and its

breeding site preferences, HREs can have a larger or smaller

impact on mosquito abundance. This effect can be amplified

by disruption of vector control operations. At the same time,

damage to housing (including protective measures such as

mosquito screens) and public health infrastructure can

increase exposure. The most important risk factors are, how-

ever, related to population displacement, and in particular to

the conditions in which displaced people find themselves [7].

One of the most extreme examples of the impact of a natural

disaster on vector-borne infectious disease is the malaria epi-

demic that followed the 1991 earthquake in Costa Rica. The

April 1991 earthquake was followed by flooding in the

August of the same year. The result was a 4700% increase

in the incidence of malaria in the worst affected canton over

the average monthly rate for the pre-earthquake period.

While mosquito habitat changes owing to landslides, river
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damming and river rerouting were a factor, other important

drivers were the disruption of vector control activities and

local population displacement that led to increased exposure
to mosquitoes [33]. The evidence from flood events elsewhere

underlines the importance of the combination of conditions

faced by the displaced population. Infectious disease risks
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depend on an ‘epidemiologic triad’: changes in the conditions

of displaced people, changes in the ecosystem of pathogens

and changes in the biophysical environment. Risks are highest

where displaced people and refugees face overcrowded shel-

ters, poor water and sanitation, poor nutrition and hygiene,

and disrupted healthcare [34].

In this paper, we model the potential impact of HREs on

mosquito-borne disease transmission in temperate areas of

the world such as the southern coastal areas of the USA.

We test the disease-risk implications of variation in (i) the

intensity and temporal profile of human population displace-

ment away from the area immediately affected by the HRE;

and (ii) the effects of rainfall on mosquito abundance. Since

human population displacement is not within the area

affected by the HRE, and does not have implications for

crowding, sanitation, nutrition or hygiene, it is risk-reducing.

By contrast, changes in mosquito breeding habitat are risk-

increasing, but this is also highly sensitive to when the

event occurs in the transmission season. We find that the

impact of vector-borne disease transmission is on average

greater the earlier an HRE occurs in the transmission

season, and the larger the case importation rate.

Our sensitivity analyses underscore the need to improve

understanding of the mechanisms connecting HREs and

mosquito reproduction and development, and to enhance

empirical data on vector control and disease importation

after a disaster. The mechanisms connecting HREs and mos-

quito reproduction concern the link between rainfall and the

growth of breeding sites. We have assumed a linear relation

between rainfall and the growth of breeding sites. Monitoring

the dynamics of flooding at fine spatial–temporal scales

is crucial for appropriately modelling the spatial heterogen-

eity in mosquito breeding capacity as well as for the

implementation of preventive and mitigation efforts. Open

satellite imagery provides data at coarse spatial scales and

is only useful to identify the most heavily affected regions,

whereas high-resolution satellite mapping is not available

to the public. Rigorous vector monitoring operations, as

soon as possible after an emergency, would help improve

model projections and hence the capacity to manage

HRE-induced epidemics.

Disease importation rates in the model are sensitive to the

number of people displaced from the area. They fall with the

number of people displaced from the area during an HRE.

They rise with the number of people returning after the

event, and by the number (and origin) of people moving

into a disaster area offering emergency relief, or repair, reha-

bilitation and restoration work. We do not model the latter,

but note that it is potentially extremely important. Short-

term changes in mobility patterns that are not explicitly

taken into account (see also [10]) might be recovered from

data obtained from social media platforms such as Twitter.

Such platforms are already important tools for disaster man-

agement [35]. Data streams from these sources could be

useful to quantify the level of public awareness during
emergencies [36] and may provide a useful proxy of the tem-

poral profile of population displacement patterns away from

the affected areas.

Social media data do pose several challenges. For

instance, to obtain meaningful mobility patterns, existing

studies (such as [37]) aggregate geo-coded tweet data for

extended periods of time: this ensures that there is a sufficient

number of tweets that paint an overall picture of the mobility

patterns within the given region. Since only a small portion of

all tweets contain point coordinate information, using Twitter

data to discover short-term mobility patterns immediately

before, during and immediately after a hurricane may be pro-

blematic. In addition, there is no evidence that Twitter users

are representative of the general population. Indeed, in the

USA, Twitter users have been found to overrepresent the

more densely populated regions of the country, and to rep-

resent a highly non-random sample of the distribution of

the general population by gender and ethnicity [38]. Else-

where, they have been shown to be younger and more

educated than the general population [39]. If these character-

istics are correlated with mobility, and if evacuations are

voluntary, we would expect Twitter data to overestimate

the percentage of the population displaced. There is currently

no systematic collection of data on the demographics of dis-

aster response. More accurate data on both evacuees and

emergency responders would help improve projections of

disease risks.

Finally, one limitation of the model developed here is that

it is deterministic, capturing the average dynamics of HRE-

induced epidemics. Stochastic models would be useful for

investigating questions relating to the probability of disease

invasion and stochastic extinction [26,40]. Future versions of

the model could also be cast as a near real-time forecasting

tool to guide the public health interventions based on

real-time forecasts of temperature and rainfall during the

HRE and scenarios for changes in population mobility and

displacement patterns.
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