
10 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

On the expressiveness of modal transition systems with variability constraints

Published version:

DOI:10.1016/j.scico.2018.09.006

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1696240 since 2019-04-03T17:51:02Z

On the Expressiveness of Modal Transition Systems
with Variability Constraints

Maurice H. ter Beeka,∗, Ferruccio Damianib, Stefania Gnesia,
Franco Mazzantia, Luca Paolinib

aISTI–CNR, Pisa, Italy
bUniversità di Torino, Italy

Abstract

We demonstrate that modal transition systems with variability constraints
are equally expressive as featured transition systems, by defining a transfor-
mation of the latter into the former, a transformation of the former into the
latter, and proving the soundness and completeness of both transformations.
Modal transition systems and featured transition systems are widely recog-
nised as fundamental behavioural models for software product lines and our
results thus contribute to the expressiveness hierarchy of such basic models
studied in other papers published in this journal.

Keywords: software product lines, formal specification, behavioural
specification, modal transition systems, featured transition systems

1. Introduction

Modern software systems are often developed and managed as software
product lines (SPLs) to allow for mass customisation of many individual
product variants [1]. The variability among the instances of such highly-
configurable, variant-rich systems is expressed in terms of features, which
conceptualise pieces of functionality or aspects of a system that are relevant
to the stakeholders [2]. Foundational formal models for the specification and
verification of SPL behaviour have been the subject of extensive research

∗Corresponding author. Istituto di Scienza e Tecnologie dell’Informazione, Consiglio
Nazionale delle Ricerche, Via G. Moruzzi 1, 56124 Pisa, Italy.

Email addresses: maurice.terbeek@isti.cnr.it (Maurice H. ter Beek),
ferruccio.damiani@unito.it (Ferruccio Damiani), stefania.gnesi@isti.cnr.it
(Stefania Gnesi), franco.mazzanti@isti.cnr.it (Franco Mazzanti),
luca.paolini@unito.it (Luca Paolini)

Preprint submitted to Science of Computer Programming October 3, 2018

throughout the last decade [3–16]. Most fundamental behavioural models for
SPLs are based on the superimposition of multiple labelled transition sys-
tems (LTSs), each of which represents a different variant (a product model),
in one single LTS enriched with feature-based variability (a family model).
Consequently, a family’s products, i.e. ordinary LTSs, can be derived from
the enriched LTS by resolving this variability. This boils down to deciding
which ‘variable’ (i.e. optional) behaviour to include in a specific product and
which not, based on the combination of features defining the product.

In [17], some of the most fundamental behavioural models for SPLs were
compared with respect to their expressiveness, which was defined as the set of
(product) variants (modelled as LTSs) that can be derived from these models
according to some (product derivation) refinement relation. In particular, it
was demonstrated that modal transition systems (MTSs) are less expressive
than featured transition systems (FTSs). Furthermore, an FTS was provided
for which it was demonstrated that it cannot be encoded as an MTS.

In [18], we informally presented an automatic technique to transform an
FTS into an MTS with variability constraints (MTSυ), which is an extension
of MTSs introduced in [15], and we sketched a proof of the soundness of this
model transformation (cf. Theorem 1 in [18]). In this paper, we contribute
to the expressiveness hierarchy of fundamental behavioural models for SPLs
studied in [17], by proving that finite-state MTSυs are equally expressive as
finite-state FTSs:

• We first prove that MTSυs are at least as expressive as FTSs by defining
an algorithm that transforms any FTS into an MTSυ and proving its
soundness and completeness (i.e. an MTSυ results with the same set of
variant LTSs as the original FTS)—we thus formalise and improve the
procedure sketched informally in [18]. Moreover, to illustrate our result,
we transform both the aforementioned FTS from [17], reproduced in
Example 25, and a more elaborate SPL example from [11], into MTSυs.

• Next, we prove that MTSυs are equally expressive as FTSs by defining
an algorithm that transforms any MTSυ into an FTS and proving its
soundness and completeness (i.e. an FTS results with the same set of
variant LTSs as the original MTSυ). We illustrate this by an example.

Moreover, the transformation algorithm from FTS to MTSυ preserves the
original (compact) branching structure, thus paving the way for using an

2

(optimised) version for family-based SPL model checking of FTSs with the
variability model checker VMC [19, 20], which currently accepts only MTSυ.

The outline of the paper is as follows. In Section 2, we define LTSs
and a few standard notions used in the sequel, after which we define FTSs
and MTSυs in Sections 3 and 4, respectively. Our main contributions are
presented next: in Section 5, we present an algorithm to transform any
FTS into an MTSυ with a proof of soundness and completeness, followed in
Section 6 by an algorithm to transform any MTSυ into an FTS together with
its soundness and completeness proof. In Section 7, we embed our results
in the literature, after which Section 8 concludes the paper and mentions
possible future work.

2. Labelled Transition Systems

We start by introducing LTSs which are the common underlying (seman-
tic) structure for FTSs and MTSs.

Definition 1 (Labelled transition system). A labelled transition system is
a quadruple (Q,Σ, q̄, δ), where Q is a finite (non-empty) set of states, Σ is a
set of actions, q̄ ∈ Q is an initial state, and δ ⊆ Q × Σ × Q is a transition
relation. We call (q, a, q′) ∈ δ an a-transition (from source q to target q′) and
we may also write it as q a−−→ q′.

We formalise two standard notions concerning LTSs in the next definition.

Definition 2 (Path, reachable). Let L = (Q,Σ, q̄, δ) be an LTS. Then σ is
a path of L if σ = q̄ (empty path) or σ = q1a1q2a2q3 · · · with q1 = q̄ and
qi

ai−−→ qi+1 for all i > 0 (possibly infinite path); its ith state is denoted by
σ(i) and its ith action is denoted by σ{i}. A state q ∈ Q is reachable in L
if there exists a path σ such that σ(i) = q for some i > 0. An action a ∈ Σ
is reachable in L if there exists a path σ such that σ{i} = a, for some i > 0.

Example 3. In Fig. 1, we depict an LTS with 7 actions (E, x, a,m, p, `, e).
Paths start from initial state 1, including infinite path 1E2x3a6m7p8`9e1 · · ·
which implies that all states and all actions are reachable.

Since we will be studying the expressiveness of behavioural models, we
restrict our attention to LTSs without unreachable states. In particular, when
deriving an LTS from an FTS we will drop all the unreachable states and
both their ingoing and their outgoing transitions. Note, however, that we will

3

1
** E // 2

x // 3
a // 6

m // 7
p

// 8
` // 9

e

OO

Figure 1: Example LTS L

1
** pay

// 2
change

// 3
tea // 6

serveTea // 7
open

// 8
take // 9

close
OO

Figure 2: LTS ρ(L): the ρ-relabelling of the LTS L of Example 3 depicted in Fig. 1

admit LTSs including unreachable actions (i.e. not labelling transitions) as
is done, e.g., in [21]. This is because we will study sets of LTSs (i.e. product
models) generated from a common set of actions (viz. of the family model).

We define an action relabelling for LTSs, which will be used in the sequel.

Definition 4 (Action relabelling). Let L = (Q,Σ1, q̄, δ) be an LTS and let
ρ : Σ1 → Σ2 be a relabelling function. The ρ-relabelling of L is the LTS
ρ(L) = (Q,Σ2, q̄, { (q, ρ(a), q′) | (q, a, q′) ∈ δ }).

Relabelling is commonly adopted to reuse a given specification (model)
with different action names.

It is worth noting that the above relabelling function is not required to
be injective, in accord with similar operators defined in [21–23]. This choice
allows us to collapse different actions to the same action (e.g. it is quite usual
to collapse different actions on a generic (irrelevant) internal action).

Example 5. The ρ-relabelling ρ(L) of the LTS L of Example 3, with ρ =
{(E, pay), (x, change), (a, tea), (m, serveTea), (p, open), (`, take), (e, close)},
is depicted in Fig. 2.

3. Featured Transition Systems

An SPL is a set of (software-intensive) products, called (product) variants
here, in a product portfolio of a manufacturer or software house that share
substantial similarities and that are, ideally, generated from a common set of
reusable (software) components by means of well documented variability [2].
A feature represents an abstract description of functionality, and a feature
model can be used to provide an abstract description of (product) variants
in terms of features: each (product) variant is identified by a set of features,

4

called a (product) configuration (cf. the example feature model discussed in
Example 9 below). It is worth observing that a (product) configuration can
be represented by a Boolean assignment to the features (i.e. selected = >
and unselected = ⊥), and a feature model can be represented by a feature
expression (a Boolean formula over the features).

FTSs were introduced in [8, 11] to concisely model SPL behaviour, where
the behaviour of its (product) variants is modelled by LTSs. An FTS is
an LTS equipped with a function that labels each transition with a feature
expression which needs to hold for this specific transition to be part of exe-
cutable (product) variant behaviour (according to some feature model). An
FTS captures a family of LTSs, one per (product) variant, which can be ob-
tained by projection (pruning away transitions not belonging to the variant).

We largely follow the definitions from [17]. Let B = {>,⊥} denote the
Boolean constants true (>) and false (⊥). Moreover, let B(F) denote the
set of Boolean expressions over a set of features F (i.e. using features as
propositional variables); its elements are called feature expressions.

Definition 6 (Featured transition system). A featured transition system is
a sextuple (Q,Σ, q̄, δ, F,Λ), where Q is a finite (non-empty) set of states, Σ
is a set of actions, q̄ ∈ Q is an initial state, δ ⊆ Q × Σ × B(F) × Q is a
transition relation, F is a set of features, and Λ ⊆ {λ : F → B } is a set of
(product) configurations. We call (q, a, φ, q′) ∈ δ an a-transition (limited to
configurations satisfying φ) and we may also write it as q

a/φ−−−→ q′.

The notions from Definition 2 (path, reachable) are carried over as usual.

Remark 7. Definition 6 is slightly different than the definition of FTSs
given in [17], where any pair of a-transitions, for some a, between two states
is required to be labelled with the same feature expression, no initial state is
distinguished, and—more importantly—the set of states may be infinite. The
latter is explicitly used to obtain the expressiveness results reported in [17]
(cf. Section 8).

We say that a configuration λ ∈ Λ satisfies a feature expression φ ∈ B(F),
denoted by λ |= φ, whenever the interpretation of φ via λ is true, i.e. if the
result of substituting the value of the features occurring as variables in φ
according to λ is >. The variant LTS defined by a particular (product)
configuration λ ∈ Λ of an FTS is obtained from the latter by first removing
all transitions whose feature expressions are not satisfied by λ (this operation
is called projection) and then removing all the unreachable states.

5

Definition 8 ((Product) variant of FTS). Let F = (Q,Σ, q̄, δ, F,Λ) be an
FTS. The projection of F on its (product) configuration λ ∈ Λ is the LTS
L = (Q,Σ, q̄, δ′), where δ′ = { (q, a, q′) | (q, a, φ, q′) ∈ δ and λ |= φ }. Let F|λ
denote the LTS that is obtained from L by removing all unreachable states
and their outgoing transitions. Then F|λ is called a (product) variant of F .

The set of variants derived from an FTS F is denoted by lts(F). Note
that all variants of an FTS are thus LTSs, without unreachable states and
without transitions that cannot be executed as a part of any path; however,
they may contain unreachable actions. Furthermore, the variants do not
contain states or actions that were not already present in the FTS.

Example 9. In Fig. 3, we reproduce the FTS behaviour of a beverage vending
machine SPL example from [11]. It has the following 12 actions: pay, free,
change, cancel , return, soda, tea, serveSoda, serveTea, take, open and close.

VendingMachine

◦◦
Beverages FreeDrinks CancelPurchase

Soda Tea

According to its feature model, reproduced
on the right, it has six features: Vending-
Machine (v), Beverages (b), FreeDrinks (f),
CancelPurchase (c), Soda (s) and Tea (t).

Legend

and

or

optional ◦

Its feature model defines the 12 product configurations in Λ.
The LTS behaviour of the variant F|λ, with λ = {v, b, t} (i.e.

λ(v) =>, λ(b) =>, λ(s) =⊥, λ(t) =>, λ(f) =⊥, λ(c) =⊥), of
this FTS F coincides with the LTS ρ(L) depicted in Fig. 2.

4. Modal Transition Systems with variability constraints

An MTS is an LTS that distinguishes between admissible (may) and nec-
essary (must) transitions. MTSs were introduced in [24] to capture the re-
finement of a partial description into a more detailed one, reflecting increased
knowledge on the admissible (but not necessary) behaviour. We follow the
definitions from [15].

Definition 10 (Modal transition system). A modal transition system is a
quintuple (Q,Σ, q̄, δ3, δ2) such that δ2 ⊆ δ3 and (Q,Σ, q̄, δ3) is an LTS.
We distinguish the transition relation δ3 expressing admissible (may) transi-
tions and the transition relation δ2 expressing necessary (must) transitions,
whereas the transitions in δ3 \ δ2 are called optional transitions. We may
also write q a−−→3 q′ for (q, a, q′) ∈ δ3, q a−−→2 q′ for (q, a, q′) ∈ δ2 and
q 99K q′ for (q, a, q′) ∈ δ3 \ δ2.

6

4return/c

��

5 serveSoda/s

((
1
**

pay/v∧¬f
//

free/f
��

2
change/v

// 3

soda/s 66

tea/t ((

cancel/c
nn

7
open/v∧¬f

//

take/f

OO 8
take/v

// 9

close/v

OO

6 serveTea/t

66

F = {v, b, s, t, f, c}
Λ = {{v, b, t}, {v, b, t, f }, {v, b, t, c}, {v, b, t, f, c}, {v, b, s}, {v, b, s, f }, {v, b, s, c},

{v, b, s, f, c}, {v, b, s, t}, {v, b, s, t, f }, {v, b, s, t, c}, {v, b, s, t, f, c}}

Figure 3: FTS F of the beverage vending machine SPL example from [11]

Note that any (may) transition of an MTS is either a must transition or
an optional transition. When drawing MTSs in this paper, we will depict
their must transitions (as solid lines) and their optional transitions (as dashed
lines). Again, the notions from Definition 2 (path, reachable) are carried over
in the usual way.

MTSs describe all possible behaviour by means of variability modelled
through optional transitions, i.e. admissible (may) but not necessary (must)
transitions. Concrete variant behaviour in the form of LTSs can be obtained
by resolving this variability, i.e. deciding for each optional transition whether
or not it is included (executable) in a particular variant. This implies a
notion of conformance to define when an LTS conforms to an MTS. We
know from [3] that the traditional (strong and weak refinement) semantics
of MTSs is not capable of capturing a notion of conformance that is suitable
for SPL modelling. One of the problems is that MTS behaviour might not
be preserved in a consistent way in variant LTSs, in the sense that it is in
principle possible to decide that some occurrences of optional a-transitions
are included while other occurrences are not—we consider such decisions
inconsistent since, in SPL terminology, features are either included or not.

Another problem, illustrated in [11, 25], is that the optional transitions
of an MTS are all independently optional, in the sense that the decision to
include an optional a-transition is by definition independent of the decision
to include an optional b-transition. In other words, there is no inherent
mechanism to declare such transitions to be in an alternative (xor) relation.

7

We provide examples of the issues raised above. Consider the MTS in
Fig. 4(left). The only variants that we consider to be consistent (formalised
in Definition 15(3) below) are the four LTSs on the right: hence an LTS with
the a-transition and only one of the b-transitions does not model acceptable
product behaviour. Furthermore, if a and b were alternative (i.e. a xor b),
then both the leftmost LTS and the rightmost LTS would no longer model
acceptable product behaviour.

We refer the reader to [15] for a more detailed discussion and for further
examples (cf. also Example 25 in Section 5.3 below).

p**

a
��

b // q p** p**

a
��

p** b // q p**

a
��

b // q

r
b // s r r

b // s

Figure 4: An MTS and four valid variants; only the two central LTSs are valid if a xor b

Coming from the desire to express intuitive specification requirements like
persistent choices, in [26] so-called parametric MTSs are introduced, which
allow to choose in a consistent (persistent) way whether or not to implement
a transition in a product by using parameters with a priori fixed (Boolean)
values that settle this choice for the entire product.

In [15], it was shown how to make MTSs amenable to SPL modelling
and analysis by equipping so-called coherent MTSs with an additional set
of variability constraints over actions. In the following definitions, we recall
the notion of MTS with variability constraints and a syntactic operational
definition to derive (product) variant LTSs which, in [15], were shown to be
equivalent—modulo bisimulation (cf., e.g., [21, 27])—to the LTSs obtained
by means of a special-purpose semantic refinement relation.

Definition 11 (Coherent MTS). An MTSM = (Q,Σ, q̄, δ3, δ2) is coherent
whenever for all (p, a, p′) ∈ δ2 and (q, b, q′) ∈ δ3 \ δ2, it holds that a 6= b.

From now on, we consider only coherent MTSs, i.e. MTSs such that the
set of actions labelling necessary transitions and the set of actions labelling
optional transitions are disjoint. We inherit this from [15], where MTSυs
are only defined for coherent MTSs. The motivation given in [15] is that an
(often implicit) assumption underlying most of the fundamental behavioural
models for SPLs based on LTSs [6], FTSs [8, 11, 28], MTSs [3, 9, 25, 29],
I/O automata [4, 7] and mCRL2 [30] is that an action models a piece of
functionality (or, a feature) which by definition either is optional or is not.

8

Definition 12 (Variability constraints). Let L = (Q,Σ, q, δ) be an LTS.
We define the syntax and semantics of the following six types of variability
constraints on the reachability of actions of L formalised as propositional
formulae1 over the actions of Σ interpreted as propositional variables. Let
ai ∈ Σ, for all i ≥ 1, and let m ≥ 2 and n ≥ 3.

1. b1 ∨ b2 ∨ · · · ∨ bm, where bi ∈ {ai,¬ ai} for all 1 ≤ i ≤ m (i.e. each
atom bi is either equal to ai or to its negation): for at least one bi,
1 ≤ i ≤ m, it holds that either

• bi = ai and ai is reachable in L, or
• bi = ¬ ai and ai is not reachable in L

2. a1 ⊕ a2 ⊕ · · · ⊕ am: precisely one among a1, . . . , am is reachable in L
3. a1 ↑ a2: at most one among a1 and a2 is reachable in L
4. a1 → a2: a2 is reachable in L whenever a1 is reachable in L
5. a1 → (a2 ⊕ a3 ⊕ · · · ⊕ an): precisely one among a2, . . . , an is reachable

in L whenever a1 is reachable in L
6. a1 → (a2 ∨ a3 ∨ · · · ∨ an): at least one among a2, . . . , an is reachable in
L whenever a1 is reachable in L

Any propositional logic formula can be converted into an equivalent for-
mula in conjunctive normal form (CNF), i.e. a conjunction of disjunctions
of literals2 by applying the laws of distribution, De Morgan’s laws, and by
removing double negations, possibly requiring exponential time [31]. Hence,
the variability constraint of type 1 in Definition 12 suffices to define all propo-
sitional formulae over Σ; more precisely, any propositional formula φ over the
actions of Σ interpreted as propositional variables can be defined by a set of
disjunctive formulae of the form {b11∨b12∨· · ·∨b1n , . . . , bm1∨bm2∨· · ·∨bmn},
with bij ∈ { aj,¬aj | Σ = {a1, . . . , an} and 1 ≤ j ≤ n } for some m ≥ 1 and
1 ≤ i ≤ m, which all need to hold to satisfy φ. However, we provide the
other five types of variability constraints from [15], which stem directly from
feature models and are all accepted by the model checker VMC [19, 20], as
syntactic sugar.

1Note that ⊕ is the exclusive or and ↑ is the negation of conjunction (a.k.a. not and).
2A literal is a propositional variable or its negation, which are also called positive and

negative literals, respectively.

9

Remark 13. In the sequel, we will freely use any type of propositional for-
mula over a set of actions since we know that it can always be converted into
a set of disjunctive formulae (cf. type 1 from Definition 12).

Definition 14 (MTS with variability constraints). A modal transition sys-
tem with variability constraints is a sextuple (Q,Σ, q̄, δ3, δ2,Υ) such that
(Q,Σ, q̄, δ3, δ2) is a coherent MTS and Υ is a set of variability constraints
on actions from Σ.

Intuitively, a variant (LTS) is derived from an MTSυ by including all must
transitions of the MTSυ, together with a subset of its optional transitions.
More precisely, the variant LTS has the same set of actions and the same
initial state as the MTSυ, but a subset of the set of states of the MTSυ
and a subset of its set of transitions such that the following four conditions
are satisfied: (i) all states of the LTS are reachable from its initial state;
(ii) all must transitions of the MTSυ are included in the LTS (except those
must transitions whose source states are not reachable in the LTS); (iii) for
any action a, whenever an a-transition of the MTSυ is included in the LTS,
then any other (optional) a-transition in the MTSυ (from a state that is
reachable in the LTS) is also included (i.e. the decision to turn one optional
a-transition into a necessary a-transition must be consistently repeated for
all other optional a-transitions); (iv) all variability constraints are satisfied.
This operational derivation procedure is formalised in the next definition.

Definition 15 ((Product) variant of MTSυ). Let M = (Q,Σ, q̄, δ3, δ2,Υ)
be an MTSυ. Then the LTS L = (Qv,Σ, q̄, δv) is a (product) variant derived
fromM whenever Qv ⊆ Q and δv ⊆ δ3 are such that the following holds:

1. Every q ∈ Qv is reachable in L
2. There exists no (q, a, q′) ∈ δ2 \ δv such that q ∈ Qv

3. For any a ∈ Σ, whenever (p, a, p′) ∈ δv for some p, p′ ∈ Qv, then for
all q, q′ ∈ Qv such that (q, a, q′) ∈ δ3 it must be the case that also
(q, a, q′) ∈ δv (consistent inclusion proviso)

4. L satisfies all variability constraints in Υ

The set of variants derived from an MTSυ M is denoted by lts(M).
Note that the variants do not contain states or actions that were not already
present in the MTSυ. This is due to the syntactic operational definition
to derive variants, basically pruning away transitions not belonging to the
variant, which differs fundamentally from the modal refinement relation of

10

MTSs, which results in LTSs that need not preserve an MTS’s branching
structure, as noted in [3]. This moreover implies that any MTSυ has a finite
number of variants, while the number of variants in which no more refinement
is possible (usually called implementations) of an MTS is in general infinite.

We now provide a small example to illustrate these differences. Consider
the MTS in Fig. 5(left) and some of its infinite number of implementations on
the right. Seen as an MTSυ (with an empty set of variability constraints) only
the two LTSs with a single state (initial state p) are variants by Definition 15.

p**
a

��
p**

a
��

p** a //
a
��

q p** a // q

a
��

p** a //

a ��

q a //

a
��

r
a��

p** p** a // q p** a // q a // r s
a // u

Figure 5: An MTS(υ) and some of its implementations (variants)

Example 16. In Fig. 6, we depict an MTSυ M that is intended to model
the behaviour of the beverage vending machine SPL example from [11], using
essentially the same actions as the FTS F of Example 9 (except that here we
distinguish the actions takeFree and takeNotFree instead of a single action
take in F). The set of variability constraints Υ is included in the figure.

Note that the LTS F|{v,b,t} of Example 9, depicted in Fig. 2, is a variant
of the MTSυ M up to a relabelling of action take in takeNotFree. In partic-
ular, every state of F|{v,b,t} is reachable, F|{v,b,t} has no must transition that
is not a transition inM and F|{v,b,t} satisfies all variability constraints. Fi-
nally, due to the action relabelling,M does not have two different transitions
with the same action label (meaning that the consistent inclusion proviso is
trivially satisfied). Hence, all conditions of Definition 15 are indeed satisfied.

Note that the transitions labelled with return, serveSoda and serveTea
could also have been designated optional rather than necessary if at the same
time the variability constraints cancel ↔ return, soda ↔ serveSoda and
tea ↔ serveTea were included in Υ. This would not change lts(M) since the
respective pairs of transitions (e.g. (3, cancel , 4) and (4, return, 1)) would still
always either both be present or both be absent in any variant ofM. The same
does not hold for the two pairs of transitions (1, pay , 2) and (7, open, 8) and
(1, free, 3) and (7, takeFree, 1): constraints pay ↔ open and free ↔ takeFree,
respectively, are needed to guarantee for each pair of transitions that either
both its transitions are present or both are absent in variants ofM.

11

4
return

��

5 serveSoda

((
1
**

pay
//

free

��
2

change
// 3

soda 66

tea ((

cancel
nn

7 open
//

takeFree

OO 8
takeNotFree

// 9

close

OO

6 serveTea

66

Υ = {pay ⊕ free, pay ↔ open, free ↔ takeFree, soda ∨ tea}

Figure 6: MTSυ of the beverage vending machine SPL example from [11]

Before turning our attention to the main contributions of this paper in
Sections 5 and 6, viz. transformations from FTSs into MTSυs and vice versa
that preserve the set of variants, it is important to note that the formal
semantics of the variability constraints of an MTSυ is defined in terms of the
reachability of actions in its variants. This follows directly from Definitions 12
and 15(4), both inherited from [15]. This differs fundamentally from FTSs,
where a variant is obtained by projecting on the variant’s configuration,
i.e. pruning away transitions labelled with feature expressions that are not
satisfied by the configuration defining the variant, and subsequently removing
all unreachable states and their outgoing transitions. The transformations
we will define in the next sections need to take this difference into account.

p** a // q b // r
c // s Υ={a→c} p** p** a // q b // r

c // s

p**
a/fa
// q

b/fb
// r

c/fc
// s λ(fb)=⊥,

λ(fa)=>,

λ(fc)=>
p** a // q r

c // s

Figure 7: An MTSυ with two variants (top) and an FTS with a single variant (bottom)

Consider the MTSυ M in Fig. 7(top left). It is easy to see that its
only two variants are those depicted on its right, which are obtained by ei-
ther pruning all optional transitions or turning all of them into necessary
transitions. Both satisfy the variability constraint that action c is reachable
whenever action a is. Now note, in particular, that turning the optional a-
transition into a necessary transition while pruning the optional b-transition,
will not result in an LTS that satisfies the variability constraint a → c (in-
dependent of the decision taken for the optional c-transition).

12

Next consider the FTS F depicted in Fig. 7(bottom left). Its only variant,
obtained by first projecting on the given configuration λ and then removing
the unreachable states r and s and the c-transition from r to s, is depicted
on its right. It is important to note that this variant is not a variant of the
MTSυ M, even though λ satisfies fa → fc, where fa and fc are the feature
expressions associated with the actions a and c, respectively. In order to
obtain the rightmost variant of M from an FTS F ′ obtained from F by
replacing λ with λ′, the latter configuration needs to quantify over the feature
expression fb associated with the action b (even though b is not quantified
over by the variability constraint a → c), viz. λ′(fa) = λ′(fb) = λ′(fc) = >.
Instead, the other variant of M, consisting only of the initial state, can be
obtained by replacing λ with any configuration λ′′ such that λ′′(fa) = ⊥.

5. From FTS to MTSυ

In the previous sections, we have presented the behavioural models for
SPLs considered in this paper. In Section 5.1, we define an algorithm to
transform any FTS into an MTSυ with the same variants and we prove the
soundness and completeness of this transformation in Section 5.2, i.e. MTSυ
are at least as expressive as FTSs. Formally, a behavioural SPL formalismM ′

is said to be at least as expressive as a behavioural SPL formalism M if and
only if there exists a transformation fromM intoM ′, denoted by τ : M →M ′,
such that for all models M ∈ M , the sets of derived variants lts(M) and
lts(τ(M)) coincide, possibly up to dummy transitions and action relabelling
(both of which can be ignored for behavioural analyses); M is said to be less
expressive than M ′ if and only if no such transformation fromM ′ toM exists
(i.e. M is not at least as expressive as M ′ while M ′ is at least as expressive
as M). We thus formalise and improve the procedure sketched informally
in [18]. In Section 5.3, we pinpoint the specific features of MTSυs that make
them at least as expressive as FTSs, by illustrating the transformation of the
FTS that cannot be encoded as an MTS (as demonstrated in [17]) into an
MTSυ.

5.1. Model transformation
In this section, we define an algorithm to transform an FTS into an MTSυ.

Basically, from an FTS we create an MTSυ in the following way. We define a
new action for each combination of action and feature expression that effec-
tively occurs as label of a transition in the FTS. We create dummy transitions

13

for all newly-defined actions and for all features. All these transitions lead
from the initial state to a newly-defined deadlock state, which has no outgo-
ing transitions (a.k.a. sink state). We create variability constraints to relate
actions and features that are involved in the same FTS transition and others
to encode the product configurations (i.e. the ‘feature model’) of the FTS.
This transformation allows us to guarantee that each variant L derived from
the MTSυ is such that its feature-labelled dummy transitions define a valid
product configuration λ of the FTS and L (properly relabelled) is moreover
equal to the variant of the FTS obtained by projecting on λ (duly augmented
with some additional dummy transitions that all lead to a deadlock state).
We explain the details of the definition afterwards.

Definition 17 (FTS2MTSυ transformation algorithm). Consider an FTS
F = (Q,Σ, q̄, δ, F,Λ). Without loss of generality we may assume that Σ∩F =
∅. We build an MTSυ M∗ = (Q∗,Σ∗, q̄, δ

3
∗ , δ

2
∗ ,Υ∗) as follows.

• Q∗ = Q ∪ {s}, where s /∈ Q is a fresh (sink) state

• Σ∗ = { (a, ϕ) | (q, a, ϕ, q′) ∈ δ } ∪ (Σ \ { a | (q, a, ϕ, q′) ∈ δ }) ∪ F

• δ3∗ = { (q, (a, ϕ), q′) | (q, a, ϕ, q′) ∈ δ } ∪ { (q̄, σ, s) | σ ∈ Σ∗ \ Σ }

• δ2∗ = ∅

• Υ∗ = { (a, ϕ) ↔ ϕ | (q, a, ϕ, q′) ∈ δ } ∪ {
∨
λ∈Λ(

∧
f∈F χλ(f))}, where χλ

is the function from F to { f,¬f | f ∈ F } defined as:

χλ(f) =

{
f if λ(f) = > (i.e. λ |= f)
¬f if λ(f) = ⊥ (i.e. λ 6|= f)

Each state of the FTS is added to the set of states of the MTSυ, together
with a new (sink) state. For each feature f of the FTS, an action f is added
to the set of actions of the MTSυ. For each transition (q, a, ϕ, q′) in the
FTS, an action (a, ϕ) is added to the set of actions of the MTSυ, a may
(a, ϕ)-transition is added to the set of may transitions of the MTSυ and a
variability constraint of type (a, ϕ) ↔ ϕ is added to the set of variability
constraints of the MTSυ. Moreover, if Σ \ { a | (q, a, ϕ, q′) ∈ δ } 6= ∅ (i.e.
the FTS contains ‘unused’ actions), then such actions are copied into the set
of actions of the MTSυ, in order to ease the comparison of their variants.
For each newly-defined action of the MTSυ, a may transition from the initial
state to the newly-defined sink state, labelled with that action, is added to
the set of transitions of the MTSυ.

14

Note that the FTS2MTSv transformation creates an MTSυ without must
transitions, which we recall to be a specific type of may transitions. Deciding
which of the may transitions could safely be turned into a must transition
without changing the behaviour nor the set of derived variants is left as an
optimisation for future work. We come back to this at the end of Section 5.3.
For now, we note that the second transition of a sequence of two may transi-
tions whose labels contain the same feature expression (recall that transitions
of an MTSυ are labelled with a combination of an action and a feature ex-
pression) can always safely be turned into a must transition. This can be
seen as follows: whenever the first may transition is (meant to be) present
in a variant, then so is the second. An even simpler case concerns may tran-
sitions whose labels contain a feature expression that is always true (either
by definition, i.e. >, or because it is a tautology with respect to all other
constraints): also these can safely be turned into must transitions, since they
are (meant to be) present in every variant.

Finally, we explain in detail the creation of the set Υ∗ of variability con-
straints. First of all, we remark that if ϕ is a feature expression then we can
convert ϕ into a formula in disjunctive normal form (DNF), i.e. a disjunction
of conjunctions of literals3 (in this case, the literals are { f,¬f | f ∈ F }).
Now ϕ is said to be reachable in an LTS whenever one of these conjunctions
of literals is such that each of its positive literals is reachable while each of
its negative literals is unreachable. Therefore, by adding a constraint of the
form (a, ϕ)↔ ϕ to Υ∗ for each transition (q, a, ϕ, q′) in F , we impose that: in
all valid variants ofM∗, for each action (a, ϕ), the action (a, ϕ) is reachable
if and only if ϕ is ‘reachable’.

Next we explain the addition of the constraint
∨
λ∈Λ(

∧
f∈F χλ(f)) to Υ∗.

Note that each (product) configuration λ ∈ Λ of the FTS F gives rise to a
characteristic formula over the set of features F , i.e. a conjunction of literals
of the form { f,¬f | f ∈ F }, which together form a propositional formula
over F in DNF. More precisely,

∨
λ∈Λ(

∧
f∈F χλ(f)) is a DNF formula of the

form (g11 ∧ g12 ∧ · · · ∧ g1n)∨ · · · ∨ (gm1 ∧ gm2 ∧ · · · ∧ gmn), with gij ∈ { fj,¬fj |
F = {f1, . . . , fn} and 1 ≤ j ≤ n } for some m ≥ 1 and 1 ≤ i ≤ m. Each
clause gi1 ∧ gi2 ∧ · · · ∧ gin characterises a valid product variant of the FTS F ,

3As was the case for CNF, it is well known that any propositional logic formula can
be converted into an equivalent DNF formula by applying the laws of distribution, De
Morgan’s laws, and by removing double negations, possibly requiring exponential time [32].

15

viz. it contains the selected features as positive literals and the unselected
features as negative literals (cf. Example 18 below).

Example 18. In Fig. 8, we depict the MTSυ M∗ = (Q∗,Σ∗, q̄, δ
3
∗ , δ

2
∗ ,Υ∗)

that is obtained by applying the transformation of Definition 17 to the FTS F
of Example 9. The sink state and all dummy transitions 4 ofM∗ are coloured
to emphasise their special status. Note that its underlying MTS is coherent.

4
(return,c)

��

5 (serveSoda,s)

((
1
**

(pay,v∧¬f)
//

(free,f)

��

{(pay,v∧¬f),(free,f),(change,v),(cancel,c),(return,c),(soda,s),(tea,t),
��

2
(change,v)

// 3

(soda,s) 66

(tea,t) ((

(cancel,c)
nn

7
(open,v∧¬f)

//

(take,f)

OO 8
(take,v)

// 9

(close,v)

OO

6 (serveTea,t)

66

s
(serveSoda,s),(serveTea,t),(take,f),(open,v∧¬f),(take,v),(close,v),v,b,s,t,f,c}

Υ∗ = {(pay, v ∧ ¬f)↔ (v ∧ ¬f), (free, f)↔ f, (change, v)↔ v,

(cancel, c)↔ c, (return, c)↔ c, (soda, s)↔ s, (tea, t)↔ t,

(serveSoda, s)↔ s, (serveTea, t)↔ t, (take, f)↔ f,
(open, v ∧ ¬f)↔ (v ∧ ¬f), (take, v)↔ v, (close, v)↔ v}

∪ {(v ∧ b ∧ ¬s ∧ t ∧ ¬f ∧ ¬c) ∨ (v ∧ b ∧ ¬s ∧ t ∧ f ∧ ¬c) ∨
(v ∧ b ∧ ¬s ∧ t ∧ ¬f ∧ c) ∨ (v ∧ b ∧ ¬s ∧ t ∧ f ∧ c) ∨
(v ∧ b ∧ s ∧ ¬t ∧ ¬f ∧ ¬c) ∨ (v ∧ b ∧ s ∧ ¬t ∧ f ∧ ¬c) ∨
(v ∧ b ∧ s ∧ ¬t ∧ ¬f ∧ c) ∨ (v ∧ b ∧ s ∧ ¬t ∧ f ∧ c) ∨
(v ∧ b ∧ s ∧ t ∧ ¬f ∧ ¬c) ∨ (v ∧ b ∧ s ∧ t ∧ f ∧ ¬c) ∨
(v ∧ b ∧ s ∧ t ∧ ¬f ∧ c) ∨ (v ∧ b ∧ s ∧ t ∧ f ∧ c)}

Figure 8: MTSυ obtained by transforming the FTS depicted in Fig. 3

In Fig. 9, we depict an LTS L∗. Note that L∗ is a variant of M∗ be-
cause every state of L∗ is reachable, L∗ has no must transition that is not a

4Here, and likewise in the sequel, we use a set notation (1, {(pay, v∧¬f), . . . , c}, s) ∈ δ3∗
as shorthand for (1, (pay, v ∧ ¬f), s), . . . , (1, c, s) ∈ δ3∗ .

16

1
** (pay,v∧¬f)

//

{(pay,v∧¬f),(change,v),(tea,t),(serveTea,t),(open,v∧¬f),(take,v),(close,v),v,b,t}
��

2
(change,v)

// 3
(tea,t)

// 6
(serveTea,t)

// 7
(open,v∧¬f)

// 8
(take,v)

// 9

(close,v)
OO

s

Figure 9: LTS L∗ that is a variant derived from the MTSυ M∗

transition inM∗,M∗ does not have two different transitions with the same
action label (meaning that the consistent inclusion proviso is trivially satis-
fied) and L∗ satisfies all variability constraints. The latter can be seen by
realising that v ∧ b ∧ ¬s ∧ t ∧ ¬f ∧ ¬c is true, since actions v, b and t are
reachable (by means of dummy transitions) while actions s, f and c are not;
(pay, v ∧ ¬f)↔ (v ∧ ¬f) is true since actions (pay, v ∧ ¬f) and v are reach-
able while action f is not, (free, f) ↔ f is true since neither (free, f) nor f is
reachable, etc. All conditions of Definition 15 are thus satisfied.

Note furthermore that L∗ equals the LTS F|{v,b,t} of Example 9, depicted
in Fig. 2, once all dummy transitions of L∗ are removed and all actions of
L∗ are relabelled according to the function ρ defined by ρ((a, ϕ)) = a for all
(a, ϕ) ∈ Σ∗ \ F and ρ(f) = f for all f ∈ F .

Note that the algorithm in Definition 17 transforms feature names (of the
FTS) into action names used in dummy transitions (of the MTSυM∗). Each
variant of the resulting MTSυ M∗ includes a selection (possibly empty) of
such (dummy) transitions that identifies a product configuration. Therefore,
to be able to prove the soundness and completeness of the transformation
of Definition 17 in the next section (viz. that for any given FTS, an MTS
is constructed such that it has the same set of derived variants), we need to
augment the variants of the FTS with some additional dummy transitions
(which all lead to a deadlock state).

Definition 19 (Dummy-extended variants). Let F = (Q,Σ, q̄, δ, F,Λ) be an
FTS, let λ ∈ Λ be a valid product inducing the variant F|λ = (Qλ,Σ, q̄, δλ)
and let s /∈ Q be a fresh state.

Set δsF ={ (q̄, f, s) | f ∈F and λ(f) |= >}. We define two extended LTSs:

1. F|sλ = (Qλ∪{s},Σ∪F, q̄, δλ∪ δsF ∪ δsΣ) is the s-extension of F|λ, where
δsΣ = { (q̄, a, s) | (q, a, ϕ, q′) ∈ δ and λ |= ϕ }

2. F‖sλ=(Qλ∪{s},Σ∗, q̄, δ∗∪δsF ∪δsΣ∗) is the action-extension of F|λ, where

17

• Σ∗ = { (a, ϕ) | (q, a, ϕ, q′) ∈ δ } ∪ (Σ \ { a | (q, a, ϕ, q′) ∈ δ }) ∪ F
• δ∗ = { (q, (a, φ), q′) | (q, a, φ, q′) ∈ δλ and λ |= φ }
• δsΣ∗ = { (q̄, (a, ϕ), s) | (q, a, ϕ, q′) ∈ δ and λ |= ϕ }

Given a product configuration λ, the s-extension F|sλ adds to the transi-
tion relation of variant F|λ two sets of dummy transitions: a transition for
each feature in the product variant determined by λ (labelled by the feature
itself) and one for each action label of a transition of F|λ. On the other hand,
the action-extension F‖sλ picks up F|sλ up to an action relabelling: F|sλ can
be obtained from F‖sλ via a relabelling ρ : Σ∗ → Σ∪F ; it collapses all actions
of the form (a, ϕ) on the same a. Indeed, the Algorithm in Definition 17 uses
more informative action names than those used in the original FTS and such
information has to be erased to prove the soundness of the transformation.
This is illustrated below (Example 20) and proved afterwards (Lemma 21).
It is worthwhile noticing that (i) all transitions included in F|λ and F‖λ are
reachable, because those in δλ are reachable by construction (cf. Definition 8)
and (ii) the actions Σ \ { a | (q, a, ϕ, q′) ∈ δ } do not label any transition.

Example 20. In Fig. 10, we depict the s-extension F|s{v,b,t} of variant F|{v,b,t},
depicted in Fig. 2, of the FTS F from Example 9. Moreover, the LTS L∗
depicted in Fig. 9 is its action-extension F‖s{v,b,t}. Note that F|s{v,b,t} is equal
to the ρ-relabelling of F‖s{v,b,t}, where ρ is defined by ρ((a, ϕ)) = a for all
(a, ϕ) ∈ Σ∗ \ F and ρ(f) = f for all f ∈ F (i.e. it is the identity otherwise).

Lemma 21. Let F = (Q,Σ, q̄, δ, F,Λ) be an FTS, let λ ∈ Λ be a valid product
inducing the s-extended variant F|sλ and the action-extended variant F‖sλ such
that s /∈ Q is a fresh state. If ρ is the relabelling defined by ρ((a, ϕ)) = a
for all (a, ϕ) ∈ Σ∗ \ F and it behaves as the identity in all other cases, then
ρ(F‖sλ) = F|sλ.

Proof. Following Definition 19, let F|sλ = (Qλ∪{s},Σ∪F, q̄, δλ∪δsF ∪δsΣ) and
let F‖sλ = (Qλ∪{s},Σ∗, q̄, δ∗∪ δsF ∪ δsΣ∗). It is immediate that ρ(Σ∗) = Σ∪F
and that ρ(δ∗ ∪ δsF ∪ δsΣ∗) = ρ(δ∗) ∪ δsF ∪ ρ(δsΣ∗) = δλ ∪ δsF ∪ δsΣ.

Some hints concerning the negligibility of dummy-transitions (e.g. for
model-checking purposes) can be found in Example 25 below.

18

1
** pay

//

{pay,change,tea,serveTea,open,take,close,v,b,t}
��

2
change

// 3
tea // 6

serveTea // 7
open

// 8
take // 9

close
OO

s

Figure 10: The s-extension F|s{v,b,t} of variant F|{v,b,t}

5.2. Soundness and completeness of the transformation
In this section, we prove that the transformation from FTS to MTSυ that

we defined by the algorithm given in Definition 17 is sound and complete:
it always results in an MTSυ with the same set of derived variants as the
original FTS (up to dummy-extensions).

We first prove that, given an MTSυ M∗ generated from an FTS F , any
variant derived fromM∗ is an action-extension of a variant of F .
Lemma 22 (Each variant of the MTSυ corresponds to a variant of the FTS).
Let F = (Q,Σ, q̄, δ, F,Λ) be an FTS and let M∗ = (Q∗,Σ∗, q̄, δ

3
∗ , δ

2
∗ ,Υ∗)

be the MTSυ generated from F according to the FTS2MTSυ Algorithm in
Definition 17. If L? is a variant derived fromM∗ and s ∈ Q∗ \Q, then there
exists a λ ∈ Λ such that L? = F‖sλ.
Proof. Let L? = (Q?,Σ∗, q̄, δ

?) be a variant derived from M∗. L? thus sat-
isfies all variability constraints in Υ∗ (cf. Definition 15) and, in particular,∨
λ∈Λ(

∧
f∈F χλ(f)) (included in Υ∗ by Definition 17). These constraints ex-

press which of the features (considered as actions in Σ∗) must be reachable
in each variant ofM∗; more precisely, their satisfiability requires that the set
of features that is reachable in a variant ofM∗ identifies a set X of features
such that there is a unique λ ∈ Λ for which f ∈ X iff λ(f) = >. Let λ? ∈ Λ
be the unique configuration identified by the reachable features of L?. We
aim to prove that L? = F‖sλ? .

Let F‖sλ? =(Qs
λ? ,Σ

s
λ? , q̄, δ

s
λ?). By Definitions 8, 17 and 19, F‖sλ? satisfies the

following three conditions: (i) Qs
λ? = { q ∈ Q | q is reachable in F|λ? } ∪ {s};

(ii) Σs
λ? = { (a, ϕ) | (q, a, ϕ, q′) ∈ δ } ∪ (Σ \ { a | (q, a, ϕ, q′) ∈ δ }) ∪ F ;

(iii) δsλ? = δ∗ ∪ δsF ∪ δsΣ∗ , with δ∗ = { (q, (a, ϕ), q′) | (q, a, ϕ, q′) ∈ δ, λ? |= ϕ
and q is reachable in F|λ? }, δsF = { (q̄, f, s) | f ∈ F and λ? |= f } and δsΣ∗ =
{ (q̄, (a, ϕ), s) | (q, a, ϕ, q′) ∈ δ and λ? |= ϕ }. We aim to show that δsλ? = δ?,
from which Qs

λ? = Q? follows.
We exhaustively explore transitions, by first considering the two types of

dummy-transitions.

19

• (q̄, f, s) ∈ δsF iff λ?(f) |= > iff χλ?(f) = > iff f is reachable in L? iff
(q̄, f, s) ∈ δ?.

• (q̄, (a, ϕ), s) ∈ δsΣ∗ iff λ? |= ϕ and (a, ϕ) ∈ Σ∗ iff (a, ϕ) is reachable
in L? (because λ? |= ϕ means that there exists an equivalent formula
in DNF such that each of its positive literals is a reachable feature
and each of its negative literals is an unreachable feature, moreover
(a, ϕ)↔ ϕ ∈ Υ∗) iff (q̄, (a, ϕ), s) ∈ δ?.

We conclude by considering transitions (q̃, (ã, ϕ̃), q̃′) such that q̃′ 6= s.

• We assume that (q̃, (ã, ϕ̃), q̃′) ∈ δ∗, thus (q, a, ϕ, q′) ∈ δ is a reach-
able transition and λ? |= ϕ. The reachability means that there is a
path starting in q̄ that reach q̃, viz. for some n ≥ 1 there must exist
(qi−1, ai, ϕi, qi) ∈ δ, with 1 ≤ i ≤ n, such that q1 = q̄, qn = q̃ and
λ? |= ϕi. For all 1 ≤ i ≤ n, (ai, ϕi) ↔ ϕi ∈ Υ∗ by the Algorithm
in Definition 17, so that our choice of λ∗, and the consistent inclusion
proviso of Definition 15 imply that (q̃, (ã, ϕ̃), q̃′) ∈ δ?.

• We assume (q̃, (ã, ϕ̃), q̃′) ∈ δ? such that q̃′ 6= s. The reachability
of q̃ in L? means that for some n ≥ 1 there must exist transitions
(qi, (ai, ϕi), qi+1) ∈ δ3∗ , with 1 ≤ i ≤ n, such that q0 = q̄ and qn = q̃′.
Furthermore, the reachability constraints (ai, ϕi) ↔ ϕi in Υ∗ imply
that λ? |= ϕi. Therefore, we can conclude (q̃, (ã, ϕ̃), q̃′) ∈ δ∗ and the
proof is done.

Next we prove that, given an MTSυM∗ generated from an FTS F , any
action-extension of a variant of F is a variant derived fromM∗.

Lemma 23 (Each variant of the FTS corresponds to a variant of the MTSυ).
Let F = (Q,Σ, q̄, δ, F,Λ) be an FTS and let M∗ = (Q∗,Σ∗, q̄, δ

3
∗ , δ

2
∗ ,Υ∗)

be the MTSυ generated from F according to the FTS2MTSυ Algorithm in
Definition 17. If λ∈Λ and s∈Q∗\Q, then F‖sλ is a variant derived fromM∗.

Proof. Let λ ∈ Λ and s ∈ Q∗ \ Q. We have to prove that F‖sλ, i.e. the
action-extended projection of F on λ ∈ Λ, is a variant derived fromM∗, i.e.
that it respects Definition 15. Note that the initial state ofM∗ equals that
of F (cf. Algorithm in Definition 17) and it is moreover the same for all their
variants (cf. Definitions 8 and 15), which implies that q̄ is the initial state of
all LTSs involved in this proof (and q̄ is always reachable).

20

Let F‖sλ = (Qs
λ,Σ

s
λ, q̄, δ

s
λ). By Definitions 8 and 19, F|sλ satisfies the

following three conditions: (i) Qs
λ = { q ∈ Q | q is reachable in F|λ } ∪ {s};

(ii) Σs
λ = { (a, ϕ) | (q, a, ϕ, q′) ∈ δ } ∪ (Σ \ { a | (q, a, ϕ, q′) ∈ δ }) ∪ F ;

(iii) δsλ = δ∗ ∪ δsF ∪ δsΣ∗ , with δ∗ = { (q, (a, ϕ), q′) | (q, a, ϕ, q′) ∈ δ, λ |= ϕ
and q is reachable in F|λ }, δsF = { (q̄, f, s) | f ∈ F and λ(f) |= >} and
δsΣ∗ = { (q̄, (a, ϕ), s) | (q, a, ϕ, q′) ∈ δ and λ |= ϕ }.

We also note the following four relations, directly from Definition 17:
Qs
λ ⊆ Q∗ = Q ∪ {s}; Σs

λ = Σ∗ (and by Definition 15 this is also the set of
actions of all variants derived from M∗); for all transitions (q, (a, ϕ), q′) ∈
δ∗ such that (q, a, ϕ, q′) ∈ δ, there exists a transition (q, (a, ϕ), q′) ∈ δ3∗ ;
δsF ∪ δsΣ∗ ⊆ δ3∗ (and by Definition 19 all transitions in δsF ∪ δsΣ∗ are outgoing
transitions of a reachable state in F|sλ, viz. q̄).

We now check that F|sλ satisfies all four conditions of Definition 15.

1. As shown above, Qs
λ is by construction restricted to reachable states.

2. Trivially δ2∗ \ δsλ = ∅, since δ2∗ = ∅ by Definition 17.
3. For any ã ∈ Σs

λ, the consistent inclusion proviso is satisfied:

• ã ∈ (Σ \ { a | (q, a, ϕ, q′) ∈ δ }) makes the proviso trivially true.

• If (q̄, ã, s) ∈ δsF , then ã ∈ F and for all q, q′ ∈ Q∗ such that
(q, ã, q′) ∈ δ3∗ , it is the case that q = q̄ and q′ = s, thus the proof
is immediate.

• If (q̄, (ã, ϕ̃), s) ∈ δsΣ∗ , then (q, ã, ϕ̃, q′) ∈ δ and λ |= ϕ̃. Now assume
there exist r, r′ ∈ Qs

λ such that (r, (ã, ϕ̃), r′) ∈ δ3∗ . Then it remains
to show that also (r, (ã, ϕ̃), r′) ∈ δsλ. Since (r, (ã, ϕ̃), r′) ∈ δ3∗ , by
Definition 17, we have (r, ã, ϕ̃, r′) ∈ δ. Hence, by Definitions 8
and 19, (r, (ã, ϕ̃), r′) ∈ δsλ.

4. F‖sλ satisfies all variability constraints in Υ∗:

• The variability constraints { (a, ϕ) ↔ ϕ | (q, a, ϕ, q′) ∈ δ } are
satisfied once we show that for any (q, a, ϕ, q′) ∈ δ, the action
(a, ϕ) is reachable in F‖sλ whenever λ |= ϕ and vice versa. Easily,
(a, ϕ) is reachable iff (q′, (a, ϕ), q′′) ∈ δsλ for some q′, q′′ ∈ Qs

λ iff
either (q′, (a, ϕ), q′′) ∈ δ∗ or (q′, (a, ϕ), q′′) ∈ δsΣ∗ (and both of them
include only transitions such that λ |= ϕ by definition).

• The variability constraints {
∨
λ∈Λ(

∧
f∈F χλ(f))} are satisfied once

we prove that
∧
f∈F χλ(f) is satisfied for our given λ ∈ Λ. Recall

from Definition 17 that χλ(f) = f if λ(f) = > and χλ(f) = ¬f if

21

λ(f) = ⊥. By the definition of δsF , for all f ∈ F , f is reachable in
F|sλ iff λ(f) = >.

Together with Lemma 21, Lemmata 22 and 23 imply the soundness and
completeness of the transformation proposed in Definition 17.

Theorem 24 (Soundness and completeness of FTS2MTSυ transformation).
Let F = (Q,Σ, q̄, δ, F,Λ) be an FTS and let M∗ = (Q∗,Σ∗, q̄, δ

3
∗ , δ

2
∗ ,Υ∗)

be the MTSυ generated from F according to the FTS2MTSυ Algorithm in
Definition 17. The sets of derived variants lts(F) and lts(M∗) coincide, up
to dummy transitions and action relabelling.

Proof. Straightforward, by Lemmata 21, 22 and 23.

5.3. Discussion
To pinpoint the specific features of MTSυs that make them at least as

expressive as FTSs, we illustrate the transformation into an MTSυ of the
FTS that was introduced in [17] and for which it was demonstrated that it
cannot be encoded as an MTS.

Example 25. In Fig. 11 (left), we have drawn the FTS F from Example 8
of [17], with features F = {f, f ′} and product configurations Λ = {λ, λ′} with
λ(f) = >, λ(f ′) = ⊥ and λ′(f) = ⊥, λ′(f ′) = >, in the notation of this
paper. Its variants lts(F) = {F|λ,F|λ′} are depicted in Fig. 11 (right).

p**

a/f

||

b/f ′

""

λ(f)=>,
λ(f ′)=⊥,

p**

a
��

p**

b
��

q r λ′(f ′)=>
λ′(f)=⊥,

q r

Figure 11: FTS F (left) and lts(F) = {F|λ,F|λ′} (right) from Example 8 of [17]

s Υ={f⊕f ′,
(a,f)↔f,

s s

p**

(a,f)

||

(b,f ′)

""

{(a,f),(b,f ′),f,f ′}
OO

(b,f ′)↔f ′}
p**

(a,f)
��

{(a,f),f}
OO

p**

(b,f ′)
��

{(b,f ′),f ′}
OO

q r q r

Figure 12: MTSυ M (left) and lts(M) (right) obtained by transforming FTS F

22

In Fig. 12 (left), we have drawn the MTSυM, with variability constraints
Υ = {(a, f) ↔ f, (b, f ′) ↔ f ′, f ⊕ f ′}, that is obtained by transforming the
FTS F and by using the fact that f⊕f ′ is equivalent to

∨
λ∈Λ(

∧
f∈F χλ(f)) =

(f ∧ ¬f ′) ∨ (¬f ∧ f ′). Its variants lts(M) are depicted in Fig. 12 (right).
It is straightforward to see that lts(F) and lts(M) coincide, up to dummy

transitions (from the initial state to a sink state) and action relabelling (viz.
ρ((a, f)) = a and ρ((b, f ′)) = b). At the same time, it is immediately clear
that MTSυ, as well as the variants that can be derived from them, can be
used as is (i.e. without modifications) for model checking. It basically suffices
to realise that it is straightforward to ignore all dummy transitions when
traversing the transition system. In [18], we demonstrated how to do so with
the variability model checker VMC [19, 20].

Note that the variability constraints together with the dummy transitions
prohibit the derivation of a variant that contains both transitions (p, (a, f), q)
and (p, (b, f ′), r), which instead cannot be avoided in the case of MTSs with-
out variability constraints, as was demonstrated in [17]. In general, the con-
sistency proviso guarantees that whenever an optional transition of the MTSυ
is included in a variant LTS, then also any other reachable optional transi-
tion labelled with the same action is included. This implies in particular the
inclusion of the appropriate dummy transitions, since these are all optional
transitions from the initial state (i.e. reachable by definition).

The FTS2MTSυ transformation algorithm in Definition 17 leads to an
MTSυ that generally could be optimised in several ways without changing its
behaviour nor its variants, such as reducing the so-called descriptional com-
plexity of the MTSυ (like the number of variability constraints) or improving
the efficiency of model checking properties over the MTSυ or deriving vari-
ants from it. For instance, it is not difficult to see that the set of variability
constraints of the MTSυ M∗ of Example 18 could be reduced in size and
several of its optional transitions could be turned into must transitions (cf.
the MTSυM of Example 16). In [18], we discussed two such optimisations.
Note, however, that the FTS2MTSυ transformation algorithm preserves the
original (compact) branching structure of the FTS. To be precise, the result-
ing MTSυ has one additional state and dummy transitions to that state. This
paves the way for using (optimised) versions of the MTSυs for family-based
SPL model checking of FTSs with the variability model checker VMC [19, 20],
which currently accepts only MTSυ.

23

6. From MTSυ to FTS

In Section 6.1, we define an algorithm to transform any MTSυ into an
FTS with the same variants, after which we prove the soundness and com-
pleteness of this transformation in Section 6.2. Hence FTSs are at least as
expressive as MTSυ. Together with the results from Section 5, this proves
that MTSυs are equally expressive as FTSs. Formally, a formalism M ′ is
said to be equally expressive as a formalism M if and only if M ′ is at least
as expressive as M and M is at least as expressive as M ′. In Section 6.3,
we briefly discuss the complexity of the transformation algorithm defined in
Section 6.2.

6.1. Model transformation
To simplify the next definition, we first introduce two auxiliary functions.

• The function A : Q × Σ × Q → Σ maps a transition (q, a, q′) into its
action a; when applied to a transition relation δ the function A returns
the set of actions A(δ) = { a ∈ Σ | (q, a, q′) ∈ δ }.

• The function z maps each action a to a distinguished feature fa; when
applied to a set of actions Σ, the function z returns a set of features
z(Σ) = { fa | a ∈ Σ } containing a distinguished feature for each action
in Σ.

Given an MTSυM with actions Σ, we define an FTS F◦ with actions Σ and
features F◦ = z(Σ◦), where Σ◦ ⊆ Σ is the set of actions that are actually
used as labels of transitions of the variants lts(M) ofM.

Definition 26 (MTSυ2FTS transformation algorithm). Consider an MTSυ
M = (Q,Σ, q̄, δ3, δ2,Υ). We build an FTS F◦ = (Q,Σ, q̄, δ◦, F◦,Λ◦) in which
F◦ = z(A(δ3)), δ◦ = { (q, a, fa, q

′) | (q, a, q′) ∈ δ3 } and Λ◦ = {z(A(δv)) |
(Qv,Σ, δv, q̄) ∈ lts(M) }.

Example 27. In Fig. 13, we depict the FTS F◦ = (Q,Σ, q̄, δ◦, F◦,Λ◦) that
is obtained by applying the transformation of Definition 26 to the MTSυ M
depicted in Fig. 6. The sets of features F◦ and configurations Λ◦ are included
in the figure. Recall that M was designed from scratch to have the same
variants as the FTS F of Example 9, depicted in Fig. 3.

It is worth observing that the output of the algorithm in Definition 26
depends only on the set of variants of the MTSυ in input. For instance,

24

consider the modifications of the MTSυ M of Fig. 6 proposed in the last
paragraph of Example 16. Since none of the suggested modifications changes
M’s set of variants, the application of the algorithm in Definition 26 to the
modified MTSυ would still produce the FTS depicted in Fig. 13.

4return/freturn

��

5 serveSoda/fserveSoda

((
1
**

pay/fpay
//

free/ffree
��

2
change/fchange

// 3

soda/fsoda 66

tea/ftea ((

cancel/fcancel
nn

7
open/fopen

//

takeFree/ftakeFree

OO 8
takeNotFree/

ftakeNotFree

// 9

close/fclose

OO

6

serveTea/

fserveTea

66

F◦ = {fpay, fchange, freturn, fcancel, ftea, fsoda, fserveTea, fserveSoda, fopen, ftakeFree,

ftakeNotFree, fclose}
Λ◦ = {{fpay, fchange, ftea, fserveTea, fopen, ftakeFree, fclose},

{ffree, ftea, fserveTea, ftakeNotFree, fclose},
{fpay, fchange, freturn, fcancel, ftea, fserveTea, fopen, ftakeFree, fclose},
{ffree, freturn, fcancel, ftea, fserveTea, ftakeNotFree, fclose},
{fpay, fchange, fsoda, fserveSoda, fopen, ftakeFree, fclose},
{ffree, fsoda, fserveSoda, ftakeNotFree, fclose},
{fpay, fchange, freturn, fcancel, fsoda, fserveSoda, fopen, ftakeFree, fclose},
{ffree, freturn, fcancel, fsoda, fserveSoda, ftakeNotFree, fclose},
{fpay, fchange, ftea, fsoda, fserveTea, fserveSoda, fopen, ftakeFree, fclose},
{ffree, ftea, fsoda, fserveTea, fserveSoda, ftakeNotFree, fclose},
{fpay, fchange, freturn, fcancel, ftea, fsoda, fserveTea, fserveSoda, fopen, ftakeFree, fclose},
{ffree, freturn, fcancel, ftea, fsoda, fserveTea, fserveSoda, ftakeNotFree, fclose}}

Figure 13: FTS obtained by transforming the MTSυ depicted in Fig. 6

Lemma 28. Let M = (Q,Σ, q̄, δ3, δ2,Υ) be an MTSυ such that L0,L1 ∈
lts(M). If L0 = (Q0,Σ, δ0, q̄), L1 = (Q1,Σ, δ1, q̄) and A(δ0) = A(δ1), then
L0 and L1 are the same LTS.

Proof. The proof is straightforward, because the variants L0 and L1 have to
satisfy the consistent inclusion proviso (cf. Definition 15(3)).

25

6.2. Soundness and completeness of the transformation
In this section, we prove that the transformation from MTSυ to FTS that

we defined by the algorithm in Definition 26 is sound and complete: it always
results in an FTS with the same set of derived variants as the original MTSυ.

Theorem 29 (Soundness and completeness of MTSυ2FTS transformation).
Let M = (Q,Σ, q̄, δ3, δ2,Υ) be an MTSυ and let F◦ = (Q,Σ, q̄, δ◦, F◦,Λ◦)
be the FTS generated from M according to the MTSυ2FTS Algorithm in
Definition 26. The sets of derived variants lts(M) and lts(F◦) coincide, i.e.
lts(M) = lts(F◦).

Proof. Each variant Lv = (Qv,Σ, δv, q̄) ∈ lts(M) ofM is uniquely identified
by the actions in A(δv), by Lemma 28. Since z is patently a bijection,
it follows that Λ◦ (i.e. the set of configurations of F◦) is in bijection with
the set of lts(M), viz. for each λv ∈ Λ◦ there is a unique associated Lv ∈
lts(M). Moreover, by Definition 8, configurations in Λ◦ bijectively identify
the variants of F◦. Hence, lts(M) and lts(F◦) are in bijection via a suitable
extension of z.

If λv ∈ Λ◦ is the configuration generated by Lv, in accord to Definition 26,
then λv is the configuration in which all and only the features z(A(δv)) occur
as positive literals, viz. the features associated to actions occurring in A(δv).
Concluding, F|λv = Lv = (Qv,Σ, δv, q̄) by Definition 8.

6.3. Discussion
Note that the MTSυ2FTS transformation algorithm in Definition 26 has

a worst-case exponential complexity, since the set of configurations of the
resulting FTS is built using the set of LTSs derived by the MTSυ, which
may be of size exponential in the number of features. Since one of the aims
of this paper is to complement the expressiveness hierarchy of fundamen-
tal behavioural models for SPLs studied in [17], the theoretical result that
MTSυs are equally expressive as FTSs, based on the transformations in both
directions presented in Sections 5.1 and 6.1, is of interest. For what concerns
efficient implementations of these transformations, a second aim of this paper
is an FTS2MTSυ transformation algorithm that preserves the original (com-
pact) branching structure of FTSs to pave the way for using (optimised)
versions of the resulting MTSυs for family-based SPL model checking of
FTSs with the variability model checker VMC, which currently accepts only
MTSυ. This goal is also the reason for using the format of variability con-
straints in Definition 12 rather than propositional formulae (cf. Remark 13).

26

We consider an efficient implementation of the MTSυ2FTS transformation
to be out of the scope of this paper.

7. Related work

The related literature was partially cited throughout the paper. We add
here further comparisons and remarks. In [17], three fundamental behavioural
models for SPLs were compared with respect to their expressive power. In
addition to the models studied in the present paper, i.e. FTSs and MTSυs,
in [17] also product line LTSs (PL-LTSs) were taken into consideration. PL-
LTSs form the semantic model of the product line process algebra PL-CCS in-
troduced in [6]. PL-CCS extends Milner’s calculus of communicating systems
(CCS [33]) with a variants operator ⊕ enabling the modelling of alternative
behaviour, in the form of alternative processes of which only one is intended
to exist at runtime (i.e. compared to CCS’s standard non-deterministic choice
operator +, the variants’ choice is made once and for all).

The expressiveness results in [17] state that MTSs are less expressive than
PL-LTSs, which in turn are less expressive than FTSs. To emphasise the fact
that MTSs are (thus) less expressive than FTSs, in [17] it was demonstrated
that there exists no encoding from the FTS F reproduced in Example 25
into an MTS. In the same example, we showed that F can be transformed
into an MTSυ, and we pinpointed the specific features of MTSυs responsible
for this difference in expressiveness between MTSs and MTSυs.

In a very recent corrigendum to [17], contained in [34], the authors of [17]
reported that their definition of PL-LTSs is more restrictive than the one
originally introduced in [6], upon which they have proved that adopting the
original and more liberal definition, PL-LTSs are equally expressive as FTSs.

It is important to note that the results in [17, 34] are based on LTS-
based SPL models with a possibly infinite number of states. Moreover, the
product-derivation relation for FTSs defined in [17] generalises the one from
the SPL literature as used also in the present paper. Most notably, in [17]
products derived from an FTS do not need to preserve the FTS’ branching
structure (viz. a product may contain more states than the FTS it is derived
from) and they may be infinite in number. For these two reasons, this pa-
per complements the expressiveness hierarchy in [17] with an expressiveness
result for finite-state behavioural SPL models.

27

We provide an example to illustrate the different product-derivation rela-
tion, which also illustrates the effect of a possibly infinite number of states.

Consider the FTS in Fig. 14(left) and on the right some of the infinite
number of products that can be derived from it according to the product-
derivation relation from [17]. According to the classical projection of an FTS
on a product configuration, only the LTS with a single state (initial state p) is
a variant (cf. Definition 8 and [8, 11]). Clearly, the others are bisimilar to this
one. Note, however, that the MTS in Fig. 15(left), reproduced from Section 4,
has an infinite number of variants (implementations in MTS terminology),
some of which are depicted on the right, but that are clearly not all bisimilar.

p**
a/>��

p**
a

��
p** a // q

a
��

p**
a
�� a // q

a
��

r
a // s

a��

p** a // q a // r
a��

p** a //

a
@@

q
a

@@

Figure 14: An FTS and some of its products according to [17, 34]

p**
a

��
p**

a
��

p** p** a // q p** a // q a // r

Figure 15: An MTS and some of its infinite number of implementations (variants)

In fact, MTSs and FTSs as originally introduced in [24] and [8], respec-
tively, are equipped with two fundamentally different ways of deriving LTSs
as (product) variants. In case of MTSs, an infinite number of variants (im-
plementations in MTS terminology) is allowed also for finite-state MTSs (cf.
Fig. 15). On the other hand, products derived from an FTS (through pro-
jection, cf. Definition 8) preserve by definition the FTS’ branching structure
(i.e. a product may not contain more states than the FTS it is derived from),
and are thus finite in number.

Hence, to obtain the statement from [17] that any MTS can be encoded as
an FTS, the authors of [17] chose to adapt the definition of product derivation
for FTSs (and, moreover, to allow FTSs with an infinite number of states, cf.
Remark 7), whereas we chose to compare finite-state FTSs (with the classical
definition of product derivation from [8, 11]) with finite-state MTSυs, which
are an adaptation of MTSs with, amongst others, a definition of product
derivation that differs from the modal refinement relation of MTSs [24, 35].

28

Both are valid strategies. Advantages of the approach pursued in [17, 34] are:
(i) an infinite number of states (and features) allows to encode the infinite
number of variants of MTSs, such as those depicted in Fig. 15(right), and
(ii) the generalised product-derivation relation is closed under (strong) bisim-
ulation, making the formalisms amenable to testing equivalences (as exploited
in [17, 34]). An advantage of our approach is that dedicated (family-based)
model-checking algorithms and SPL model checkers exist for both formalisms
(i.e. with the respective product-derivation relations adopted in this paper).

8. Conclusion and future work

In this paper, we proved that finite-state MTSυs are equally expressive
as finite-state FTSs. This result complements the expressiveness results that
were reported in [17, 34] for behavioural SPL formalisms with possibly infinite
states, viz. MTSs are less expressive than FTSs (with a generalised product-
derivation relation), which are equally expressive as PL-LTSs.

In the future, we plan to implement an optimised version (e.g. creating
must transitions whenever possible) of the FTS2MTSυ transformation algo-
rithm of Definition 17 as a front-end of the variability model checker VMC, a
tool for the modelling and analysis of behavioural SPL models [19, 20]. VMC
is the most recent member of the KandISTI product line of model check-
ers developed at ISTI–CNR over the past decades, including UMC [36] and
CMC [37]. KandISTI’s model checkers offer explicit-state on-the-fly model
checking of functional properties expressed in specific action- and state-based
branching-time temporal logics derived from ACTL [38], the action-based
version of CTL [39]. Their common model-checking engine has been highly
optimised, due to which millions of states can now be verified in minutes.

Currently, the only input model accepted by VMC is an MTSυ defined
as an MTS specified in a high-level modal process algebra, together with a
set of variability constraints specified according to Definition 12. The envi-
sioned front-end would allow VMC to offer SPL model checking of temporal
logic properties against either FTSs or MTSυs. At present, efficient SPL
model checking against FTSs can be achieved by using dedicated family-
based model checkers such as the ProVeLines [40] tool suite or, alternatively,
by using one of the highly optimised off-the-shelf model checkers such as
mCRL2 or SPIN, which have recently been made amenable to family-based
SPL model checking against FTSs [30, 41].

29

Finally, in [42] a unified approach is presented to evaluate the relative ex-
pressive power of process calculi. In that approach, a calculus is specified by
a triple (P , 7−→,�) in which (i) P is the set of language terms (i.e. processes)
that is built up from the terminated process and the success process by using
at least the parallel composition operator, which is assumed to be unique;
(ii) 7−→ is the operational semantics (usually a binary relation on processes)
that specifies how processes compute; and (iii) � is a behavioural equivalence
that specifies when two processes have corresponding (abstract) behaviour.
Our transformations from FTSs to MTSυs and vice versa are aimed at pre-
serving the sets of (product) configurations and (product) variants of the
SPL. We see no straightforward way to apply the criteria proposed in [42] to
our transformations. In future work, we would like to investigate how to lift
the approach proposed in [42] for process calculi to the setting of behavioural
SPL formalisms considered in this paper, e.g. by considering (i) P to be a
behavioural SPL model; (ii) 7−→ to be a variant (product) derivation rela-
tion, which is not a binary relation on P , since it maps a behavioural SPL
model to its (product) variants (a set of LTSs); and (iii) � to be a bijec-
tion between sets of LTSs that associates each LTS to another (somehow)
equivalent LTS. For this lifted approach to work, we likely need to revisit the
parallel composition operators for MTSs and FTSs defined in [11, 15], which
are not unique but depend on whether the composed models refer to the
same feature model (intra-SPL) or not (inter-SPL). To this aim, we would
probably need to exploit notions of feature model composition (cf., e.g., [43])
and SPL composition (cf., e.g., [44]).

Acknowledgements

We would like to thank the anonymous reviewers for insightful comments
and suggestions for improving the presentation.

References

[1] K. Pohl, G. Böckle, F. J. van der Linden, Software Product Line En-
gineering: Foundations, Principles, and Techniques, Springer, 2005.
doi:10.1007/3-540-28901-1.

[2] S. Apel, D. S. Batory, C. Kästner, G. Saake, Feature-Oriented Software
Product Lines: Concepts and Implementation, Springer, 2013. doi:
10.1007/978-3-642-37521-7.

30

http://dx.doi.org/10.1007/3-540-28901-1
http://dx.doi.org/10.1007/978-3-642-37521-7
http://dx.doi.org/10.1007/978-3-642-37521-7

[3] D. Fischbein, S. Uchitel, V. A. Braberman, A Foundation for Be-
havioural Conformance in Software Product Line Architectures, in:
R. M. Hierons, H. Muccini (Eds.), Proceedings of the ISSTA Work-
shop on Role of Software Architecture for Testing and Analysis
(ROSATEA’06), ACM, 2006, pp. 39–48. doi:10.1145/1147249.
1147254.

[4] K. G. Larsen, U. Nyman, A. Wąsowski, Modal I/O Automata for In-
terface and Product Line Theories, in: R. De Nicola (Ed.), Proceed-
ings of the 16th European Symposium on Programming (ESOP’07),
Vol. 4421 of LNCS, Springer, 2007, pp. 64–79. doi:10.1007/
978-3-540-71316-6_6.

[5] A. Fantechi, S. Gnesi, A behavioural model for product families, in:
Proceedings of the 6th joint meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT International Symposium
on Foundations of Software Engineering (ESEC/FSE’07), ACM, 2007,
pp. 521–524. doi:10.1145/1287624.1287700.

[6] A. Gruler, M. Leucker, K. D. Scheidemann, Modeling and Model
Checking Software Product Lines, in: G. Barthe, F. S. de Boer
(Eds.), Proceedings of the 10th International Conference on Formal
Methods for Open Object-Based Distributed Systems (FMOODS’08),
Vol. 5051 of LNCS, Springer, 2008, pp. 113–131. doi:10.1007/
978-3-540-68863-1_8.

[7] K. Lauenroth, K. Pohl, S. Töhning, Model Checking of Domain Artifacts
in Product Line Engineering, in: Proceedings of the 24th International
Conference on Automated Software Engineering (ASE’09), IEEE, 2009,
pp. 269–280. doi:10.1109/ASE.2009.16.

[8] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, J.-F. Raskin, Model
Checking Lots of Systems: Efficient Verification of Temporal Properties
in Software Product Lines, in: Proceedings of the 32nd International
Conference on Software Engineering (ICSE’10), ACM, 2010, pp. 335–
344. doi:10.1145/1806799.1806850.

[9] P. Asirelli, M. H. ter Beek, A. Fantechi, S. Gnesi, Formal Description
of Variability in Product Families, in: Proceedings of the 15th Interna-

31

http://dx.doi.org/10.1145/1147249.1147254
http://dx.doi.org/10.1145/1147249.1147254
http://dx.doi.org/10.1007/978-3-540-71316-6_6
http://dx.doi.org/10.1007/978-3-540-71316-6_6
http://dx.doi.org/10.1145/1287624.1287700
http://dx.doi.org/10.1007/978-3-540-68863-1_8
http://dx.doi.org/10.1007/978-3-540-68863-1_8
http://dx.doi.org/10.1109/ASE.2009.16
http://dx.doi.org/10.1145/1806799.1806850

tional Software Product Lines Conference (SPLC’11), IEEE, 2011, pp.
130–139. doi:10.1109/SPLC.2011.34.

[10] M. Erwig, E. Walkingshaw, The Choice Calculus: A Representation for
Software Variation, ACM Trans. Softw. Eng. Methodol. 21 (1) (2011)
6:1–6:27. doi:10.1145/2063239.2063245.

[11] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, J.-
F. Raskin, Featured Transition Systems: Foundations for Verifying
Variability-Intensive Systems and Their Application to LTL Model
Checking, IEEE Trans. Softw. Eng. 39 (8) (2013) 1069–1089. doi:
10.1109/TSE.2012.86.

[12] M. Tribastone, Behavioral Relations in a Process Algebra for Variants,
in: Proceedings of the 18th International Software Product Line Confer-
ence (SPLC’14),ACM,2014, pp.82–91. doi:10.1145/2648511.2648520.

[13] M. Lochau, S. Mennicke, H. Baller, L. Ribbeck, DeltaCCS: A Core
Calculus for Behavioral Change, in: T. Margaria, B. Steffen (Eds.),
Proceedings of the 6th International Symposium on Leveraging Ap-
plications of Formal Methods, Verification and Validation (ISoLA’14),
Vol. 8802 of LNCS, Springer, 2014, pp. 320–335. doi:10.1007/
978-3-662-45234-9_23.

[14] R. Muschevici, J. Proença, D. Clarke, Feature Nets: behavioural mod-
elling of software product lines, Softw. Sys. Model. 15 (4) (2016) 1181–
1206. doi:10.1007/s10270-015-0475-z.

[15] M. H. ter Beek, A. Fantechi, S. Gnesi, F. Mazzanti, Modelling and
analysing variability in product families: Model checking of modal tran-
sition systems with variability constraints, J. Log. Algebr. Meth. Pro-
gram. 85 (2) (2016) 287–315. doi:10.1016/j.jlamp.2015.11.006.

[16] M. H. ter Beek, A. Legay, A. Lluch Lafuente, A. Vandin, A framework for
quantitative modeling and analysis of highly (re)configurable systems,
IEEE Transactions on Software Engineering (2018). doi:10.1109/TSE.
2018.2853726.

[17] H. Beohar, M. Varshosaz, M. R. Mousavi, Basic behavioral models for
software product lines: Expressiveness and testing pre-orders, Sci. Com-
put. Program. 123 (2016) 42–60. doi:10.1016/j.scico.2015.06.005.

32

http://dx.doi.org/10.1109/SPLC.2011.34
http://dx.doi.org/10.1145/2063239.2063245
http://dx.doi.org/10.1109/TSE.2012.86
http://dx.doi.org/10.1109/TSE.2012.86
http://dx.doi.org/10.1145/2648511.2648520
http://dx.doi.org/10.1007/978-3-662-45234-9_23
http://dx.doi.org/10.1007/978-3-662-45234-9_23
http://dx.doi.org/10.1007/s10270-015-0475-z
http://dx.doi.org/10.1016/j.jlamp.2015.11.006
http://dx.doi.org/10.1109/TSE.2018.2853726
http://dx.doi.org/10.1109/TSE.2018.2853726
http://dx.doi.org/10.1016/j.scico.2015.06.005

[18] M. H. ter Beek, F. Damiani, S. Gnesi, F. Mazzanti, L. Paolini, From
Featured Transition Systems to Modal Transition Systems with Varia-
bility Constraints, in: R. Calinescu, B. Rumpe (Eds.), Proceedings of
the 13th International Conference on Software Engineering and Formal
Methods (SEFM’15), Vol. 9276 of LNCS, Springer, 2015, pp. 344–359.
doi:10.1007/978-3-319-22969-0_24.

[19] M. H. ter Beek, F. Mazzanti, A. Sulova, VMC: A Tool for Prod-
uct Variability Analysis, in: D. Giannakopoulou, D. Méry (Eds.),
Proceedings of the 18th International Symposium on Formal Meth-
ods (FM’12), Vol. 7436 of LNCS, Springer, 2012, pp. 450–454. doi:
10.1007/978-3-642-32759-9_36.

[20] M. H. ter Beek, F. Mazzanti, VMC: Recent Advances and Challenges
Ahead, in: Proceedings of the 18th International Software Product Line
Conference (SPLC’14), Vol. 2, ACM, 2014, pp. 70–77. doi:10.1145/
2647908.2655969.

[21] R. Gorrieri, C. Versari, Introduction to Concurrency Theory: Transition
Systems and CCS, Texts in Theoretical Computer Science: An EATCS
Series, Springer, 2015. doi:10.1007/978-3-319-21491-7.

[22] R. Gorrieri, Process Algebras for Petri Nets: The Alphabetization of
Distributed Systems, Monographs in Theoretical Computer Science. An
EATCS Series, Springer, 2017. doi:10.1007/978-3-319-55559-1_2.

[23] R. Milner, Communication and Concurrency, Prentice Hall, 1989.

[24] K. G. Larsen, B. Thomsen, A Modal Process Logic, in: Proceedings
of the 3rd Symposium on Logic in Computer Science (LICS’88), IEEE,
1988, pp. 203–210. doi:10.1109/LICS.1988.5119.

[25] P. Asirelli, M. H. ter Beek, A. Fantechi, S. Gnesi, A Logical Frame-
work to Deal with Variability, in: D. Méry, S. Merz (Eds.), Proceed-
ings of the 8th International Conference on Integrated Formal Meth-
ods (IFM’10), Vol. 6396 of LNCS, Springer, 2010, pp. 43–58. doi:
10.1007/978-3-642-16265-7_5.

[26] N. Benes, J. Kretínský, K. G. Larsen, M. H. Møller, J. Srba, Parametric
Modal Transition Systems, in: T. Bultan, P.-A. Hsiung (Eds.), Pro-
ceedings of the 9th International Symposium on Automated Technology

33

http://dx.doi.org/10.1007/978-3-319-22969-0_24
http://dx.doi.org/10.1007/978-3-642-32759-9_36
http://dx.doi.org/10.1007/978-3-642-32759-9_36
http://dx.doi.org/10.1145/2647908.2655969
http://dx.doi.org/10.1145/2647908.2655969
http://dx.doi.org/10.1007/978-3-319-21491-7
http://dx.doi.org/10.1007/978-3-319-55559-1_2
http://dx.doi.org/10.1109/LICS.1988.5119
http://dx.doi.org/10.1007/978-3-642-16265-7_5
http://dx.doi.org/10.1007/978-3-642-16265-7_5

for Verification and Analysis (ATVA’11), Vol. 6996 of LNCS, Springer,
2011, pp. 275–289. doi:10.1007/978-3-642-24372-1_20.

[27] R. De Nicola, Extensional Equivalences for Transition Systems, Acta
Inf. 24 (2) (1987) 211–237. doi:10.1007/BF00264365.

[28] A. Classen, M. Cordy, P. Heymans, A. Legay, P.-Y. Schobbens, Formal
semantics, modular specification, and symbolic verification of product-
line behaviour, Sci. Comput. Program. 80 (B) (2014) 416–439. doi:
10.1145/2499777.2499781.

[29] A. Fantechi, S. Gnesi, Formal modeling for product families engineer-
ing, in: Proceedings of the 12th International Conference on Soft-
ware Product Line Engineering (SPLC’08), IEEE, 2008, pp. 193–202.
doi:10.1109/SPLC.2008.45.

[30] M. H. ter Beek, E. P. de Vink, T. A. C. Willemse, Family-Based Model
Checking with mCRL2, in: M. Huisman, J. Rubin (Eds.), Proceedings
of the 20th International Conference on Fundamental Approaches to
Software Engineering (FASE’17), Vol. 10202 of LNCS, Springer, 2017,
pp. 387–405. doi:10.1007/978-3-662-54494-5_23.

[31] B. Pfahringer, Conjunctive Normal Form, in: C. Sammut, G. I. Webb
(Eds.), Encyclopedia of Machine Learning, Springer, 2010, pp. 209–210.
doi:10.1007/978-0-387-30164-8_158.

[32] B. Pfahringer, Disjunctive Normal Form, in: C. Sammut, G. I. Webb
(Eds.), Encyclopedia of Machine Learning, Springer, 2010, pp. 371–372.
doi:10.1007/978-1-4899-7687-1_223.

[33] R. Milner, A Calculus of Communicating Systems, Vol. 92 of LNCS,
Springer, 1980. doi:10.1007/3-540-10235-3.

[34] M. Varshosaz, Test Models and Algorithms for Model-Based Testing of
Software Product Lines, Licentiate thesis, Vol. 30 of Halmstad Univer-
sity Dissertations, Halmstad University Press, 2017.
URL http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-33893

[35] J. Křetínský, 30 Years of Modal Transition Systems: Survey of Ex-
tensions and Analysis, in: L. Aceto, G. Bacci, G. Bacci, A. Ingólfs-
dóttir, A. Legay, R. Mardare (Eds.), Models, Algorithms, Logics and

34

http://dx.doi.org/10.1007/978-3-642-24372-1_20
http://dx.doi.org/10.1007/BF00264365
http://dx.doi.org/10.1145/2499777.2499781
http://dx.doi.org/10.1145/2499777.2499781
http://dx.doi.org/10.1109/SPLC.2008.45
http://dx.doi.org/10.1007/978-3-662-54494-5_23
http://dx.doi.org/10.1007/978-0-387-30164-8_158
http://dx.doi.org/10.1007/978-1-4899-7687-1_223
http://dx.doi.org/10.1007/3-540-10235-3
http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-33893
http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-33893
http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-33893

Tools, Vol. 10460 of LNCS, Springer, 2017, pp. 36–74. doi:10.1007/
978-3-319-63121-9_3.

[36] M. H. ter Beek, A. Fantechi, S. Gnesi, F. Mazzanti, A state/event-based
model-checking approach for the analysis of abstract system properties,
Sci. Comput. Program. 76 (2) (2011) 119–135. doi:10.1016/j.scico.
2010.07.002.

[37] A. Fantechi, S. Gnesi, A. Lapadula, F. Mazzanti, R. Pugliese, F. Tiezzi,
A Logical Verification Methodology for Service-Oriented Computing,
ACM Trans. Softw. Eng. Methodol. 21 (3) (2012) 16:1–16:46. doi:
10.1145/2211616.2211619.

[38] R. De Nicola, F. W. Vaandrager, Action versus State based Logics for
Transition Systems, in: I. Guessarian (Ed.), Semantics of Systems of
Concurrent Processes, Vol. 469 of LNCS, Springer, 1990, pp. 407–419.
doi:10.1007/3-540-53479-2_17.

[39] E. M. Clarke, E. A. Emerson, A. P. Sistla, Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic Specifications,
ACM Trans. Program. Lang. Sys. 8 (2) (1986) 244–263. doi:10.1145/
5397.5399.

[40] M. Cordy, A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, Pro-
VeLines: A Product Line of Verifiers for Software Product Lines, in:
Proceedings of the 17th International Software Product Line Conference
(SPLC’13), Vol. 2, ACM, 2013, pp. 141–146. doi:10.1145/2499777.
2499781.

[41] A. S. Dimovski, A. S. Al-Sibahi, C. Brabrand, A. Wąsowski, Family-
Based Model Checking Without a Family-Based Model Checker, in:
B. Fischer, J. Geldenhuys (Eds.), Proceedings of the 22nd Interna-
tional SPIN Symposium on Model Checking of Software (SPIN’15),
Vol. 9232 of LNCS, Springer, 2015, pp. 282–299. doi:10.1007/
978-3-319-23404-5_18.

[42] D. Gorla, Towards a unified approach to encodability and separation
results for process calculi, Inf. Comput. 208 (9) (2010) 1031–1053. doi:
10.1016/j.ic.2010.05.002.

35

http://dx.doi.org/10.1007/978-3-319-63121-9_3
http://dx.doi.org/10.1007/978-3-319-63121-9_3
http://dx.doi.org/10.1016/j.scico.2010.07.002
http://dx.doi.org/10.1016/j.scico.2010.07.002
http://dx.doi.org/10.1145/2211616.2211619
http://dx.doi.org/10.1145/2211616.2211619
http://dx.doi.org/10.1007/3-540-53479-2_17
http://dx.doi.org/10.1145/5397.5399
http://dx.doi.org/10.1145/5397.5399
http://dx.doi.org/10.1145/2499777.2499781
http://dx.doi.org/10.1145/2499777.2499781
http://dx.doi.org/10.1007/978-3-319-23404-5_18
http://dx.doi.org/10.1007/978-3-319-23404-5_18
http://dx.doi.org/10.1016/j.ic.2010.05.002
http://dx.doi.org/10.1016/j.ic.2010.05.002

[43] M. Acher, P. Collet, P. Lahire, R. B. France, Composing Feature Mod-
els, in: M. van den Brand, D. Gasevic, J. Gray (Eds.), Proceed-
ings of the 2nd International Conference on Software Language En-
gineering (SLE’09), Vol. 5969 of LNCS, Springer, 2010, pp. 62–81.
doi:10.1007/978-3-642-12107-4_6.

[44] F. Damiani, M. Lienhardt, L. Paolini, A Formal Model for Multi
SPLs, in: M. Dastani, M. Sirjani (Eds.), Proceedings of the 7th
International Conference on Fundamentals of Software Engineering
(FSEN’17), Vol. 10522 of LNCS, Springer, 2017, pp. 67–83. doi:
10.1007/978-3-319-68972-2_5.

36

http://dx.doi.org/10.1007/978-3-642-12107-4_6
http://dx.doi.org/10.1007/978-3-319-68972-2_5
http://dx.doi.org/10.1007/978-3-319-68972-2_5

	Introduction
	Labelled Transition Systems
	Featured Transition Systems
	Modal Transition Systems with variability constraints
	From FTS to MTS
	Model transformation
	Soundness and completeness of the transformation
	Discussion

	From MTS to FTS
	Model transformation
	Soundness and completeness of the transformation
	Discussion

	Related work
	Conclusion and future work

