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1 Introduction

Supersymmetric Yang-Mills theories (SYM) have long been considered as an ideal play-

ground to get exact results in Quantum Field Theory. In recent times, exact formulae for

special observables in theories with extended supersymmetries have been found. In four-

dimensional theories with maximal N = 4 supersymmetry, the exact resummation of the

infinite series of perturbative corrections to the expectation value of circular Wilson loops,

also in presence of chiral operators, has been performed [1–5]. These results are based on

the counting of the relevant rainbow-like Feynman diagrams by means of a matrix model.

The introduction of this matrix model has been considered ad hoc until it was shown [6]

that localization for the N = 2∗ theory on the four-sphere S4, after having performed the

N = 4 limit, predicts its existence. Moreover, localization provides a non-perturbative

formula for the circular Wilson loop in a general N = 2 theory which takes into account

both perturbative and non-perturbative, instanton and anti-instanton, corrections in an

interacting matrix model. A two-loop test of this formula against perturbation theory was

presented in [7] in the case of superconformal QCD.

It is natural to ask whether localization on S4 can be used to compute non-trivial

quantities other than the Wilson loop expectation value. In [8–14] it has been proposed

that two-point correlators between chiral and anti-chiral operators in a superconformal

N = 2 theory on R4 can be computed from the partition function of the theory on the

four-sphere with chiral and anti-chiral insertions at the north and south pole respectively;

localization expresses this partition function as a matrix model. In a conformal N = 2

theory, two-point correlators between a chiral operator O~n = tr(ϕn1)tr(ϕn2) · · · , where

~n = (n1, n2, . . . ) and ϕ is the complex scalar of the gauge vector multiplet, and an anti-

chiral operator O ~m made out of the complex conjugate field ϕ, take the form

〈
O~n(x)O ~m(0)

〉
=
G~n,~m(g0)

(4π2x2)n
δn,m , (1.1)

where n =
∑

i ni and m =
∑

jmj are the scaling dimensions of the two operators. G~n,~m(g0)

is a non-trivial function of the coupling constant g0, but bears no dependence on the

distance x since chiral and anti-chiral operators are protected in conformal N = 2 theory.

The two-point functions on a four-sphere also take the form (1.1) but with x2 being the

chordal distance on S4. The function G~n,~m(g0) is the same on the sphere and in flat space,

and it is given by a two-point function in a matrix model obtained from localization.

Explicit tests of the match between the field theory and the matrix model descriptions

of the correlator (1.1) have been performed up to two loops for low-dimensional operators

in SU(2) and SU(3) gauge theories with Nf = 4 and Nf = 6 matter hypermultiplets. The

results where extended in [15] to generic chiral operators in a superconformal SU(N) theory

with Nf = 2N . Also the one-point functions of chiral operators in presence of a circular

Wilson loop can be expressed in terms of the matrix model obtained via localization of the

Wilson loop on S4, as checked up to two loops in [16].

It is of obvious importance to investigate to what extent the matrix model description

of the correlation function persists in N = 2 theory in non-conformal set-ups. A first step
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in this direction was carried out in [15] for a SU(N) theory with Nf flavors, where suitable

operators were chosen in such a way that their two-point correlators vanish in perturbation

theory up to a given loop order, leaving a finite contribution at the next leading loop order.

In such a situation, a perfect match between the perturbation theory and localization was

shown for an arbitrary rank and any number of flavors at two and three loops. This strongly

hints that chiral/anti-chiral correlators are related to the S4 matrix model also beyond the

conformal case.

Considering generic chiral/anti-chiral correlation functions away from the conformal

point Nf = 2N , we encounter important differences. For Nf 6= 2N , the gauge coupling and

the operators are not anymore protected from quantum corrections and have to be renor-

malized to account for the ultraviolet (UV) divergences. As a consequence, the two-point

correlation functions of renormalized operators OR~n and O
R
~m depend on the renormalization

scale µ and are no longer forced to have just a power-like dependence on the distance x as

in (1.1). Instead, they take the general form

〈
OR~n (x)O

R
~m(0)

〉
=
GR~n,~m(g, ν)

(4π2x2)n
δn,m , (1.2)

where g = g(µ) is the renormalized coupling and the dimensionless quantity

ν = 2 + γE + lnπµ2x2 (1.3)

parametrizes the distance separation. Here γE denotes the Euler-Mascheroni constant. In

contrast to the conformal case, the function GR~n,~m(g, ν) depends non-trivially on the distance

x2 through the quantity ν. Such a dependence cannot be obtained from localization on S4,

because in this case the operators are inserted at the opposite poles of the four-sphere and

the distance between them is fixed in terms of the sphere radius. Still our results show that,

up to two loops, the ν-dependence is very simple and can be put in the factorized form

GR~n,~m(g, ν) =
GR~n,~m(g, 0)

(
1 + 1

2β0 g2ν
)n δnm +O(g6) , (1.4)

where β0 is the expansion coefficient of the exact one-loop β-function of the theory, namely

β0 =
Nf − 2N

8π2
. (1.5)

Remarkably, the ν-dependent prefactor in (1.4) depends only on the scaling dimension n

and not on the details of the operators. As a consequence, up to two loops at least, ratios

of correlators of the same scaling dimension are actually ν-independent and can be com-

pared directly against the matrix model results. We show that the field theory results for

such observables are indeed in perfect agreement with the predictions from the localization

matrix model. This is consistent with the fact that all Feynman diagrams contributing to

the ratios are finite in four dimensions, and finite loop integrals on S4 and R4 yield the

same result after replacing propagators in flat space by those on the four-sphere, as we will

show in section 5.
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Furthermore, one can ask whether the results for the renormalized correlators at a given

renormalization scale can be directly matched against those coming from localization. At

one loop, we show that this is indeed the case if we choose µ2x2 = eγE/π in the minimal

subtraction scheme. Moreover, by considering the field theory on SD and evaluating the

relevant one-loop integrals in dimensional regularization, we find that, apart from the

obvious replacement of propagators, not only the divergent parts but also the finite parts

agree with the results on RD for D → 4. While the agreement of the divergent part

is expected, since the divergences are sensible to short distances and do not distinguish

between the sphere and flat space, the agreement of the finite part is neither expected nor

guaranteed a priori, but nevertheless it holds. At two loops, we find that the matrix model

results reproduce the field theory ones, up to a term proportional to (2N −Nf ) and to the

dimension n of the operators. This suggests that the difference could be interpreted as a

conformal anomaly which, in non-conformal theories, affects the correlation functions in

going from the four-sphere to the flat space.

In this paper we keep the numbers of colors N and flavors Nf arbitrary and compute

the two-point correlators for a general choice of chiral/anti-chiral operators. On the field

theory side we do this at the two-loop level. We summarize our findings in section 2 and give

a detailed account of the Feynman diagram computations in appendices A and B. To keep

track of the various particles exchanged in the loops we use a superfield formalism. The

loop integrals are evaluated using the integration methods pioneered in [17] (see also [18]

for a review). In section 3 we compute the renormalized correlators and their anomalous

dimensions. Our results suggest that the anomalous dimensions γ~n,0 of the chiral operators

are one-loop exact and are given by the simple formula γ~n,0 = n
2 β0. In section 4 we discuss

the computation of the correlators on the matrix model side, building on the techniques

described in [15], and compare the results with those previously obtained from the field

theory side. To facilitate the comparison, we show that, up to two loops, the localization

matrix model can be re-expressed as a complex matrix model encoding the color factors

and the combinatorics of the Feynman diagrams that contribute to the chiral/anti-chiral

correlators. Finally, in section 5 we discuss the field theory calculation of the two-point

correlators on the four-sphere S4, and in section 6 we present our conclusions. Several

technical details for such calculations are provided in appendix C.

2 Two-point correlators from perturbation theory

We consider a N = 2 SYM theory with gauge group SU(N) and Nf hypermultiplets in the

fundamental representation. For Nf = 2N the theory is conformally invariant also at the

quantum level. We denote by ϕ(x) the complex scalar field of the N = 2 vector multiplet

which, in N = 1 notation, is the lowest component of a chiral superfield Φ. In this theory

a basis of chiral operators can be given in terms of the multi-trace operators

O~n(x) = tr (ϕn1(x)) tr (ϕn2(x)) . . . tr (ϕn`(x)) , (2.1)

– 4 –



J
H
E
P
0
5
(
2
0
1
9
)
1
9
9

where ~n = (n1, n2, . . . , n`). The scaling (bare) dimension of O~n(x) is

n =
∑̀

k=1

nk . (2.2)

We expand the scalar field ϕ(x) = ϕa(x)T a over the SU(N) generators T a (a = 1, . . . , N2−
1) in the fundamental representation, normalized as

tr (T aT b) =
1

2
δab . (2.3)

In terms of the components ϕa(x), the operators (2.1) become

O~n(x) = R a1...an
~n ϕa1(x) . . . ϕan(x) , (2.4)

where Ra1...an
~n is a completely symmetric tensor.1 In an analogous way, we define the

anti-chiral operators O~n(x) using the complex conjugate field ϕ(x) instead of ϕ(x).

We are interested in computing the two-point correlation functions

〈
O~n(x)O ~m(0)

〉
(2.5)

in non-conformal N = 2 theories using standard perturbative techniques. We perform our

calculations at the origin of moduli space, where the scalar fields have vanishing vacuum

expectation values. This is a preferred point in the sense that here the breaking of con-

formal invariance occurs only at the quantum level, as a consequence of the dimensional

transmutation phenomenon. Therefore, this is the natural place in which to test whether

the matrix model approach based on localization agrees with the standard perturbative

field-theory calculations also in the non-conformal case. Unlike the N = 4 theory where

the correlators (2.5) are exact at tree-level, in N = 2 theories they receive quantum cor-

rections, starting from one loop for Nf 6= 2N and from two loops in the conformal case

Nf = 2N . Moreover, in the non-conformal theories, the loop integrals are UV divergent,

in general, and need to be regularized. Here, we use the dimensional regularization taking

the space-time dimension to be D = 4 − 2ε. As a consequence, the bare gauge coupling

constant, g0, becomes dimensionful.

In general, the bare two-point functions (2.5) take the form

〈
O~n(x)O ~m(0)

〉
= ∆n(x)G~n,~m(g0, ε, x) δnm (2.6)

where n = m is the common scaling dimension of the two operators, and

∆(x) =

∫
dDk

(2π)D
eik·x

k2
=

Γ(1− ε)
4π (πx2)1−ε . (2.7)

1Explicitly,

R a1...an
~n = tr

(
T (a1 · · ·T an1

)
tr
(
T an1+1 · · ·T an1+n2

)
. . . tr

(
T
an1+...+n`−1+1 · · ·T an))

where the indices are symmetrized with strength 1.
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v2,1

...

+ +

...

...
+ + +...

(a) (b) (c)

(d) (e) (f)

v2,1

v2,1

v2,1 v2,1
v2,2

v4,2

Figure 1. The Feynman diagrams contributing to the two-point correlators. White and black dots

stand for the operators O~n and Ō~m, respectively. Lines with arrows denote free scalar propagators.

The effective vertex vk,` represents the sum of irreducible diagrams with k external legs at ` loops.

is the massless scalar propagator in D-dimensions. The correlator G~n,~m(g0, ε, x) can be

computed at weak coupling as an expansion in powers of g2
0. We refer to [15] for details on

the Feynman rules that are needed to perform this calculation; they are summarized for

convenience in appendix B.

The diagrams which contribute to the two-point functions (2.5) up to order g4
0 are

schematically represented in figure 1. The diagram (a) is the tree-level contribution, the

diagram (b) is the one-loop correction, while the other four diagrams represent the two-

loop part. The blobs labeled by vk,` stand for the sum of all irreducible diagrams of order

g2`
0 with k external lines - half of them connected to the chiral fields ϕ of O~n, half to the

anti-chiral ones of O ~m.

A convenient way to organize the computation of these diagrams is to consider the

N = 4 theory, remove all contributions from Feynman diagrams involving loops of the

adjoint hypermultiplet (which we call H) and add those with loops of the fundamental

matter multiplets (which we call Q and Q̃) [7]. Since the two-point correlators in N = 4

theory are exact at tree-level, we can write

G~n,~m = G~n,~m
∣∣
N=4

−G~n,~m
∣∣
H

+G~n,~m
∣∣
Q,Q̃

= G~n,~m
∣∣
tree
−G~n,~m

∣∣
H

+G~n,~m
∣∣
Q,Q̃

,
(2.8)

where, in an obvious notation, G~n,~m
∣∣
H

stands for all diagrams in the N = 4 theory with

the adjoint hypermultiplet H circulating in the loops, and G~n,~m
∣∣
Q,Q̃

stands for the same

diagrams in the N = 2 theory with loops of fundamental matter multiplets Q and Q̃. In

the following, we will sometimes refer to this method as “performing the computation in

the difference theory”. We stress that in the difference theory one should take into account

– 6 –
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a

I

b

I

a

I

b

I
= 0+

Figure 2. The vanishing of the one-loop propagators of the three adjoint scalars ΦI in the N = 4

theory. The wavy line corresponds to the vector superfield. In the second diagram, the three-point

vertices are proportional to the totally anti-symmetric tensor εIJK .

only diagrams involving loops of the adjoint hypermultiplet or loops of the fundamental

ones, but not both.

2.1 Tree-level

The tree-level contribution to the correlator (2.6) comes from the diagram in figure 1(a).

To obtain its explicit expression, one contracts the fields ϕ in O~n with the fields ϕ in O ~m

by means of a free scalar propagator

〈
ϕa(x)ϕ b(0)

〉
=

a b

x 0
= ∆(x) δab. (2.9)

In this way one finds that the correlator
〈
O~n(x)O ~m(0)

〉
at tree-level takes the form (2.6)

with

G~n,~m
∣∣
tree

= n!R a1...an
~n R a1...an

~m (2.10)

being a constant that is determined by the color structure of the two operators. For

example, for the first operators of even dimension, one finds [15]

G(2),(2)

∣∣
tree

=
N2 − 1

2
,

G(2,2),(2,2)

∣∣
tree

=
N4 − 1

2
,

G(4),(2,2)

∣∣
tree

=
(N2 − 1)(2N2 − 3)

2N
,

G(4),(4)

∣∣
tree

=
(N2 − 1)(N4 − 6N2 + 18)

4N2
.

(2.11)

Explicit expressions can be easily found also for operators with higher dimension.

2.2 One-loop diagrams

We first observe that in the N = 4 theory there are no one-loop corrections to the propaga-

tors of the adjoint scalars ΦI (I = 1, 2, 3). At one loop, this is schematically represented in

figure 2. This implies that there is no one-loop correction to the propagator of the adjoint

hypermultiplet H in the difference theory.

The one-loop correction to the propagator of the fundamental matter superfields Q

and Q̃ vanishes as well. Indeed, as shown in figure 3, the contribution of this diagram

is similar to the previous one upon replacing the generators in the adjoint with those in

the fundamental representation, so that the same cancellation mechanism at work for the

adjoint scalars applies here as well.

– 7 –
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+ = 0u v u v

Figure 3. The vanishing of the one-loop propagator of the Q superfield represented by a dashed

line. In the second diagram, the continuous internal line represents the Φ1 = Φ superfield of the

N = 2 theory, while the dotted line represents the Q̃ superfield. The indices u and v belong to the

fundamental representation of SU(N). The same happens if the role of Q and Q̃ is exchanged.

a b
+

a b

v2,1

a b a b
−

=

≡ v2,1

a b

Figure 4. The one-loop correction to the scalar propagator. In the second line we have used the

relation shown in figure 2 for I = 1 to replace the loop diagram with the vector propagator with

the one with a scalar loop.

To find the contribution of the diagram shown in figure 1(b), we need to compute the

one-loop correction to the propagator of the scalar field in the N = 2 theory. This is

represented in figure 4, where in the second line we have used the N = 4 result of figure 2

for I = 1, to replace the diagram with the vector propagator by the diagram with a scalar

loop. Explicitly computing these superdiagrams (see appendix B for details), we find

≡ v2,1 ∆(x) δab , (2.12)

where

v2,1 =
g2

0

8π2
(2N −Nf )

(πx2)ε Γ(1− ε)
2ε(1− 2ε)

. (2.13)

The correction (2.12) can be of course inserted in any of the n propagators connecting O~n
and O ~m, so that the one-loop contribution to the two-point correlator (2.6) corresponding

to figure 1(b) is

G~n,~m
∣∣
1-loop

= n v2,1G~n,~m
∣∣
tree

. (2.14)

2.3 Two-loop diagrams

At order g4
0 there are several diagrams that contribute to the correlator (2.6). They are

schematically represented by the last four diagrams, from (c) to (f), of figure 1. A detailed

derivation of the various contributions and the evaluation of the corresponding loop inte-

grals can be found in appendix B. Here we simply summarize the results for the building

blocks of each of these diagrams.
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a1

a2

b1

b2

a1

a1 a1

a2

a2 a2

b1 b1

b1

b2

b2

b2

− − 2

=

a1 b1

a2 b2

+ 2

v2,1

v2,1

Figure 5. The simultaneous corrections to two scalar propagators in the difference theory can be

expressed in terms of the one-loop correction. The factor of 2 in front of the diagrams with the

vector field propagator is a multiplicity factor.

2.3.1 v22,1 -contributions

The two-loop reducible contributions proportional to v2
2,1 arise from two insertions of the

one-loop effective interaction vertex (2.12). These can occur either on two different scalar

propagators connecting the operators O~n and O ~m, or on a single propagator. These two

possibilities correspond, respectively, to the diagrams (c) and (d) of figure 1.

In the difference theory, the diagram (c) contains as building blocks the diagrams

represented in the left-hand side of figure 5. If we exploit the identity of figure 2 to replace

the diagrams with the vector field propagator in favor of the ones with a scalar loop, we

can easily realize that the diagrams in the left-hand side figure 5 precisely reconstruct

the square represented in the right-hand side. Using (2.12), and taking into account the

appropriate multiplicity factor of the diagrams, this gives

=
1

2
v2

2,1 ∆2(x) δa1b1δa2b2 . (2.15)

Let us now consider the contribution corresponding to the two-loop diagram in figure 1(d).

In this case, the insertion of two one-loop corrections on the same scalar propagator leads

to the diagrams displayed in the first two lines of figure 6. If we use again the identity of

figure 2 to replace the diagrams containing the vector field propagator with those with a

scalar loop, we reconstruct the square of the one-loop correction, as shown in the last line

of figure 6. Evaluating explicitly the loop integrals in this case, we obtain that the result

can be written as the square of the one-loop up to terms of order ε (see appendix B for

– 9 –
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−

+ 2

− 2

=

a a

a a

a

b b

b b

b
v2,1 v2,1

Figure 6. In the difference theory, the reducible diagrams that correct the ϕ propagator at two

loops can be expressed in terms of the one-loop contribution.

a b a
−

b ≡ a b

Figure 7. A class of diagrams that correct the scalar propagator at two loops. The dashed

double-line notation in the right-hand side is a convenient way to represent this contribution in the

difference theory.

details), namely

≈ v2
2,1 ∆(x) δab . (2.16)

Here and in the following, we use the approximate symbol ≈ for equations that hold up

to terms vanishing in the limit ε→ 0.

2.3.2 v2,2 - and v4,2 -contributions

Let us now consider the two-loop irreducible corrections to the scalar propagator which

appear in figure 1(e). A first class of contributions arises from correcting one of the internal

lines in the one-loop diagrams of figure 4 by using the one-loop propagator of the matter

superfields Q and Q̃, or of the adjoint hypermultiplet H. However, as we have seen before,

these contributions vanish.

Other terms that correct the scalar propagator at two loops in the difference theory

are those represented in figure 7. Here we have introduced the dashed double-line notation

as a convenient way to represent the difference between the loop with fundamental flavors

and the loop with the adjoint hypermultiplet. Actually there are other three classes of

irreducible diagrams that correct the scalar propagator at two loops. In figure 8 we have

drawn all such diagrams, whose evaluation is presented in appendix B to which we refer

for details. Summing all contributions, we find that the irreducible two-loop correction to

– 10 –
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+

≡

a b a b

++
a b a b

a b
v2,2

Figure 8. Irreducible two-loop diagrams that correct the ϕ propagator in the difference theory.

+

≡

a1 b1

+

b2a2

a1

a1 b1

b1

a2

a2 b2

b2

a1

a2

b1

b2

v
(A)
4,2

Figure 9. Irreducible two-loop diagrams in the difference theory that yield the v
(A)
4,2 contribution.

the scalar propagator is

+=
a a

a

b bb

bb

a

a
+ +

v2,2

Figure 9. Irreducible two-loop diagrams that correct the ϕ propagator in the difference theory.

In terms of the constant matrix ϕ, this result can be obtained from the insertion of the

quadratic vertex (2.18) in the matrix model; indeed

v2,2

〈
V2(ϕ,ϕ)O~n(ϕ)O ~m(ϕ)

〉
tree

= n v2,2

〈
O~n(ϕ)O ~m(ϕ)

〉
tree

. (2.31)

In the difference theory, at two loops there are irreducible connected diagrams involving

two chiral and two anti-chiral fields, which enter the term (f) in Fig. 1. These diagrams can

be further distinguished according to their overall colour structure and their contribution,

denoted as v4,2 in Fig. 1, can be split into two terms which we denote as v
(A)
4,2 and v

(B)
4,2 .

The first class of such diagrams is represented in Fig. 10.

+=

a1 b1

v
(A)
4,2

+

b2a2

a1 a1b1 b1

a2 a2b2 b2

a1

a2

b1

b2

Figure 10. Irreducible two-loop diagrams in the difference theory that are proportional to the

colour tensor Ca1a2b1b2
4(A) defined in Eq. (2.34).

They are explicitly evaluated in Appendix ??. Summing their contributions we obtain

v
(A)
4,2 ∆(x)2Ca1a2b1b2

4(A) , (2.32)

– 11 –

≡ v2,2 ∆(x) δab , (2.17)

where

v2,2 ≈ −
(
g2

0

8π2

)2 [
3 ζ(3)

(
Nf

2N
+N2

)
−N(2N −Nf )

Γ2(1− ε)
4ε2(1− 2ε)(1 + ε)

]
(πx2)2ε . (2.18)

In the difference theory, there are irreducible two-loop contributions that involve two

chiral and two anti-chiral fields and give rise to the diagram of figure 1(f) . These contri-

butions can be further distinguished according to their overall color structure and can be

split into two terms which we denote as v
(A)
4,2 and v

(B)
4,2 .

The diagrams yielding v
(A)
4,2 are drawn in figure 9, where again we have used the dashed

double-line notation to represent the difference between Q and H loops. They are explicitly

– 11 –
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a1

a2

≡

a1 b1

a2b2

b1

b2

v
(B)
4,2

Figure 10. The irreducible two-loop diagram in the difference theory proportional to the colour

tensor C
(B) a1a2b1b2
4 defined in (2.24).

evaluated in appendix B, and the final result is

≡ v
(A)
4,2 ∆2(x)C

(A) a1a2b1b2
4 + · · · , (2.19)

where

v
(A)
4,2 ≈

(
g2

0

8π2

)2

N (2N −Nf )

[
21

2
ζ(3) +

Γ2(1− ε)
4ε2(1− 2ε)(1 + ε)

]
(πx2)2ε , (2.20)

C
(A) a1a2b1b2
4 = − 1

N
f c a1b1 f c a2b2 , (2.21)

with fabc being the SU(N) structure constants. In (2.19) the ellipses stand for terms with

color tensors that are anti-symmetric in (a1, a2) and (b1, b2). Such terms do not contribute

to the two-point correlation functions (2.5) because they are contracted with the symmetric

tensors R~n and R~m defined in (2.4).

The last two-loop diagram we have to consider is the one represented in figure 10. This

diagram was already computed in [15] and the result, which is also reviewed in appendix B,

is

≡ v
(B)
4,2 ∆2(x)C

(B) a1a2b1b2
4 + · · · , (2.22)

where

v
(B)
4,2 ≈

(
g2

0

8π2

)2

3 ζ(3)(πx2)2ε , (2.23)

C
(B) a1a2b1b2
4 = −(2N −Nf ) trT a1T b1T a2T b2

− 1

2

(
δa1b1δa2b2 + δa1a2δb1b2 + δa1b2δa2b1

)
. (2.24)

Again, the ellipses in (2.22) stand for terms with color tensors which are anti-symmetric

in (a1, a2) and (b1, b2) and, therefore, vanish when inserted in the two-point correlation

function.
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2.4 Effective vertices

In order to later compare the results of perturbation theory to those of the matrix model,

we find it convenient to introduce effective vertices following the ideas of [15]. In particular,

to obtain the color dependence of the two-point function G~n,~m we strip the x-dependence of

the scalar fields and introduce the adjoint matrix ϕ = ϕaT a and its conjugate ϕ = ϕaT a,

such that 〈
ϕaϕb

〉
= δab ,

〈
ϕaϕb

〉
=
〈
ϕaϕb

〉
= 0 . (2.25)

We denote by O~n(ϕ) the operator obtained by replacing in (2.1) the field ϕ(x) with the

constant matrix ϕ, and by O ~m(ϕ) the same with ϕ(x) replaced with ϕ.

With these definitions, it is straightforward to see that the tree-level correlator (2.10)

can be written as

G~n,~m
∣∣
tree

=
〈
O~n(ϕ)O ~m(ϕ)

〉
. (2.26)

Also the one-loop correlator (2.14) can be written in a simple way using this formalism.

Indeed, we have

G~n,~m
∣∣
1-loop

= v2,1

〈
V2(ϕ,ϕ)O~n(ϕ)O ~m(ϕ)

〉
, (2.27)

where

V2(ϕ,ϕ) = δab :ϕaϕb : = 2 :trϕϕ : . (2.28)

As usual, the notation : : stands for normal ordering. Using (2.25), it is easy to check that

inside a vacuum expectation value (2.27) we can use the relation

V2(ϕ,ϕ)O~n(ϕ) = nO~n(ϕ) (2.29)

that follows from the SU(N) fusion/fission rules

tr T aB1T
aB2 =

1

2
tr B1 tr B2 −

1

2N
tr B1B2 ,

tr T aB1 tr T aB2 =
1

2
tr B1B2 −

1

2N
tr B1 tr B2 ,

(2.30)

valid for two arbitrary N ×N matrices B1 and B2.

Let us now compute the two-loop contribution to the two-point correlation function

from diagrams shown in figure 1. Using the reducible term (2.15) we find that the contri-

bution of the diagram in figure 1(c) is

G
(c)
~n,~m =

1

2
n(n− 1) v2

2,1G~n,~m
∣∣
tree

. (2.31)

In terms of the effective vertex (2.28), this result can be rewritten as follows:

G
(c)
~n,~m =

1

2
v2

2,1

〈
: [V2(ϕ,ϕ)]2 : O~n(ϕ)O ~m(ϕ)

〉

=
1

2
v2

2,1

[〈
[V2(ϕ,ϕ)]2 O~n(ϕ)O ~m(ϕ)

〉
− 2

〈
V2(ϕ,ϕ)O~n(ϕ)O ~m(ϕ)

〉

−
〈

[V2(ϕ,ϕ)]2
〉 〈
O~n(ϕ)O ~m(ϕ)

〉]
,

(2.32)
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where in the second line we have used the identity

:V2(ϕ,ϕ)V2(ϕ,ϕ) : = [V2(ϕ,ϕ)]2 − 2V2(ϕ,ϕ)−
〈

[V2(ϕ,ϕ)]2
〉

(2.33)

that follows from Wick’s theorem.

The two-loop reducible correction (2.16) to the scalar propagator can be inserted in

any of the n internal lines. Thus, the contribution of the diagram in figure 1(d) is

G
(d)
~n,~m ≈ n v2

2,1G~n,~m
∣∣
tree

= v2
2,1

〈
V2(ϕ,ϕ)O~n(ϕ)O ~m(ϕ)

〉
, (2.34)

where we used (2.29). In a similar way, the irreducible two-loop correction (2.17) produces

the following contribution to the diagram in figure 1(e):

G
(e)
~n,~m = n v2,2G~n,~m

∣∣
tree

= v2,2

〈
V2(ϕ,ϕ)O~n(ϕ)O ~m(ϕ)

〉
. (2.35)

Let us now consider the two-loop contributions proportional to v
(A)
4,2 and v

(B)
4,2 given,

respectively, in (2.19) and (2.22). To write the results in a compact form, it is convenient

to introduce the quartic vertices

V
(A)

4 (ϕ,ϕ) = C
(A) a1a2b1b2
4 : ϕa1 ϕa2 ϕb1 ϕb2 :

=
2

N
: tr [ϕ,ϕ ]2 : =

4

N

(
: trϕϕϕϕ : − : trϕ2ϕ2 :

)
, (2.36)

V
(B)

4 (ϕ,ϕ) = C
(B) a1a2b1b2
4 : ϕa1 ϕa2 ϕb1 ϕb2 :

= −(2N −Nf ) : trϕϕϕϕ : − 4 :
(
trϕϕ

)2
: − 2 : trϕϕ trϕϕ : , (2.37)

Then, the contribution of the effective vertex (2.19) to the correlator can be written as

G
(A)
~n,~m = v

(A)
4,2

〈
V

(A)
4 (ϕ,ϕ)O~n(ϕ)O ~m(ϕ)

〉
. (2.38)

Repeatedly using the fission/fusion identities (2.30), it is possible to show that, inside the

vacuum expectation value (2.38), the following relation holds:

V
(A)

4 (ϕ,ϕ) trϕn =
n

N

n−2∑

`=0

(
trϕ`+1 trϕn−`−1 − trϕ` trϕn−`

)
= −n trϕn . (2.39)

More generally, one can prove that

V
(A)

4 (ϕ,ϕ) O~n(ϕ) = −nO~n(ϕ) . (2.40)

By comparing with (2.29) we conclude that the quartic vertex V
(A)

4 can be effectively

replaced by (−V2) inside a vacuum expectation value, so that (2.38) becomes

G
(A)
~n,~m = −v(A)

4,2

〈
V2(ϕ,ϕ)O~n(ϕ)O ~m(ϕ)

〉
= −n v(A)

4,2 G~n,~m
∣∣
tree

. (2.41)

The contribution of the effective vertex (2.22) to the correlator can be treated in an

analogous way, and it reads

G
(B)
~n,~m = v

(B)
4,2

〈
V

(B)
4 (ϕ,ϕ)O~n(ϕ)O ~m(ϕ)

〉
. (2.42)
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Notice that, in distinction to the other two-loop contributions, the expectation value (2.42)

is not proportional, in general, to the tree-level correlator G~n,~m
∣∣
tree

due to the structure

of the vertex V
(B)

4 , and it has to be computed case by case. A few explicit examples with

operators of even dimensions are:

〈
V

(B)
4 (ϕ,ϕ)O(2)(ϕ)O(2)(ϕ)

〉
= −N

2 − 1

2

(
N2 +

Nf

2N

)
,

〈
V

(B)
4 (ϕ,ϕ)O(2,2)(ϕ)O(2,2)(ϕ)

〉
= −N

2 − 1

2

(
2N4 + 22N2 − 3NNf +

7Nf

N

)
, (2.43)

〈
V

(B)
4 (ϕ,ϕ)O(4)(ϕ)O(2,2)(ϕ)

〉
= −N

2 − 1

2

(
6N3 −N2Nf + 6N + 8Nf −

21Nf

N2

)
,

〈
V

(B)
4 (ϕ,ϕ)O(4)(ϕ)O(4)(ϕ)

〉
= −N

2 − 1

2

(
12N2 +NNf − 18− 21Nf

N
+

63Nf

N3

)
.

The contribution to the two-point correlator from the two-loop diagram of figure 1(f)

is given by the sum of (2.41) and (2.42), namely

G
(f)
~n,~m = −n v(A)

4,2 G~n,~m
∣∣
tree

+ v
(B)
4,2

〈
V

(B)
4 (ϕ,ϕ)O~n(ϕ)O ~m(ϕ)

〉
, (2.44)

where v
(A)
4,2 and v

(B)
4,2 are defined in (2.20) and (2.23), respectively,

2.5 Summary of results

Collecting our findings, up to two loops the bare correlator is given by

G~n,~m ≈
[
1 + n v2,1 +

n(n+ 1)

2
v2

2,1

]
G~n,~m

∣∣
tree

+ n
(
v2,2 − v(A)

4,2

)
G~n,~m

∣∣
tree

+ v
(B)
4,2

〈
V

(B)
4 (ϕ,ϕ)O~n(ϕ)O ~m(ϕ)

〉
.

(2.45)

The first line contains the tree-level term, the one-loop correction and the reducible two-

loop part, while the irreducible two-loop terms are written in the second line.

Eq. (2.45) is the main result of this section. It expresses the bare two-point correlator

between chiral and anti-chiral operators up to order g4
0, in terms of the tree-level correlator

and the matrix model correlator with the insertion of the quartic effective vertex V
(B)

4 .

Moreover, it exhibits a particularly simple structure of the UV divergences of G~n,~m. First,

we notice that all divergent terms in the difference
(
v2,2 − v(A)

4,2

)
exactly cancel. Indeed,

using (2.18) and (2.20), we have

v2,2 − v(A)
4,2 ≈ −3ζ(3)

(
g2

0

8π2

)2(
8N2 − 7NNf

2
+
Nf

2N

)
. (2.46)

This, together with the fact that

v
(B)
4,2 ≈ 3 ζ(3)

(
g2

0

8π2

)2

, (2.47)

implies that the total two-loop irreducible contribution in the second line of (2.45) is finite

for ε → 0. The only divergences remaining at two loops come from the square of those
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present at one-loop. At the given loop order, they can be nicely combined into an overall

factor (see the first line of (2.45))

1 + n v2,1 +
n(n+ 1)

2
v2

2,1 + · · · = 1

(1− v2,1)n
, (2.48)

which depends only on the bare dimension n of the operators but not on their detailed

structure.

We conclude this section by showing that the two-loop result (2.45) can be rewritten

in an alternative and elegant form as a correlator in the matrix model. Combining the

tree-level, one-loop and two-loop contributions given in (2.26), (2.27), (2.32), (2.34), (2.35)

and (2.44), we obtain

G~n,~m ≈
〈
O~n(ϕ)O ~m(ϕ)

〉
+
(
v2,1 + v2,2 − v(A)

4,2

) 〈
V2(ϕ,ϕ)O~n(ϕ)O ~m(ϕ)

〉

+
1

2
v2

2,1

[〈
[V2(ϕ,ϕ)]2O~n(ϕ)O ~m(ϕ)

〉
−
〈
[V2(ϕ,ϕ)]2

〉 〈
O~n(ϕ)O ~m(ϕ)

〉]

+ v
(B)
4,2

〈
V

(B)
4 (ϕ,ϕ)O~n(ϕ)O ~m(ϕ)

〉
.

(2.49)

Then, defining the effective interaction vertex

Veff(ϕ,ϕ) = −
(
v2,1 + v2,2 − v(A)

4,2

)
V2(ϕ,ϕ)− v(B)

4,2 V
(B)

4 (ϕ,ϕ) , (2.50)

we can recast (2.49) in a very compact way as follows:

G~n,~m ≈
〈
e−Veff(ϕ,ϕ) O~n(ϕ)O ~m(ϕ)

〉

〈
e−Veff(ϕ,ϕ)

〉 . (2.51)

Indeed, expanding the exponentials up to order g4
0, we precisely recover all terms of (2.49).

In particular, from the insertion of a single Veff in the correlator we obtain the linear terms

in the vk `’s appearing in the first and third line of (2.49), while the quadratic terms in

the second line arise from two insertions of Veff . Notice that since this effective vertex is

normal-ordered, the denominator in (2.51) contributes up to order g4
0 only with the term

proportional to
〈
[V2(ϕ,ϕ)]2

〉
appearing in the second line of (2.49).

In section 4 we show that localization on a four sphere produces an expression similar

to (2.51). However, in order to compare the two expressions, we should first get rid of the

UV divergences and scheme ambiguities that are present in the bare correlator G~n,~m. This

is the content of the next section.

3 Renormalization

The dimensionally regularized bare correlators G~n,~m given in (2.45) are divergent for ε→ 0,

since the one-loop coefficient v2,1 defined in (2.13) behaves for small ε as

v2,1 ≈
g2

0

16π2
(πx2)ε (2N −Nf )

(
1

ε
+ 2 + γE

)
. (3.1)
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As we have remarked before, the UV divergence due to v2,1 is the only one that plagues

the correlators, since all other terms in G~n,~m are finite for ε → 0. To get rid of this

divergence, we have to apply the standard renormalization procedure. First, we introduce

the dimensionless renormalized gauge coupling constant g through the relation

g2
0 = µ2εg2 Z(g2, ε) , (3.2)

where µ is an arbitrary scale, and Z is a suitable function to be determined. Then, we

define the renormalized operators OR~n (x) according to

OR~n (x) =
∑

~m

Z ~m
~n (g2, ε)O~m(x) , (3.3)

where Z ~m
~n is a matrix-valued function. However, in the previous section we have shown

that the divergences of the two-point functions depend only on the scaling dimensions of

the operators and not on the operator details; therefore a block-diagonal matrix can do

the job, and we can simplify (3.3) by setting

OR~n (x) = Zn(g2, ε)O~n(x) . (3.4)

A similar formula holds for the anti-chiral renormalized operators O
R
~n (x).

The singular terms of the functions Z(g2, ε) and Zn(g2, ε) are determined by requir-

ing that the correlator
〈
OR~n (x)O

R
~m(0)

〉
should be finite when expressed in terms of the

renormalized coupling g. This means that the renormalized correlator

GR~n,~m = Z2
n(g2, ε)G~n,~m

∣∣∣
g2
0=µ2εg2 Z(g2,ε)

(3.5)

is well-defined and free of divergences in the limit ε→ 0.

3.1 The β-function and anomalous dimensions

The dependence of the renormalized coupling g2 and of the renormalization constant

Zn(g2, ε) on the energy scale µ is described, respectively, by the β-function and by the

anomalous dimensions γn(g2) of the operators O~n. They are defined as follows:

β(g2) ≡ µ dg
2

dµ
= −2εg2 − g2 µ

d lnZ(g2, ε)

dµ
, (3.6)

where the last equality stems from the µ-independence of g0, and

γn(g2) ≡ −µ d lnZn(g2, ε)

dµ
= −β(g2)

d lnZn(g2, ε)

dg2
, (3.7)

where in the second step we used (3.6). Using the perturbative expansions

β(g2) = −2εg2 + β0 g
4 + β1 g

6 + . . . ,

γn(g2) = γn,0 g
2 + γn,1 g

4 + . . . ,
(3.8)
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we can explicitly integrate (3.6) and (3.7) and get in the minimal subtraction (MS) scheme

Z(g2, ε) = exp

[
−
∫ g2

0

dt

t

β(t) + 2εt

β(t)

]
= 1 + g2 β0

2ε
+ g4

(
β2

0

4ε2
+
β1

4ε

)
+ . . . ,

Zn(g2, ε) = exp

[
−
∫ g2

0
dt
γn(t)

β(t)

]
= 1 + g2 γn,0

2ε
+ g4

(
β0 γn,0 + γ2

n,0

8ε2
+
γn,1
4ε

)
+ . . . .

(3.9)

This shows that the expansion coefficients of the β-function and of the anomalous dimen-

sions γn are directly related to the coefficients of the 1/ε -terms in Z and Zn respectively.

Differentiating (3.5) and using dG~n,~m/dµ = 0, one obtains the Callan-Symanzik equa-

tion (
µ
∂

∂µ
+ β(g2)

∂

∂g2
+ 2γn(g2)

)
GR~n,~m = 0 (3.10)

on which we can safely take the limit ε→ 0.

We now determine the coefficients of the β-function and the anomalous dimensions,

using the explicit results of the previous section. To do so, we expand the bare correla-

tor (2.45) for small ε using (3.1), and write

G~n,~m = α0 + g2
0

(
α1,1

ε
+ α1,0 + . . .

)
+ g4

0

(
α2,2

ε2
+
α2,1

ε
+ . . .

)
+O(g6

0) , (3.11)

where α0 = G~n,~m
∣∣
tree

and

α1,1 = n
2N −Nf

16π2
α0 , α1,0 = n

(2N −Nf )(2 + γE + lnπx2)

16π2
α0 , (3.12)

α2,2 = n(n+ 1)
(2N −Nf )2

512π4
α0 , α2,1 = n(n+ 1)

(2N −Nf )2(2 + γE + lnπx2)

256π4
α0 .

Plugging the expansion (3.11) into the renormalized correlator (3.5), using (3.9) and re-

quiring that all divergent terms cancel, one finds

β0 =
2
(
α2

1,1 − 2α0 α2,2

)

α0 α1,1
, γn,0 = −α1,1

α0
, γn,1 =

2
(
2α1,0 α2,2 − α1,1 α2,1

)

α0 α1,1
, (3.13)

leading to

β0 = −2N −Nf

8π2
, γn,0 = −n2N −Nf

16π2
, γn,1 = 0 . (3.14)

This value of β0 is in agreement with the well-known result for the one-loop coefficient of the

β-function in N = 2 SQCD. We also notice that γ2,0 = β0. This is consistent with N = 2

supersymmetry, since the chiral operator O(2) = trϕ2 and the Yang-Mills Lagrangian

−tr (F 2/4) + . . . belong to the same supermultiplet, and thus should renormalize in the

same way, that is

Z2(g2, ε) = Z(g2, ε) . (3.15)

Moreover, using the fact that in N = 2 SYM theories the β-function receives only one-loop

correction,2 i.e. β` = 0 for all ` ≥ 1, we conclude that also the anomalous dimensions of

2This fact has been tested by explicit computations at two loops, see for example [19–21], and then

extended to all loops using non-renormalization and anomaly arguments, and further strengthened at the

non-perturbative level [22–24].
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trϕ2 are corrected only at one loop, i.e. γ2,` = 0 for all ` ≥ 1. This implies that

Z2(g2, ε) = Z(g2, ε) = 1− g2(2N −Nf )

16π2 ε
+
g4(2N −Nf )2

256π4 ε2
+ . . . =

1

1 +
g2(2N−Nf )

16π2 ε

. (3.16)

Furthermore, we deduce from (3.14) that the following relation

Zn(g2, ε) =
[
Z(g2, ε)

]n
2 (3.17)

holds up to two loops. It would be very interesting to investigate whether this relation

holds also at higher loops. While this issue is not relevant for the two-loop analysis of the

present paper, it is tempting to speculate that (3.17) might actually be true in general.

Indeed, in our set-up the anomalous dimensions of the chiral and anti-chiral operators arise

because of the breaking of conformal invariance at the quantum level due to dimensional

transmutation. The fact that the coefficients γn,0 and β0 are proportional to each other and

that the proportionality factor is n/2 (see (3.14)), together with N = 2 supersymmetry,

naturally leads one to propose the relation (3.17). Notice that in the conformal case Nf =

2N , the renormalization functions simply reduce to 1, due to the absence of divergences,

so that (3.17) is trivially satisfied in this case.

3.2 Renormalized correlators

Using the previous results, it is easy to see that up to two loops and in the limit ε → 0,

the renormalized correlators (3.5) take a form completely analogous to the bare correla-

tors (2.45), namely

GR~n,~m =

[
1 +n c1 +

n(n+ 1)

2
c2

1 +n c2

]
G~n,~m

∣∣
tree

+ c3

〈
V

(B)
4 (ϕ,ϕ)O~n(ϕ)O ~m(ϕ)

〉
, (3.18)

where

c1 =
g2

16π2
ν (2N −Nf ) ,

c2 = −3 ζ(3)

(
g2

8π2

)2(
8N2 − 7NNf

2
+
Nf

2N

)
,

c3 = 3 ζ(3)

(
g2

8π2

)2

,

(3.19)

and

ν = 2 + γE + lnπµ2x2 . (3.20)

The coefficients ci are obtained from (3.1), (2.46) and (2.47). In the conformal case c1

vanishes and the first perturbative correction to the correlator appears at order g4.

Performing the same manipulations as described in section 2 for the bare correlators,

we can rewrite (3.18) in the following form:

GR~n,~m =

〈
e−V

R
eff(ϕ,ϕ) O~n(ϕ)O ~m(ϕ)

〉

〈
e−V

R
eff(ϕ,ϕ)

〉 +O(g6) , (3.21)

V R
eff(ϕ,ϕ) = −

(
c1 + c2

)
V2(ϕ,ϕ)− c3 V

(B)
4 (ϕ,ϕ) , (3.22)
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where the two- and four-point vertices V2 and V
(B)

4 are defined, respectively, in (2.28)

and (2.37).

We remark that for Nf 6= 2N , the renormalized correlator GR~n,~m is not a constant, but

it depends on x through the ln πµ2x2 term contained in ν. At first sight, this fact makes it

unlikely that the correlator can be encoded in a matrix model. However, the dependence

of GR~n,~m on ν is determined by the Callan-Symanzik equation (3.10)3 and by its value at a

reference point ν̂. For instance, setting

µ2x2 =
eγE

π
, (3.23)

we get from (3.20)

ν̂ = 2(1 + γE) , (3.24)

which, as we will see in section 4, is the combination that matches the one-loop matrix

model results from localization. In particular, with the choice (3.23) the coefficient c1

becomes

c1 =
g2

8π2
(1 + γE) (2N −Nf ) . (3.25)

Using (2.11) and (2.43) we find from (3.18)

GR(2),(2) =
N2 − 1

2

[
1 + 2 c1 + 3 c2

1 + 2 c2 − c3

(
N2 +

Nf

2N

)]
+O(g6) . (3.26)

Similar explicit formulae can be worked out for correlators involving higher dimensional

operators. For example, at dimension 4 we find

GR(2,2),(2,2) =
N4 − 1

2

(
1 + 4 c1 + 10 c2

1 + 4 c2

)

− c3
(N2 − 1)

2

(
2N4 + 22N2 − 3NNf +

7Nf

N

)
+O(g6) , (3.27a)

GR(4),(2,2) =
2N4 − 5N2 + 3

2N

(
1 + 4 c1 + 10 c2

1 + 4 c2

)

− c3
(N2 − 1)

2

(
6N3 −N2Nf + 6N + 8Nf −

21Nf

N2

)
+O(g6) , (3.27b)

GR(4),(4) =
N6 − 7N4 + 24N2 − 18

4N2

(
1 + 4 c1 + 10 c2

1 + 4 c2

)

− c3
(N2 − 1)

2

(
12N2 +NNf − 18− 21Nf

N
+

63Nf

N3

)
+O(g6) , (3.27c)

where the coefficients c1, c2 and c3 are defined in (3.19). Notice that c1 and c2 enter into

these expressions in the same combination.

3This equation requires that the correlator must have the form

GR~n,~m = d0 + g2(d1 − d0γn,0 ν) + g4
[
d2 − ν d0γn,1 +

ν

4
(ν d0γn,0 − 2d1)(β0 + 2γn,0)

]
+O(g6) .

It is easy to check that (3.18) satisfies this requirement. Notice that the whole ν-dependence of GR~n,~m can

be reconstructed order by order in g2 from the correlator at a given value ν̂, for instance ν̂ = 0, and the

coefficients β0, γn,0 and γn,1.
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3.3 Normalized correlators

The renormalized correlators GR~n,~m are finite but they cannot be considered as physical

observables since they depend on the choice of the renormalization scheme. In particular,

given a renormalized correlator at a certain normalization scale µ, one can always perform

a finite renormalization of the operators by multiplying the renormalization factors Z and

Zn defined in (3.2) and (3.4), respectively, by an arbitrary finite function of the coupling.

This transformation preserves the UV finiteness of the correlator and corresponds to a

change of the renormalization scheme (see, for example, [25] for a discussion of this point

in a different context).

Since, up to two loops we have Zn = (Z2)
n
2 , we can eliminate the scheme dependence

by considering dimensionless ratios of correlators. In fact, the renormalized correlators can

be written as

GR~n,~m =
1

(1− c1 − c2)n

[
G~n,~m

∣∣
tree

+ c3

〈
V

(B)
4 (ϕ,ϕ)O~n(ϕ)O ~m(ϕ)

〉]
+O(g6) . (3.28)

This relation shows that the dependence on x2 and on the renormalization scale µ coming

from the coefficient c1 is entirely encoded in a prefactor which only depends on the bare

scaling dimension n of the operators but not on their specific form. Therefore, this pref-

actor cancels in the ratio of correlators of operators of the same dimension. Choosing, for

example, as a reference the correlator between two operators O(2), which are the only ones

with dimension 2, we are led to introduce the normalized correlators

AR~n,~m =
GR~n,~m[

GR(2),(2)

]n
2

. (3.29)

These ratios are independent of the choice of the renormalization scale µ and scheme, and

as such they represent physical quantities.

It is interesting to observe that the two-loop contribution to the ratio AR~n,~m only comes

from the irreducible diagram represented in figure 10, which is finite in the limit ε → 0

(see (2.22) and (2.23)). This shows that also the bare ratios

A~n,~m =
G~n,~m[

G(2),(2)

]n
2

= AR~n,~m (3.30)

are finite. The equality between A~n,~m and AR~n,~m comes from the fact that the Zn-factors

cancel between the numerator and denominators, and the Z-renormalization of the gauge

coupling starts to contribute at the next order. One can check this explicitly, by writing

the bare correlators (2.45) as

G~n,~m =
1

(
1− v2,1 − v2,2 + v

(A)
4,2

)n
[
G~n,~m

∣∣
tree

+ v
(B)
4,2

〈
V

(B)
4 (ϕ,ϕ)O~n(ϕ)O ~m(ϕ)

〉]
+O(g6

0) ,

(3.31)

which shows that the divergence encoded in the one-loop coefficient v2,1 cancels in the ratios

A~n,~m. Furthermore, by comparing (3.31) and (3.28), we can realize that the bare and the

renormalized ratios match at two loops, apart from the obvious replacement of g0 with g.
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The explicit expressions of the normalized correlators for operators of dimension 4 are:

AR(22),(22) =
2
(
N2 + 1

)

N2 − 1
− 3g4ζ(3)

16π4

(
10N3 − 2N2Nf + 3Nf

)

N (N2 − 1)
, (3.32a)

AR(4),(22) =
2(2N2 − 3)

N(N2 − 1)
− 3g4ζ(3)

32π4

(
2N5 + 12N3 −N4Nf + 6N2Nf − 18Nf

)

N2 (N2 − 1)
, (3.32b)

AR(4),(4) =
N4 − 6N2 + 18

N2 (N2 − 1)

+
3g4ζ(3)

64π4

(
2N7 − 36N5 + 72N3 −N4Nf + 36N2Nf − 108Nf

)

N3 (N2 − 1)
. (3.32c)

Similar formulae can be easily found also for operators of other dimensions.

In the next section we will recover this same result from the matrix model obtained

by applying localization on the sphere S4.

4 Matrix model approach

In [6] it was shown, using localization techniques, that the partition function of a N = 2

SYM theory with gauge group SU(N) defined on a four-sphere S4 can be written in terms

of a traceless Hermitian N ×N matrix a in the following way:

ZS4 =

∫ N∏

u=1

dau ∆(a)
∣∣Z(ia, τ)

∣∣2 δ
( N∑

v=1

av

)
. (4.1)

Here we have denoted by au the (real) eigenvalues of a, by ∆(a) the Vandermonde deter-

minant

∆(a) =

N∏

u<v=1

a2
uv , (4.2)

where auv = au − av, and for simplicity have set to 1 the radius R of the four-sphere.4

Furthermore, Z(ia, τ) is the gauge theory partition function with τ being the complexified

gauge coupling:

τ =
θ

2π
+ i

4π

g2
. (4.3)

In this paper we actually set the θ-angle to zero. We remark that in the non-conformal

theories the coupling g appearing in the matrix model has to be interpreted as the renor-

malized gauge coupling at a scale proportional to the inverse radius of the four-sphere [6].

The gauge theory partition function Z(ia, τ) is computed using the localization tech-

niques of [26, 27] with a purely imaginary vacuum expectation value 〈ϕ〉 = i a for the adjoint

scalar, and an Ω-background with parameters ε1 = ε2 = 1/R. This partition function can

be written as a product of the classical, one-loop and instanton contributions, namely

Z(ia, τ) = Zclass(ia, τ)Zone−loop(ia)Zinst(ia, τ) . (4.4)

4The dependence on R can be easily restored by replacing au with auR.
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Since we work at weak coupling g2 � 1, where instantons are exponentially suppressed,

we can set Zinst(ia) = 1. The classical part produces a simple Gaussian term in the matrix

model:

|Zclass(ia, τ)|2 = e
− 8π2

g2

∑
u a

2
u = e

− 8π2

g2 tr a2

. (4.5)

The one-loop contribution arising from the gauge multiplet and Nf matter multiplets can

be written as [6] (see also [15] for details)

|Z1−loop(ia)|2 = e−S2(a)−S4(a)+ ··· (4.6)

where Sn(a) are homogeneous polynomials in a of order n. The first few of them are:

S2(a) = −(1 + γE)

( N∑

u,v=1

a2
uv −Nf

N∑

u=1

a2
u

)
= −(1 + γE) (2N −Nf ) tr a2 , (4.7a)

S4(a) =
ζ(3)

2

( N∑

u,v=1

a4
uv −Nf

N∑

u=1

a4
u

)
=

ζ(3)

2

[
(2N −Nf ) tr a4 + 6

(
tr a2

)2 ]
, (4.7b)

S6(a) = −ζ(5)

3

( N∑

u,v=1

a6
uv −Nf

N∑

u=1

a6
u

)
= −ζ(5)

3

[
(2N −Nf ) tr a6 (4.7c)

+ 30 tr a4 tr a2 − 20
(
tr a3

)2 ]
.

Performing the rescaling

a→
(
g2

8π2

) 1
2

a , (4.8)

the matrix model gets a canonically normalized Gaussian factor and the sphere partition

function (4.1) becomes

ZS4 =

(
g2

8π2

)N2−1
2
∫ N∏

u=1

dau ∆(a) e−tr a2−Sint(a) δ

( N∑

v=1

av

)
(4.9)

with

Sint(a) =
g2

8π2
S2(a) +

(
g2

8π2

)2

S4(a) +

(
g2

8π2

)3

S6(a) + · · · . (4.10)

The term of order g2` in Sint(a) accounts for effects that take place at ` loops in the corre-

sponding field theory computation. Therefore we will refer to the g2-expansion of Sint as

a loop expansion.

Exploiting the Vandermonde determinant ∆(a) and writing a = ab T b, we can al-

ternatively express the integral (4.9) using a flat integration measure da over all matrix

components ab as follows

ZS4 = cN

(
g2

8π2

)N2−1
2
∫
da e−tr a2−Sint(a) (4.11)

where cN is a g-independent constant and da ∝ ∏b da
b. The overall prefactors in (4.11)

are irrelevant when computing correlators and thus can be neglected.

– 23 –



J
H
E
P
0
5
(
2
0
1
9
)
1
9
9

Given any function f(a), its vacuum expectation value in the matrix model described

above is defined as follows

〈
f(a)

〉
=

1

ZS4

∫ N∏

u=1

dau ∆(a)
∣∣Z(ia, τ)

∣∣2 δ
( N∑

v=1

av

)
f(a)

=

∫
da e−tr a2−Sint(a) f(a)
∫
da e−tr a2−Sint(a)

=

〈
e−Sint(a) f(a)

〉
0〈

e−Sint(a)
〉

0

,

(4.12)

where in the second line we have used (4.11). The subscript “0” denotes the vacuum

expectation values taken with respect to the Gaussian measure, which can be computed

by repeatedly using Wick’s theorem to reduce them to the basic contraction

〈
ab ac

〉
0

= δbc . (4.13)

4.1 Chiral and anti-chiral operators in the matrix model

We are interested in extracting from the matrix model (4.12) the two-point functions (2.5).

To this aim we have first to find counter-partners of the chiral and anti-chiral operators in

the matrix model. It would seem natural to associate to the multi-trace operator O~n(x)

defined in (2.1), an analogous function O~n(a) in the matrix model, given by the same

expression (2.1) but with ϕ(x) replaced by a, namely

O~n(a) = tr an1 tr an2 . . . tr an` . (4.14)

However, the operator O~n(x) has vanishing vacuum expectation value in the field theory,

while in the matrix model 〈O~n(a)〉 6= 0 due to the self-contractions of a. This means

that we have to refine the dictionary and make O~n(a) normal-ordered. This can be done

by subtracting from O~n(a) all possible self-contractions and making it orthogonal to all

operators with lower dimensions.

As discussed in [15, 16, 28], the prescription to define the normal ordering of any

operator O(a) in the matrix model is the following. Let be ∆ the dimension of O(a) and{
Op(a)

}
a basis in the finite-dimensional space of matrix operators with dimension smaller

than ∆. Denoting by C∆ the (finite-dimensional) matrix of correlators

(
C∆

)
pq

=
〈
Op(a)Oq(a)

〉
, (4.15)

which are computed according to (4.12), we define the normal-ordered operator as

:O(a) :g = O(a)−
∑

p,q

〈
O(a)Op(a)

〉
(C−1

∆ )pq Oq(a) . (4.16)

Our notation stresses the fact that this normal-ordering is g-dependent, since the correlators

on the right hand side of (4.16) are computed in the interacting matrix model. The proposal

is then to associate to the field theory operators the corresponding normal-ordered matrix

operators, namely

O~n(x) → O~n(a) = :O~n(a) :g . (4.17)

A similar replacement holds for the anti-chiral operators.
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For example, using the definition (4.16) we find

O(2)(a) = tr a2 − N2 − 1

2

[
1 +

g2

8π2
(1 + γE)(2N −Nf ) +

(
g2

8π2

)2

(1 + γE)2(2N −Nf )2

−
(
g2

8π2

)2

ζ(3)

(
5N2 −N Nf +

3Nf

2N

)]
+O(g6) . (4.18)

The term of order g0 inside the square brackets represents the self-contraction of tr a2, while

the terms of higher order in g2 represent the self-contractions of the operator through the

interaction vertices coming from the matrix model action. Analogous expressions can be

worked out for operators of higher dimension.

4.2 Correlators in the matrix model

Once the operators have been identified, their correlators can be computed in a straightfor-

ward way using the definition (4.12). In particular the two-point correlators are defined as

G~n,~m =
〈
O~n(a)O~m(a)

〉
=

〈
e−Sint O~n(a)O~m(a)

〉
0〈

e−Sint
〉

0

. (4.19)

Since normal-ordered operators with different dimensions are orthogonal to each other,

G~n,~m vanishes for n 6= m.

For instance, for the simplest operator O(2)(a) defined in (4.18) we find

G(2),(2) =
N2 − 1

2

[
1 +

g2

8π2
2 (1 + γE)(2N −Nf ) +

(
g2

8π2

)2

3 (1 + γE)2(2N −Nf )2

−
(
g2

8π2

)2

ζ(3)

(
15N2 − 3NNf +

9Nf

2N

)]
+O(g6) .

(4.20)

The explicit expressions of correlators with higher dimensional operators can be computed

in a similar way. At dimension 4 we find

G(2,2),(2,2) =
N4 − 1

2

[
1 +

(
g2

8π2

)
4 (1 + γE)(2N −Nf ) +

(
g2

8π2

)2

10 (1 + γE)2(2N −Nf )2

−
(
g2

8π2

)2

12 ζ(3)

(
2N2 − NNf

2
+
Nf

2N

)]
(4.21a)

−
(
g2

8π2

)2 3

2
ζ(3) (N2 − 1)

(
2N4 + 22N2 − 3NNf +

7Nf

N

)
+O(g6) ,

G(4),(2,2) =
2N4 − 5N2 + 3

2N

[
1 +

(
g2

8π2

)
4 (1 + γE)(2N −Nf ) (4.21b)

+

(
g2

8π2

)2

10 (1 + γE)2(2N −Nf )2 −
(
g2

8π2

)2

12 ζ(3)

(
2N2 − NNf

2
+
Nf

2N

)]

−
(
g2

8π2

)2 3

2
ζ(3)(N2 − 1)

(
6N3 −N2Nf + 6N + 8Nf −

21Nf

N2

)
+O(g6) ,
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G(4),(4) =
N6 − 7N4 + 24N2 − 18

4N2

[
1 +

(
g2

8π2

)
4 (1 + γE)(2N −Nf ) (4.21c)

+

(
g2

8π2

)2

10 (1 + γE)2(2N −Nf )2 −
(
g2

8π2

)2

12 ζ(3)

(
2N2 − NNf

2
+
Nf

2N

)]

−
(
g2

8π2

)2 3

2
ζ(3)(N2 − 1)

(
12N2 +NNf − 18− 21Nf

N
+

63Nf

N3

)
+O(g6) .

Here we have split the O(g4) contribution into the sum of a few terms in order to facilitate

a comparison with the field theory calculation.

It is easy to check that for Nf = 2N the matrix model correlators G~n,~m exactly

match, up to two loops, the correlators GR~n,~m computed in perturbation theory (see (3.26)

and (3.27)), thus confirming the general results obtained in [8–15].5 The fact that the par-

tition function on the sphere S4 and its associated matrix model contain information on the

correlators in the flat space R4 is not too surprising in the conformal case. We now want to

investigate to what extent this relation holds in the non-conformal theories with Nf 6= 2N .

4.3 Comparison between matrix model and field theory correlators

Comparing (3.26) with (4.20), and (3.27) with (4.21), we see that they have the same

structure and that many terms exactly match. However, for Nf 6= 2N there are some dif-

ferences in the terms proportional to ζ(3). To make the comparison simpler, it is convenient

to write G~n,~m in terms of the complex matrices ϕ and ϕ using the formalism introduced in

section 2. Indeed, it is possible to explicitly check that, up to two loops, the matrix model

correlators (4.19) can be expressed as follows

G~n,~m =

〈
e−V̂eff(ϕ,ϕ) O~n(ϕ)O ~m(ϕ)

〉

〈
e−V̂eff(ϕ,ϕ)

〉 +O(g6) , (4.22)

where

V̂eff(ϕ,ϕ) = −
(
ĉ1 + ĉ2

)
V2(ϕ,ϕ)− ĉ3 V

(B)
4 (ϕ,ϕ) (4.23)

with V2 and V
(B)

4 defined, respectively, in (2.28) and (2.37), and

ĉ1 =
g2

8π2
(1 + γE)(2N −Nf ) ,

ĉ2 = −3 ζ(3)

(
g2

8π2

)2(
2N2 − NNf

2
+
Nf

2N

)
,

ĉ3 = 3 ζ(3)

(
g2

8π2

)2

.

(4.24)

Notice that the effective vertex (4.23) has the same form as the renormalized vertex (3.22)

obtained from perturbation theory. Comparing (4.24) with (3.19) and (3.25), we find

ĉ1 = c1 , ĉ2 = c2 + 9 ζ(3)

(
g2

8π2

)2

N(2N −Nf ) , ĉ3 = c3 . (4.25)

5In the recent paper [29] a discrepancy at six loops, proportional to ζ2(5)g12, has been pointed out in

the comparison between the matrix model results and the correlators obtained by solving Toda equations.
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Therefore, the difference between the effective vertex V̂eff of the matrix model and the

renormalized effective vertex V R
eff is

δ = V̂eff − V R
eff = 9 ζ(3)

(
g2

8π2

)2

N(2N −Nf )V2(ϕ,ϕ) . (4.26)

It is interesting to observe that δ vanishes in the conformal case. Moreover, it is proportional

to V2 which, as follows from (2.29), computes the scaling dimension of the operators.6 This

fact suggests that it might be interpreted as due to a conformal anomaly which, in non-

conformal theories, affects the correlation functions in going from the four-sphere S4 to the

flat space R4, or vice versa.

In the two-loop approximation, we can rewrite (4.22) as follows:

G~n,~m =
1

(1− ĉ1 − ĉ2)n

[
G~n,~m

∣∣
tree

+ ĉ3

〈
V

(B)
4 (ϕ,ϕ)O~n(ϕ)O ~m(ϕ)

〉]
+O(g6) . (4.27)

This formula clearly shows that the dependence on ĉ1 and ĉ2 drops out in the ratio between

correlators of operators with the same scaling dimensions. Thus, in analogy with (3.29),

we are led to define the ratio of correlators in the matrix model

A~n,~m =
G~n,~m[
G(2),(2)

]n
2

. (4.28)

Since ĉ3 = c3, it exactly matches the normalized correlator AR~n,~m, namely

A~n,~m = AR~n,~m . (4.29)

We have checked this relation in many explicit examples, with operators of dimensions up

to 6.

5 Two-point correlators on the four-sphere

In this section we study in more detail the relation between the correlators in flat space,

discussed in sections 2 and 3, and those on the four-sphere S4. The latter are closely

related to the correlators derived from matrix model presented in section 4. In particular

we consider the one-loop correction to the scalar propagator on S4 and compare it with

the one-loop propagator in flat space defined in (2.12).

To this aim, it is convenient to describe a sphere in D−dimensions by using flat em-

bedding coordinates {η0, ηµ} satisfying the quadratic constraint

η2
0 +

D∑

µ=1

η2
µ = R2 , (5.1)

6Notice that a non-zero value of δ can be compensated by performing a finite renormalization of the

scalar operators.

– 27 –



J
H
E
P
0
5
(
2
0
1
9
)
1
9
9

where R is the radius of the D-sphere. Following [30–34], we use the stereographic projec-

tion

η0 = R
x2 −R2

x2 +R2
, ηµ = R2 2xµ

x2 +R2
with x2 =

D∑

µ=1

x2
µ , (5.2)

to relate a theory defined on a D-sphere to a theory in RD, parametrized by the flat

coordinates xµ. One of the advantages of this formalism is that the scalar propagator on

the sphere, denoted by a subscript S, takes a very simple form given by

〈
ϕa(η1)ϕ b(η2)

〉
S

= ∆S(η12) δab , (5.3)

where η12 = η1 − η2 and

∆S(η12) =
Γ(1− ε)

4π (πη2
12)1−ε . (5.4)

Here we have used D = 4− 2ε and defined

η2
12 =

(x1 − x2)2

κ(x1)κ(x2)
, κ(x) =

x2 +R2

2R2
. (5.5)

Inserting this into (5.4) and comparing with (2.7), we get

∆S(η12) =
[
κ(x1)κ(x2)

]1−ε
∆(x12) . (5.6)

The scalar propagator on the sphere is thus proportional to the one in flat space, with a

scaling factor raised to the engineering dimensions of the scalar fields. Notice that this is

the same scaling factor that defines the induced metric on the sphere through the conformal

map (5.2); indeed

ds2 = dη2
0 +

D∑

µ=1

dη2
µ =

1

κ2(x)

D∑

µ=1

dx2
µ . (5.7)

Let us now consider the correlators between two operators on the sphere. They have

a structure similar to the ones in flat space given in (2.6), namely

〈
O~n(η1)O ~m(η2)

〉
S

= ∆n
S(η12)G

(S)
~n,~m(g0, ε, η12) δnm . (5.8)

The correlators G
(S)
~n,~m(g0, ε, η12), which we will simply denote as G

(S)
~n,~m, can be computed

order by order in perturbation theory. At tree level, we have just to contract the color

indices of the constituent fields, so that

G
(S)
~n,~m

∣∣∣
tree

= G~n,~m

∣∣∣
tree

. (5.9)

Inserting this into (5.8), using the propagator (5.4) and taking the limit ε → 0, we can

easily obtain

〈
O~n(η1)O ~m(η2)

〉
S

∣∣∣
tree

= κn(x1)κm(x2)
〈
O~n(x1)O ~m(x2)

〉 ∣∣∣
tree

. (5.10)

This is the expected relation between correlators on the sphere and correlators in flat space

that follows from the conformal map (5.2).

– 28 –



J
H
E
P
0
5
(
2
0
1
9
)
1
9
9

Let us now consider the one-loop correction. Before analyzing the correlators on

the sphere, it is convenient to revisit the calculation of one-loop correction to the scalar

propagator in flat space, given in (2.12) in coordinate space. The one-loop correction to〈
ϕa(x1)ϕ b(x2)

〉
can be written as

W ab
1 (x12) = −g2

0 (2N −Nf )W1(x12) δab , (5.11)

where

W1(x12) =

∫
dDx3 d

2θ̄3 d
Dx4 d

2θ4 ∆(x13)
(
e−2iθ4∂x43 θ̄3∆(x43)

)2
∆(x42) . (5.12)

Its Fourier transform is the functionW1(p) discussed in appendix B (see in particular (B.8)

and (B.9)). Computing the integrals, we find

W1(x12) = −(πx2
12)ε Γ(1− ε)

(4π)2 ε(1− 2ε)
∆(x12) . (5.13)

Using this in (5.11), one recovers the result presented in (2.12) and (2.13).

Going to the sphere, we find that the one-loop correction to the scalar propagator has

a form similar to (5.11), that is

W ab
1S(η12) = −g2

0 (2N −Nf )W1S(η12) δab , (5.14)

where the function W1S is the sphere generalization of W1. Applying the embedding

formalism [30–34], the expression of W1S can be obtained by performing the conformal

transformation (5.2) to (5.12). Under this map, both the integration measure and the

scalar propagators acquire scale factors according to

∫
dDxi d

2θi →
∫
dDxi d

2θi κ
−D+1(xi) ,

∆(xij)→ ∆(xij)
[
κ(xi)κ(xj)

]D−2
2 ,

(5.15)

so that W1(x12) becomes

W1S(η12) =
[
κ(x1)κ(x2)

]1−ε
I(x1, x2) , (5.16)

where

I(x1, x2) =

∫
dDx3 d

2θ̄3 d
Dx4 d

2θ4 ∆(x13)
(
e−2iθ4∂x43 θ̄3∆(x43)

)2
∆(x42)

[
κ(x3)κ(x4)

]−ε
.

(5.17)

Comparing this integral with (5.12), we notice the presence of the additional scaling factor[
κ(x3)κ(x4)

]−ε
, which clearly becomes 1 in four dimensions.

Therefore, if the integrals in (5.12) and (5.16) were finite, W1S and W1 would only

differ by the overall scaling factor κ(x1)κ(x2). In other words, if no UV divergences are

present, one can safely perform the limit ε→ 0 inside the integrals. However, the integral
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in (5.17) is divergent, and thus the scaling factor
[
κ(x3)κ(x4)

]−ε
in the integrand cannot

be neglected. The evaluation of this integral is presented in appendix C, and the result is

W1S(η12) ≈ −(πη2
12)ε Γ(1− ε)

(4π)2 ε(1− 2ε)
∆S(η12) . (5.18)

Comparing with (5.13), we see that, up to terms O(ε), the two expressions coincide upon

replacing ∆S with ∆, and η2
12 with x2

12. The fact that the divergent parts of W1S and W1

coincide, is not surprising since the UV divergences come from integration at short distances

where there is no distinction between the sphere and flat space. What is non trivial,

however, is that the finite parts coincide, modulo the obvious replacement of x12 with η12.

Putting everything together, we see that the one-loop correction to the scalar propa-

gator on the sphere is

W ab
1S(η12) = v

(S)
2,1 ∆S(η12) δab , (5.19)

with

v
(S)
2,1 ≈

g2
0

8π2
(2N −Nf )

(πη2
12)ε Γ(1− ε)
2ε(1− 2ε)

, (5.20)

in full analogy with (2.12) and (2.13). This implies that

G
(S)
~n,~m

∣∣
1-loop

= n v
(S)
2,1 G~n,~m

∣∣
tree

. (5.21)

Thus, the renormalization procedure can be done following the same steps we described in

section 3. Choosing the renormalization scale µ2 as in (3.23) with x2 replaced by η2
12 on

the sphere and by x2
12 in flat space, then

〈
OR~n (η1)O

R
~m(η2)

〉
S

∣∣∣
1-loop

= κn(x1)κm(x2)
〈
OR~n (x1)O

R
~m(x2)

〉 ∣∣∣
1-loop

. (5.22)

The relation (5.21) and the explicit expression of v
(S)
2,1 explain why the correlators G~n,~m

obtained from the matrix model perfectly agree with those computed in field theory at one

loop.

The same analysis can be carried out at two loops, even though the resulting inte-

grals on the sphere become way more complicated. Most of the two-loop diagrams develop

UV divergences and need to be regularized. As in the one-loop case, the integrals on the

sphere differ from those in flat space because of scaling factors [κ(xi)]
−ε appearing in the

integrands. Such factors do not modify the leading UV divergent contribution but they do

affect the finite part. As a result, there is no reason a priori to expect that the finite part of

the correlation functions on the sphere and in flat space should coincide. However, we stress

the fact that the finite part of the two-point correlator is not a physical observable since

it depends on the regularization scheme. The explicit one-loop calculation shows a perfect

agreement between the matrix model and the field theory results for the two-point corre-

lators for the special choice of the renormalization scale. It is natural to ask whether such

identification holds also at higher loops. At two loops, the results of sections 3 and 4 reveal

that the finite part of the correlation functions are different in flat space and in the matrix

model. Still, a perfect match is found for physical observables that are independent of the
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renormalization scheme, such as the ratios of correlators with operators of the same di-

mension. In such ratios, all divergent two-loop diagrams cancel and the whole contribution

at order g4 is due to a single and finite Feynman diagram, namely the irreducible diagram

represented in figure 10. The corresponding Feynman integral is finite in R4 and does not

require a regularization. As a consequence, it possesses the four-dimensional conformal

symmetry and takes the same form in R4 and S4. This explains why the ratios of the cor-

relation functions match the prediction from localization at two loops, as shown in (4.29).

6 Summary and conclusions

We have explicitly computed the two-point correlation functions between chiral and anti-

chiral operators in the N = 2 SYM theory with gauge group SU(N) and Nf fundamental

flavors up to two loops, using standard (super) Feynman diagrams in dimensional regular-

ization. Our results show that these correlators have a remarkably simple structure of UV

divergences stemming from the fact that the anomalous dimensions of the operators are

proportional to the β-function. We demonstrated that when the renormalization scale µ

and the separation x between the operators are inversely proportional to each other, these

correlators can be obtained via a matrix model which is strikingly similar to the matrix

model that computes the partition function and the chiral/anti-chiral correlators on the

four-sphere using localization. Up to two loops, the difference between the two matrix

models is just a term of order g4 proportional to (2N − nf )V2, which acting on the opera-

tors gives their anomalous dimensions. This suggests that this difference that vanishes in

the conformal theories, might be interpreted as a conformal anomaly. In the non-conformal

cases this could explain the difference between the correlators on the four-sphere and those

in flat space.

We have also constructed normalized correlators, which are scheme independent and,

as such, represent physical quantities. Up to two-loops, these normalized correlators are the

same on the four-sphere and in flat space, and can be computed either using the field theory

approach with Feynman diagrams, or using localization methods via a simple matrix model.

Our analysis clarifies the relation between the perturbative field calculations and the

localization results in N = 2 SYM theories. It would be interesting to generalize it in vari-

ous directions, for example to compute the correlators at three or more loops, or to compute

the one-point or higher-point correlation functions in presence of Wilson loops. In partic-

ular it would be interesting to explore in detail the two-loop calculations of the correlators

using Feynman diagrams on the sphere, and/or obtain a “first-principle” derivation of the

difference between the two matrix models that yield the correlators on the four-sphere and

in flat space. We hope to be able to return to some of these points in future works.
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A Loop integrals

In this appendix we follow closely [17] (see also [18] for a review) and collect some useful

formulae necessary to evaluate the Feynman integrals. We work in D = 4− 2ε dimensions

and use the propagator of a massless scalar field given in (2.7), namely

∆(x) =

∫
dDk

(2π)D
eik·x

k2
=

Γ(1− ε)
(4π) (πx2)1−ε . (A.1)

For later convenience, we introduce the graphical notation for Feynman integrals in the

momentum representation
α

β

≡
∫

dDk

(2π)D
1

(k2)α ((p− k)2)β
=

Iα,β
(p2)α+β−2+ε

, (A.2)

where

Iα,β =
Γ(2− ε− α) Γ(2− ε− β) Γ(α+ β − 2 + ε)

(4π)2−ε Γ(α) Γ(β) Γ(4− 2ε− α− β)
. (A.3)

The black dots on the left and the right of the diagram in (A.2) denote, respectively,

the incoming and outgoing momentum p. Furthermore, in each interaction vertex the

momentum conservation is enforced. When α or β is 1, for simplicity we do not write the

labels. With these notations, we then have

=
Γ2(1− ε) Γ(ε)

(4π)2−ε Γ(2− 2ε)

1

(p2)ε
. (A.4)

We will also make use of the Fourier transform integral

Πα(x) =

∫
dDk

(2π)D
eik·x

(k2)α
=

(x2)α+ε−2 Γ(2− ε− α)

4απ2−εΓ(α)
=

(x2)α−1 Γ(2− ε− α)

4α−1Γ(α) Γ(1− ε) ∆(x) , (A.5)

which for α = 1 reduces to (A.1). In particular we will need the following explicit formulae

Π1+ε(x) =
(x2)ε Γ(1− 2ε)

4ε Γ(1 + ε) Γ(1− ε) ∆(x) , (A.6a)

Π1+2ε(x) =
(x2)2ε Γ(1− 3ε)

42ε Γ(1 + 2ε) Γ(1− ε) ∆(x) , (A.6b)

Π3ε(x) =
(x2)2ε Γ(2− 4ε)

43ε−2 πε−2 Γ(3ε) Γ(1− ε)2
∆2(x) . (A.6c)
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α1p
k

q

α2α3

α4

α5

α6

k − p

k − q

p− q

Figure 11. The one-loop diagram corresponding to the integral (A.7). Here the labels αi on the

various lines denote the exponents of the propagators appearing in the integrand.

A.1 Triangle identity

Let us consider the integral

J
(
{αi}

)
=

∫
dDk

(2π)D
1

(k2)α1 ((k − q)2)α2 ((k − p)2)α3 (q2)α4 ((q − p)2)α5 (p2)α6
, (A.7)

which corresponds to the triangle diagram of figure 11. Following [17, 18], we have

0 =

∫
dDk

(2π)D
∂

∂kµ

[
(k − q)µ

(k2)α1 ((k − q)2)α2 ((k − p)2)α3 (q2)α4 ((q − p)2)α5 (p2)α6

]

=

∫
dDk

(2π)D

D − α1
2k·(k−q)

k2 − 2α2 − α3
2(k−p)·(k−q)

(k−p)2

(k2)α1 ((k − q)2)α2 ((k − p)2)α3 (q2)α4 ((q − p)2)α5 (p2)α6

=

∫
dDk

(2π)D

D − α1 − α1
(k−q)2−q2

k2 − 2α2 − α3 − α3
(k−q)2−(q−p)2

(k−p)2

(k2)α1 ((k − q)2)α2 ((k − p)2)α3 (q2)α4 ((q − p)2)α5 (p2)α6
.

(A.8)

From this, it is easy to obtain the so-called triangle identity:

(D − α1 − 2α2 − α3) J
(
{αi}

)
=
[
α1 1+

(
2−− 4−

)
+ α3 3+

(
2−− 5−

)]
J
(
{αi}

)
, (A.9)

where the notation n±J
(
{αi}

)
means the integral (A.7) with αn replaced by αn ± 1. For

example, we have

1+2−J
(
{αi}

)
=

∫
dDk

(2π)D
1

(k2)α1+1 ((k − q)2)α2−1 ((k − p)2)α3 (q2)α4 ((q − p)2)α5 (p2)α6
.

(A.10)

Repeated applications of the triangle identity allow us to reduce the power of one of the

propagators to zero and to express in the end the result in terms of the basic integrals (A.2).

A few examples are described in the next subsection.

A.2 Scalar integrals

Let us consider the two-loop integral

∫
dDk dDq

(2π)2D

1

k2 (k − q)2 (k − p)2 q2 (q − p)2
≡

2 2

(A.11)
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Here we have adopted the same graphical conventions as in (A.4).

Applying the triangle identity (A.9), we obtain

2 2

=
1

ε

[

kC

k1

k3

k2
kA

kB

2

−
2

−2 2

−

2

2

−

kC

k1

k3

k2
kA

kB

2

−
2

−2 2

−

2

2

]
, (A.12)

where

kC

k1

k3

k2
kA

kB

2

−
2

−2 2

−

2

2

≡
∫
dDk dDq

(2π)2D

1

(k2)2 (k − q)2 (k − p)2 (q − p)2
=
I1,1 I2,1+ε

(p2)1+2ε
, (A.13a)

kC

k1

k3

k2
kA

kB

2

−
2

−2 2

−

2

2

≡
∫
dDk dDq

(2π)2D

1

(k2)2 (k − p)2 q2 (q − p)2
=

I2,1 I1,1

(p2)1+2ε
. (A.13b)

The last steps in these equations follow from (A.2). Inserting these expressions into (A.12)

and expanding for ε→ 0, we obtain

2 2

=
I1,1

[
I2,1+ε − I2,1

]

ε

1

(p2)1+2ε
=

6ζ(3)

(4π)4

1

(p2)1+2ε
+ · · · . (A.14)

After Fourier transforming and using (A.6b), we get

2 2

−→ 6ζ(3)

(4π)4
Π1+2ε(x) + · · · =

6ζ(3)

(4π)4
(πx2)2ε ∆(x) + · · · . (A.15)

The same procedure can be applied to express other two-loop integrals in terms of Iα,β
defined in (A.3). For example, we have

2 2
=

I1,1I1,2

[
I1+ε,1+ε − I1,1+2ε

]

ε

1

(p2)3ε
=

2ζ(3)

ε (4π)6

1

(p2)3ε
+ · · · . (A.16)

Computing the Fourier transform and using (A.6c), we find

2 2−→ 2ζ(3)

ε (4π)6
Π3ε(x) + · · · = 6ζ(3)

(4π)4
(πx2)2ε ∆(x)2 + · · · . (A.17)

Another scalar integral that will be needed is the one represented by the diagram

p2 . (A.18)

Using (A.4) and expanding for small ε, one can prove that

=
I1,1

(p2)ε

2 2

+ · · · =
6ζ(3)

ε (4π)6

1

(p2)1+3ε
+ · · · (A.19)
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where the ellipses stand for terms that vanish for ε→ 0. Comparing with (A.16), we easily

conclude that

p2 = 3
2 2

+ · · · (A.20)

so that, after Fourier transform, we have

p2 −→ 18ζ(3)

(4π)4
(πx2)2ε ∆(x)2 + · · · . (A.21)

In a similar way one can derive the following relation

2 2

=
I1,1

(p2)ε

2 2

+ · · · =
6ζ(3)

ε (4π)6

1

(p2)1+3ε
+ · · · (A.22)

from which we get

p2

2 2

= 3
2 2

+ · · · . (A.23)

Performing the Fourier transform we obtain

p2

2 2

−→ 18ζ(3)

(4π)4
(πx2)2ε ∆(x)2 + · · · . (A.24)

The following divergent integrals also appear in the two-loop calculation

1

p2
=

I1,1

(p2)1+ε
=

Γ2(1− ε) Γ(ε)

(4π)2−ε Γ(2− 2ε)

1

(p2)1+ε
, (A.25a)

=
I2

1,1

(p2)1+2ε
=

[
Γ2(1− ε) Γ(ε)

(4π)2−ε Γ(2− 2ε)

]2 1

(p2)1+2ε
, (A.25b)

1

p2
=

I1,1 I1,1+ε

(p2)1+2ε
=

Γ3(1− ε) Γ(2ε)

(4π)4−2ε ε(1− 2ε) Γ(2− 3ε)

1

(p2)1+2ε
, (A.25c)

=
I1,1 I1,2+ε

(p2)1+2ε
= − Γ3(1− ε) Γ(2ε)

(4π)4−2εε(1− 2ε)(1 + ε)Γ(1− 3ε)

1

(p2)1+2ε
, (A.25d)

=
I2

1,1Iε,2+ε

(p2)3ε
= − Γ4(1− ε) Γ(3ε)

2(4π)6−3ε ε2(1− 2ε) (1 + ε) Γ(2− 4ε)

1

(p2)3ε
. (A.25e)
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After Fourier transforming, we get using (A.6)

1

p2
−→ I1,1 Π1+ε(x) =

(πx2)ε Γ(1− ε)
(4π)2 (1− 2ε)

∆(x) , (A.26a)

−→ I2
1,1Π1+2ε(x) =

[
(πx2)ε Γ(1− ε)
(4π)2 ε(1− 2ε)

]2

∆(x) +O(ε) , (A.26b)

1

p2
−→ I1,1 I1,1+ε Π1+2ε(x) =

(πx2)2ε Γ2(1− ε)
2(4π)4 ε2(1− 2ε)(1− 3ε)

∆(x) , (A.26c)

−→ I1,1 I1,2+ε Π1+2ε(x) = − (πx2)2ε Γ2(1− ε)
2(4π)4 ε2(1− 2ε)(1 + ε)

∆(x) , (A.26d)

−→ I2
1,1Iε,2+ε Π3ε(x) = − (πx2)2ε Γ2(1− ε)

2(4π)4 ε2(1− 2ε)(1 + ε)
∆(x)2 . (A.26e)

B Evaluation of the relevant (super)diagrams

In this appendix we explicitly compute the diagrams discussed in section 2. We use dimen-

sional regularization and the N = 1 superspace formalism in the Feynman gauge (we refer

to [15] for more details).

B.1 Feynman rules

We first summarize the momentum-space Feynman rules in the chosen formalism. Let us

start from the propagators for the chiral multiplets. We use a continuous line for the su-

perfields ΦI (I = 1, 2, 3) of the N = 4 gauge multiplet, which carry SU(N) adjoint indices

a, b, . . ., a dashed line for the superfields QA (A = 1, . . . Nf ), which carry SU(N) funda-

mental indices u, v, . . ., and a dotted line for the superfields Q̃A, also carrying fundamental

indices, which form a N = 2 hypermultiplet together with QA. We have

θ1, θ̄1

a, I b, Jk

θ2, θ̄2

= δab δIJ e−θ1kθ̄1−θ2kθ̄2+2θ1kθ̄2 1

k2
, (B.1a)

θ1, θ̄1

u,A v,Bk

θ2, θ̄2

= δuv δAB e−θ1kθ̄1−θ2kθ̄2+2θ1kθ̄2 1

k2
, (B.1b)

θ1, θ̄1

u,A v,Bk

θ2, θ̄2

= δuv δAB e−θ1kθ̄1−θ2kθ̄2+2θ1kθ̄2 1

k2
. (B.1c)

Note that the arrow indicates both the orientation of the chiral propagator and the flow of

the momentum. In (B.1a) we have used the notation

θkθ̄ = θTσµ θ̄ kµ = θα (σµ)αβ̇ θ̄
β̇ kµ . (B.2)

– 36 –



J
H
E
P
0
5
(
2
0
1
9
)
1
9
9

Our conventions on spinor indices and Pauli matrices are the same as those explained in

appendix A of [15].

The propagator for the N = 1 vector superfield is given by

θ1, θ̄1

a b
k

θ2, θ̄2

= − δab

2
θ2

12 θ̄
2
12

1

k2
, (B.3)

where θ12 ≡ θ1 − θ2.

The diagrams we have to compute only contain three-point vertices. These are given

by the following rules:

a, I

b, J

c,K
=

1

3!
εIJK

√
2g0 θ

2 (T a)bc , (B.4a)

a, I

b, J

c,K
= − 1

3!
εIJK

√
2g0 θ̄

2 (T a)bc , (B.4b)

u,A

v,B

a, I
= − i δAB δI1

√
2g0 θ

2 (T a)uv , (B.4c)

v,B

u,A

a, I
= i δAB δI1

√
2g0 θ̄

2 (T a)uv , (B.4d)

b, I

c, J

a
= δIJ 2g0 (T a)bc , (B.4e)
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u,A

v,B

a
= δAB 2g0 (T a)uv , (B.4f)

v,B

u,A

a
= − δAB 2g0 (T a)uv . (B.4g)

Here (T a)bc = −i fabc are the generators in the adjoint representation, and (T a)uv those

in the fundamental representation. The θ variables appearing in the vertices are those

associated to the vertex point.

B.2 One-loop diagrams

At one loop, we have to compute the diagrams in figure 4. Denoting

= W ab
1 (x) (B.5)

and isolating a prefactor containing the combinatorial and color factors, we have

W ab
1 (x) = (

√
2g0)2

(
Nf trT aT b − tr adjT

aT b
)
W1(x)

= g2
0 (Nf − 2N)W1(x) δab ,

(B.6)

where W1(x) is given by the one-loop Feynman diagram shown in (B.8) below. The first

term in the color factor arises from the loop diagram of Nf fundamental Q, Q̃ superfields,

while the second term originates from the loop of the adjoint hypermultiplet H.

It is convenient to Fourier transform W1(x) and write

W1(x) =

∫
dDp

(2π)D
W1(p) eip·x , (B.7)

where W1(p) is described by the following diagram in the momentum space:

W1(p) =
1

p p

23 4

−k

k − p

. (B.8)

Here the numbers label the external points and the interaction vertices. Note that the two

external points 1 and 2 are connected to a bosonic scalar field, so that the propagators from
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1 to 3 and from 4 to 2 are in fact free scalar propagators with no θ dependence. Taking

into account the Feynman rules given above, we get

W1(p) =

∫
dDk

(2π)D
1

p4 k2 (k − p)2

∫
d2θ̄3 d

2θ4 e−2θ4p θ̄3

= − 1

p2

∫
dDk

(2π)D
1

k2 (k − p)2
= − 1

p2
. (B.9)

In the second step we used the Grassmann integral identity

∫
d2θ1 d

2θ̄2 eα θ1k θ̄2 = −α
2

4
k2 , (B.10)

and then we exploited the graphical representation introduced in appendix A. Using (A.25a)

and the Fourier transform (A.26a), we finally obtain

W1(x) = −(πx2)ε Γ(1− ε)
(4π)2 ε(1− 2ε)

∆(x) , (B.11)

leading to the relation (2.13) in the main text:

W ab
1 (x) =

g2
0

8π2
(2N −Nf )

(πx2)ε Γ(1− ε)
2ε(1− 2ε)

∆(x) δab ≡ v2,1 ∆(x) δab . (B.12)

B.3 Two-loop diagrams

At two loops we have to compute diagrams that correct either a two-point or a four-point

vertex. Such diagrams have been displayed in section 2. All of them have two external

points, corresponding to the positions of the two operators O~n(x) and O ~m(0), four internal

points, corresponding to the interaction vertices, and either seven or eight propagators, for

the corrections to the two-point or the four-point vertex respectively.

Some notations. It is useful to introduce some notation that allows us to write the

various diagrams in a uniform way. In each two-loop diagram labeled by an index I, we

label by i = 1, 2 the external points and by i = 3, . . . , 6 the internal ones. We denote

by EI the set of propagators of the diagram, and label each propagator in EI by s. Any

propagator connects a point i to a point j, and in general there can be a number r(i, j) of

propagators connecting the same two points. A possible way of expressing the label s of

the propagators is thus

s→ (i, j; r) (B.13)

where r = 1, . . . , r(i, j); in the following we will omit the index r if r(i, j) = 1. The mo-

mentum ks associated to the propagator will then be denoted as kij;r, with the convention

that we take it to flow from i to j. This is useful to write the delta-functions of momentum

conservation at internal vertices, which take the form

δint(k) ≡
6∏

i=3

δD
(∑

j

r(i,j)∑

r=1

kij;r

)
. (B.14)
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Similarly, the relation between the internal momenta and the external momentum p is

enforced by

δext(p, k) ≡ δD
(
p−

∑

j

r(1,j)∑

r=1

k1j

)
. (B.15)

Just as in the one-loop case, any two-loop diagram will be written as the product of

a factor containing the weights in the vertices, the combinatorial and color factors, and of

a colorless diagram WI(x), which we will obtain from its Fourier transform WI(p). The

latter has the following structure

WI(p) =

∫ ∏

s∈EI

dks
(2π)D

YI(p, k) ZI(p, k) , (B.16)

where

YI(p, k) =
∏

s∈EI

1

k2
s

δint(k) δext(p, k) ,

ZI(p, k) =

∫ 6∏

i=3

d2θi d
2θ̄i DI(p, k, θ, θ̄) .

(B.17)

The factor YI contains the contribution of the propagators and the conditions for the

momentum conservation at each vertex of the I-th diagram, while the factor DI(p, k, θ, θ̄)

contains all θ and θ̄ terms coming from the vertices and from the superfield propagators.

Some of the Grassmann integrations yielding might be obvious, in which case we will

indicate only the non-trivial integrals and denote the integrand of ZI as D̃I .

Reducible diagrams. The reducible two-loop diagrams are represented in figure 5 and

figure 6. In the diagrams of figure 5 there are two independent one-loop corrections to a

propagator line. Hence the result follows simply from the one-loop computation presented

in the previous subsection, and has been given in (2.15) of the main text.

Let us consider then the diagrams of figure 6. The overall factors are simply the square

of those of (B.6), and thus we get

= g4
0(Nf − 2N)2W2(x) δab . (B.18)

The Fourier transform of W2(x) is given by the diagram

W2(p) =
1 23 4 5 6
k13

k43;1

k43;2

k65;1

k65;2

k45 k62
. (B.19)

According to the conventions described earlier, the labeling of the momenta is determined

by that of the vertices. In the following, therefore, in drawing momentum space diagrams
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we will only exhibit the labeling of the vertices. This diagram can be expressed in the

form (B.16), with

Z2(p, k) =

∫
d2θ̄3 d

2θ4 d
2θ̄5 d

2θ6 D̃2 , (B.20)

where
D̃2 = exp

(
2θ4(k43;1 + k43;2)θ̄3 + 2θ6(k65;1 + k65;2)θ̄5 + 2θ4k45θ̄5

)

= exp
(
−2θ4p θ̄3 − 2θ6p θ̄5 + 2θ4p θ̄5

)
.

(B.21)

In the second step we used the momentum conservation δ-functions that are present in the

factor Y defined in (B.16). Performing the Grassmann integrals, one finds Z2(p, k) = p4.

This factor cancels the two “external” propagators in Y2 and the integral over internal

momenta can be represented in the graphical notation of appendix A as follows:

W2(p) = . (B.22)

Taking the Fourier transform of this expression via (A.26b) and inserting it into (B.18),

we finally find

= g4
0(2N −Nf )2

[
(πx2)ε Γ(1− ε)
(4π)2 ε(1− 2ε)

]2

∆(x) δab +O(ε)

= v2
2,1 ∆(x) δab +O(ε) , (B.23)

in agreement with the formula (2.16) in the main text.

Irreducible diagrams: the v2,2 part. Let us now consider the irreducible two-loop

corrections to the scalar propagator, namely the diagrams represented in figure 8. We start

from

W ab
3 (x) ≡

a

x 0

b

=
1

2
(
√

2g0)2(2g0)2
(
Nf trT aT cT bT c − tr adjT

aT cT bT c
)
W3(x)

= −2g4
0

(
Nf

2N
+N2

)
W3(x) δab .

(B.24)

In momentum space, we have to compute

W3(p) = 1 23 4

5

6

(B.25)

which has the general form (B.16). The θ-factors present in the two chiral vertices saturate

the integrations over θ3 and θ̄4, while those in the gluon propagator set θ6 and θ̄6 equal to
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θ5 and θ̄5 respectively. The remaining Grassmann integrations are

Z3(p, k) =

∫
d2θ̄3 d

2θ4 d
2θ5 d

2θ̄5 D̃3 (B.26)

with

D̃3 = exp
(
−θ5(k53 + k63 + k45 + k46) θ̄5 + 2θ5(k53 + k63)θ̄3 + 2θ4(k45 + k46) θ̄5

)

= exp
(
2θ5p θ̄5 − 2θ5p θ̄3 − 2θ4p θ̄5

)
, (B.27)

where in the second step we used momentum conservation. Performing the θ-integrals,

we get Z3(p, k) = p4, which cancels the two “external” propagators in Y3; the remaining

integral over internal momenta can be represented in the graphical notation of appendix A

as follows:

W3(p) =

2 2

. (B.28)

Taking the Fourier transform via (A.15), and inserting the result into (B.24), we obtain

W ab
3 (x) = −

(
g2

0

8π2

)2

3 ζ(3)

(
Nf

2N
+N2

)
(πx2)2ε ∆(x) δab + · · · (B.29)

Let us now consider the diagram

W ab
4 (x) ≡ a

x 0

b

= 4× 1

2
(
√

2g0)2(2g0)2
(
Nf trT aT dT c − tr adjT

aT dT c
)

(T c)dbW4(x) .

(B.30)

Using the relations

trT aT dT c =
1

4

(
dadc + i fadc

)
, tr adjT

aT dT c = i
N

2
fadc (B.31)

we get
W ab

4 (x) = 4g4
0

(
Nf

(
dadc + i fadc

)
− 2N ifadc

)
i f cdbW4(x)

= −4g4
0 N(2N −Nf )W4(x) δab ,

(B.32)

where in the second step we took advantage of the identities

dadc f cdb = 0 , fadc f cdb = −tr adjT
aT b = −N δab . (B.33)

In momentum space, we have to compute

W4(p) = 31 24

5

6
(B.34)
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which has the general form (B.16). Again, the θ-factors of the vertices saturate the inte-

grations over θ3 and θ̄4, while the gluon propagator sets θ6 and θ̄6 equal to θ5 and θ̄5. The

remaining Grassmann integrations are as in (B.26), but now with

D̃4 = exp
(
−θ5(k53 + k45 + k46 + k62) θ̄5 + 2θ5k53 θ̄3 + 2θ4(k45 + k46) θ̄5 + 2θ4k43 θ̄3

)

= exp
(
−2θ5p θ̄5 − 2θ5k53 θ̄53 − 2θ4k43 θ̄53

)
(B.35)

where in the second step we used momentum conservation. The Grassmann integrations

yield Z4(p, k) = p2 k2
43. This factor cancels one external and one internal propagator in Y4

and we remain with

W4(p) =
1

p2
. (B.36)

Thus, the momentum space contribution corresponding to (B.32) is

Wab
4 (p) = −4g4

0 N(2N −Nf )
1

p2
δab . (B.37)

We now consider the diagram

W ab
5 (x) ≡ a

x 0

b

= −1

2
(
√

2g0)2(2g0)2
(
T aT b

)cd (
Nf trT cT d − tr adjT

cT d
)
W5(x)

= 2g4
0 N(2N −Nf )W5(x) δab .

(B.38)

In momentum space, we have to compute

W5(p) =
3

1 2
4

5 6
(B.39)

which again has the form (B.16) with

D̃5 = exp
(
−2θ5(p+ k53) θ̄5 + 2θ5k53 θ̄3 − 2θ4k53 θ̄3 + 2θ4k53 θ̄5

)

= exp
(
−2θ5p θ̄5 + 2θ5k53 θ̄35 − 2θ4k53 θ̄35

)
.

(B.40)

The Grassmann integration leads to Z5(p, k) = p2 k2
53, which cancels one external and one

internal propagator in Y5. We then remain with

W5(p) =
1

p2
. (B.41)
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Using this in (B.38), we find that the total diagram in momentum space is given by

Wab
5 (p) = 2g4

0 N(2N −Nf )
1

p2
δab . (B.42)

Finally, we consider the diagram

W ab
6 (x) ≡

a

x 0

b

= 2×
(
− 1

2

)2

(2g0)4
(
T aT b

)cd (
Nf trT cT d − tr adjT

cT d
)
W6(x)

= −4g2
0 N(2N −Nf )W6(x) δab .

(B.43)

In momentum space, we have to compute

W6(p) =

31 24

5 6
(B.44)

which, once again, is of the form (B.16) with

D̃6 = exp
(
−θ3(p+ k56 + k65 + k34) θ̄3 − θ4(p+ k56 + k65 + k34) θ̄4

+2θ3(k34 + k56) θ̄4 + 2θ4k65 θ̄3

)

= exp
(
−2θ3(k34 + k56) θ̄3 + 2θ34(k34 + k56) θ̄4 + 2θ4k65 θ̄3

)
,

(B.45)

having used momentum conservation in the second step. The Grassmann integral we have

to compute in this case is

Z6(p, k) =

∫
d2θ3 d

2θ̄2 d
2θ4 d

2θ̄4 D̃6 . (B.46)

Integrating over θ̄4 produces a factor of (k34 + k56)2 θ2
34 which sets θ4 = θ3, so that in the

end we remain with

Z6(p, k) = (k34 + k56)2

∫
d2θ3 d

2θ̄3 exp
(
−2θ3p θ̄3

)
= (k34 + k56)2 p2 ∼ 2 (k34 · k56) p2 .

(B.47)

The last step follows from the fact that when we integrate this expression over momenta,

both the k2
34 and the k2

56 terms, canceling the corresponding propagator, give rise to tadpole-

like integrals, which vanish in dimensional regularization. The symmetry of the diagram

under k56 ↔ −k65 allows us to rewrite the above result as

Z6(p, k) =
(
k34 · (k56 − k65)

)
p2 = (k34 · k35) p2 =

1

2
(p2 − k2

34 − k2
35) p2 ∼ 1

2
(p2 − k2

35) p2 ,

(B.48)
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where again we discarded the tadpole originating from k2
34. The first term cancels the two

external propagators of Y6, while the second term cancels one external and one internal

propagator. Using the graphical notation of appendix A, we can write

W6(p) =
1

2

[
− 1

p2

]
, (B.49)

so that, from (B.43) we see that the total diagram in momentum space is

Wab
6 (p) = −2g4

0 N(2N −Nf )

[
− 1

p2

]
δab . (B.50)

Summing the three diagrams (B.37), (B.42) and (B.50), a simplification takes place

and we are left with

6∑

I=4

Wab
I (p) = −2g4

0 N(2N −Nf ) δab . (B.51)

Taking the Fourier transform via (A.25d), we then have

6∑

I=4

W ab
I (x) =

(
g2

0

8π2

)2

N(2N −Nf )
Γ2(1− ε)

4ε2(1− 2ε)(1 + ε)
(πx2)2ε ∆(x) δab . (B.52)

If we include also the W ab
3 (x) diagram given in (B.29), we obtain the two-loop irreducible

corrections to the propagator:

6∑

I=3

W ab
I (x) ≡ v2,2 ∆(x) δab (B.53)

with

v2,2 = −
(
g2

0

8π2

)2 [
3 ζ(3)

(
Nf

2N
+N2

)
−N(2N −Nf )

Γ2(1− ε)
4ε2(1− 2ε)(1 + ε)

]
(πx2)2ε , (B.54)

as reported in the formula (2.18) of the main text.

Irreducible diagrams: the v4,2 part. We now evaluate the irreducible two-loop di-

agrams that give rise to the contribution (c) in figure 1. We start from the diagrams

represented in figure 9. The first of these is

W a1a2b1b2
7 (x)≡

a1

x 0

b1

a2 b2

x 0

(B.55)

= 2×
(
− 1

2

)
(
√

2g0)2(2g0)2
(
Nf trT cT a2T b2−tradjT

cT a2T b2
)

(T c)a1b1W7(x) .
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Using the relations (B.31), we find

W a1a2b1b2
7 (x) = −2g4

0

(
i f ca2b2(Nf − 2N) +Nf d

ca2b2
)(
− i f ca1b1

)
W7(x) . (B.56)

Defining the tensor (see (2.21))

C
(A) a1a2b1b2
4 = − 1

N
f c a1b1 f c a2b2 , (B.57)

we can write

W a1a2b1b2
7 (x) = −2g4

0

(
N(2N −Nf )C

(A)a1a2b1b2
4 + iNf d

a2b2c fa1b1c
)
W7(x) . (B.58)

Note that the term proportional to da2b2cfa1b1c is actually anti-symmetric in (a1, a2) and

in (b1, b2), and thus it vanishes when we insert this sub-diagram in a chiral/anti-chiral

correlator. Therefore in the following we discard this term.

In momentum space, we have to compute

W7(p) =

3

1 2

4

5

6

1 2

(B.59)

which has the canonical form (B.16). In this case we have

D̃7 = exp
(
−θ6(k63 + k46 + k15 + k52) θ̄6 + 2θ6k63 θ̄3 + 2θ4k46 θ̄6 + 2θ4k43 θ̄3

)

= exp
(
−2θ6(k46 + k15) θ̄6 + 2θ6k63 θ̄3 + 2θ4k46 θ̄6 + 2θ4k43 θ̄3

)
,

(B.60)

where in the second step we used momentum conservation. To perform the Grassmann

integral

Z7(p, k) =

∫
d2θ̄3 d

2θ4 d
2θ6 d

2θ̄6 D̃7 , (B.61)

we use the formula
∫
d2θi d

2θ̄j d
2θk d

2θ̄l e2θiAθ̄j+2θiBθ̄l+2θkCθ̄l+2θkDθ̄j = A2C2 +B2D2 − tr
(
ADCB

)
(B.62)

where

tr
(
ADCB

)
= tr

(
σµ σ̄ν σλ σ̄ρ

)
AµDν CλBρ

= 2A·D C ·B − 2A·C D ·B + 2A·B D ·C − εµνλρAµDν CλBρ .
(B.63)

In this way we obtain

Z7(p, k) = (k46 + k15)2 k2
43 + k2

63 k
2
46 + tr

(
(k46 + k15) k46 k43 k63

)

= (k46 + k15)2 k2
43 + 2

(
(k46 + k15) · k46

)
(k43 · k63) (B.64)

− 2
(
(k46 + k15) · k43

)
(k46 · k63) + 2

(
(k46 + k15) · k63

)
(k43 · k46) ,
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where we have discarded a term proportional to the anti-symmetric ε-tensor coming from

the trace of four Pauli matrices given in (B.63), that will not contribute to the correlator

for symmetry reasons. Using momentum conservation, after some algebra the polynomial

Z7(p, k) can be rewritten as

(p · k43) (k2
56 − k2

13 − k2
42)− p2

2
(k2

13 + k2
42)

+
1

2
(k2

15k
2
43 − k2

13k
2
43) +

1

2
(k2

52k
2
43 − k2

42k
2
43) +

1

2
(k2

13k
2
46 − k2

15k
2
46) +

1

2
(k2

42k
2
63 − k2

52k
2
63)

+
p2

2
(k2

63 + k2
46) +

1

2
k2

52k
2
13 +

1

2
k2

15k
2
42 . (B.65)

This polynomial has to be multiplied by the factor Y7 containing all propagators and then

integrated over the momenta. It is not difficult to show that the terms in the first line,

proportional to p ·k43 and to p2k2
13 or p2k2

42, yield contributions that vanish for ε→ 0 after

Fourier transform. The terms in the second line in each brackets cancel each other owing

to the symmetries of the diagram. The remaining terms in the third line of (B.65) give a

non-vanishing contributions. Thus, we can effectively use

Z7(p, k) =
p2

2
(k2

63 + k2
46) +

1

2
k2

52k
2
13 +

1

2
k2

15k
2
42 . (B.66)

All these terms lead to cancellations of some of the propagators of Y7 and the result can

be written in the graphical notation of appendix A. Altogether we find,

W7(p) = p2 +
2 2

= 4
2 2

+ · · · (B.67)

where the last step follows from (A.20). Using this result, we find that the momentum

space expression corresponding to W a1a2b1b2
7 (x) given in (B.58) is

Wa1a2b1b2
7 (p) = −8g4

0 N(2N −Nf )
2 2

C
(A)a1a2b1b2
4 + · · · (B.68)

where the dots stand for terms that do not contribute in the correlators due to their colour

factors or that vanish for ε→ 0.

The second diagram we have to consider is

W a1a2b1b2
8 (x) ≡

a1

x 0

b1

a2 b2

x 0

= 2×
(
− 1

2

)
(2g0)2 g2

0 (Nf − 2N) (T c)a1b1(T c)a2b2 W8(x)

= 4g2
0 N(2N −Nf )C

(A)a1a2b1b2
4 W8(x) .

(B.69)
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In momentum space, we must compute

W8(p) =

51 2

6
3 4

1 2

(B.70)

which again is of the form (B.16). In this case we have

D̃ = exp
(
−θ6 (k15 + k16 + k52 + k63) θ̄6 + 2θ6 k63 θ̄3 + 2θ4 k63 θ̄3

)

= exp
(
−2θ6 p θ̄6 + 2θ6 k63 θ̄3 + 2θ4 k63 θ̄3

)
,

(B.71)

while the Grassmann integration yields Z8(p, k) = p2 k2
63. Inserting this into the momentum

integrals, we remain with

W8(p) = p2 = 3
2 2

+ · · · (B.72)

where the last step follows from (A.20). Using this result, we find that the momentum

space expression corresponding to W a1a2b1b2
8 (x) given in (B.69) is

Wa1a2b1b2
8 (p) = 12g4

0 N(2N −Nf )
2 2

C
(A)a1a2b1b2
4 + · · · (B.73)

where the dots stand for terms that vanish for ε→ 0.

The third diagram we need to consider is

W a1a2b1b2
9 (x) ≡

a1

x 0

b1

a2 b2

x 0

= 2×
(
− 1

2

)2

(2g0)2 g2
0 (Nf − 2N)(T c)a1b1(T c)a2b2 W9(x)

= −2g4
0 N(2N −Nf )C

(A)a1a2b1b2
4 W9(x) .

In momentum space, we have to compute

W9(p) =

5

1 2

6

3

41 2

(B.74)

– 48 –



J
H
E
P
0
5
(
2
0
1
9
)
1
9
9

which has again the form (B.16) with

D̃9 = exp
(
−θ3 (k13 + k32 + k56 + k65) θ̄3 − θ4 (k14 + k42 + k56 + k65) θ̄4

+ 2θ3 k56 θ̄4 + 2θ4 k65 θ̄3

)

= exp
(
−2θ3 (k13 + k65) θ̄3 − 2θ4 (k14 + k56) θ̄4 + 2θ3 k56 θ̄4 + 2θ4 k65 θ̄3

)
.

(B.75)

The Grassmann integration is carried out using (B.62) and gives

Z9(p, k) = (k13 + k65)2(k14 + k56)2 + k2
56k

2
65 − tr ((k13 + k65)k65(k14 + k56)k56) . (B.76)

We expand the trace according to (B.63), and take into account the part proportional to

the ε-tensor does not contribute. The terms proportional to k2
56 and/or to k2

65, as well as

the term k2
13k

2
14, are tadpole-like and vanish in dimensional regularization, and thus we

remain with

Z9(p, k) = 2k2
14(k65 · k13) + 2k2

13(k56 · k14)− 2(k13 · k65)(k14 · k56)

+ 2(k13 · k56)(k14 · k65) + 2(k13 · k14)(k56 · k65) .
(B.77)

The diagram is symmetric under the exchange k56 ↔ k65. Symmetrizing Z9(p, k) with

respect to this exchange, exploiting momentum conservation and discarding tadpole-like

terms proportional to k2
56, k2

65 or k2
13k

2
14 we can rewrite (B.77) as

Z9(p, k) = −k2
14(k35 · k13) + k2

13(k64 · k14)− k2
64(k13 · k14)

=
1

2
k2

14 k
2
32 +

1

2
k2

13 k
2
42 −

1

2
p2 k2

64 .
(B.78)

The first two terms in the last expression give the same result and cancel two internal

propagators, while the last term cancels one external and one internal propagator of Y9.

In the end, adopting the graphical notation of appendix A, we have

W9(p) = − 1

2
p2

2 2

= − 3

2

2 2
+ · · · (B.79)

where the second step follows from (A.23). Inserting this result in (B.3), we see that the

momentum space expression corresponding to W a1a2b1b2
9 (x) is

Wa1a2b1b2
9 (p) = g4

0 N(2N −Nf )

[
− 2 + 3

2 2
]
C

(A)a1a2b1b2
4 + · · · . (B.80)

Summing the three diagrams (B.68), (B.73) and (B.80), we find

9∑

I=7

Wa1a2b1b2
I (p) = g4

0 N(2N −Nf )

[
7

2 2− 2

]
C

(A)a1a2b1b2
4 + · · · . (B.81)

Performing the Fourier transform using (A.15) and (A.24), we finally obtain

9∑

I=7

W a1a2b1b2
I (x) = v

(A)
4,2 ∆(x)2C

(A) a1a2b1b2
4 + · · · (B.82)
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with

v
(A)
4,2 =

(
g2

0

8π2

)2

N(2N −Nf )

[
21

2
ζ(3) +

Γ2(1− ε)
4ε2(1− 2ε)(1 + ε)

]
(πx2)2ε + . . . (B.83)

in agreement with the formula (2.20) of the main text.

The last two-loop diagram we have to compute is

W a1a2b1b2
10 (x) ≡

a1

x 0

b1

b2 a2

0 x

(B.84)

=
2

2!2
(
√

2g0)4
(
Nf trT a1T b1T a2T b2 − tr adjT

a1T b1T a2T b2
)
W10(x) .

This diagram was already computed in [15] in configuration space. For completeness we

report here its evaluation in momentum space. Using the relation

tr adjT
a1T b1T a2T b2 = 2N trT a1T b1T a2T b2 +

1

2

(
δa1b1δa2b2 + δa1a2δb1b2 + δa1b2δa2b1

)

+
iN

4

(
fa1b1c da2b2c + fa2b2c da1b1c

)
, (B.85)

and introducing the tensor (see (2.24))

C
(B) a1a2b1b2
4 = −(2N −Nf ) trT a1T b1T a2T b2 − 1

2

(
δa1b1δa2b2 + δa1a2δb1b2 + δa1b2δa2b1

)
,

(B.86)

we can rewrite (B.84) as

W a1a2b1b2
10 (x) = 2g4

0

[
C

(B) a1a2b1b2
4 − iN

4

(
fa1b1c da2b2c + fa2b2c da1b1c

)]
W10(x) . (B.87)

As noted after (B.58), the last two terms in the square brackets are anti-symmetric in

(a1, a2) and (b1, b2). Therefore they vanish when inserted in a chiral/anti-chiral two-point

function and can be discarded. The momentum space diagram corresponding to W10(x) is

W10(p) =

31 24

562 1

(B.88)

which has the form (B.16) with

D̃10 = exp
(
2θ4 k43 θ̄3 + 2θ4 k45 θ̄5 + 2θ6 k65 θ̄5 + 2θ6 k63 θ̄3

)
. (B.89)
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The corresponding Grassmann integration is easily carried out using (B.62):

Z10(p, k) =

∫
d2θ̄3 d

2θ4 d
2θ̄5 d

2θ6 D̃10 = k2
43 k

2
65 + k2

45 k
2
63 (B.90)

− 2 (k43 · k63) (k45 · k65) + 2 (k43 · k65) (k45 · k63)− 2 (k43 · k45) (k63 · k65) .

Here we have neglected a term proportional to the to the anti-symmetric ε-tensor coming

from the trace of four Pauli matrices given in (B.63) which does not contribute for symmetry

reasons. Recalling that p = k13 + k15 = k42 + k62, we can exploit momentum conservation

and discard terms involving p2 and p · k43, which give contributions that vanish for ε→ 0

after Fourier transform. After some algebra we are left with

Z10(p, k) = k2
13 k

2
62 . (B.91)

When inserted in the momentum integral Y10, this cancels two propagators so that

W10(p) =
2 2

. (B.92)

Going back to configuration space using (A.17) and inserting the result in (B.87), up to

terms that do not contribute for their color structure or that vanish in the limit ε→ 0, we

get

W a1a2b1b2
10 (x) = v

(B)
4,2 ∆(x)2C

(B) a1a2b1b2
4 + · · · (B.93)

with

v
(B)
4,2 =

(
g2

0

8π2

)2

3 ζ(3)(πx2)2ε + . . . (B.94)

in agreement with formula (2.23) of the main text and with the findings of [15].

This completes the calculation of the two-loop diagrams contributing to the chiral/anti-

chiral correlators.

C Feynman integral on the sphere

In this appendix, we evaluate the integral I(x1, x2) that appears in the expression for the

one-loop correlation function on the sphere, given in (5.14) and (5.16).

For convenience we first rewrite here the definition (5.17) of the integral I(x1, x2),

namely

I(x1, x2) =

∫
dDx3 d

2θ̄3 d
Dx4 d

2θ4 ∆(x13)
(
e−2iθ4∂x43 θ̄3∆(x43)

)2
∆(x42)

[
κ(x3)κ(x4)

]−ε
,

(C.1)

where ∆(x) is the scalar propagator in D−dimension and κ(x) is the scaling factor (5.5).

We then observe that

e−2iθ4∂x43 θ̄3∆(x43) = ∆(x43)− 2iθ4∂x43 θ̄3 ∆(x43)− θ2
4 θ̄

2
3 δ

(D)(x43) , (C.2)
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where the last term follows from �x ∆(x) = −δ(D)(x). Using this relation and performing

the Grassmann integrations over θ̄3 and θ4, we get
∫
d2θ̄3 d

2θ4

(
e−2iθ4∂x43 θ̄3∆(x43)

)2
= 2 ∂x43∆(x43) · ∂x43∆(x43)− 2∆(x43) δ(D)(x43) . (C.3)

Inserting this expression in the integral (C.1), we see that the term proportional to the

δ-function yields a tadpole-like contribution, which vanishes in dimensional regularization

and thus can be discarded. We then remain with

I(x1, x2) = 2

∫
dDx3 d

Dx4 ∆(x13) ∂x43∆(x43) · ∂x43∆(x43) ∆(x42)
[
κ(x3)κ(x4)

]−ε

= 8

(
Γ(1− ε)
4π2−ε

)4

(1− ε)2

∫
dDx3 d

Dx4

[
κ(x3)κ(x4)

]−ε

(x2
13)1−ε (x2

43)3−2ε (x2
42)1−ε ,

(C.4)

where in the second step we used the explicit expression (2.7) of the scalar propagator.

To simplify the calculation, without any loss of generality, we set R = 1 and choose

the point η2 to be at the north pole on the sphere, namely η2 = (1, 0, . . . , 0). According to

the stereographic projection (5.2), this corresponds to sending x2 →∞. We therefore find

[
κ(x1)κ(x2)

]1−ε
I(x1, x2)

x2→∞≈ 22+3ε

(
Γ(1− ε)
4π2−ε

)2(x2
1 + 1

2

)1−ε
Y (x2

1) , (C.5)

where

Y (x2
1) =

(
Γ(2− ε)
4π2−ε

)2 ∫
dDx3 d

Dx4
1

(x2
13)1−ε (x2

43)3−2ε (x2
3 + 1)ε (x2

4 + 1)ε
. (C.6)

It is not difficult to realize that this function is regular for x2
1 → 0 and satisfies the following

differential equation

�x1Y (x2
1) = −Γ(2− ε)

4π2−ε (1− ε) (x2
1 + 1)−ε

∫
dDx4

1

(x2
41)3−2ε (x2

4 + 1)ε
. (C.7)

We rewrite the right hand side of (C.7) using the Schwinger parametrization

1

(x2 + a2)α
=

1

Γ(α)

∫ ∞

0
ds sα−1 e−s(x

2+a2) , (C.8)

and, after computing the resulting Gaussian integral over x4, we obtain

�x1Y (x2
1) = − Γ(2− ε)

8Γ(2− 2ε) Γ(ε)
(x2

1 + 1)−ε
∫ ∞

0
ds1

∫ ∞

0
ds2

s−1+ε
1 s2−2ε

2

(s1 + s2)2−ε e
−s1

s1+s2(x2
1+1)

s1+s2

= − Γ(2− ε)
8 Γ(2− 2ε) Γ(ε)

(x2
1 + 1)−ε

∫ ∞

0
dt t−2+ε (1 + t)−1+ε 1

t+ x2
1 + 1

, (C.9)

where the last step follows from changing the integration variable according to s1 → t s2 and

performing the resulting integral over s2. With the further change of integration variable

t→ 1−y
y , we can rewrite the t-integral as

∫ 1

0
dy y2−2ε (1− y)−2+ε 1

1 + x2
1 y

=
Γ(3− 2ε) Γ(ε− 1)

Γ(2− ε) 2F1(1, 3− 2ε, 2− ε;−x2
1) . (C.10)
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Substituting this into (C.9), in the end we find

�x1Y (x2
1) =

1

4
(x2

1 + 1)−ε 2F1(1, 3− 2ε, 2− ε;−x2
1) =

x2
1 + 2

8(x2
1 + 1)2

+O(ε) . (C.11)

The general solution to this differential equation which is regular for x2
1 → 0 is

Y (x2
1) =

1

32

(
c0 + ln(x2

1 + 1) +O(ε)
)

(C.12)

with c0 an arbitrary constant. To fix it, we examine Y (x2
1) for x1 →∞, corresponding to

the short-distance limit on the sphere in which also η1 is sent to the north pole. In this

limit the leading contribution to (C.6) comes from large x2
3 and x2

4, allowing us to replace

the scaling factors (1 + x2
i )
ε with (x2

i )
ε. This leads to

Y (x2
1)

x2
1→∞'

(
Γ(1− ε)
4π2−ε

)2

(1− ε)2

∫
d4−2εx3

1

(x2
13)1−ε(x2

3)ε

∫
d4−2εx4

1

(x2
34)3−2ε(x2

4)ε

' − (x2
1)−ε

32ε (1− 2ε)
' 1

32

(
− 1

ε (1− 2ε)
+ lnx2

1 +O(ε)

)
. (C.13)

Comparing with (C.12) in the limit x2
1 →∞, we deduce that

c0 = − 1

ε (1− 2ε)
. (C.14)

Therefore, we can write

Y (x2
1) = − (x2

1 + 1)−ε

32ε (1− 2ε)
+O(ε) . (C.15)

The x2-dependence can be easily restored by noticing that η2
12 ' 4/(x2

1 + 1) at large

x2; this means that at finite x2, the variable x2
1 must be replaced by

r2
12 =

4

η2
12

− 1 (C.16)

and the function Y (x2
1) by

Y (r2
12) = − 2−2ε (η2

12)ε

32ε (1− 2ε)
+O(ε) . (C.17)

We now use this information in (C.5) and find

W1S(η12) ≡
[
κ(x1)κ(x2)

]1−ε
I(x1, x2)

= 23+2ε Γ(1− ε)
4π2−ε ∆S(η12)Y (r2

12)

=
(πη2

12)ε Γ(−ε)
(4π)2 (1− 2ε)

∆S(η12) +O(ε) ,

(C.18)

where we used (5.4) in the second line, and (C.17) in the final step. This is the for-

mula (5.18) of the main text. We have also computed the O(ε) terms, finding

W1S(η12) =
(πη2

12)ε Γ(−ε)
(4π)2 (1− 2ε)

∆S(η12)
(

1− ε2 φ(r2
12) +O(ε3)

)
(C.19)

– 53 –



J
H
E
P
0
5
(
2
0
1
9
)
1
9
9

with

φ(x2) = Li2(−x2) +
1

2
ln2(x2 + 1) +

ln(x2 + 1)

x2
+
π2

6
. (C.20)

It is straightforward to verify that φ(x2) vanishes at large x2 and approaches a finite value

for x2 → 0.
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