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SUMMARY

Reinforcement learning (RL) theories posit that dopa-
minergic signals are integrated within the striatum to
associate choices with outcomes. Often overlooked
is that the amygdala also receives dopaminergic
input and is involved in Pavlovian processes that in-
fluence choice behavior. To determine the relative
contributions of the ventral striatum (VS) and amyg-
dala to appetitive RL, we tested rhesus macaques
with VS or amygdala lesions on deterministic and
stochastic versions of a two-arm bandit reversal
learning task. When learning was characterized
with an RL model relative to controls, amygdala le-
sions caused general decreases in learning from
positive feedback and choice consistency. By com-
parison, VS lesions only affected learning in the sto-
chastic task. Moreover, the VS lesions hastened the
monkeys’ choice reaction times, which emphasized
a speed-accuracy trade-off that accounted for errors
in deterministic learning. These results update stan-
dard accounts of RL by emphasizing distinct contri-
butions of the amygdala and VS to RL.
INTRODUCTION

Reinforcement learning (RL) refers to learning the value of states

in the environment and actions taken in those states. A common

assumption about RL is that dopamine neurons in the midbrain

signal reward prediction errors (RPEs; Schultz, 2015), which

drive plasticity in the striatum to facilitate learning (e.g., Collins

and Frank, 2014; Gurney et al., 2015; Houk et al., 1995). This

view is supported by evidence that RPEs are correlated with

ventral striatum (VS) blood-oxygen-level-dependent (BOLD) re-

sponses (e.g., O’Doherty et al., 2003, 2004; Rutledge et al.,

2010) and fluctuations in striatal dopamine levels (e.g., Day

et al., 2007; Hart et al., 2014). However, VS inactivation or lesions

do not impair instrumental learning or conditioned reinforcement

(Cardinal et al., 2002; Floresco, 2015; Stern and Passingham,

1996). This raises a long-standing question about the causal

role of the VS in RL. It also highlights a need to understand
Ne
how other parts of the mesolimbic dopamine system contribute

to RL.

The amygdala is often overlooked or assigned a modulatory

role in RL (Haber and Behrens, 2014). The amygdala, how-

ever, receives dopaminergic inputs (Haber and Fudge, 1997)

and is highly involved in Pavlovian learning of appetitive and

aversive associations (Baxter and Murray, 2002; Janak and

Tye, 2015; Moscarello and LeDoux, 2014). Although the

amygdala exerts Pavlovian control over operant behavior

(Cardinal et al., 2002; Robinson et al., 2014; Stuber et al.,

2011), it remains unclear whether it contributes directly to

choice behavior. There is evidence across species both in

favor of (Hampton et al., 2007; Rygula et al., 2015; Seymour

and Dolan, 2008) and against (Izquierdo et al., 2013; Izquierdo

and Murray, 2007; Jang et al., 2015) the amygdala playing a

role in RL during choice tasks.

To determine the causal roles of the amygdala and VS in RL,

the present study used computational modeling to quantify the

effect of targeted excitotoxic lesions of the amygdala or VS on

monkeys’ choice behavior in a two-arm bandit task. We show

that VS is necessary for learning stochastic reward associations

and that the amygdala contributes substantially to RL in both

stochastic and deterministic environments.

RESULTS

We tested rhesus macaques on a two-armed bandit reversal

learning task using deterministic or stochastic reward schedules

(Figure 1A). The subjects included four monkeys with bilateral

excitotoxic lesions of the amygdala (Figure 1B), three monkeys

with bilateral excitotoxic lesions of the VS (Figure 1C), and four

unoperated controls. Themonkeys were first tested on randomly

interleaved blocks following one of three probabilistic reward

schedules: 80%/20%, 70%/30%, and 60%/40%. Learning

was impaired in both lesion groups compared to controls. To

determine whether their deficits were specific to the stochastic

task, we next tested the monkeys on the same task using a

deterministic reward schedule (100%/0%). The task was carried

out in blocks of 80 trials. On each trial, a pair of visual cues were

displayed as choice options. One cue was associated with a

greater probability of reward delivery than the other. The mon-

keys were allowed to select one cue per trial by making a

saccade to the selected cue. By sampling the stimulus-reward

outcomes across trials, they could determine which of the two
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Figure 1. Two-Arm Bandit Task and Lesion Maps

(A) The task unfolded over a block of 80 trials. In each trial, the animals first fixated on a central point, followed by the presentation of two stimuli left and right of

fixation. The animals selected one of the stimuli bymaking a saccade to it and fixating on the chosen cue. In each block, one object was rewardedmore often than

the other according to the current schedule (100%/0%, 80%/20%, 70%/30%, or 60%/40%). Stimulus-reward mappings were reversed randomly between trials

30 and 50. A new stimulus pair was introduced at the start of each block, and multiple blocks were completed per session.

(B and C) Lesion extent mapped for animals with bilateral excitotoxic lesions of amygdala (B) or ventral striatum (C).
cues was more often rewarded. The stimulus-reward mappings

of the two options were reversed once per block on a randomly

chosen trial between trials 30 and 50. At the end of the block, two
506 Neuron 92, 505–517, October 19, 2016
new cues were introduced (signaling the start of a new block),

and the monkeys again had to discover by trial and error which

of the two options was more often rewarded.



Figure 2. Choice Behavior for the Lesion and Control Groups

(A andB) Fraction of times each group chose the cue with a higher initial value in the deterministic (A) and stochastic (B) tasks. Dark lines showmeans, and shaded

regions show ±1 SEM (computed across sessions). Dotted vertical lines show reversal point. Choice curves were smoothed with a moving average window of six

trials. Because the number of trials before and after acquisition varied across blocks, trial number was normalized to be between 0 and 1 for each phase and then

averaged.

(C) Overall fraction of correct choices for each group by reward schedule and learning phase (see Table S1).

(D) Logistic regression coefficients (symbols) predicting the monkeys’ current choice based on previous trials and outcomes. Two predictors were used to

indicate whether prior selection of each option was rewarded or unrewarded. Positive regression coefficients for either predictor indicate a greater likelihood of

choosing an option that resulted in reward or no reward. Lines indicate exponential fits of the estimated regression coefficients.
To assessmotivation, we quantified the percentage of aborted

trials per session due to a failure to acquire/hold central fixation

or a failure to make a choice-related saccade. The lesion (VS:

12.83%; amygdala: 12.78%) and control (11.16%) groups did

not differ in the percentage of trials aborted due to fixation errors

(F(2,204) = 1.77, p = 0.173). In addition, the lesion (VS: 0.31%;

amygdala: 0.26%) and control (0.01%) groups did not differ

in the percentage of trials aborted due to choice errors

(F(2,205) = 1.82, p = 0.165). We also computed how quickly

the monkeys acquired central fixation. Fixation reaction times

(RTs) were faster in the VS lesion group compared to the amyg-

dala (t(197) = 17.4, p < 0.001) or control (t(157) = 16.23, p < 0.001)

groups. Fixation RTs were similar in the amygdala and control

groups (t(204) =�1.15, p = 0.251; Table S1). Therefore, lesion ef-

fects on RL are not attributable to reduced motivation.

Choice Behavior
To visualize the monkeys’ choice behavior, we aligned the trials

in each block around the reversal point estimated by a Bayesian

change-point analysis (Figure 2; Supplemental Experimental

Procedures). In both the deterministic (Figure 2A) and stochastic

(Figure 2B) tasks, monkeys learned to select the better option

and to switch their choice behavior once they detected the con-

tingency reversal. To quantify lesion effects on choice behavior,

we computed the fraction of correct choices in the acquisition
and reversal phases (Figure 2C). Group performance differed in

the deterministic task when averaged across acquisition and

reversal (F(2,41) = 74.59, p < 0.001). The striatal lesion group per-

formedworse than the controls (t(19) =�7.79, p < 0.001), and the

monkeys with amygdala lesions performed worse than those

with striatal lesions (t(33) = �6.23, p < 0.001).

Choice accuracy also differed by group in the stochastic task

(Figure 2C; F(2,232) = 289.71, p < 0.001). Again, monkeys with

striatal lesions chose the correct option less often than controls

(t(145) = �13.77, p < 0.001) but more often than animals with

amygdala lesions (t(156) = 7.41, p < 0.001). The control group

also showed improved performance in the reversal phase

compared to the acquisition phase, whereas in the VS and

amygdala lesion groups, performance declined in the reversal

phase (group 3 phase, F(2,232) = 15.57, p < 0.001). Although

the reward schedule influenced performance (F(2,461) =

407.57, p < 0.001), controls showed greater linear improvement

relative to the VS (t(142) = 7.7, p < 0.001) or amygdala (t(160) =

11.48, p < 0.001; group 3 schedule, F(4,461) = 29.05, p <

0.001) lesion groups. Schedule-related performance increases

were equivalent in the two lesion groups (t(154) = 1.53, p =

0.131).

We also used a logistic regression model to quantify how pre-

vious trial choices and outcomes influenced the monkeys’

ongoing choice behavior (Figure 2D). A positive regression
Neuron 92, 505–517, October 19, 2016 507



Figure 3. Model Comparisons Indicated that Choice Behavior Was Best Fit by a Feedback-Dependent RL Model

(A and B) Bayesian information criterion (BIC) estimates for different models fit to each groups’ choice behavior in the deterministic (A) and stochastic (B) tasks

(see Table S2). Filled bars indicate the model with the lowest BIC estimate summed across sessions. Numbers within each bar represent percentage of sessions

in which BIC was lowest for that model.

(C) Feedback-dependent model predictions overlaid on choice behavior for each group and reward schedule.

(D) Scatterplots of trial-by-trial estimates of model predictions and monkeys’ choice behavior, averaged per session.
coefficient indicated that themonkeys chose the same rewarded

or unrewarded option that they chose on a past trial. In both

tasks, the monkeys’ current choices were influenced more by

past choices that were rewarded versus unrewarded. In the

deterministic (group 3 outcome, F(2,42) = 4.85, p = 0.009) and

stochastic (group 3 outcome, F(2,208) = 261.07, p < 0.001)

tasks, regression coefficients differed between the lesion and

control groups as a function of outcome. Across tasks, the

mean regression coefficient weighting rewarded outcomes

was larger in controls compared to the VS (deterministic:

t(19) = 7.12, p < 0.001; stochastic: t(143) = 13.96, p < 0.001) or

amygdala (deterministic: t(30) = 11.37, p < 0.001; stochastic:

t(163) = 18.67, p < 0.001) lesion groups. In the deterministic

task, the mean regression coefficient for unrewarded outcomes
508 Neuron 92, 505–517, October 19, 2016
did not differ between the lesion and control groups (F(2,42) =

3.09, p = 0.056). In the stochastic task, however, unrewarded

outcomeswereweighted less in controls compared to the amyg-

dala (t(164) = �10.6, p < 0.001) or VS (t(144) = �6.52, p < 0.001)

lesion groups.

Reinforcement Learning
Model Selection

We assessed whether an RL model best fit the monkeys’ choice

behavior compared to alternative models (Figure 3; Table S2). We

compared Bayesian Information Criterion (BIC) estimates for the

following four models: (1) a feedback-dependent RL model that

incorporated different learning rate parameters for positive and

negative outcomes, (2) a non-feedback-dependent RL model



Figure 4. Learning Rates and Choice Consistency

(A and B) Feedback-dependent learning rates for the lesion and control groups

when the choice behavior is fit with an RL model in the deterministic (A) and

stochastic (B) tasks.

(C and D) Inverse temperature values for the lesion and control groups in the

deterministic (C) and stochastic (D) tasks broken out by learning phase. Error

bars are ±1 SEM. See Table S3 for average parameter values.
(e.g., Rescorla-Wagner), (3) a win-stay/lose-shift model, and (4) a

Bayesian ideal observer model (Supplemental Experimental Pro-

cedures). BIC estimates were lowest overall when we fit the feed-

back-dependent RLmodel to each group’s choice behavior in the

deterministic (Figure 3A) and stochastic (Figure 3B) tasks. Overlay

of averaged model predictions and actual choice behavior

showed that this model accurately fit the monkeys’ choices (Fig-

ure 3C), which was also seen in scatterplots of predicted and

measured choice behavior (Figure 3D). Therefore, we proceeded

by comparing feedback-dependent RL model parameter fits for

the lesion and control groups.

Feedback-Dependent Learning

Wefirst analyzed how quickly themonkeys learned to update the

expected value of each choice option based on positive and

negative feedback. Positive and negative learning rates were fit

for choices that resulted in reward or no reward, respectively.

In the deterministic task (Figure 4A), positive and negative

learning rates did not differ (F(1,42) = 3.44, p = 0.071). In the sto-

chastic task (Figure 4B), learning was driven more by positive,

rather than negative, feedback (F(1,231) = 273.84, p < 0.001),

and mean learning rates were higher in the reversal phase

compared to the acquisition phase (F(1,234) = 45.16, p <

0.001). There were no effects of reward schedule on learning

rates in the stochastic task (p > 0.6 for all main effects and

interactions).

Next, we examined group differences in learning rates. In the

deterministic task, the groups differed in their mean learning
rate (F(2,42) = 12.93, p < 0.001; Figure 4A). Specifically, the

mean learning rate was reduced in monkeys with amygdala le-

sions compared to those with VS lesions (t(34) = �3.99, p <

0.001) or intact controls (t(30) = �4.23, p < 0.001). The mean

learning rate did not differ between the VS lesion and control

groups (t(19) = 0.85, p = 0.431). Thus, in a deterministic reward

environment, learning rates were only impaired in the monkeys

with amygdala lesions.

When we analyzed the learning rates in the stochastic task,

mean learning rates were lower in both the amygdala and VS

lesion groups (F(2,234) = 37.18, p < 0.001; Figure 4B). Learning

from positive feedback was reduced in the monkeys with amyg-

dala (t(165) = �8.64, p < 0.001) or VS (t(146) = �8.14, p < 0.001)

lesions compared to controls. Learning from negative feedback

was also reduced in the amygdala lesion group (t(166) = �3.42,

p < 0.001) relative to controls. Negative learning rates did not

differ between the VS lesion and control groups (t(146) = 2.4,

p = 0.116). To summarize, monkeys with amygdala lesions

showed deficits in feedback-dependent learning in both the sto-

chastic and deterministic tasks, whereas monkeys with VS le-

sions only showed learning deficits in the stochastic task relative

to controls.

Because the VS lesion group was more affected in the sto-

chastic task, we also examined how learning rates changed

across the two tasks. For the stochastic task, we averaged

learning rates across schedules and directly compared them to

learning rates in the deterministic task. Negative learning rates

were lower in the stochastic versus the deterministic task

(F(1,41) = 25.93, p < 0.001), and this effect was consistent in

the lesion and control groups (group 3 task, F(2,41) = 1.19, p =

0.314). However, there were clear task-related differences be-

tween the lesion and control groups in learning from positive

feedback (group 3 task, F(2,41) = 8.96, p < 0.001). For the VS

lesion (t(11) = �4.58, p < 0.001) and control (t(8) = �6.59, p <

0.001) groups, positive learning rates decreased in the stochas-

tic versus the deterministic task. This was not the case for the

amygdala lesion group, in which positive learning rates were

equivalent in the stochastic and deterministic tasks (t(22) =

0.43, p = 0.666). Thus, task effects were confined to learning

from positive feedback, supporting the differences found be-

tween the lesion and control groups in each task.

Choice Consistency

Wenext quantified choice consistency using the inverse temper-

ature parameter b from the RL model. This parameter quantified

how consistently the monkeys chose the higher-value option;

therefore, smaller inverse temperature values were indicative

of noisier choice behavior. For both the deterministic (F(1,42) =

11.32, p = 0.002) and stochastic (F(1,232) = 39.74, p < 0.001)

tasks, choice consistency was higher in the acquisition phase

compared to the reversal phase (Figures 4C and 4D).

In both the deterministic (F(2,42) = 11.16, p < 0.001) and sto-

chastic (F(2,228) = 39.74, p < 0.001) tasks, choice consistency

was reduced in the lesion groups relative to controls (Figures

4C and 4D). Compared to controls, monkeys with amygdala

lesions (deterministic: t(31) = �4.42, p < 0.001; stochastic:

t(155) = 14.28, p < 0.001) or VS lesions (deterministic: t(20) =

�2.62, p = 0.016; stochastic: t(143) = �6.7, p < 0.001) less

consistently chose the higher-value option. In the deterministic
Neuron 92, 505–517, October 19, 2016 509



Figure 5. Striatal Lesion Effects on Choice Reaction Times and Speed-Accuracy Trade-Off

(A and B) Upper plots with the ordinate oriented to the left illustrate how the chosen softmax probability varied as a function of choice RT in the deterministic (A)

and stochastic (B) tasks. Larger softmax probabilities indicate more consistent selection of higher-value option. Gaussian kernel regression was used to estimate

mean softmax probabilities as a function of RT (see Experimental Procedures). The lower plots with the ordinate oriented to the right show RT probability dis-

tributions for each group (20ms bins; see Table S1). Line thickness of the estimated softmax probability indicates relative density of the RT probability distribution

at that bin.

(C) Linear correlation coefficient between chosen softmax probabilities and RTs for each reward schedule and lesion group.
task, the lesion groups showed equivalent decreases in choice

consistency (t(33) = �1.82, p = 0.078), whereas in the stochastic

task, the amygdala lesion group was less consistent than the VS

lesion group (t(158) = �2.44, p = 0.016). Also, in the stochastic

task, the reward schedule modulated choice consistency only

in the control group (group 3 schedule, F(4,476) = 2.51, p =

0.041). In controls (schedule, F(2,155) = 5.09, p = 0.007), choice

consistency was higher in the 80%/20% schedule compared to

the 70%/30% (t(156) = 2.38, p = 0.018) or 60%/40% (t(156) =

3.03, p = 0.002) schedules but did not differ in the latter two

schedules.

When we examined how inverse temperature values changed

across the two tasks, we found that they were slightly higher

in the stochastic task compared to the deterministic task

(F(1,216) = 4.79, p = 0.031), and this effect was consistent in

the lesion and control groups (group 3 task, F(2,181) < 1, p =

0.723). Therefore, the monkeys with VS and amygdala lesions

exhibited noisier choice behavior in general.

Reaction Time Effects on Choice Consistency

Choice RTs differed between the lesion and control animals (Fig-

ure 5; Table S1). The monkeys with VS lesions were faster

compared to the monkeys with amygdala lesions or controls in

both the deterministic (F(2,42) = 84.81, p < 0.001) and the sto-

chastic (F(2,228) = 802.6, p < 0.001) tasks. Consistent with this

result, the choice RT distribution of the VS lesion group was

shifted left compared to the control (Kolmogorov-Smirnov [KS]

test deterministic: p < 0.001; stochastic: p < 0.001) or amygdala

lesion (deterministic: p < 0.001; stochastic: p < 0.001) groups.

Choice RTs did not differ between the amygdala lesion and con-

trol groups in either task (all p values > 0.14). In addition, RTs

did not differ by task (F(1,250) < 1, p = 0.797), and there were

no effects of reward schedule on choice RTs in any group.

The observation of faster choice RTs in the VS lesion group

suggests that their less consistent selection of high-value op-

tions was related to a speed-accuracy trade-off (i.e., faster re-
510 Neuron 92, 505–517, October 19, 2016
sponses led to less accurate choices). To visualize how choice

RTs were related to choice accuracy, we extracted the softmax

probability for each of the monkeys’ choices from the RL model.

These estimates indicated the probability that monkeys’ choices

would be rewarded on a given trial. We then used Gaussian

kernel regression to determine the function relating RTs to

choice probabilities for each block, sampled the function in

equally spaced 20 ms RT bins, and averaged the function

estimates across blocks. This was done for both the determin-

istic and stochastic tasks (Figures 5A and 5B). In each task,

it was clear that choice accuracy increased along with RT

from about 100 ms up to approximately 225 ms, after which it

plateaued before decreasing as RT further increased. This rela-

tionship between RTs and choice probabilities was consistent

in all three groups, although there were vertical shifts in the

curves.

To quantify the relationship between RTs and choice proba-

bilities, we computed the correlation coefficient for each block

of trials and averaged them by reward schedule and session

(Figure 5C). The correlation magnitude increased along with

the reward schedule (F(2,457) = 4.16, p = 0.016). The lesion

and control groups differed in the magnitude and sign of the

correlation coefficient relating choice RT and accuracy. In the

deterministic task (group, F(2,42) = 5.87, p = 0.006), direct

comparison of correlation coefficients by group confirmed a

larger, positive correlation in the VS lesion group compared

to the amygdala lesion (t(37) = 2.46, p = 0.023) or control

(t(20) = 3.19, p = 0.005) groups. Similarly, in the stochastic

task, collapsed across schedules, there was a larger, positive

correlation in the VS lesion group compared to the amygdala

(t(153) = 7.46, p < 0.001) or control (t(143) = 3.12, p < 0.001)

groups.

The VS lesion group’s choice RTs were faster overall and

showed a speed-accuracy trade-off. Their less consistent selec-

tion of high-value options might therefore be due to the VS lesion



Figure 6. Faster RTs in the VS Lesion Group Modulated Choice Consistency in the Deterministic Task
(A) Fraction of times the monkeys in the lesion and control groups chose the cue with a higher initial value in the deterministic task when RT distributions were

matched. RTs were matched pairwise between each of the animals in the lesion and control groups. Specifically, the data labeled Striatum and Controls:Striatum

plot the behavioral performancewhen theRT distributions of these two groupswerematched and likewise for the data labeled Amygdala andControls:Amygdala.

(B) Fraction of times the animals in each group chose the cue with a higher initial value in the 80%/20% blocks of the stochastic task when RT distributions were

matched as described in (A).

(C) Fraction of correct choices for the lesion and control groups broken out by reward schedule when group RT distributions were matched. Shaded regions and

error bars indicate ±1 SEM.
group acting impulsively—especially in the deterministic task,

where striatal lesions had a minor effect on choice consistency

relative to controls. To test this hypothesis, we matched the

choice RT distributions of the lesion groups and controls pair-

wise and computed the fraction of times the monkeys in each

group chose the higher-value option in each task.

When the choice RT distributions of the VS and control groups

were matched in the deterministic task (Figures 6A and 6C), the

fraction of correct choices was equivalent in the VS lesion and

control groups (t(19) = 1.294, p = 0.211). This indicates that the

effect of VS lesions on choice consistency in the deterministic

task was limited to trials in which the animals responded too

quickly. In the stochastic task, however, equating group choice

RT distributions did not mitigate previously identified differences

in choice accuracy between the VS lesion group and controls

(F(1,141) = 36.6, p < 0.001; Figures 6B and 6C). For example,

in the 80%/20% schedule, choice performance was consistently

lower in the VS lesion group compared to controls after matching

the choice RT distributions (t(143) =�5.73, p < 0.001; Figure 6B).

The amygdala lesion and control groups did not differ in their

choice RT distributions. Thus, we did not expect matching these

groups’ choice RTs would eliminate differences in choice con-

sistency. Even after choice RTs were matched, monkeys with

amygdala lesions showed decreased choice consistency rela-

tive to controls in the deterministic (t(30) = �5.88, p < 0.001)

and stochastic (F(1,149) = 196.6, p < 0.001) tasks.

Pearce-Hall Error Learning
RPEs can promote learning directly or indirectly by altering atten-

tion to reward predictive cues (Roesch et al., 2012). The amyg-

dala appears to utilize error signals to modulate attention during
learning (Roesch et al., 2012; Holland and Schiffino, 2016) versus

direct encoding of RPEs in VS (Li et al., 2011) and dopamine neu-

rons (Roesch et al., 2012). Therefore, we fit a hybrid Pearce-Hall

(PH) model (Li et al., 2011) to the monkeys’ choices to examine

how amygdala and VS lesions affected attentional gating of

learning. This model contains an associability parameter that

modulates the learning rate as a function of the absolute magni-

tude of past RPEs.WhenRPEs are large, associability (i.e., atten-

tion) is increased. The model has two free parameters, k and h

(Table S3). The kparameter refers to a fixed scalar thatmodulates

value updating of each cue, akin to the learning rate parameter in

the feedback-dependent RLmodel (to control model complexity,

we did not fit separate learning rate parameters for positive and

negative feedback). The h parameter is a decay parameter that

controls the temporal dynamics of associability over time.

The fitted k parameters were consistent with the learning rate

results found using the feedback-dependent RL model. In the

deterministic task, k (Figure 7A) was reduced in the monkeys

with amygdala lesions (t(30) = 2.32, p = 0.027) relative to con-

trols. For the VS lesion group, the value of k did not differ from

the amygdala lesion (t(33) < 1, p = 0.517) or control (t(19) =

�1.56, p = 0.136; group, F(2,42) = 2.62, p = 0.084) groups. In

the stochastic task, by contrast, kwas reduced in both the amyg-

dala (t(163) =�5.13, p < 0.001) and VS (t(145) =�3.78, p < 0.001)

lesion groups compared to controls (F(2,233) = 14.16, p < 0.001).

In the deterministic task, h values only marginally differed be-

tween the lesion and control groups (F(2,41) = 3.08, p = 0.057;

Figure 7B). Planned post-hoc comparisons of h did indicate

that it was reduced in monkeys with amygdala lesions relative

to those with VS lesions (t(33) = �2.6, p = 0.0138). However, h

values in either lesion group were equivalent to that estimated
Neuron 92, 505–517, October 19, 2016 511



Figure 7. Pearce-Hall Model Parameter Fits to Choice Behavior

(A–C) Fitted parameter estimates for k (fixed learning rate; A), h (decay rate of

associability; B), and b (choice consistency; C). See Table S3 for average

parameter values. Error bars indicate ±1 SEM.

(D) BIC estimates for each group and task when choices were fit using a PH or

RW model.
for controls (p values > 0.13). In the stochastic task, there were

again only marginal differences in h values between the lesion

and control groups (F(2,235) = 2.94, p = 0.054). Planned post-

hoc comparisons indicated a larger h value in the amygdala

lesion group compared to controls (t(166) = 2.49, p = 0.0163)

but not in comparison to the VS lesion group (t(157) < 1, p =

0.345). Thus, we found relatively weak evidence that the amyg-

dala or VS affected associability.

Because we fit the PHmodel to themonkeys’ choice behavior,

we also fit an inverse temperature parameter to measure choice

consistency. Similar to our results using the feedback-depen-

dent RL model, inverse temperature values were lower in the an-

imals with lesions of the amygdala or VS compared to controls

both in the deterministic (F(2,41) = 6.01, p = 0.005) and stochas-

tic (F(2,212) = 62.13, p < 0.001) tasks.

The PH hybrid model is an extension of the Rescorla-Wagner

(RW) learning algorithm. The RW algorithm has a fixed learning

rate and no associability term. To determine which model (PH

or RW) was more parsimonious, we computed BIC estimates

to summarize howwell eachmodel fit themonkeys’ choices (Fig-

ure 7D). In each task and in all three groups, the RW model with

one less parameter yielded amore parsimonious fit compared to

the PH model.

DISCUSSION

We combined computational modeling with selective lesions of

the amygdala or VS to determine the causal role of these regions
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in two facets of RL, feedback-dependent learning and choice

consistency. Relative to controls, learning from positive feed-

back was generally impaired in monkeys with amygdala lesions,

whereas monkeys with VS lesions were only impaired when

learning stochastic associations. Both the VS and amygdala

lesion groups chose higher-value options less consistently

than controls. Although in the deterministic task, decreased con-

sistency in the VS lesion group was attributable to their overall

faster choice RTs. In addition, we did not find strong evidence

that the primate amygdala critically encodes Pearce-Hall associ-

ability in bandit tasks.

Ventral Striatum Is Only Necessary for Learning
Stochastic Reward Associations
Neurocomputational accounts of RL implicate VS in value updat-

ing (Collins and Frank, 2014; Schultz, 2015). On the other hand,

inactivation of VS in rodentsdoes not impair instrumental learning

or conditioned reinforcement (Cardinal et al., 2002; Dalton et al.,

2014; Floresco, 2015). Likewise, excitotoxic VS lesions in mon-

keys do not affect particular forms of stimulus-reward learning

(Stern and Passingham, 1996). In all these cases, only determin-

istic learning was examined. Therefore, our finding that VS le-

sions had a greater impact on feedback-dependent learning in

the stochastic versus the deterministic task highlights the neces-

sity of the VS in learning probabilistic reward associations. More-

over, it reconciles the results of prior VS inactivation studies with

existing theories about neural implementations of RL.

It was recently shown that nucleus accumbens (NAc) shell, but

not core, preferentially mediates probabilistic learning (Dalton

et al., 2014). In rats, shell inactivation reduces win-stay behavior

and increases errors to criterion. This result parallels our findings

that VS lesions reduced sensitivity to positive feedback and

decreased choice consistency in the stochastic task. Although

our VS lesions subsume the shell and core (Friedman et al.,

2002), future research should determine whether our effects

are specifically due to shell lesions.

Although we confirm that VS mediates stochastic RL, this

does not necessarily mean that value updating in the striatum re-

lies on dopaminergic RPEs. When control monkeys were tested

on the same stochastic, two-armed bandit task, learning from

positive feedback was heightened when levodopa was used to

enhance dopaminergic function compared to dopamine antago-

nismwith haloperidol. Yet, neither drugmodulated themonkeys’

learning rates compared to saline (Costa et al., 2015). Systemic

blockade of the dopamine transporter similarly does not modu-

late learning rates during a probabilistic, three-arm bandit task

(Costa et al., 2014). Thus, whether the role of the VS in stochastic

learning is dopamine related remains an open question.

Another issue is whether stochastic learning deficits in the

VS lesion group are specific to acquiring stimulus-outcome as-

sociations, as opposed to action-outcome associations. D2 re-

ceptor antagonism in dorsal striatum disrupts action selection

based on reinforcement of past choices (Lee et al., 2015)

and dopamine terminals in dorsomedial striatum preferentially

encode choices relative to specific movements (Parker et al.,

2016). Thus, adaptations of the current task to study action-

outcome learning may reveal greater dependence on dorsal

versus ventral striatum.



Ventral Striatum Modulates Speed-Accuracy Trade-Off
VS lesions hastened choice RTs compared to the amygdala

lesion or control groups. The faster choice RTs in the VS lesion

group also made them more susceptible to a speed-accuracy

trade-off, particularly in the deterministic task. In rodents, NAc

core lesions increase delay discounting (Cardinal et al., 2001)

and impair performance when reward is contingent on with-

holding a response for a fixed period of time (Pothuizen et al.,

2005). VS lesions also disrupt the temporal specificity of dopami-

nergic RPEs induced by changes in reward timing (Takahashi

et al., 2016). Altogether, these findings suggest that VS regulates

temporal integration of reward information to guide choice

behavior.

Amygdala Directly Contributes to Reinforcement
Learning
The amygdala plays a fundamental role in Pavlovian learning and

the valuation of sensory stimuli (Baxter and Murray, 2002; Janak

and Tye, 2015; Salzman and Fusi, 2010; Seymour and Dolan,

2008). Pavlovian associations encoded in amygdala are also

known to modulate instrumental behavior (Cardinal et al.,

2002; Corbit and Balleine, 2005; Holland and Gallagher, 2003)

through circuit interactions involving the ventral tegmental area

and VS (Corbit et al., 2007; Stuber et al., 2011). Therefore, the

amygdala is well positioned to guide choice behavior.

Yet, it is unclear whether the amygdala directly contributes to

value-guided decision making. This is in part due to mixed evi-

dence across species about the necessity of the amygdala in

mediating object discrimination reversal learning (Chau et al.,

2015; Hampton et al., 2007; Izquierdo et al., 2013; Izquierdo

and Murray, 2007; Rudebeck and Murray, 2008; Stalnaker

et al., 2007). Our results are consistent with evidence of impaired

discrimination learning in human patients with amygdala dam-

age (Hampton et al., 2007) and in monkeys with aspiration or

radio frequency amygdala lesions (Jones and Mishkin, 1972;

Schwartzbaum and Poulos, 1965). They are inconsistent with ev-

idence that excitotoxic amygdala lesions do not disrupt object

discrimination reversal learning (Izquierdo and Murray, 2007).

Our data also counter evidence that the amygdala encodes

inflexible value representations that impede reversal learning

and credit assignment (Chau et al., 2015; Stalnaker et al., 2007).

The apparent contradiction between our results and past

studies is likely due in part to methodological differences. For

example, monkeys with excitotoxic amygdala lesions perform

better than controls on a deterministic object reversal learning

task (Jang et al., 2015; Rudebeck and Murray, 2008). This

benefit is limited to the first few reversals (Jang et al.,

2015), which suggests that amygdala contributions to RL may

differ in contexts of unexpected versus expected uncertainty.

Another difference is that prior studies tested animals with

extensive, if not exclusive, training on deterministic stimulus-

reward associations (Izquierdo and Murray, 2007). It is therefore

possible that the monkeys in the amygdala lesion group might

have shown little or no deficit in the deterministic task if they

had only experienced deterministic stimulus-outcome pairings.

However, the general and sizable deficit in learning from posi-

tive feedback seen in the amygdala lesion group argues against

this idea.
Our results dosupport a nascent viewof amygdala function that

emphasizes its active role in decision making (Grabenhorst et al.,

2012; Seymour and Dolan, 2008; Phelps et al., 2014). Amygdala

activity tracks signals relevant to economic choice (Grabenhorst

et al., 2012; Hernádi et al., 2015), model-based RL (Prévost

et al., 2013), and abstract context representations (Saez et al.,

2015). Humanpatientswith amygdala damage show learning def-

icits in both stochastic and deterministic bandit tasks (Hampton

et al., 2007). Also, serotonin depletion in the marmoset amygdala

delays probabilistic discrimination learning by reducing sensitivity

to reward and punishment (Rygula et al., 2015). Thus, when

learning to choose between two objects, the amygdala is needed

to form strong feedback-dependent stimulus-reward associa-

tions in order to identify and consistently choose objects that

are most valuable. However, it is likely that value representations

formed in the amygdala drive choice behavior via projections to

the VS and dopamine subpopulations.

Lesion Effects on Pearce-Hall Error Learning in Choice
Contexts
Pearce-Hall learning theory describes how associability (i.e.,

amount of attention paid to a cue) influences the rate at which

conditioned associations are learned (Li et al., 2011; Pearce

and Hall, 1980). Experiments designed around this view suggest

that amygdala computes associability (Holland and Schiffino,

2016; Roesch et al., 2012). Likewise, in the deterministic task,

we found that associability was reduced in the monkeys with

amygdala lesions relative to those with VS lesions. However,

one caveat to this finding is that associability encoding in the

lesion groupswas equivalent to controls. Moreover, associability

encoding did not differ between the amygdala and striatal lesion

groups in the stochastic task. Therefore, it is difficult to draw firm

conclusions about the relative roles of the amygdala and VS in

signaling associability.

Previous studies have found that amygdala and VS differen-

tially encode associability when associability is computed by

fitting a hybrid PHmodel to Pavlovian-conditioned autonomic re-

sponses (Atlas et al., 2016; Li et al., 2011; Zhang et al., 2016). In

these cases, conditioned responses were better fit by the PH

model than the RW model. The opposite was true when we fit

the same models to the monkeys’ choice data. The RW model

with one fewer parameter yielded more parsimonious fits than

the hybrid PH model. Modeling learning in terms of preparatory

versus consummatory responses may reveal differential roles

for the amygdala in signaling associability (Zhang et al., 2016).

We might also have detected deficits in PH error learning if the

monkeys were tested on choice-related variants of serial predic-

tion or unblocking tasks (Holland and Schiffino, 2016). At the very

least, our results highlight a need to better understand how the

amygdala and VS contribute to PH error learning, particularly in

stochastic environments where surprise-induced learning is

not necessarily advantageous (Courville et al., 2006).

CONCLUSION

Traditional views of reinforcement learning have held that

the ventral striatum integrates dopaminergic RPEs to facili-

tate learning but have not ascribed a specific role for the
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amygdala. Our results suggest that standard accounts of

RL should be revised to reflect a key role for the amygdala

in learning to choose between stimuli and to account for

the relative role of the VS in mediating stochastic versus

deterministic learning. Moreover, since amygdala projections

to VS preferentially facilitate appetitive behaviors (Namburi

et al., 2015), our data offer a new perspective on how interac-

tions between the amygdala and ventral striatum enable rein-

forcement learning.

EXPERIMENTAL PROCEDURES

Subjects

Eleven male rhesus macaques, weighing 6.5 to 10.5 kg, were studied. Three

monkeys received bilateral excitotoxic lesions of the VS, four received bilateral

excitotoxic lesions of the amygdala, and four were retained as unoperated

controls. All monkeys were placed on water control for the duration of the

study and, on test days, earned all of their fluid through performance on

the task. All experimental procedures were performed in accordance with

the Guide for the Care and Use of Laboratory Animals and were approved

by the National Institute of Mental Health Animal Care and Use Committee.

Surgery

For detailed surgical information, see Supplemental Experimental Procedures.

In brief, eachmonkey was first implanted with a titanium head restraint device.

The monkeys assigned to each lesion group then received targeted bilateral

excitotoxic lesions of the amygdala or VS. All testing occurred after the lesion

surgeries.

Lesion Assessment

For eachmonkey, lesions of amygdala or VS were quantitatively assessed from

postoperative MRI scans. The extent of damage was evaluated from T2-

weighted scans obtained within 10 days of surgery. For each operated animal,

MRI scan slices were matched to drawings of coronal sections from a standard

rhesus monkey brain at 1 mm intervals. Each lesion was subsequently plotted

onto the standard sections to map its location and extent (Figure 1B).

Experimental Setup

The monkeys completed an average of 16.81 (SD = 6.72) blocks per session of

a two-arm bandit task. Each block consisted of 80 trials and involved a single

reversal of the stimulus-reward contingencies (Figure 1). On each trial, the

monkeys had to first acquire and hold a central fixation point (500–750ms). Af-

ter themonkey fixated for the required duration, two stimuli appeared to the left

and right (6� visual angle) of the central fixation point. Stimuli varied in shape

and color, and their trial-to-trial screen locations were randomized. Monkeys

chose between stimuli by making a saccade to one of the two stimuli and

fixating on that cue for 500ms. One stimuluswas assigned a high reward prob-

ability and the other a low reward probability. Juice reward was delivered at the

end of each trial according to the assigned reward schedule, followed by a

fixed 1.5 s intertrial interval. A failure to acquire fixation within 5 s, to hold cen-

tral fixation, or to make a choice within 1 s resulted in an immediate repeat of

the previous trial. The trial on which the cue-reward mapping reversed within

each block was selected randomly from a uniform distribution across trials

30 to 50. The reversal trial did not depend on the monkey reaching a perfor-

mance criterion. The reward schedule was randomly selected at the start of

each block and remained constant within a block. We ran two experiments.

In the first experiment, we used three reward schedules: 80%/20%, 70%/

30%, and 60%/40%. In the second experiment, we used a deterministic

reward schedule (100%/0%).

The pair of stimuli, presented as choice options per block, always differed in

color and shape. In addition, each stimulus combination was crossed with

reward schedule and which shape was initially assigned a higher value (e.g.,

whether the blue square was the best choice before or after the reversal).

This resulted in 12 block combinations in the deterministic version of the

task and in 36 block combinations in the stochastic version of the task. Block
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presentations were fully randomized without replacement. This ensured that a

specific stimulus-reward combination was never repeated until all block com-

binations were experienced. Although combinations were potentially repeated

across sessions, upon inspection, there was no evidence of improved perfor-

mance across sessions.

Stimulus presentation and behavioral monitoring were controlled by a PC

computer running MonkeyLogic (Asaad and Eskandar, 2008). Stimuli were

displayed on an LCD monitor (1024 3 768 resolution) situated 40 cm from

the monkeys’ eyes. Eye movements were monitored at 1 kHz (Arrington

Research). On rewarded trials, apple juice (0.085 mL) was delivered through

a pressurized plastic tube gated by a computer-controlled solenoid valve

(Mitz, 2005).
Task Training

All monkeys that received lesions were trained and tested following surgery.

Initial training focused on having the monkeys learn the task structure using

a deterministic reward schedule. They were then trained on a probabilistic

version of the task until they routinely completed 15–20 blocks per session

and demonstrated stable performance on interleaved blocks of the three

probabilistic reward schedules. Data from these training sessions were

not included in the reported analyses. Once testing began, the monkeys

completed the stochastic and deterministic tasks in a separate series of daily

sessions. All of the monkeys completed the deterministic task after they

completed testing on the stochastic task. Prior to testing on the deterministic

task, the lesion and controls groups did not differ in the number of sessions

(F(2,8) = 1.48, p = 0.234) or total number of blocks completed (F(2,8) < 1,

p = 0.554) on the stochastic task. In particular, the amygdala and VS lesion

groups did not differ (number sessions: t(5) < 1, p = 0.377; total number of

blocks: t(5) < 1, p = 0.818). Therefore, group differences in the deterministic

task cannot be attributed to time in training.
Computational Modeling

We fit three models to the choice data. The first was a causal Bayesian model

(see Supplemental Experimental Procedures) that we used to estimate

reversal points in the stimulus-reward mappings. We then fit a stateless

temporal difference learning model. Because it is stateless, this model is

equivalent to an RW model (Rescorla and Wagner, 1972). Finally, we fit a

hybrid PH model (Li et al., 2011; Pearce and Hall, 1980).

Reinforcement Learning Model

We split the trials in each block into acquisition and reversal phases using the

reversal point calculated with the Bayesian model. We then fit separate RL

models to each phase. This was done for each session and separately for

each schedule. We used a standard RL model to estimate learning from pos-

itive and negative feedback, as well as to estimate the inverse temperature.

Specifically, value updates were given by:

viðk + 1Þ= viðkÞ+af ðR� viðkÞÞ Equation 1

where vi is the value estimate for option i, R is the reward feedback for the cur-

rent choice, and af is the feedback-dependent learning rate parameter, where f

indexes whether the current choice was rewarded (R = 1) or not (R = 0). In other

words, on each trial, af is one of two fitted values used to scale prediction er-

rors based on reward feedback for the current choice. These value estimates

were then passed through a logistic function to generate choice probability

estimates:

d1ðkÞ=
�
1+ ebðv2ðkÞ�v1ðkÞÞ��1

; d2ðkÞ= 1� d1ðkÞ Equation 2

The likelihood is then given by:

fðD j b;af Þ=
Y

k
½d1ðkÞc1ðkÞ+d2ðkÞc2ðkÞ� Equation 3

where c1ðkÞ had a value of 1 if option 1 was chosen on trial k and c2ðkÞ had a

value of 1 if option 2 was chosen. Otherwise, they had a value of 0. Standard

function optimization techniques were used to maximize the log-likelihood of

the data given the parameters. As estimation can settle on local minima, we

used 20 initial values for the parameters. The maximum of the log-likelihood

across fits was then used.



When we fit the RL model to the acquisition phase, starting values were

reset to 0.5 at the beginning of each block, unless the stimulus in the new

block was one of the same stimuli from the previous block. This happened

in some cases because we used a small set of stimuli that were paired and

counterbalanced with reward schedule. When a stimulus in the new block

was the same as the stimulus from the previous block, we carried the value

estimate from the previous block forward. For the reversal phase, starting

values for each block corresponded to end values of the corresponding

acquisition phase.

Pearce-Hall Error Learning

We also fit a hybrid PH model (Li et al., 2011). In this model, learning is dynam-

ically gated by two free parameters, k and h. Value updates are given by:

viðk + 1Þ = viðkÞ+ kaðkÞd Equation 4

d=R� viðkÞ Equation 5

aðk + 1Þ = hjd j + ð1� hÞaðkÞ Equation 6

where viðkÞ is the value estimate for option i, R is the reward feedback for the

current choice, d is the reward prediction error of the chosen option, k is a con-

stant learning rate parameter, aðkÞ is the associability of the chosen option,

and h is a weighting factor that accounts for the gradual update in associability

across trials. To limit free parameters in the model, we assigned each option a

starting value of 0.5 and set að0Þ to 1. Also, because of the structure of this

model, it was not straightforward to fit it separately to the acquisition and

reversal phases. Therefore, we fit one model across the entire block of trials.

Just as was done for the feedback-dependent RL model, value estimates

were passed through a logistic function (Equation 2) to generate choice prob-

ability estimates. The likelihood is then given by:

fðD j b; h; kÞ=
Y

k
½d1ðkÞc1ðkÞ+d2ðkÞc2ðkÞ� Equation 7

As described above, standard function optimization techniques were used

to maximize the log of the likelihood of the data given the parameters.

For comparison with the PH model, we also fit an RW model to the choice

data. This was done by setting h in the above model to a fixed value of 0. In

this case, the RW model was also not fit separately to each phase.

Saccadic Reaction Times

We computed choice RTs on a trial-by-trial basis. Choice RTs were defined as

the amount of time between the onset of the choice options and initiation of a

saccade targeting either option. RT probability distribution functions were

constructed (Figures 5A and 5B) by binning RTs in 20 ms bins.

Speed-Accuracy Trade-Off

Toexamine thespeed-accuracy trade-off,wefirstextracted thechosensoftmax

probability,di, from the feedback-dependentRLmodel for eachof themonkeys’

choices. Kernel regression, a non-parametric technique used to compute the

conditional expectation of a random variable (Hastie et al., 2009), was used to

visualize how choice RTs were related to chosen softmax probabilities (Figures

5A and 5B). We specified a Gaussian kernel (20ms), and the estimated function

was sampled in evenly spaced 20 ms bins from 0 to 500 ms. We quantified the

speed-accuracy trade-off by estimating correlation coefficients for each block

and averaged them across schedules for each session.

Aborted Trials due to Fixation or Choice Errors

Fixation errors were defined as a failure to acquire fixation up to 1 s after onset

of the fixation cue or a failure to hold fixation up until presentation of the two

choice options. Choice errors were defined as a failure to saccade to one of

the two choice options up to 1 s after onset of the choice options. Each error

typewas quantified as a percentage of the total number of trials completed per

session.

Classical Statistics

Each dependent variable was entered into mixed effects ANOVAs imple-

mented in MATLAB. When appropriate, schedule, learning phase, feedback

type, andmonkey were specified as fixed effects and session as a random fac-
tor nested under monkey. Post hoc analyses of significant main effects used

Fisher’s least significant difference test to correct for multiple comparisons

(Levin et al., 1994). Post hoc tests of significant interactions consisted of

computing univariate ANOVAs for component effects corrected for multiple

comparisons.
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