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ANISOTROPIC SHUBIN OPERATORS AND EIGENFUNCTION
EXPANSIONS IN GELFAND-SHILOV SPACES

MARCO CAPPIELLO, TODOR GRAMCHEV, STEVAN PILIPOVIC, AND LUIGI RODINO

Abstract. We derive new results on the characterization of Gelfand–Shilov
spaces Sµν (Rn), µ, ν > 0, µ + ν ≥ 1 by Gevrey estimates of the L2 norms
of iterates of (m, k) anisotropic globally elliptic Shubin (or Γ) type operators,
(−∆)m/2+|x|k withm, k ∈ 2N being a model operator, and on the decay of the
Fourier coefficients in the related eigenfunction expansions. Similar results are
obtained for the spaces Σµν (Rn), µ, ν > 0, µ+ν > 1, cf. (1.2). In contrast to the
symmetric case µ = ν and k = m (classical Shubin operators) we encounter
resonance type phenomena involving the ratio κ := µ/ν; namely we obtain
a characterization of Sµν (Rn) and Σµν (Rn) in the case µ = kt/(k + m), ν =

mt/(k +m), t ≥ 1, that is, when κ = k/m ∈ Q.

1. Introduction and statement of the results

The main goal of the paper is to prove results on the characterization of the
non-symmetric (µ 6= ν) Gelfand–Shilov spaces Sµν (Rn), µ, ν > 0, µ + ν ≥ 1 by
Gevrey estimates of the L2 norms of the iterates P `u, ` = 1, 2, . . . , u ∈ S (Rn),
of positive anisotropic globally elliptic Shubin differential operators P of the type
(m, k),m, k being even natural numbers, and on the decay of the Fourier coefficients
uj , j ∈ N, in the eigenfunction expansions u =

∑∞
j=1 ujϕj , where {ϕj}∞j=1 stands

for an orthonormal basis of eigenfunctions associated to the operator P . The (m, k)
Shubin elliptic differential operators are modelled by

Hm,kn := (−∆)m/2 + |x|k, |x| =
√
x21 + . . .+ x2n, k,m ∈ 2N.(1.1)

We recall that for µ > 0, ν > 0, the inductive (respectively, projective) Gelfand-
Shilov classes Sµν (Rn), µ+ ν ≥ 1 (respectively, Σµν (Rn), µ+ ν > 1), are defined as
the set of all u ∈ S (Rn) for which there exist A > 0, C > 0 (respectively, for every
A > 0 there exists C > 0) such that

(1.2) |xβ∂αx u(x)| ≤ CA|α|+|β|(α!)µ(β!)ν , α, β ∈ Nn,
see [2, 12, 14, 17, 26] and [28, Chapter 6]. These spaces have recently gained a wide
importance in view of the fact that they represent a suitable functional setting
both for microlocal analysis and PDE and for Fourier and time-frequency analysis
[1, 3, 6–10,13,21,36].

Concerning the investigation in the present paper, we can cite different sources of
motivations. First, we recall the fundamental work of Seeley [34] on eigenfunction
expansions of real analytic functions on compact manifolds (see also the recent
paper of Dasgupta and Ruzhansky [15], extending the result of [34] for all Gevrey
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spaces Gσ, σ > 1, on compact Lie groups). Secondly, we mention the work [19]
on the characterization of symmetric Gelfand-Shilov spaces Sµµ (Rn) by means of
estimates of iterates and the decay of the Fourier coefficients in the eigenfunction
expansions associated to globally elliptic (or Γ elliptic) differential operator. We also
refer to [38], where general Gevrey sequences Mp are used. Finally, we mention as
additional motivation the results on hypoellipticity in Sµν (Rn) for elliptic operators
of the type Hm,kn for µ ≥ k/(m + k), ν ≥ m/(m + k), k,m being even natural
numbers, cf. [7] (see also the older work [6]).

Before stating our main results we need some preliminaries.
As counterpart of an elliptic operator in a compact manifold, we consider in

Rn the decay of the Fourier coefficients in the eigenfunction expansions associated
to Hm,kn . In contrast to the symmetric case µ = ν and k = m (classical Shubin
operators) we encounter new resonance type phenomena involving κ := µ/ν, namely
we can characterize the spaces Sµν (Rn), µ+ ν ≥ 1 (respectively Σµν (Rn), µ+ ν > 1)
by iterates and eigenfunction expansions defined by Hm,kn iff κ is rational number,
κ = k/m.

Our basic example of operator will be the anisotropic quantum harmonic oscil-
lator appearing in Quantum Mechanics

H2,k
n = −4+ |x|k, k ∈ 2N,(1.3)

with recovering for k = 2 the standard harmonic oscillator whose eigenfunctions
are the Hermite functions

hα(x) = Hα(x)e−|x|
2/2, α = (α1, ..., αn) ∈ Nn,(1.4)

where Hα(x) is the α-th Hermite polynomial. See for example [25,30,32] for related
Hermite expansions as well as [18, 39] for connections with a degenerate harmonic
oscillator.

Here we shall consider a more general class of operators with polynomial coeffi-
cients in Rn, namely (m, k) anisotropic operators:

P =
∑

|α|
m +

|β|
k ≤1

cαβx
βDα

x , Dα = (−i)|α|∂αx .(1.5)

Set

Λm,k(x, ξ) = (1 + |x|2k + |ξ|2m)1/2, (x, ξ) ∈ R2n, m, k ∈ 2N.(1.6)

The global ellipticity for P in (1.5) is defined by imposing

pm,k(x, ξ) :=
∑

|α|
m +

|β|
k =1

cαβx
βξα 6= 0 for (x, ξ) 6= (0, 0).(1.7)

or equivalently, there exist C1 > 0, C2 > 0, R > 0 such that the full symbol

(1.8) p(x, ξ) =
∑

|α|
m +

|β|
k ≤1

cαβx
βξα

satisfies the condition

C2 ≤
|p(x, ξ)|

Λm,k(x, ξ)
≤ C1, |(x, ξ)| ≥ R.(1.9)
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Under the assumption (1.7) (or (1.9)), the following estimate holds for every u ∈
S (Rn):

(1.10)
∑

|α|
m +

|β|
k ≤1

‖xβDα
xu‖L2 ≤ C(‖Pu‖L2 + ‖u‖L2),

cf. [4].
For these operators, the counterpart of the standard Sobolev spaces are the

spaces Qsm,k(Rn), s ∈ R, defined, for example, by requiring that

‖Λ(x,D)su‖L2 <∞,(1.11)

where

Λ(x, ξ) = (1 + |x|2k + |ξ|2m)1/2max{k,m}, k,m ∈ 2N.(1.12)

Under the global ellipticity assumption (1.7),

P : Qsm,k(Rn)→ L2(Rn), s = max{k,m},

is a Fredholm operator. The finite-dimensional null-space KerP is given by func-
tions in the Schwartz space S (Rn).

We assume, as in [19], that P is a positive anisotropic elliptic operator, which
implies that k and m are even numbers. This guarantees the existence of an or-
thonormal basis of eigenfunctions ϕj , j ∈ N, with eigenvalues λj , lim

j→∞
λj = +∞

(see [35]). Moreover we have that

(1.13) λj ∼ Cj
mk

n(m+k) as j → +∞.

for some C > 0, cf. [4,35]. Hence, given u ∈ L2(Rn), or u ∈ S ′(Rn), we can expand

u =

∞∑
j=1

ujϕj(1.14)

where the Fourier coefficients uj ∈ C are defined by

uj = (u, uj)L2 , j = 1, 2, . . .(1.15)

with convergence in L2(Rn) or S ′(Rn) for (1.14). Note that the positivity of P
is for example granted if we assume p(x, ξ) of the form (1.8) such that (1.7) holds
and p(x, ξ) ≥ 0 on R2n, and we regard P as the Toeplitz operator (localization
operator) with symbol p(x, ξ), see e.g. [20] and its analysis. Observe that passing
to the classical left quantization, the symbol remains of the form (1.8) with the
same principal part pm,k(x, ξ), then the condition (1.7) still holds, whereas the
lower order terms may change, cf. [28].

By the hypoellipticity results of [7] the eigenfunctions ϕj belong to Sk/(m+k)
m/(m+k)(R

n).
We first state an assertion on the characterization of the anisotropic Sobolev

spaces Qsm,k(Rn) and the Schwartz class S (Rn).

Theorem 1.1. Suppose that P is (m, k)-globally elliptic cf. (1.5), (1.7), and posi-
tive. Then:

(i) u ∈ Qsm,k(Rn)⇐⇒
∞∑
j=1

|uj |2λs/max{m,k}
j <∞, s ∈ N.

(ii) u ∈ S (Rn) ⇐⇒ |uj | = O(λ−sj ), j → ∞ ⇐⇒ |uj | = O(j−s), j → ∞ for all
s ∈ N.
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Let us now come to the characterization of the spaces Sµν (Rn) and Σµν (Rn) in
the case κ := µ/ν ∈ Q. We may link µ, ν with an operator of the form (1.5) for a
suitable choice of k and m. In fact, observe first that we may write µ = tµo, ν = tνo
for some t > 0 with µo = κ/(1 +κ), ν0 = 1/(1 +κ) so that µo+ νo = 1. If µ+ ν ≥ 1
we have t ≥ 1, if µ + ν > 1 then t > 1. On the other hand, for any given µo ∈ Q
we may write µo = k/(k +m) for two positive integers k and m, and consequently
νo = 1−µo = m/(k+m). Multiples of k and m work as well, in particular we may
assume k and m to be even natural numbers so that the symbol of Λm,k in (1.6)
is a smooth function which is necessary for the proof of the hypoellipticity result
of [7]. So we have

µ =
kt

k +m
, ν =

mt

k +m
.

For given even integers k and m, an example of globally elliptic positive operator
is given by (1.1).

The first main result of the paper characterizes the Gelfand-Shilov spaces in
terms of estimates of the iterates of P and reads as follows.

Theorem 1.2. Let P be an operator of the form (1.5) for some integers k ≥
1,m ≥ 1, be globally elliptic, namely satisfy (1.7) and let u ∈ S (Rn). Then

u ∈ S
kt
k+m
mt
k+m

(Rn), t ≥ 1 (respectively u ∈ Σ
kt
k+m
mt
k+m

(Rn), t > 1) if and only if there exist
C > 0, R > 0 (respectively for every C > 0 there exists R > 0) such that:

(1.16) ‖PMu‖L2 ≤ RCM (M !)
kmt
k+m

for every integer M ≥ 1.

Remark 1.3. Theorem 1.2 suggests the possibility of considering new function spaces
defined by the estimates (1.16) also for 0 < t < 1 (respectively 0 < t ≤ 1).
Corresponding Gelfand-Shilov classes are empty in that case as well known from [17]
and the equivalence in Theorem 1.2 fails. Nevertheless such definition in terms of
(1.16) deserves interest, cf. also [11,37].

Using Theorem 1.2 we can prove the following result.

Theorem 1.4. Let P be a positive operator of the form (1.5) for some integers
k ≥ 1,m ≥ 1, satisfying (1.7) and let u ∈ S (Rn). Let the eigenvalues λj and the
Fourier coefficients uj be defined as before. The following conditions are equivalent:

i) u ∈ S
kt
k+m
mt
k+m

(Rn), t ≥ 1 (respectively u ∈ Σ
kt
k+m
mt
k+m

(Rn), t > 1);
ii) there exists ε > 0 such that (respectively for every ε > 0) we have

(1.17)
∞∑
j=1

|uj |2eελ
k+m
kmt
j <∞;

iii) there exists ε > 0 such that (respectively for every ε > 0) we have

(1.18) sup
j∈N
|uj |2eελ

k+m
kmt
j <∞.

iv) there exists ε > 0 such that (respectively for every ε > 0) we have for some
C > 0:

|uj | ≤ Ce−εj
1
tn , j ∈ N.
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The somewhat surprising fact that in iv) the estimates do not depend on the
couple (m, k), that is on (µ, ν), may find intuitive explanation in the Sµν regularity
of the eigenfunctions ϕj , cf. [7].

2. Proof of the main results

Proof of Theorem 1.1. The proof of Theorem 1.1 is easy, by using the r-th power
of P, r ∈ R, that we may define as

P ru =

∞∑
j=1

λrjujϕj ,

and by observing that the norms ‖P ru‖L2 , r = s/max{k,m} and ‖Λ(x,D)su‖L2

are equivalent, see [4, 28,35]. On the other hand, by Parseval identity

‖P ru‖2L2 = ‖
∞∑
j=1

λrjujϕj‖2L2 =

∞∑
j=1

λ2rj |uj |2

and i) follows. Since S (Rn) =
⋂
s∈N

Qsm,k(Rn) we also obtain ii). �

The proof of Theorem 1.2 needs some preparation. We first define, for fixed
r ≥ 0 and u ∈ L2(Rn):

(2.1) |u|r =
∑

|α|
m +

|β|
k =r

‖xβDαu‖L2

First it is useful to characterize Gelfand-Shilov spaces in terms of the norms |u|r
as follows.

Proposition 2.1. Let u ∈ L2(Rn). Then u ∈ S
kt
k+m
mt
k+m

(Rn), t ≥ 1 (respectively u ∈

Σ
kt
k+m
mt
k+m

(Rn), t > 1) if and only if there exist C > 0, R > 0 (respectively for every
C > 0 there exists R > 0) such that

(2.2) |u|r ≤ RCrr
kmrt
k+m

for every r > 0.

We have the following preliminary result.

Lemma 2.2. There exists a constant C > 0 such that, for any given p ∈ N, (α, β) ∈
N2n, with |α|/m + |β|/k = r, p < r < p + 1, and for every ε > 0, the following
estimate holds true:

(2.3) |u|r ≤ ε|u|p+1 + Cε−
r−p
p+1−r |u|p + Cp(p+ 1)!

km
k+m |u|0

for all u ∈ S (Rn).

The proof follows the same lines as the proof of Proposition 2.1 in [5], cf. also [24],
and it is omitted.

Next, fixed λ > 0, p ∈ N and u ∈ L2(Rn), we set:

(2.4) σp(u, λ) = λ−p(p!)−
kmt
k+m |u|p.
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Lemma 2.3. For every p ∈ N and for λ > 0 sufficiently large, we have:

(2.5) σp+1(u, λ) ≤ (p+ 1)−
kmt
k+mσp(Pu, λ) +

p∑
h=0

σh(u, λ)

for every u ∈ S (Rn).

Proof. For p = 0 the assertion is a direct consequence of (1.10) if λ is large enough.
Fix now p ∈ N, p ≥ 1 and let α, β ∈ Nn such that |α|/m+ |β|/k = p+ 1. It is easy
to verify that we can find γ, δ ∈ Nn, with γ ≤ α, δ ≤ β such that |γ|/m+ |δ|/k = p
and |α− γ|/m+ |β − δ|/k = 1. Then by (1.10) we can write

‖xβDαu‖L2 ≤ ‖xβ−δDα−γ(xδDγu)‖L2 + ‖xβ−δ[xδ, Dα−γ ]Dγu‖L2

≤ C‖P (xδDγu)‖L2 + ‖xβ−δ[xδ, Dα−γ ]Dγu‖L2

≤ I1 + I2 + I3,

where

I1 = C‖xδDγ(Pu)‖L2 , I2 = C‖[P, xδDγ ]u‖L2 , I3 = ‖xβ−δ[xδ, Dα−γ ]Dγu‖L2 .

Let now

Jh =
∑

|α|
m +

|β|
k =p+1

Ih, Yh = λ−p−1(p+ 1)!−
kmt
k+m Jh, h = 1, 2, 3.

Then, obviously we have

|u|p+1 ≤ J1 + J2 + J3, σp+1(λ, u) ≤ Y1 + Y2 + Y3.

Now, since J1 ≤ C1|Pu|p for some C1 > 0, then we have Y1 ≤ (p+1)−
kmt
k+mσp(λ, Pu),

if λ ≥ C−11 . To estimate J2 and Y2 we observe that

[P, xδDγ ]u =
∑

|α̃|
m +

|β̃|
k ≤1

cα̃β̃ [xβ̃Dα̃, xδDγ ]u,

and that

[xβ̃Dα̃, xδDγ ]u =
∑

0 6=τ≤α̃,τ≤δ

Cα̃δτx
δ+β̃−τDγ+α̃−τu−

∑
06=τ≤β̃,τ≤γ

Cβ̃γτx
δ+β̃−τDγ+α̃−τu.

where the constants |Cα̃δτ | and |Cβ̃γτ | can be estimated by C2 p
|τ | for some positive

constant C2 independent of p. We observe now that in both the sums above we
have

r =
|γ + α̃− τ |

m
+
|δ + β̃ − τ |

k
= p+

|α̃|
m

+
|β̃|
k
− m+ k

km
|τ | ≤ p+ 1− m+ k

km
|τ |,

hence in particular we have 0 ≤ r < p+ 1 since |τ | > 0. Moreover, we have

|τ | ≤ km

m+ k
(p+ 1− r).

In view of these considerations, we easily obtain

J2 ≤ C3(J ′2 + p
km
k+m |u|p + J ′′2 ),

where
J ′2 =

∑
p<r<p+1

p
km
k+m (p+1−r)|u|r,
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J ′′2 =
∑

0≤r<p

p
km
k+m (p+1−r)|u|r.

Now, applying Lemma 2.2 to J ′2 with

ε = (4C3)−1p−
km
k+m (p+1−r),

and using standard factorial inequalities we obtain

J ′2 ≤ (4C3)−1|u|p+1 + C4p
km
k+m |u|p + Cp+1

5 (p+ 1)!
km
k+m |u|0.

Similarly, writing

J ′′2 = p
km
k+m (p+1)|u|0 +

p−1∑
q=0

∑
q<r<q+1

p
km
k+m (p+1−r)|u|r

and applying Lemma 2.2 to each term of the sum above with

ε = p−
km
k+m (q+1−r),

we get

J ′′2 ≤ Cp+1
6 (p+ 1)!

km
k+m |u|0 + C7

p−1∑
q=0

[
p
km
k+m (p−q)|u|q+1 + p

km
k+m (p−q+1)|u|q

]
≤ Cp+1

8 (p+ 1)!
km
k+m |u|0 + C9

p∑
q=1

p
km
k+m (p−q+1)|u|q,

from which we get

J2 ≤
1

4
|u|p+1 + C̃p+1(p+ 1)!

km
k+m |u|0 + C ′

p∑
q=1

p
km
k+m (p−q+1)|u|q

for some positive constants C ′, C̃ independent of p. From the estimates above,
taking λ sufficiently large and using the fact that t ≥ 1, we obtain

Y2 = λ−p−1(p+ 1)!−
kmt
k+m J2 ≤

1

4

p+1∑
h=0

σh(λ, u).

Analogous estimates can be derived for Y3 and yield (2.5). We leave the details for
the reader. �

Starting from (2.5) and arguing by induction on p it is easy to prove the following
result. We omit the proof for the sake of brevity.

Lemma 2.4. For every p ∈ N, t ≥ 1 and λ > 0 sufficiently large we have

σp(u, λ) ≤ 2pσ0(u, λ) +

p∑
`=1

2p−`
(
p

`

)
(`!)−

kmt
k+mσ0(P `u, λ).

Proof of Theorem 1.2. The fact that the Gelfand-Shilov regularity of u implies
(1.16) is easy to prove and we omit the details. In the opposite direction, by
Proposition 2.1 it is sufficient to prove that u satisfies (2.2) for every r > 0. From
the previous estimate, we have, for every p ∈ N:

σp(u, λ) ≤ C +

p∑
`=1

2p−`
(
p

`

)
C`+1 ≤ C(2 + C)p+1.
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Therefore
|u|p ≤ Cp+1p!

kmt
k+m

for a new constant C > 0, which gives (2.2) in the case r ∈ N. If r > 0 is not
integer, then p < r < p + 1 for some p ∈ N and we can apply Lemma 2.2 which
yields

|u|r ≤ ε|u|p+1 + Cε−
r−p
p+1−r |u|p + Cp(p!)

km
k+m |u|0

≤ εCp+1
1 (p+ 1)!

kmt
k+m + Cp1ε

− r−p
p+1−r (p+ 1)!

kmt
k+m + Cp1 (p+ 1)!

kmt
k+m ≤ Cr+1

2 r
kmrt
k+m .

Then, by Proposition 2.1 we conclude that u ∈ S
kt
k+m
mt
k+m

(Rn). Similarly we argue for

u ∈ Σ
kt
k+m
mt
k+m

(Rn). �

Proof of Theorem 1.4. The equivalence between ii) and iii) is obvious. Moreover

iii) is equivalent to iv) in view of (1.13). The arguments are similar for S
kt
k+m
mt
k+m

(Rn)

and Σ
kt
k+m
mt
k+m

(Rn) classes. To conclude the proof we will show the equivalence between
i) and iv). We first observe that

‖PMu‖2L2 = ‖
∞∑
j=1

ujP
Mϕj‖2L2 =

∞∑
j=1

λ2Mj |uj |2,

in view of Parseval identity. By (1.13) it follows that

C1‖PMu‖2L2 ≤
∞∑
j=1

j2Mkm/(n(k+m))|uj |2 ≤ C2‖PMu‖2L2(2.6)

for suitable positive constants C1, C2. Now if iv) holds, then we have

|uj |2 ≤ e−εj
1/(nt)

for some new constant ε > 0. Then from the first estimate in (2.6) we have for
some C > 0

‖PMu‖2L2 ≤ C

∞∑
j=1

j2Mkm/(n(m+k))e−εj
1/(nt)

(2.7)

≤ C̃ sup
j∈N

j2Mmk/(n(m+k))e−εj
1/(nt)

(2.8)

with

C̃ = C

∞∑
j=1

e−εj
1/(nt)

.

Moreover, for any fixed ω > 0 we have

eωj
1/(nt)

=

∞∑
M=0

ωM jM/(nt)

M !
.

This implies that for every M ∈ N:

jM/(nt)e−ωj
1/(nt)

≤ ω−MM !(2.9)
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Taking the 2kmt/(k + m)-th power of both sides of (2.9) and applying in the last
estimate in (2.8) with

ω = 2εkmt/(k +m),

we obtain

‖PMu‖2L2 ≤ C̃ω−
2Mkmt
k+m (M !)

2mkt
m+k ,

which gives i) in view of Theorem 1.2.

i)⇒ ii) Viceversa assume that u ∈ S
kt
k+m
mt
k+m

(Rn). In view of iv) it is sufficient to show
that

(2.10) sup
j∈N
|uj |2eεj

1
nt < +∞.

Theorem 1.2 and the second inequality in (2.6) imply that

j
2Mkm
n(k+m)

CM (M !)
2kmt
k+m

|uj |2 ≤ C

for every j,M ∈ N and for some C independent of j and M . Taking the supremum
of the left-hand side over M we get (2.10) with ε = 2kmt

k+mC
− k+m

2kmt . This concludes
the proof. �

3. Generalizations

We list some possible generalizations of the preceding results. First, one can
replace the hypothesis of positivity for the operator P by assuming that P is nor-
mal, i.e. P ∗P = PP ∗. This guarantees the existence of an orthonormal basis of
eigenfunctions ϕj , j ∈ N, with eigenvalues λj , lim

j→∞
|λj | = +∞, see [35], and we may

then proceed as before, cf. [34].
Another possible generalization consists in replacing L2 norms with Lp norms,
1 < p <∞. Let us observe that the basic estimate (1.10) is valid also for Lp norms,
see [16,27], and it seems easy to extend Theorem 1.2 in this direction.
A much more challenging problem is an analogous characterization of the classes
Sµν (Rn) when κ = µ/ν = k/m is irrational. First difficulty, in this case, is given by
an appropriate choice of the operator P . In fact, the natural candidates

P = (−∆)m/2 + (1 + |x|2)k/2, m ∈ 2N, k > 0, k /∈ 2N

can be easily treated in the setting of temperate distributions but results of Gelfand-
Shilov regularity, extending those in [7], are missing for them.

Note. With great sorrow, Marco Cappiello, Stevan Pilipovic and Luigi Rodino
inform that their friend Todor Gramchev passed away on October 18, 2015. He
inspired and collaborated to the initial version of the present paper and appears
here as co-author.
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