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Abstract 19 
A review of recent advances in the field of rheology of multicomponent silicate melts and 20 

multiphase silicate melt suspensions is presented here. The advances include the development of 21 

new experimental devices and field and remote sensing methods for measuring the rheological 22 

properties of natural melts and magmas. These promising approaches combine laboratory 23 

experiments, theoretical models, numerical simulations and remote sensing data derived from 24 

ground, airborne and satellite-based tools. Each of these sub-disciplines has evolved rapidly in 25 

recent years and the growing range of complementary data appears now to provide an opportunity 26 

for the development of multi-disciplinary research. Ultimately, these multidisciplinary initiatives 27 

seek to provide near-real-time forecasting of hazardous volcanic processes such as lava flow field 28 

evolution. The results and approaches described here focus on multiphase (i.e. melts, bubbles, 29 

crystals) rheology of natural systems and are pertinent to the effusive emplacement of lavas, dykes 30 

and sills, as well as, to the eruption dynamics attending explosive eruptions. 31 

 32 

Keywords: Multicomponent and Multiphase silicate melts, Rheology, 33 
  34 
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1. Introduction 35 
The transport of magmas and volcanic materials is characterized by very dynamic, 36 

interdependent and complex, physical and chemical processes that all are affected by and affect the 37 

materials physical properties. Understanding the dynamic processes operating during magma ascent 38 

and eruption and the timescales and mechanisms of emplacement, welding and remobilization of 39 

fragmental or massive volcanic deposits, constitutes one of the main challenges in the Earth 40 

sciences (Dingwell, 1996; Papale, 1999; Sparks, 2004; Russell and Quane, 2005; Giordano et al., 41 

2005). Accurate description of these processes requires the characterization of a wide range of 42 

transport and thermodynamic properties for the melt or magma (e.g. viscosity, density, enthalpy, 43 

entropy, heat capacity, thermal conductivity, solubility of volatile phases). These properties play 44 

crucial roles at micro- to macroscopic scale and many are correlated, in a non-linear manner (e.g. 45 

Richet et al., 1984; Giordano et al., 2008a; Russell and Giordano, 2017).  46 

Lava flow dynamics are strongly governed by subsurface buoyancy forces, resulting from 47 

the density contrast with the host rock, which push the magma toward the surface (e.g. Wilson & 48 

Head, 2016a; Wieczorek et al. 2001), and by the evolving internal and external frictional forces 49 

(e.g. with dyke, conduit wall and topography) that oppose to the movement of magmas and lavas 50 

(e.g. Nemeth, 2010; Cañón-Tapia, 2016, Dragoni, 1993; Dragoni et al. 2005; Giordano et al., 2007; 51 

Cashman et al., 2013; Kolzenburg et al., 2016a,b; 2018a,b; Hulme, 1974; Hiesinger et al., 2007, 52 

Chevrel et al., 2013, 2015, Castruccio et al. 2014). 53 

The rheological properties of magmas undergo tremendous changes from transport in the 54 

subsurface to eruption or emplacement at the surface and to final deposition and cooling. These 55 

changes are caused dominantly by the evolving of thermo-chemical and deformational conditions, 56 

imposing phase transitions and therewith heterogeneous textural and morphological variations of 57 

the magmatic and volcanic suspensions which evolve in space and time. The complex rheological 58 

evolution of lava flows can tentatively be constrained by carrying out laboratory measurements 59 
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under controlled conditions, simulating natural systems, and by monitoring flow emplacement at the 60 

field-scale and via satellite-based platforms. In parallel with this, the sophistication of physical 61 

models of lava flows and domes have improved significantly and are capable of providing fast 62 

simulations (see, amongst the others, Costa and Macedonio, 2003, 2005; Del Negro et al, 2008, 63 

2013, 2016; Melnik and Sparks, 1999, 2005; Melnik et al., 2009; Kilburn 2015 for reviews on this 64 

topic). These models are increasingly informed by, or validated by, satellite-derived parameters 65 

such as lava flow discharge rate or periodic updates on flow advance/geometry. Together these 66 

capabilities represent an emergent strategy that may provide timely reliable projections of lava flow 67 

field evolution and derive information for hazard assessment and mitigation measures. Yet, to date 68 

they do not always provide coherent results reproduced in nature. 69 

This highlights the necessity to estimate the rheological properties of magmas and volcanic 70 

materials at conditions pertinent to nature and to investigate the effect of each variable over the 71 

range of relevant environmental conditions (e.g. pressure, temperature, volatile contents) during 72 

varying thermodynamic (equilibrium and non-equilibrium) conditions, and deformation regimes. 73 

Our understanding of the single- and multi-phase (liquid+crystals+bubbles) rheology of 74 

magmas and volcanic products has greatly improved in the last two decades. This can largely be 75 

attributed to the growing availability of empirical data from the following sources (each of which 76 

will be reviewed in detail below):  77 

1) laboratory experimentation on natural and simplified silicate melts. These data support 78 

the creation of robust models for predicting the Newtonian viscosity of pure liquid natural melts as 79 

a function of temperature (T), pressure (P) composition (X), volatile content (Xv)  and structural 80 

features (see Chapter 2).  81 
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2) the rheological experimentation and modelling of non-reactive multiphase suspensions 82 

(liquid+bubbles; liquid+crystal and liquids+bubbles+crystals) constituted by analogue materials or 83 

simplified or natural silicate melts mixtures (Chapter 4);  84 

3) dynamic cooling rheological measurements on natural multiphase suspensions at non-85 

isothermal and non-equilibrium conditions to explore the interdependent effects of composition, 86 

cooling-rate, shear-rate and oxygen fugacity acting during magma and lava transport in nature 87 

(Chapter 5); 88 

4) rheological measurements of actively flowing lava. These represent snapshots of actual 89 

lava flow rheology at specific conditions and provide data that helps to constrain the conditions 90 

required to be reproduced in systematic laboratory studies (Chapter 6). 91 

5) studies on the 3D and 4D evolution of lava flows at increasing spatial and temporal 92 

resolution  and contemporary estimates of effusion rate and flow development from satellite data. 93 

These provide data for cross correlation and benchmarking of laboratory measurements (Appendix 94 

A1) and to re-visit long standing methods for deriving rheological parameters from morphologic 95 

data (Chapter 6). 96 

These studies document that the effective viscosity of natural silicate melts and magmas can 97 

span more than 15 orders of magnitude (10−1 – 1014 Pa s), primarily in response to variations in melt 98 

composition (X), dissolved volatile content (Xv), temperature (T), pressure (P), as well as the 99 

proportions, size, and shape distributions of suspended solid and/or exsolved fluid phases (i.e. 100 

crystals and bubbles). The deformation rate, which in nature would depend on the discharge rate 101 

will determine whether flow behavior will be Newtonian (i.e. one for which there is a linear 102 

relationship between stress and strain rate; or spatial variation of velocity) or non-Newtonian (e.g. 103 

Caricchi et al., 2007, 2008; Costa et al., 2007a, 2009; Vona et al. 2011, Hess et al., 2009). 104 

Deformation rate also exerts an influence on the crystallization kinetics (Vona et al., 2013, Kouchi, 105 
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1986, Kolzenburg 2018). It may further determine whether the melt will deform viscously or 106 

elastically and, therewith, whether or not it will eventually fracture giving origin to effusive rather 107 

than explosive eruptive styles (Dingwell, 1996). Combined the above experimental data and 108 

computational models form a basis from which to understand the flow behavior of natural magmatic 109 

and volcanic suspensions.  110 

In the following I present a review of the research advances in the rheological 111 

characterization of pure silicate melts and multiphase silicate mixtures (i.e. lavas and magmas) 112 

achieved in the past decades. I follow the structure of points 1-5 outlined above to group the 113 

individual fields. In the Appendices (A1-A3) I summarize the most commonly employed 114 

experimental devices and technological advances to measure the single and multiphase silicate 115 

melts also reporting the most common equations used to describe the viscosity variation as a 116 

function of P, T, X (Appendix A1) as well as suspended solids phase and/or porosity (Appendices 117 

A2 and A3). I conclude with a discussion of how new laboratory developments and of the growth in 118 

complementary datasets (e.g. remote-sensing; drone technology; high-speed calculation facility) is 119 

providing greater understanding of magma and lava transport on Earth.  120 

 121 

2. Pure liquid melt Newtonian viscosity experiments and models 122 

2.1. T – dependent models for predicting melt viscosity   123 

The first step toward characterizing multiphase rheology of natural silicate melts mixture is 124 

the knowledge of multicomponent viscosity of pure liquids as a function of their composition 125 

(including dissolved volatile species such as H2O, C and S –species, F, Cl) temperature (T) and 126 

pressure (P). Early models for predicting the viscosity of silicate melts were developed using data 127 

that spanned relatively small ranges of temperature (T) and viscosity (η). These experimental data, 128 

restricted to superliquidus temperatures and a narrow compositional range, showed a nearly linear 129 

trend of viscosity in reciprocal temperature space. Thus, early models adopted an Arrhenian 130 
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formulation of the temperature-viscosity relationship (Shaw, 1972; Bottinga and Weill, 1972). 131 

Expansion of the melt viscometry database over a wider range of compositions and temperatures 132 

exposed the limitations of Arrhenian models. With the emergence of viscometry data closer to the 133 

glass transition temperature (Tg) (i.e. the temperature of transition between a liquid-like and a solid-134 

like behavior) (e.g. Angell, 1991, Giordano et al., 2005), the Arrhenian models proved unsuitable to 135 

describe the temperature dependence of silicate melt viscosity. These measurements were enabled 136 

by experimental devices that allow very small displacements to be monitored (e.g. Linear Voltage 137 

Displacement Transducers) and, the production of quenched glasses, freezing in the crystal free 138 

melt structure. In these experiments, supercooled glasses are reheated above Tg, where the “relaxed 139 

melt” viscosity (e.g. Angell, 1991; Scherer, 1984) could then be measured. These experiments are 140 

performed at timescales shorter than phase transitions timescale, therewith allowing anhydrous and 141 

hydrous pure liquid viscosity measurements (Angell, 1991; Scherer, 1984; Giordano et al., 2008b). 142 

Based on the large number of experimental studies (e.g. Richet et al., 1995; Richet et al., 143 

1996; Hess and Dingwell, 1996; Whittington et al., 2000, 2001; Giordano et al., 2009 amongst the 144 

others), models of melt viscosity were developed (e.g. Avramov, 1998; Angell, 1991; Russell et al., 145 

2003; Giordano and Dingwell, 2003a, b; Russell and Giordano, 2005; Giordano and Russell, 2007; 146 

Hui and Zhang, 2007; Giordano et al., 2006, 2008a,b; Ardia et al., 2008; Mauro et al., 2009), also 147 

accounting for the non-Arrhenian viscosity behaviour (e.g. Vogel, 1921, Fulcher, 1925; Tammann 148 

and Hess, 1926; Adam and Gibbs, 1965). These models describe the P-T-X dependence of the 149 

viscosity of silicate melts. Some of the most relevant empirical and theoretical formulations 150 

describing the T-dependence of silicate melts and the relationships between constitutive parameters 151 

are reported in Appendix A2. 152 

The growing database and the new models show that silicate melts display various degrees 153 

of non-Arrhenian behavior, from strong to fragile (Angell, 1991; Russell et al., 2002, 2003), which 154 

depend on composition and dissolved volatile content (Fig. 1).  155 
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 156 

Fig. 1. The figure shows the variation of viscosity as a function of the reverse of temperature for the anhydrous melts 157 
(a) and, per comparison, the anhydrous and hydrous melts (b) as reported by Giordano et al. (2008). The curves in a) 158 
represent the most Arrhenian (continuous line in a))(strong) and the least Arrhenian (dashed curve in a)) (fragile) melts 159 
amongst those reported in panel of Fig 1a. The effect of water is that of significantly reducing viscosity and the fragility 160 
(deviation from Arrhenian behavior) of the melts (details in Giordano et al., 2008). 161 

 162 
All these models provide viscosity predictions based on composition commonly expressed 163 

in terms of oxide abundances or combination of oxides and a range of adjustable parameters. Of the 164 

various models only the HZ model (Hui and Zhang, 2007) and the GRD model (Giordano et al., 165 

2008a) accounts for the effects of dissolved volatile species (H2O, F). The GRD model is based on 166 

the well-known VFT (Vogel-Fulcher-Tammann) equation, such that:  167 

log [η (Pa s)] = AVFT+BVFT/(T-CVFT)  (Eq. 1) 168 

where AVFT is the pre-exponential factor, BVFT is the pseudo-activation energy and CVFT is the VFT-169 

temperature. In contrast the HZ model uses a purely empirical T-dependent viscosity formulation of 170 

non straightforward correlation with thermo-physical amounts. The GRD model has gained support 171 

due to its simplicity and direct correlation of constitutive parameters (i.e. Appendix A2) to other 172 

important physical and structural properties such as the glass transition (Tg), the fragility (m) (i.e. 173 

the rate at which viscosity varies with temperature, that is an indication of melts capacity to store 174 

energy), calorimetric properties (configurational entropy, Sconf and the configurational heat 175 

capacity Cpconf; see Eq A2.4)(e.g. Giordano & Dingwell, 2003a; Giordano et al., 2008b; Chevrel et 176 
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al., 2013; Giordano and Russell, 2017; Russell and Giordano, 2017) and structural properties (e.g. 177 

Qn-species  and Raman Ratio)(i.e. Le Losq and Neuville., 2017; Giordano and Russell, 2018; 178 

Giordano et al., 2019). These models show that, to a first approximation, the viscosity of silicate 179 

melts can be correlated at constant temperature to empirical, composition-based pseudo-structural 180 

parameter (i.e. the SM - structural modifiers - and the NBO/T - i.e. the Non Bridging Oxygen over 181 

Tetrahedra - parameters). The NBO/T and SM parameters are commonly assumed as proxies for the 182 

degree of polymerization of silicate melts and glasses (e.g Giordano and Dingwell, 2003a, b; 183 

Giordano and Russell, 2018; Giordano et al., 2019)(Figs. 2, 3). Compositions with low values of the 184 

SM-parameter (or low NBO/T values) are associated to strong (Arrhenian-like) rheological 185 

behavior, i.e. a linear behavior in the logη-1/T space, and more polymerized melts. On the other 186 

hand high values of SM (or high NBO/Ts) are related to more depolymerized melts which show 187 

fragile rheological behavior (i.e. the logη vs 1/T paths are significantly non-linear)(e.g. Angell, 188 

1991; Giordano and Dingwell, 2003)(Figs. 1-2). Russell et al. (2003), in agreement with early 189 

theoretical studies (e.g. Angell, 1991 amongst others), showed that the pre-exponential factor of the 190 

VFT and AG formulations, i.e. the viscosity at infinite temperature (Appendix A2), is a constant 191 

independent of compositions (Russell et al., 2003; Giordano et al., 2008a). The current models are 192 

applicable within the compositional space that they are based upon, but some compositional regions 193 

(e.g. peralkaline compositions) still remain unmapped and the models struggle to reproduce 194 

measured viscosity values (Giordano et al., 2006, 2008a, Di Genova et al., 2017). Those 195 

formulations also put in evidence that the role of water (H2O) dissolved in the melt is 196 

counterintuitive being opposite to that of network modifier cations. In fact, although dissolved H2O 197 

strongly decreases the viscosity of silicate melts (Fig 1b), the parameters describing the T-198 

dependence of viscosity (e.g. BVFT and CVFT in Eq. 1) are differently affected by H2O and by the 199 

most common structure modifiers (Fig. 2).  200 



10 
 

 201 
Fig. 2. Relationships between constitutive parameters of the GRD model (Giordano et al., 2008), based on the VFT 202 
formulation (Eq. 1), as a function of the modified SM (Structure Modifiers) parameter (Giordano and Dingwell, 2003). 203 
The role of increasing SM on the constitutive parameters of anhydrous melts (black symbols) is that of decreasing BVFT 204 
and increasing CVFT (Fig. 2a, b) while increasing the fragility (m)(Fig. 2f). On the other hand adding H2O to the melt 205 
structure (gray symbols) results in decreasing BVFT while decreasing CVFT, the glass transition temperature Tg (as taken 206 
at a viscosity of 1012 Pas)(Fig. 2e) and the fragility (m). This observation put in evidence that the structural role of H2O 207 
is different from that of those cations which simply modify silicate melts structure (Giordano et al., 2008, 2009). 208 
 209 

2.2. P  – dependent models for predicting melt viscosity. 210 

Measuring the effect of pressure (P) on the viscosity of melts is a complex experimental task 211 

and, as a result, has not been investigated extensively. A short summary of applied techniques and 212 

technological advances is reported in Appendix A1, together with some of the main results. 213 

Largely, the available data imply that the viscosity of silica-rich melts decreases with increasing P, 214 

whereas the viscosity of silica-poor melts increases as pressure increases (Liebske et al., 2005; 215 

Ardia et al., 2008 and references therein). However, the available data suggest that the effect of P is 216 

negligible at near surface conditions pertinent to explosive and effusive volcanism. As a 217 

consequence this effect will not be discussed any further in this contribution. Fig. A2.1 shows for 218 

a) 

b) 

c) 

e) 

f) 

Å H2O increases 
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the Ab-Di system what is the effect of P which changing composition in the binary system, by using 219 

fitting procedure as adopted by Ardia et al. (2008). This system is considered to show what is the 220 

effect of P on polymerized (Ab) to depolymerized (Di) synthetic compositions from low to high P. 221 

Similar behaviours is expected for natural compositions, but, as shown by previous authors (e.g. 222 

Giordano et al., 2008b; Chevrel et al., 2013; Whittington et al., 2009), simplified systems (e.g. An, 223 

Di, Ab) should not be considered as proxies for natural compositions. 224 

 225 

2.3. Toward a structural model for geological melts.  226 

More recently, Le Losq and Neuville (2017), Giordano and Russell (2018) and Giordano et 227 

al. (2019), following different approaches, showed that the viscosity of simple and multicomponent 228 

anhydrous silicate melts over a temperature interval of ~ 700 to 1600°C, can be predicted from the 229 

Raman spectra obtained from the corresponding glasses (i.e. fast quenched melts). These methods 230 

prove to be very promising methods for in situ rheological investigations and may have great 231 

importance for planetary sciences studies (Angel et al., 2012; Giordano and Russell, 2018). Le Losq 232 

and Neuville (2017) developed a 13 - parameters model for melt viscosity in the simple system 233 

SiO2-Na2O-K2O which connects the transport and thermodynamic properties of these simple melts 234 

explicitly to the structural state of the melt expressed via the abundances of Qn -species recovered 235 

from Raman spectral analysis of the glasses. Giordano and Russell (2018) first and Giordano et al. 236 

(2019), lter, the presented a first order model predicting the viscosity of multicomponent natural 237 

melts by the employment of the so-called Raman 238 

ratio (R) and normalized Raman ratio (Rn) derived by Raman spectra measured on the 239 

corresponding glasses as defined by Mercier et al. (2009, 2010). As shown in Fig. 2 a strong 240 

relationship exists between BVFT and CVFT parameters and R which allows the viscosity of 241 

anhydrous multicomponent natural melts to be predicted with a great accuracy. Although, the model 242 

requires expansion to use of the structural information of volatile-bearing melts, it allows accurate 243 
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description of the viscosity of anhydrous melts by the employment of a simple equation with 6 244 

adjustable parameters and the measured R. Also the SM and NBO/T parameters, calculated from 245 

compositions, are shown to be strongly correlated with R. 246 

                              247 

Fig. 2. Model VFT parameters BVFT (R)(A) and CVFT (R)(B) as defined by Giordano and Russell (2018) (panels A, B) 248 
and relationships between pseudo-structural parameters (SM, NBO/T)(C), as a function of the Raman ratio (R).  249 
According to the above mentioned authors: BVFT (R) = b1Rb2 and CVFT (R)=c1Rc2+c3 where b1, b2, c1, c2, c3 are 250 
adjustable parameters.  251 
 252 

3. From pure liquids to multiphase analogues and magmas: advantages and 253 
disadvantages of the different experimental approaches. 254 

Being magmas and volcanic materials very complex mixtures of crystals and vesicles 255 

suspended in a silicate melt phase which evolve as a function of the evolving P, T and 256 

compositional variations and dynamic regimes, the description of effect of suspended phases on the 257 

(A) 

(B) 

(C) 
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viscosity of these natural suspensions has followed different approaches. The early models devoted 258 

to describe the multiphase rheology were historically based on the investigation of analogue 259 

materials (e.g. Einstein, 1906; Einstein and Roscoe, 1952). More recently, the basis for the 260 

description of natural multiphase suspensions has been largely developed using natural and 261 

simplified silicate melts mixtures at experimental conditions at around thermodynamic equilibrium 262 

(e.g. Campagnola et al. 2016; Chevrel et al. 2015; Robert et al. 2014; Sehlke et al. 2014; Soldati et 263 

al. 2016; Vona and Romano 2013; Vona et al. 2011, 2013). As such, their application to natural 264 

environments requires extrapolation into the thermal and deformational disequilibrium state at 265 

which magmatic and volcanic processes commonly operate. This is only possible to a limited 266 

extent, as natural magmatic and volcanic processes often operate quite far from equilibrium. Recent 267 

studies on the disequilibrium rheology of crystallizing natural silicate melts have documented that 268 

deformation-rate and cooling-rate may significantly affect the phase transitions of magmatic 269 

mixtures so to forcing the material toward a thermal and mechanical disequilibrium state (e.g. 270 

Giordano et al., 2007; Kolzenburg et al., 2016, 2017a, b; 2018a,b; Arzilli and Carroll, 2013).  271 

Following, the experimental efforts aimed at retrieving information of the multiphase 272 

rheology of natural silicate mixtures have been broadly summarized by subdividing it into, 273 

experiments on non reactive materials (chapter 4) or reactive silicate melts mixtures undergoing 274 

variable thermal or deformational variation (chapter 5). These kind of experiments can be further 275 

subdivided into three main categories: a) experimentation on analogue materials; b) experiments on 276 

simplified silicate mixtures and c) experiments on natural volcanic products. Each of these 277 

experimental approaches has different advantages/disadvantages which are listed below. 278 

 279 

3.1. Analogue materials 280 

Multiphase analogue materials are commonly constituted by non-reactive mixtures of mono- 281 

or poly-disperse particles and/or bubbles, with varying content and shape and size distributions, 282 
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immersed in some Newtonian synthetic fluid (e.g. silicon oil, syrup, liquid paraffin), which can be 283 

investigated at room temperature. These kinds of multiphase mixtures can normally be investigated 284 

at room temperature conditions and therefore their rheological characterization is simplified as it 285 

does not involve the need for high temperature or pressure equipment and the sample texture can 286 

readily be controlled (e.g. the solid/bubble proportion or variation). These kinds of experiments are 287 

commonly performed on transparent multiphase mixtures and therefore allow observing and 288 

characterizing strain partitioning processes occurring amongst the phases during the deformation. 289 

The main disadvantage of this kind of experimentation is that they cannot reproduce neither the 290 

transient disequilibrium processes occurring in natural mixtures (e.g. crystallization or degassing 291 

stages) nor the natural dynamic physical properties of silicate melts (e.g. viscous and cohesive 292 

forces between the natural residual melt and suspended particles and bubbles). The largest part of 293 

these studies investigate two phase suspensions of either liquid and solid particles (simulating 294 

crystal bearing magma) or liquid and bubbles or vesicles (simulating the exsolution of volatile 295 

gases). 296 

 297 

3.2. Multiphase silicate melt suspensions 298 

The experiments of categories b) and c) require significantly more complex experimental 299 

infrastructure and are substantially more complex to be characterized in terms of textural 300 

parameters (crystal and bubble content; crystals and bubbles size and shape distributions) but they 301 

offer the opportunity to perform measurements on materials with direct application to the Earth 302 

Sciences. The inherent inhomogeneity of geo-materials and the large variations of the size– and 303 

shape-distributions found in natural products can, to date, not be captured in a satisfactory manner 304 

by the available theoretical or empirical models. Experiments on natural materials at controlled 305 

conditions have the advantage of being representative of natural scenarios and, in most cases, they 306 

allow retrieving, at least, the final stage of textural evolution as a function of the imposed 307 
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environmental conditions (i.e. isothermal; non-isothermal; isobaric; non-isobaric) as well as varying 308 

deformation regimes (i.e. constant or varying stress and/or strain rate). This allows the 309 

reconstruction of the rheological parameters in a tightly constrained parameter space, however it 310 

requires unique experimental characterization for each studied scenario. When volatile free samples 311 

are investigated, this kind of experiments can be performed, using a variety of experimental 312 

techniques (e.g. rotational concentric cylinder/Patterson deformation rig and uniaxial compression 313 

and/or micropenetration and parallel plates techniques; see Appendix A1 for details), over the entire 314 

temperature-viscosity interval from super- to sub-liquidus conditions that are characteristic of 315 

natural environments. For volatile-bearing natural melts and suspensions, this becomes more 316 

complex as limited experimental infrastructures exist to date to measure at the elevated pressures 317 

required to maintain volatiles in solution. There have been some recent advances which take 318 

advantage of the metastable liquid state close to Tg or by using devices which allow the sample to 319 

be pressurized (Paterson, 1978; Paterson and Olgaard, 2000; Caricchi et al., 2007; 2008; Ardia et 320 

al., 2008; Robert et al., 2008a, b; Piermarini et al., 1978). A further advancement is the 4D 321 

characterization of the sub liquidus evolution of natural melts is represented by experiments within 322 

synchrotron facilities which allow real time monitoring of the textural evolution of samples of 323 

volcanological interest during crystallization and/or degassing (e.g. Ohtani et al. 2005; Pistone et al. 324 

2015; Pleše et al. 2018; Polacci et al. 2018; Polacci et al. 2010; Song et al. 2001). These techniques 325 

are starting to be coupled with devices for rheometry, which may in the future allow for in situ 326 

measurements of both the crystallization kinetics and the rheological response of evolving natural 327 

systems (Coats et al. 2017; Dobson et al. 2015; Dobson et al. 2016; Raterron and Merkel 2009). The 328 

results on experimental campaigns and modelling of the multiphase rheology of natural magmatic 329 

suspensions performed on natural or analogue silicate melts at high temperatures will be presented 330 

in § 4.2. 331 

 332 
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4. Experiments and models of non-reactive multiphase mixtures 333 

Following the results obtained on isothermal bubble-bearing or particle-bearing suspensions 334 

rheology of analogue materials, simplified silicate melt mixtures and natural melts and magmas are 335 

here first introduced. Finally I summarize what is known on the effect of the presence of 336 

bubbles+crystals on suspension rheology measurements performed at constant temperature. 337 

 338 

4.1. Models of bubble suspension rheology 339 

Early studies estimating the effect of void spaces within natural and simplified silicate melts 340 

(e.g. Bagdassarov and Dingwell1992, 1993; Lejeunne et al. 1999; Vona et al., 2016; Ryan et al., 341 

2019) or synthetic analogues (e.g. Manga et al., 1998; Llewellin et al. 2002a, b; Llewellin and 342 

Manga, 2005) has been carried out by several authors. Those investigations showed, largely, that, 343 

two end member cases can be considered: 1) bubbles behave as rigid objects (capillary number 344 

Ca<1); 2) bubble are deformed (Ca>1)(Llewellin et al., 2002a,b). For the different regimes various 345 

empirical equations were proposed (Bagdassarov and Dingwell., 1992; Lejeunne et al.,1999; 346 

Llewellin et al., 2002; Llewellin and Manga, 2005)(details in Appendix A3) which suggested, that 347 

during steady flow: a)  an increase in relative viscosity in the case of the first end-member (Ca<1) 348 

and b) a decrease of the relative viscosity in the case of second end member condition (Ca>1) can 349 

be observed. Additional complexities are introduced, as discussed in Appendix A3, for non-steady 350 

flow for which the definition of a dynamic capillary number (Cd) is required. The same authors 351 

(e.g. Lejeune and Richet, 1996; Bagdassarov and Pinkerton, 2004, Llewellin et al., 2002, Llewellin 352 

and Manga, 2005) also provided important attainments concerning the understanding of the effect 353 

of closed and opened voids on liquid viscosity (e.g. Lejeune et al., 1999; Bagdassarov and 354 

Dingwell, 1992; Quane and Russell, 2004; Llewellin et al., 2002a, b; Llewellin and Manga, 2005; 355 

Mader et al., 2013; Vona et al., 2016; Ryan et al., 2019). A summary of recent formulations and 356 



17 
 

works related to both crystal bearing and bubble bearing rheological studies is reported in Appendix 357 

A3. 358 

 359 

4.2. From shear-rate independent to shear-rate dependent particle suspension rheology 360 

models of analogue materials 361 

Early studies on the rheological behavior of multiphase suspensions (e.g. Einstein, 1906; 362 

Roscoe, 1952; Krieger and Dougherty, 1959; Gay et al., 1969; Pinkerton and Stevenson, 1992) 363 

suggested a threshold in solid fraction, the so-called crystal maximum packing fraction (ϕc), that 364 

separates a liquid dominated rheology from a solid-dominated rheology. For dilute suspensions of 365 

solid mono-disperse spherical particles (ϕ < 3 vol%) Einstein (1906) proposed that the relative 366 

viscosity ηr (i.e. the ratio between the viscosity of the particle-bearing suspension and that of the 367 

particule-free melts) could be calculated as: ηr = (1+ Bϕ), where B is a constant depending on object 368 

geometrical features (B=2.5 for spheres). Roscoe (1952) extended Einstein’s expression to higher 369 

concentration of spheres, by first defining the maximum crystal packing fraction (ϕm) and providing 370 

for the relative viscosity the following expression: ηr = (1+ϕ/ ϕm)-2.5. Different ϕm values were 371 

proposed by different authors depending on crystal geometry (see appendix A3 for more details). 372 

Later, Krieger and Daugherty (1959) generalized the previous expressions as it follows: ηr = 373 

(1+ϕ/ϕm)-.Beϕm where Be is a constant called the Einstein coefficient (KD model). Others similar 374 

expressions were formulated for which different value of the Be coefficients were determined (see 375 

appendix A3). Although widely applied, a limitation of those empirical or semi-empirical laws is 376 

that they do not account for neither the strain-rate dependence nor the existence of, although still 377 

debated, yield strength (Moitra and Gonnermann, 2015) of multiphase mixtures typical of non-378 

Newtonian fluid (see appendix A3 for more details). For a review on the two phase rheology of 379 

particle bearing analogue suspensions the reader can refer to Mader et al. (2013), who presented a 380 

comprehensive review on this topic.  381 
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 382 

4.3. Non-Newtonian models for particle suspension rheology of simplified silicate mixtures 383 

Concerning magma-equivalent suspensions, more recently Caricchi et al. (2007), Costa et al. 384 

(2007a, 2009), based on the available experimental data obtained at constant temperature, presented 385 

models describing the non-Newtonian strain-rate-dependent rheological effects of crystals in the 386 

range of solid fractions from 0 to 0.8 and over. These models cover the transition from the regime 387 

where the deformation behavior is controlled by melt viscosity up to the beginning of the regime 388 

where the deformation behavior is controlled by a solid framework of interlocking particles. The 389 

most detailed and comprehensive model to date proposed by Costa et al. (2009) model (CM) (Eqs. 390 

A3.3-A3.4.), describes the relative viscosity ηr (i.e. the viscosity of a crystal melt mixture (ηmix) 391 

divided by the viscosity of the melt phase (ηl)). The CM model is the result of the combined 392 

mathematical and experimental efforts condensed in the works of Costa (2005), Costa et al. (2007a) 393 

that was used by Caricchi et al (2007) to describe their experimental data. Compared to previous 394 

models (e.g., Einstein-Roscoe, 1952; Costa, 2005; Caricchi et al., 2007a), the CM model accounts 395 

for the strain-rate dependent changes in the rheology of liquid+crystal mixtures. The model in 396 

particular shows that the strain rate dependence of the relative viscosity at varying crystal volume 397 

fractions follows a sigmoid curve with exponential increase above a critical solid fraction (ϕc ~ 0.3-398 

0.4). This model is consistent with the early Einstein-Roscoe equation (Einstein, 1906; Roscoe, 399 

1952) for crystal fractions in the range of 0 to 0.1-0.3 depending on crystal shape and size (e.g. 400 

Cimarelli et al., 2011). A summary of the main results obtained by the employment of the CM and a 401 

summary of its original formulation are reported in Appendix A3. Extension of CM devoted to 402 

characterize the effect of crystal size and shape distribution and suspended particle ratio and particle 403 

roughness are discussed in Appendix A3. 404 

 405 
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4.4. Non-Newtonian strain-rate dependent models for particle suspension rheology of 406 

natural mixtures. 407 

 The fermenting production of studies (Shaw et al., 1968; Lejeune and Richet, 1995; 408 

Giordano et al., 2007; Caricchi et al., 2007, 2008; Ishibashi, 2009;  Vetere et al., 2010, 2017; Vona 409 

et al., 2011; Pistone et al., 2012, 2016; Chevrel et al., 2015, 2017; Campagnola et al., 2016) devoted 410 

to the characterization of the isothermal viscosity evolution of silicate melts at subliquidus 411 

temperature as a function of presence and size and shape distributions of crystals and bubbles and 412 

deformation regimes of the last twenty years has permitted extraordinary advances that are 413 

condensed in empirical and theoretical models of suspension rheology (Saar et al., 2001; Caricchi et 414 

al., 2007; Costa et al., 2009; Mueller et al. 2011; Vona et al., 2011; Moitra and Gonnermann, 2015). 415 

According to the comprehensive model of Costa et al (2009)(CM)(see § 3.1), inspired by the 416 

previous work of Costa (2005), Costa et al. (2007a) and Caricchi et al (2007), the relative viscosity 417 

of two-phase mixture increases following a sigmoid curve with exponential increase above a critical 418 

solid fraction (ϕc) corresponding to the first (phi~0.3-0.4) inflection point. A second inflection point 419 

(ϕm) at phi ~0.6-0.7 is determined by the beginning of crystal dominated rheology (Fig. A3.3). 420 

Since the seminal contributions of Caricchi et al. (2007) and Costa et al. (2009), numerous 421 

scientists provided new and more complete formulation of the critical crystal fraction (ϕc) for the 422 

natural variability in of crystal size and shape distribution which would also account for new 423 

variables (e.g. crystal surface roughness)(e.g. Mueller et al. 2011; Klein et al., 2018). The 424 

employment of these critical contributions have allowed interpreting, based on model calculations, 425 

the effect of rheological constraints on eruptive behavior. 426 

 427 

4.5. Models for particles and bubbles suspension rheology 428 
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Complex three-phase suspensions (i.e. liquid+bubbles+crystals) have been investigated in 429 

only a few studies (Cordonnier et al., 2009; Robert et al., 2008a, b; Lavalleé et al., 2007, 2008; 430 

Vona et al., 2013, 2017; Campagnola et al., 2016; Pistone et al., 2012, 2015, 2016). Given their 431 

complexity  only a fewer studies have provided preliminary models describing the complex 432 

rheology of three-phase mixtures (Pistone et al., 2012, 2013, 2015, 2016). The viscosity data 433 

presented in those studies are the same as those presented in Pistone et al (2012), but the authors 434 

apply their results to different geological context by showing that size- and shape-distributions of 435 

crystals and bubbles may significantly vary while undergoing certain stress-strain regimes. The 436 

experiments by Pistone et al. (2012) were performed at pressurized and isothermal temperature 437 

conditions in a Paterson device (Appendix A1) on samples for which the liquid+crystal rheology 438 

was characterized by Caricchi et al. (2007). They show that bubbles strongly affect the rheological 439 

properties of crystal-rich mushes. By presenting a comprehensive review of existing literature and 440 

performing new measurements, they estimated that a decrease of up to 4 orders of magnitude is 441 

observed by the addition of only 9 vol% of bubbles to a liquid+crystals suspension containing 70 442 

vol% of crystals. They also established that two non-Newtonian deformation regimes originate as a 443 

consequence of the bubble and crystal interaction: i) a shear thinning behavior result of the crystal 444 

size reduction and shear banding due to strain localization (also observed by Caricchi et al. 2008) 445 

which is typical of magmas which are transported and emplaced in Earth’s crust and may feed 446 

eruptions; ii) a shear thickening behavior which is the consequence of crystal interlock and flow 447 

blockage which they argue locks plutonic rocks in the lower and upper crust, inhibiting eruptions. 448 

More details of the results obtained by the works of Pistone and coauthors are provided in Appendix 449 

A3.3. 450 

 451 

5. Non-Isothermal cooling-rate and strain-rate dependent rheology of volcanic 452 

materials 453 
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Efforts to systematically describe and predict magma migration and lava flow behavior rely 454 

heavily on these experimental measurements to derive empirical models. However, during 455 

migration and transport of silicate melts in the Earth’s crust and at its surface magma/lava can 456 

experience varying cooling and deformation conditions which may drastically influence its 457 

thermorheological evolution; see for example Rhéty et al. (2017) and Robert et al. (2014). As a 458 

consequence, data intended for application to the natural environment will have to account for the 459 

disequilibrium behavior of natural magmatic suspensions. Cooling rates of basaltic lavas, measured 460 

at the surface and within active lava channels during emplacement range from ~0.01 to 15 C̊/min 461 

(Cashman et al., 1999; Flynn and Mouginis-Mark, 1992; Hon et al., 1994; Witter and Harris, 2007; 462 

Kolzenburg et al., 2017). These values are largely representative for the exterior part of lava flows 463 

or for the initial cooling of newly emplaced dikes. They can, therefore, be taken as maximum 464 

cooling rates that are expected to be lower in the interior of the lava flow or a cooling dike. The 465 

importance of varying thermal conditions on the crystallization kinetics and textural development of 466 

silicate melts has been recognized for decades and inspired disequilibrium experimentation in 467 

petrology and volcanology (e.g. Walker et al., 1976; Arzilli and Carroll, 2013; Coish and Taylor, 468 

1979; Gamble and Taylor, 1980; Hammer, 2006; Lofgren, 1980; Long and Wood, 1986; Pinkerton 469 

and Sparks, 1978; Giordano et al., 2007; Vetere et al., 2013). These studies highlight that significant 470 

differences in textures and paragenesis emerge when moving from equilibrium to disequilibrium 471 

conditions that can, in turn, affect the flow behavior. Albeit a growing experimental disequilibrium 472 

database is becoming available no models for the disequilibrium phase dynamics of natural silicate 473 

melts have been developed to date. 474 

Understanding the rheological evolution of crystallizing melts, magmas and volcanic 475 

products requires direct measurement of the flow properties of investigated materials at such 476 

disequilibrium conditions in the field or in the laboratory. In such environments, the studied 477 

materials are degassed and undergoes transient increases in viscosity as it is increasingly 478 
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undercooling until a “rheological cut-off temperature” (Giordano et al., 2007, Kolzenburg et al., 479 

2016, 2017, 2018a, b, c; 2019) is reached and the lava rheologically solidifies. This transient 480 

rheological gradient, which occurs in all natural, non-isothermal environments, governs the lavas 481 

emplacement style. In recent years, the first sets of measurements were presented that constrain the 482 

rheological evolution of natural silicate melts under temperature- and deformation-conditions 483 

pertinent to the transport of silicate melts on the earth’s surface and in shallow magma plumbing 484 

systems. The recovered data show a strong dependence of composition (Kolzenburg et al., 2017, 485 

2018a), cooling-rate (Giordano et al., 2007, Kolzenburg et al., 2016, 2017), oxygen fugacity 486 

(Kolzenburg et al., 2018a) and shear-rate (Kolzenburg et al., 2018) on the thermorheological 487 

evolution of natural silicate melts. They represent the first contributions to a growing database of 488 

lava rheology under natural conditions. However, significant experimental effort in this field is 489 

required to expand the range of available data to cover the most relevant compositions and to 490 

experimentally map the range of parameters pertinent to flow of natural silicate melts under 491 

disequilibrium. Such a database would then allow deducing the underlying processess and 492 

expanding these into a theoretical description of the flow behavior of magma and lava. So far, the 493 

main limitation of these kind of studies is the difficulty to monitor, and therefore extend, the results 494 

to non-degassed materials and therefore the application to intra-crustal magmatic or explosive 495 

volcanic processes. According to previous authors (e.g. Melnik and Sparks, 1999, 2005; Costa and 496 

Macedonio, 2003, 2005; Costa et al., 2007b; Hess et al., 2008; Cordonnier et al., 2012) an 497 

additional complexity could be due to the effects of nonlinear thermal effects, potentially generated 498 

by viscous dissipation and loss by conduction at the contact between the molten material and the 499 

hosting rock, in conduits, and channels or tunnels after eruption to the surface. The nonlinear 500 

behaviour of thermal effect are mainly governed by specific non-dimensional numbers (Graetz; 501 

Nahme; Prandtl; Reynolds; regime), which according to Costa et al. (2007b), amongst the others 502 

above mentioned, may determine the necessity to distinguish between three main regimes - a 503 

conductive-heat-loss-dominated regime, an intermediate regime and a viscous-heating-dominated - 504 
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may have significant effects for the definition of the rheological behaviour and emplacement 505 

dynamics of lava flows and lava domes. 506 

Figure 3 shows a summary of rheological data recovered using a variety of experimental 507 

methods on Etna melts. The melt compositions, albeit stemming from different eruptions, are 508 

similar for most major oxides with the exception of the sample from Vona et al. (2017), that is more 509 

rich in silica and poor in iron and, as a result, more viscous than the samples in Vona et al. (2011) 510 

and Kolzenburg (2018). 511 

For the investigated degassed materials these data summary highlights a number of effects 512 

acting during the transport of magma and lava at sub liquidus conditions. Comparison of the pure 513 

liquid viscosity of the remelted bulk rock and the separated groundmass (Vona et al., 2017); open 514 

triangles documents that, for basaltic melts, crystallization induced changes in melt composition 515 

result in relatively small changes in the viscosity of the liquid phase of the evolving suspension. 516 

 517 
 518 
Fig. 3. Summary of available melt and crystal-suspension viscosity data on remelted Etnean lava as a function 519 

of temperature. Melt viscosity measurements (open blue diamonds, black circles and black and red triangles) were 520 
performed via concentric cylinder viscometry, micro penetration and differential scanning calorimetry; Sub liquidus 521 
viscosity measurements were preformed using 1) concentric cylinder viscometry at constant temperature (black plus 522 
symbols), 2) concentric cylinder viscometry at varying cooling- and shear-rates (open and filled red squared and blue 523 
circles) and 3) parallel plate viscometry via unconfined uniaxial deformation (open black stars). 524 

 525 
Therefore, the variations of the flow behavior of crystallizing basalts are controlled by 526 

variations in the volumetric fractions of crystals and bubbles. These data also reflect the 527 
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measurement limits of the respective methods that are described in more detail in Kolzenburg et al. 528 

(2016a). Concentric cylinder suspension viscometry for these Etnean lavas is confined to <104 Pa s 529 

and shows that the measured viscosities at constant temperature (i.e. at or near thermodynamic and 530 

textural equilibrium) are commonly higher than non-isothermal measurements at the same 531 

temperature. This is due to the fact that under dynamic thermal conditions, the crystal nucleation 532 

and growth kinetics lag behind the equilibrium state and commonly produce lower crystal contents. 533 

The non-isothermal viscosity data from Kolzenburg et al. (2018c) document that both cooling-rate 534 

(blue circles vs. red squares) and shear rate (open vs. filled symbols) exert a modulating effect on 535 

the disequilibrium rheology of the Etna melt. Measurements beyond the mechanical limit of 536 

concentric cylinder  (CC) viscometry were presented in Vona et al. (2017) who employed parallel 537 

plate (PP) viscometry via unconfined uniaxial deformation (open black stars) to measure the 538 

viscosity of three phase magmatic suspensions. The data form an apparent continuing trend with 539 

respect to the concentric cylinder viscometry measurements but document lower lava viscosities 540 

than extrapolation from the two phase measurements would suggest. This is likely a result of the 541 

differences in sample texture, where all CC data are restricted to bubble free two phase suspensions 542 

of crystals and melt, whereas the PP data are measured on three phase (i.e. crystal and bubble 543 

bearing) suspensions. 544 

In summary, the rheological evolution of lava at sub-liquidus conditions can be 545 

reconstructed neatly by combination of datasets from differing sources. This is also shown in Figure 546 

3 in Kolzenburg et al., 2019 (this issue), where laboratory and field estimates of lava rheology at 547 

emplacement conditions are compared and the respective data fall within a range of similar values. 548 

This highlights the potential of cross correlation of data from different experimental and field 549 

sources and the need to expand the available experimental database in order to generate a holistic 550 

view of the dynamics of magma and lava transport. 551 

 552 
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6. Alternative ways of retrieving rheological information from remote sensing ground- 553 

or satellite-based techniques. 554 

Besides laboratory viscometry (i.e. the direct measurement of melt / suspension viscosity 555 

under controlled conditions) there are several other sources of rheological information that are 556 

useful to place the laboratory measurements in context of the natural environment. This kind of 557 

information is important as it allows accounting for the multiphase nature of lava bodies and can 558 

serve to place the laboratory measurements within the framework of conditions relevant in natural 559 

scenarios. However, to date such data only represents a very limited source of information of the 560 

rheological evolution of lava flows, in space and time. This is largely due to large logistical and 561 

financial efforts required for some of these measurements and the uncertainties associated to others. 562 

Broadly these approaches can be separated into: 563 

1. Direct measurement of viscosity on active lava flows via penetration- or rotational-viscometry 564 

(Einarsson, 1949; Gauthier 1973; Panov et al. 1988; Pinkerton and Sparks, 1978; Belousov et 565 

al. 2015; Belousov and Belousova, 2018; Shaw et al., 1968; Pinkerton and Norton, 1995; 566 

Pinkerton and Wilson, 1994; Chevrel et al., 2018). These represent snapshots of actual lava 567 

flow rheology at specific conditions and provide data that helps to constrain the conditions 568 

required to be reproduced in systematic laboratory studies. However, such measurements are 569 

quite difficult and require significant logistical effort and manpower. Further, the available 570 

devices (e.g. Belousov and Belousova, 2018; Chevrel et al., 2018) for such measurements are 571 

only slowly advancing to be able to measure all relevant parameters sufficiently well to 572 

recover high quality viscosity data (Appendix, A1.5). 573 

2. Calculation of the apparent viscosity based on Jeffreys’ equations (e.g. Jeffrey, 1925; Hulme, 574 

1974)(Appendix 4, SMO) using flow rate measurements of active lavas in channelized flows 575 

(Naboko 1938; Nichols 1939; Minakami 1951; Einarsson 1966; Walker 1967; Gautier 1973; 576 

Moore 1978; Andreev 1978; Fink and Zimbelman 1986; Vande-Kirkov 1987; Panov 1988; 577 
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Soldati 2016; Belusov and Belousova 2018). Such data are still few due to the difficulty of 578 

accessing active lava flows. However, the development of affordable unmanned aerial 579 

vehicles (UAV’s) in recent years appears to be promising making this method widely 580 

applicable with the opportune considerations. In fact, the above mentioned approach has 581 

strong limitations as it is based on the assumption of parabolic velocity profile that is not 582 

generally valid because of thermal effects (e.g. Costa and Macedonio, 2003, 2005; Costa et 583 

al., 2007b; Filippucci et al., 2013 and Filippucci et al., 2019, this issue)(details at § 3.1.2). 584 

Such aspect is still never considered to describe the nonlinear dynamic of lava flows and lava 585 

domes rheology (Melnik and Sparks, 1999, 2005; Melnik et al., 2009). To an adequate 586 

analysis of this contribution for specific cases, it is recommended to refer, for instance, to the 587 

above mentioned works and e.g. Filippucci et al (2019)(this issue). 588 

3. Ties between lava flow geometry and viscosity. Morphological-derived rheological 589 

parameters (i.e. viscosity and yield strength) are commonly obtained in planetary sciences 590 

(Heisinger et al., 2007; Castruccio et al., 2010 and Chevrel et al., 2015 provide excellent 591 

reviews of the employed equations and results). Rheological information is obtained by 592 

retrieving, in the field or remotely also from satellites, length, width, thickness and slope of 593 

emplacement of lava flows. This methodology has also been applied based remote sensing 594 

data collected during active flow emplacement (James et al., 2015, Farquarson et al., 2015; 595 

Kolzenburg et al., 2018a). Also in this case, the emplacement of lava flows is commonly 596 

modelled using a single rheological parameter (apparent viscosity or apparent yield strength) 597 

calculated from morphological dimensions using Jeffreys’ and Hulme’s (Jeffrey and Acrivos, 598 

1976; Hulme, 1974) equations. The rheological parameters are then typically further 599 

interpreted in terms of the nature and chemical composition of the lava (e.g., mafic or felsic). 600 

Chevrel et al. (2013, 2015) employing this methodology has shown that providing an unique 601 

factor to describe rheology of lava flows is definitely far from being representative of the real 602 

emplacement dynamics of lava flows. As above mentioned (point 2), given the nonlinear 603 
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dynamics of lava flows and domes, which may determine significant thermal effects, 604 

significant limitations may be observed and should be carefully considered before applying to 605 

any natural context (e.g. Costa and Macedonio, 2003, 2005; Costa et al., 2007b; Filippucci et 606 

al., 2013 and Filippucci et al., 2019, this issue). 607 

4. Ties between the intensity of thermal anomalies generated by actively flowing lava and its 608 

silica content and therewith discharge rate of lavas (e.g. Coppola et al., 2013, 2017). This 609 

approach takes advantage of the fact that low viscosity lavas are readily able to spread into 610 

thin sheets during flow, whereas high viscosity lavas usually retain lower aspect ratios. Since 611 

the heat loss of a lava is largely governed by its surface to volume ratio, its spreading ability 612 

(i.e. viscosity) can, empirically, be correlated to the measured heat loss. Over the last decades 613 

such satellite-based remote sensing and data processing techniques have proved well suited to 614 

complement field observations and to allow timely eruption detection, as well as for flow 615 

tracking.  616 

 617 

7. Concluding remarks and outlook 618 
The present review shows the extraordinary improved knowledge of rheological properties 619 

of multicomponent and multiphase silicate melts occurring in the last twenty years. Such knowledge 620 

advancement has been due to the necessity of constraining natural processes and parallel the 621 

development of new technological advances, frequently obtained to face specific problems. It has 622 

been observed that the continuously evolving rheology of magmas and eruptive products during 623 

their ascent, eruption and emplacement can be described with increasing accuracy and specifically 624 

applied to geological issues with improved confidence. The observed transition between Newtonian 625 

to strongly non-Newtonian rheological behaviour is typical of both simple liquids and/or multiphase 626 

natural mixtures. These transitions govern the observed eruption dynamics and the eruption 627 

dynamic transitions, potentially determining also whether an eruption will be effusive or explosive.  628 
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The employment of the rheological flow laws for multicomponent and multiphase silicate 629 

melts find a very promising application to constraining the advancement and halting of lava flows. 630 

For these superficial phenomena, the opportunity of monitoring important variables such as the 631 

discharge rate and the topography of emplacement provide fundamental advantage for the 632 

employment of numerical simulations tools. These have allowed showing that more accurate 633 

estimates of the effects of crystals and bubbles during lava flow emplacement can be obtained only 634 

by real-time monitoring of lava flows through field and remote sensing methods paralleled by a 635 

proper experimental campaign, which in particular would account for the non-equilibrium, non-636 

isothermal rheology of multiphase mixtures. 637 

This progress in understanding the mechanisms of advancement and emplacement of lava 638 

flows and domes has also been made possible recently thanks to the recent emplacement of large 639 

long-lasting silicic to basaltic effusive eruptions. Prior to 2008, for instance, no rhyolite lava flow-640 

forming eruptive event was observed or documented. Hence, the real-time observations of active 641 

rhyolitic flow and dome emplacement at the Chilean volcanoes of Chaitén (Carn et al. 2009; Lara 642 

2009; Bernstein et al. 2013; Pallister et al. 2013) and Puyehue-Cordón Caulle significantly 643 

developed our knowledge of rhyolitic lava emplacement (Castro et al. 2013; Schipper et al. 2013; 644 

Tuffen et al. 2013; Bertin et al. 2015; Farquharson et al. 2015; Magnall et al. 2017). Analogously 645 

the long lasting 2014-2015 basaltic eruption at Holuhraun, Bardarbunga system, Iceland (e.g. 646 

Pedersen et al., 2017), offered the opportunity to establish/calibrate, through the contemporaneous 647 

employment of field work, remote sensing techniques (Kolzenburg et al., 2018a) and laboratory 648 

experimentation (Kolzenburg et al., 2017), which allow retrieving thermal properties, estimates of 649 

effusion rate (Coppola et al., 2013, 2017) and evaluate the effect of bubbles by comparison with 650 

experimental campaign on liquid+ crystals material as collected during eruption (Kolzenburg et al., 651 

2017, 2018a,b).  Worth mentioning is also the integrated field, remote sensing, physical properties 652 

and physical modelling and numerical simulations studies performed in the recent years for 653 
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intermediate compositions producing effusive activities (Chevrel et al., 2013a,b; 2015). For 654 

andesitic domes huge progresses in understanding the non-linear thermal effects which determine 655 

non-linear eruption dynamics has been made by previous authors (e.g. Costa et al., 2007b; Melnik 656 

and Sparks, 1999, 2005; Melnik et al., 2009). Although the purposes of this paper is to mostly 657 

describe the development of rheological properties in relationship to the emplacement of lavas, 658 

most of the general results obtained here, and in particular those related to the effect of crystals and 659 

vesicle on multiphase rheology, can be extended to eruption dynamics of explosive phases. 660 

Some of the main results deduced by application of the existing rheological models and 661 

experimental studies, supported by petrological analysis and field work, allowed to unequivocally 662 

show that lava flow emplacement may be a long lasting process also for silicic magmas and that 663 

flow may continued also unrooted from the vent for long times (e.g. Farquarson et al., 2015) and 664 

that extremely voluminous silicic lava flows may be emplaced in relatively short time without 665 

giving origin to significant explosive stages (Tuffen et al., 2013; Farquarson et al., 2015; Giordano 666 

et al., 2017; Polo et al., 2018a, b). In addition, Kolzenburg et al (2016, 2017, 2018) showed that 667 

disequilibrium, cooling- and shear-rate controlled rheological properties may have fundamental 668 

influence in determining the effective length of basaltic lava flows. 669 

Although the results evidenced by performing non-equilibrium, non-isothermal, transient 670 

rheology of basaltic lava flows, are promising and provided a first understanding of lava flow 671 

rheology under natural conditions, it is possible to anticipate that future studies will require 672 

performing this kind of experiments also to a wider range of effusive products.  673 
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APPENDICES 681 

Appendix A1. Short review of some of the most common methods to measure viscosity. 682 
The basic nature of magmas and volcanic products changes from liquids, through foams, 683 

emulsions, crystal suspensions, and partially molten aggregates. The rheology of such widely 684 

varying materials, each complex in its own right, and the fact that the viscosity of these materials 685 

can span over, at least, 16 orders of magnitude, defies the use of one single method to fully 686 

characterize their behavior. A large variety of devices for the measurement of the deformation and 687 

transport behavior of magmas, lavas and other volcanic materials have been presented in literature 688 

to date and this continuously evolving field produces novel techniques on a regular basis. These 689 

range from new devices for laboratory measurements to novel methods for ground- and satellite-690 

based viscosity estimates. This field is growing in order to accomplish the complex task of defining 691 

the rheology of natural systems or analogues. 692 

In principle, viscosity information of a material can be obtained from any data where time 693 

evolution of strain (𝛾 = (𝑑𝑥/𝑑𝑧)) and strain-rate ൫𝛾 ̇ = 𝑑𝛾/𝑑𝑡 = 1/𝑑𝑡 (𝑑𝑥/𝑑𝑧)൯ in response to an 694 

applied stress (𝜎) can be recorded.  695 

Viscometry can therefore be performed in devices where either strain-rate is maintained 696 

constant while the resulting stress is measured (e.g., concentric cylinder) or when the imposed stress 697 

is kept constant and the resulting strain-rate is measured (e.g., micropenetration and fiber 698 

elongation; Dingwell et al., 1993). For the sake of brevity, we will not report the details and 699 

analytical procedure of each experimental device here but rather we will provide the most relevant 700 

reference papers describing the devices and the experimental procedures in detail.  701 

Experimental efforts are to date largely subdivided into two categories of two phase 702 

suspension rheometry, namely i) those measuring volatile-bearing suspensions and, ii) those 703 

measuring particle bearing suspensions where volatiles cannot be retained dissolved in the liquid 704 

phase at experimental conditions. At room temperature conditions this distinction fundamentally 705 
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identifies two temperature intervals: i) low-temperature experiments, at or close to the glass 706 

transition temperature, where volatile dissolution kinetics and, in most cases, crystals formation 707 

processes are slow enough not to allow gas exsolution and crystal formation during the experiment 708 

(these span viscosities in the range between ~ 108 to 1012) and, ii) the high-temperature 709 

experiments, where pure liquid and liquid+crystals measurements can be performed. A small 710 

number of laboratory studies of viscous deformation of volatile and crystal-bearing mixtures at high 711 

pressure and temperature also exist. The main advantage of these apparata is that they they attain P-712 

T conditions more realistic for geologically relevant multiphase assemblages and they allow 713 

measurements on volatile bearing liquids at superliquidus conditions.  714 

 715 

 A1.1. Rotational (Couette) rheometry 716 

 The advantage of the rotational concentric cylinder viscometry, compared to other 717 

viscometers, is the possibility to operate continuously at given conditions (e.g. shear rate or shear 718 

stress), so that steady-state measurements can performed while systematically varying the 719 

experimental conditions. This allows detecting and quantifying any time dependency of the 720 

viscosity of the studied material via measurement at different shear rates, temperature, etc. 721 

Therefore, rotational viscometers are among the most widely used devices for measurements on 722 

magma rheology. The most common type are Searle-type viscometers, where the inner cylinder 723 

rotates (at constant strain-rate or stress). The sample is deformed in an annulus of liquid filling the 724 

gap between a rotating inner spindle (commonly a cylinder, or a cone-plate geometry) and an outer 725 

cylindrical cup. Rheometry on natural silicate melts is commonly performed in a wide gap 726 

geometry, where the velocity profile across the deforming liquid or suspension is non-linear. As 727 

such, determination of the sample viscosity relies on calibration of the measured torque against well 728 

characterized standard materials for which the temperature viscosity relationship is accurately 729 

known. 730 
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Viscosities are calculated from the equation for Newtonian liquids:  731 

𝜂 =  ெ
ସ∙గ∙ఆ·(௟)

ቀ ଵ
௥మ − ଵ

ோమቁ      (Eq. A1.1) 732 

where M is the torque, Ω is the angular velocity of the outer cylinder, r and R are the respective 733 

radii of the inner and outer cylinders, and (l) is the effective length of the inner cylinder. 734 

As above mentioned, the common approach for natural silicate melt viscometry at high 735 

temperature is to use a wide gap geometry and calibrating the torque exerted on a spindle to the 736 

melt viscosity using a standard. As it can be retrieved by Eq. A1.1 wide gap geometry has the 737 

disadvantage of being slightly less accurate than small gap geometry, but the advantage of 738 

introducing small viscosity reading errors in the case of crystallization on the adopted rotating 739 

spindles or in the gap space. 740 

Early devices of this type that produced a plethora of experimental data are described in a 741 

series of papers measuring the viscosity of synthetic silicate melts (Dingwell 1986; Dingwell 1989; 742 

Dingwell and Virgo 1988). For these high temperature rheological experiments a solid precious 743 

metal spindle is hung from the measurement head and immersed into the sample while being rotated 744 

at a constant rate. In this setup, the torque needed to maintain a constant rotation rate is proportional 745 

to the melt/suspension viscosity and is recorded at a frequency of ~1 Hz. The spindles used in these 746 

experiments vary in diameter and are chosen depending on the expected melt viscosity, to suit the 747 

torque and deformation rate range of interest. They are commonly machined to have a 45̊ conical 748 

top and bottom to reduce edge effects. Calibration of these devices is performed for shear-rates and 749 

temperatures exceeding those used in the experiments to account for mechanical effects in the 750 

measurement setup. The precision of the viscosity determination is ca. ±3% as described in 751 

Dingwell (1986). Since direct temperature measurement during viscometry was not possible up 752 

until recently, the thermal evolution of the sample at the imposed temperatures is commonly 753 

calibrated over the entire experimental temperature range using a platinum sheathed type-S 754 
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thermocouple immersed in an inert standard glass that does not crystallize over the entire calibration 755 

range. 756 

The concentric cylinder is used to investigate both volatile-free liquids (at above liquidus 757 

conditions) and liquid+crystal suspensions (at subliquidus conditions) over the viscosity range 758 

between 10-1 and 104 Pa s (Dingwell and Virgo, 1988; Chevrel et al. 2015; Chevrel et al. 2013a; 759 

Dingwell 1989; Dingwell and Virgo 1987; Giordano et al. 2005, 2006; Kolzenburg et al. 2016b; 760 

2017; Sato 2005; Vetere et al. 2017; Vona et al. 2011, 2013). It has also been employed to study the 761 

effect of changing oxygen fugacity on melt and suspension viscosity via combination with gas 762 

mixing furnaces (see for example Dingwell and Virgo,1987, Chevrel et al., 2013a, Kolzenburg et 763 

al., 2018b). 764 

There are two dominant mechanical constraints of these experimental apparatuses that 765 

inhibit rheometry at high viscosity values presented here 1) the torque limit of the rheometer head 766 

and 2) the fact that the crucible containing the experimental sample may start to slip and rotate in its 767 

holder at high torque, rendering the measured torque data useless. This issue was addressed recently 768 

in the construction of a new rheometer by Morgavi et al. (2015), who designed a new crucible 769 

coupling, allowing both viscometry at higher torques, expanding the measurement range to 104 Pa s, 770 

and allowing also for chaotic mixing experiments. 771 

A further advancement in concentric cylinder viscometry at sub liquidus conditions was the 772 

development of an experimental device and method for in-situ differential thermal analysis during 773 

concentric cylinder rheometry  as presented in Kolzenburg et al. (2016a). This device allows 774 

tracking the crystallization relates change in the effective viscosity of the suspension due to 775 

crystallization as well as the latent heat released during crystallization. Such a device, in turn 776 

allowed studying the shear rate dependence of sub liquidus lava rheology at conditions pertinent to 777 

lava flow emplacement (Kolzenburg et al., 2018c,d). 778 
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 779 

A1.2. Dilatometric methods 780 

These methods can be used to measure, at close to glass transition temperature (e.g. 781 

viscosity between 108 and 1014 Pa s), pure liquid as well as two-phase and three-phase suspensions 782 

(Robert et al., 2008a,b; Vona et al., 2013). The most widely such a devices are the dilatometric 783 

method of the micropenetration (Hess and Dingwell, 1986) and the uniaxial parallel plate (e.g. 784 

Robert et al., 2008a, b) the details of which are provided below. 785 

Micropenetration 786 
Micropenetration technique involves determining the rate at which an hemispherical Ir-787 

indenter moves into the melt surface under a fixed load. The sample is placed in a silica rod sample 788 

holder under an Argon gas flow. The indenter is attached to one end of an alumina rod. The other 789 

end of the alumina rod is attached to a mass. The metal connection between the alumina rod and the 790 

weight pan acts as the core of a calibrated linear voltage displacement transducer (LVDT)(e.g. Hess 791 

and Dingwell, 1996). The movement of this metal core as the indenter is pushed into the melt yields 792 

the displacement. The absolute shear viscosity is determined via the following equation 793 

(Pocklington, 1940; Tobolsky and Taylor, 1963): 794 

𝜂 (𝑃𝑎 ∙ 𝑠) =  ଴.ଵ଼଻ହ∙௉∙௧
௥బ.ఱ∙ఈభ.ఱ        (Eq. A1.2) 795 

where P is the applied force, r is the radius of the hemisphere, t is the penetration time and α 796 

is the indentation distance. This provides an accurate viscosity value if the indentation distance is 797 

lower than 150 – 200 microns. The technique allows viscosity to be determined at T up to 1100°C 798 

in the range 108.5 to 1012 Pa·s without any problems with vesiculation. One advantage of the 799 

micropenetration technique is that it only requires a small amounts of sample (other techniques used 800 

for high viscosity measurements, such as parallel plates and fiber elongation methods instead 801 

necessitate larger amount of material).  802 
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Parallel plate 803 
Using the parallel plate technique, the shear viscosity of the cores is computed for a given 804 

applied load (F; N), sample volume (V; m3), sample length at time t (L; m), and rate of shortening 805 

(∂L/∂t; m/s) using the “no-slip” (Eq. A1.2), and “perfect-slip” (Eq. A1.3) models of Gent (1960) (cf. 806 

Dingwell et al. 1993): 807 

𝜂ௌ (𝑃𝑎 ∙ 𝑠) =  ଶగ∙௅ఱி

ଷ௏∙೏ಽ
೏೟(ଶగ௅యା௏)

       (Eq. A1.3) 808 

and 809 

𝜂ௌ (𝑃𝑎 ∙ 𝑠) =  ௅మி

ଷ௏∙೏ಽ
೏೟

        (Eq. A1.4) 810 

respectively. The “no slip” equation is used for the case in which the surface area of contact 811 

between the melt and the parallel plates remains constant and the cylinder bulges with increasing 812 

deformation. The “perfect slip” equation is used for the case in which the surface area between the 813 

cylinder and the plate increases with deformation and the cylinder does not bulge.  814 

 815 

A1.3. Falling Sphere method (Simple and centrifuge) 816 

The falling sphere method relies on determining the speed of a sphere (typically made of 817 

metal) falling through molten material. Viscosity is calculated according to the Stokes law as it 818 

follows:  819 

𝜂 (𝑃𝑎 ∙ 𝑠) =  ଶ
ଽ

∙ (ఘೞି ఘಾ)∙௔∙௥మ

௩
∙ 𝐶ி      (Eq. A1.5) 820 

where η is the viscosity (Pa·s), US-UM the density contrast between the sinking sphere and 821 

the melt (kg/m3), a the acceleration of typically 1g (m/s2), r the radius of the sphere (m), and v the 822 

velocity of the sinking sphere (m/s). CF is the Faxèn correction term (Faxèn, 1922), which accounts 823 

for interactions between the sinking sphere and the wall of the capsule expressed by  824 
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𝐶ி = 1 − 2.104 ∙ ቀ௥
ோ

ቁ + 2.09 ∙ ቀ௥
ோ

ቁ
ଷ

− 0.95 ∙ ቀ௥
ோ

ቁ
ହ
    (Eq. A1.6) 825 

where R is the radius of the container, in which the sphere is positioned in the center. The 826 

Faxèn correction is considered to result in a slight underestimation of the calculated viscosity, but 827 

constitutes the best expression to account for the wall-effect on viscosity (Kahle et al., 2003). 828 

Maximizing the density contrast (US - UM) between the sphere and the melt reduces the 829 

uncertainty associated with the estimation of melt density. As a consequence Pt (US=21450 kg/m3) 830 

or Mo spheres (US=10220 kg/m3) are commonly employed. 831 

Experiments that allow to investigate the variation of viscosity at the P-T-X(H2O) 832 

conditions relevant to magmatic and volcanological environments are incredibly time consuming 833 

and require significant experimental effort. The range of viscosities investigated with the falling 834 

sphere technique varies from 10-4 Pa s (Brearley et al., 1986; Behrens and Schulze, 2003; Audetat 835 

and Keppler, 2004; Kanzaki et al., 1987; Taniguchi, 1995; Suzuki et al., 2005) to 104.5 Pa s 836 

(Kushiro et al., 1976; Kushiro, 1976, 1977, 1978; Baker and Vaillancourt, 1995; Schulze et al., 837 

1999; Liebske et al., 2005; Vetere et al., 2006; Del Gaudio et al., 2007). At the lower viscosity end 838 

(<1 Pa s), represented by ultramafic melts, real time movies of the falling sphere are necessary and 839 

are obtained through the use of X-rays from a synchrotron source. At the upper viscosity end (104.5 840 

Pa s), represented by granitic melts, the sinking distance of the sphere becomes smaller than its 841 

diameter and the sum of the experimental errors in determining the sphere location. Falling sphere 842 

viscometry has been employed at ambient (Dorfman et al., 1997; Riebling, 1966) and high-P 843 

conditions (e.g. Kushiro, 1978; Ryan and Blevins, 1987; Persikov et al., 1990; Scarfe et al., 1986; 844 

Dingwell, 1987; Brearley and Montana, 1989; and White and Montana, 1990; Baker and 845 

Vaillancourt, 1995; Schulze et al., 1999; Liebske et al., 2005; Vetere et al., 2006; Del Gaudio et al., 846 

2007) within piston cylinders and multi anvils (up to 130 kbar, Liebske et al., 2005) for 847 

simultaneous determination of density and viscosity. Maximizing the density contrast between the 848 
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falling sphere and the surrounding melt reduces errors associated with the estimation of melt density 849 

and viscosity. Errors in density contrast can easily be reduced below the uncertainties inherent in 850 

the other variables affecting viscosity determination. Total errors for falling sphere viscosity 851 

determinations using the piston cylinder apparatus are probably nearer 20%. Burnham (1963) 852 

describes a variant on the falling sphere method in which the fall of a sphere, connected to a wire 853 

isolated electrically from the metal capsule, was electrically detected by the contact of the sphere 854 

against the capsule wall. Persikov et al. (1990) used a radioactive-tracer doped falling sphere in an 855 

internally-heated pressure vessel. The descent of the sphere is recorded radiographically as the 856 

sphere transits two "windows" in a lead shield. Very high pressure measurements of viscosity have 857 

been made by Kanzaki et al. (1987) who imaged the falling sphere in real time using a synchrotron 858 

radiation source. This method extends the lower limit of measurable viscosity using the falling 859 

sphere method at high pressure to 10-3 Pa s.  860 

The highest viscosity that can be investigated by the falling sphere method may be expanded 861 

by the use of a centrifuge apparatus (Dorfman et al., 1996; Dorfman et al., 1997; Bagdassarov and 862 

Dorfman, 1998; Schmidt et al., 2006; Ardia et al., 2008). With viscosity and acceleration scaling 863 

linearly, a centrifugal force of 1000g expands the viscosity range to 107 Pa s. The elevated 864 

acceleration (up to 1000g) also allows investigating viscosities between the solidus and the glass 865 

transition temperature (Tg). This kind of measurements are commonly performed on pure liquids. 866 

We are aware of only one published paper (Vetere et al. 2010) which investigated multiphase 867 

rheology of andesitic lavas under pressure conditions. In a few cases these experiments were run at 868 

acceleration of 1000g by means of centrifuge falling-sphere methods (e.g. Ardia et al., 2008).   869 

 870 

A1.4. Paterson type apparata 871 

The gold standard for quantitative high pressure deformation studies is the gas apparatus 872 

developed by Paterson (1970) and Paterson and Olgaard (2000). The apparatus can either compress 873 
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or extend the sample. Some gas apparatus, for example, the Paterson gas apparatus (Paterson, 874 

1970), can also deform the sample in torsion. Torsion allows much higher strains to be reached. 875 

Because the amount of strain in the sample varies radically from the centre to the edge in torsion 876 

experiments, torsion samples are constructed in the shape of a thin ring with jacket materials filling 877 

the centre. What gives the gas apparatus its edge is that the gas confining medium (usually Ar) 878 

provides a perfect uniaxial stress field. Because the gas supports no shear tractions along the sides 879 

of the sample or pistons, an external load cell can accurately measure the load supported by the 880 

sample. Unfortunately, the gas apparatus can only achieve a confining pressure of 500 MPa (5 881 

kbar). This pressure is equivalent to the pressure at 15 km depth in the earth. The limited pressure 882 

range is a severe limitation for students of the deep earth. Online resources: an Introduction to High 883 

Pressure Rock Deformation Techniques can be found at: 884 

https://serc.carleton.edu/NAGTWorkshops/mineralogy/mineral_physics/deformation_mechanisms.html. 885 

 886 

A1.5. Direct viscosity measurements on active flows in the field  887 

Few direct measurements of lava rheology under natural conditions have been reported 888 

(Pinkerton and Sparks, 1978; Shaw et al., 1968; Belousov and Belousova, 2018; Chevrel et al.  889 

2018). Nonetheless, some of these methods are based on the assumption of a parabolic velocity 890 

profile (Jeffrey's eq) and have the limitations highlighted at paragraph 3.2.1. These measurements 891 

are crucial for benchmarking of experimental data, but insufficient to develop a systematic 892 

understanding of the evolution of lava-flow properties in response to varying external and internal 893 

parameters (composition, cooling-and shear-rate, oxygen fugacity etc.), as they represent snapshots 894 

of the system at one specific condition (Belousov and Belousova, 2018). Belousov and Belousova, 895 

(2018) and Chevrel et al (2018) present the most recent technological advances of this unique 896 

technique and new field measurement results. Such direct measurements in the field require 897 

inserting a custom-built penetrometer, constituted by a steel bar with a half-spehrical penetration 898 
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head (e.g. Belousov and Belousova, 2018), or a viscometer (Chevrel et al., 2018), into the molten 899 

lava while it is flowing. Such in-situ viscometry is challenging due to the difficulty of accessing an 900 

active lava flow, and the lack of appropriate instrumentation. Measurements under such conditions 901 

are therefore very restricted and have mostly been performed on slow advancing lava flows and far 902 

from the solidification point of the lava. 903 

1) During penetration viscometry (similar to that used to perform micropenetration experiment in 904 

the lab), where a rod is pushed into the liquid lava, the force required to penetrate the lava is kept 905 

constant and penetration is monitored with time until penetration ceases. Viscosity of lava is then 906 

calculated based on Stoke’s law for half a sphere (i.e. the half spherical penetrating tip of the 907 

penetrating rod). Belousov and Belousova (2018) employed the relationship proposed by Panov 908 

(1988), according to which:  909 

𝜂ௌ (𝑃𝑎 ∙ 𝑠) =  ி
ଷ஠𝓋ୖ

    (A1.7) 910 

 where F is the force (N), 𝓋 is the speed of penetration (m/s) and R is the radius of the penetration 911 

head (m). 912 

2) The rotational viscometry method, requires a shear vane to be inserted into the molten 913 

lava and the shear stress values corresponding to various applied rotation rates is measured. 914 

Viscosity is estimated as the shear stress over the strain-rate ratio (𝜂 = ఛ
 ఊ̇

). The shear stress (τ) is 915 

calculated by:  𝜏 = ெ
ଶగ௛ோ೔

మ where M is the torque recorded by the torque sensor, h is the length of the 916 

vane and Ri is the equivalent radius of the rotating vane assuming a wide gap concentric cylinder 917 

geometry. The strain-rate (𝛾̇) is calculated according to the following formula:  𝛾̇ = ଶఠ

௡අଵିቀೃഢ
ೃబቁ

మ
೙ඉ

̇  918 

where ω is the rotational velocity (rad/s) and Ri and Ro are the inner and the outer radius of the 919 

spindle. n is the flow index which is determined by performing measurements at various rotational 920 

speed. The advantage of this approach is that it allows for evaluation of the lavas effective viscosity 921 
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at a range of shear rates. Viscosity estimates obtained by employing this procedure are reported in 922 

Chevrel et al. (2018).  923 
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Appendix A2. Empirical and theoretical based formulations to express the T- and P-924 
dependence of the viscosity of silicate liquids. 925 
Among the known theoretical relations for coefficient of viscous flow of liquids, the Eyring 926 

arrhenian equation (Glasstone et al., 1941) is the most popular: 927 

η = η0 exp(ΔG/RT)        (Eq. A2.1); 928 

where R is the gas constant, T the absolute temperature and ΔG is the free activation energy 929 

of yield of the flow, that is, a function of the internal energy, entropy, P, and V (i.e. the volume of 930 

particles). The pre-exponential factor η0, is related to the jump frequency of an atom from one sie to 931 

another and represent the microscopic view of the “viscosity”. It can be expressed as η0 =hNA /Vm) 932 

where h is the Planck's constant, (6.63 10-34 J s)  and NA the Avogadro's number (6.02 1027) and Vm  933 

is the molar volume of the investigated liquid at very high temperature. This equation can be 934 

rewritten in logarithmic scale as it follows: 935 

log η = A + B/T        (Eq. A2.2); 936 

where A=2.303*logη0 and B=ΔG/R. This Arrhenian form for viscosity has been used by 937 

Shaw (1972) and Bottinga and Weill (1972) to describe the first description of the viscosity of 938 

natural silicate melts. 939 

Expansion of the melt viscometry database over a wider range of melt compositions and 940 

temperatures (closer to the so-called calorimetric glass transition temperature, Tg
cal, Angell, 1991; 941 

Scherer, 1984; Giordano et al., 2008a) exposed the limitations of Arrhenian models and new 942 

empirical and theoretical-based models have been provided to describe the temperature dependence 943 

of the viscosity of silicate liquids. In particular, the T–dependence of viscosity is accounted for by 944 

the three parameters in each of the most commonly employed formulation: (i) Vogel–Fulcher–945 

Tamman (VFT)(Vogel, 1921; Fulcher, 1925; Tamman and Hesse, 1926); (ii) Adam–Gibbs (AG) 946 

(Adam and Gibbs, 1965) and (iii) Avramov (AV) (Avramov, 1998). These formulations 947 

accommodating the non-Arrhenian T -dependence of silicate melts, can be written as following: 948 
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Vogel–Fulcher–Tammann (VFT) :           log η = AVFT + BVFT/(T − CVFT);  (Eq. A2.3); 949 
Adam and Gibbs (AG):                             log η = AAG + BAG/[T Sconf(T,x)];  (Eq. A2.4); 950 
Avramov (AV):                                       log η = AAV + (BAV/T )CAV;   (Eq. A2.5); 951 
 952 

where η is the viscosity in Pa s, T is the absolute temperature, and A, B, C, D and Sconf (T, 953 

x)(the so-called configurational entropy; representing the number of configurations accessible to the 954 

liquids at the glass transition (Tg), Richet, 1984) are adjustable parameters (e.g. Giordano and 955 

Russell, 2007; Giordano et al., 2008a, b; Russell and Giordano, 2017). The literature shows that, in 956 

these systems, viscosity converges to a common value of the pre-exponential factors (A) that can be 957 

assumed, at fixed pressure, to be independent of composition (e.g. Russell et al., 2003; Russell and 958 

Giordano, 2005;; Giordano and Russell, 2007; Giordano et al., 2008a). The other adjustable 959 

parameters in each equation are expanded to capture the effect of composition (Hui and Zhang, 960 

2007; Giordano et al., 2008a). Several other formulations exist that can be reconciled with the three 961 

model equation above mentioned. For instance, the most recent formulation of Mauro et al. (2009), 962 

which is based on the AG theory, assumes that Sconf (T) is closely connected with the topological 963 

degrees of freedom of atoms which provide an increased number of adjustable parameters. The 964 

most recent GRD and HZ models used to describe the viscosity of anhydrous and volatile bearing 965 

melts where B, C and Sconf parameters accommodate the effect of composition. 966 

 967 
Empirical formulations used to constrain the effect of pressure on the viscosity of liquids 968 

and characteristic parameters of Equations (Eqs. A2.1-A2.5) are provided by various authors (e.g. 969 

Liebske et al., 2003; Ardia et al., 2008; Hui et al., 2009). In particular, Liebske et al (2003) by 970 

modelling the viscosity of andesitic magmas and Ardia et al. (2008) modelling the viscosity of more 971 

silicic magmas (rhyolites), used VFT expression (Eq. A2.3) where BVFT parameter was function of 972 

H2O and cubic and a linear function of P, respectively, and CVFT parameter was only function of 973 

H2O content and independent of P. Fig. A2.1 reports, as an example, the variation of viscosity at 974 
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constant T (1250 °C) as a function of P for melts of the Ab - Di system as fitted by using a linear 975 

dependence from P of the BVFT parameter.  976 
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Fig. A2.1. Isothermal viscosity variation as a function P (up to 100 kbar) for melts of the Ab-Di systems. The 978 
viscosity was calculated here using VFT equation (Eq. A2.3) where the BVFT = B0, VFT +b1*P(Kbar), where B0, VFT 979 
is the pseudo-activation energy at 1 bar pressure and b1 is an adjustable parameter accounting for a linear P-980 
dependence of BVFT. The effect of composition is shown in the figure. At T=1250 °C the pure liquid viscosity of the 981 
albitic term (Ab100, left), proxy for a polymerized melt, is decreasing as P increases. On the other hand the pure liquid 982 
viscosity for the diopsidic melt (Di100, right), proxy for more depolymerized compositions, increases as P increases. 983 

 984 

Online resources: a detailed summary of the philosophical approach employed to the construction 985 

of the GRD model, predictable variables and downloadable versions of the viscosity calculator can 986 

be found online at: https://www.eoas.ubc.ca/~krussell/VISCOSITY/grdViscosity.html 987 
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Appendix A3. Empirical formulations to express the effect of varying crystal/vesicle 988 
content, size and shape distributions and strain-rate on the viscosity of multiphase 989 
mixtures. 990 
Viscosity is defined as the resistance to flow under specific applied stress (σ) conditions and 991 

it is expressed by complex functions of applied stress and resulting strain (𝛾) and strain-rates (e.g., 992 

Herschel and Bulkley, 1926). For a Newtonian liquid, σ = η𝛾̇ where η is the Newtonian viscosity. It 993 

is well-kown from both laboratory studies on analogue materials (e.g. Mueller et al., 2011; 994 

Cimarelli et al, 2011; Truby et al., 2015) and natural remelted volcanic rock (e.g  Caricchi et al., 995 

2008; Vona et al., 2011; Campagnola et al., 2016; Kolzenburg et al., 2016; Soldati et al., 2016, 996 

2017) that suspended solids and natural crystals lead to the increase of the suspension’s bulk 997 

viscosity of up to several orders of magnitude compared to the solid particles free counterpart. On 998 

the other hand the role of an addition of bubbles on a suspension may lead to both a viscosity 999 

increase (spherical bubbles) or decrease (oblate deformed bubbles)(e.g. Llewellin et al., 2002). The 1000 

presence of a solid phase or a gaseous phase to form a solid or bubble suspension commonly yield 1001 

non-Newtonian behavior, expressed in the more general equation: 1002 

𝜎 = 𝜎଴ + 𝐾𝛾̇௡         (Eq. A3.1) 1003 

where σ଴ is a stress threshold (or yield stress) to be overcome in order to start flow; K is the 1004 

flow consistency (which corresponds to shear viscosity at 𝛾 = 1 s−1) and n is the flow index which 1005 

describes the degree of non-Newtonian behavior, being equal to 1 for Newtonian fluids, n>1 for 1006 

shear-thickening and n<1 for shear-thinning fluids. For non-Newtonian fluid (𝜎଴=0), the term 𝜎/1007 

𝛾̇ ̇̇  is equal to 𝐾𝛾̇௡ିଵ and an apparent viscosity will be defined as 𝜂௔௣௣ = 𝜎/𝛾̇ , while the relative 1008 

viscosity (ηr)(ratio between stress and strain rate divided by the viscosity of the suspending liquid, 1009 

ηl) will be expressed by: 1010 

𝜂௥ = (௄
ఎ೗

) 𝛾̇௡ିଵ          (Eq. A3.2) 1011 

where Kr=K/ηl represents the relative consistency. 1012 
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A3.1. Bubble-melt suspensions 1013 

When a bubble suspension flows bubble deformation is promoted, through the viscous 1014 

forces, by shear (tending to deform bubbles) and opposed by surface tension which tends to 1015 

restore/maintain bubble sphericity. The adimensional capillary number (Ca), i.e. the measure of the 1016 

relative importance (i.e. the ratio) of shear and interfacial stresses, is: 𝐶𝑎 = ஗೘೐೗೟·୰·ఊ̇·
௰

, where ηmelt, r, 1017 

𝛾̇ and 𝛤 are the viscosity of the suspension, the radius of the undeformed bubble, the shear 1018 

rate of the flow and the liquid-vapour surface tension, respectively. The presence of bubbles 1019 

can either increase or decrease the viscosity of a suspension depending on the dynamic regime 1020 

(Manga et al., 1998; Lejeunne et al., 1999; Llewellin et al., 2002a,b; Rust and Manga, 2002; Stein 1021 

and Spera, 2002; Llewellin and Manga, 2005). Similar to solid particles, bubbles deform flow lines 1022 

within the suspending medium, which tends to increase the viscosity. However, at the same time, 1023 

they provide free-slip surfaces which favour flow. For Ca<1, interfacial tension forces dominate 1024 

and bubbles are approximately spherical (e.g., Taylor, 1932). In this case  flow-line distortion is 1025 

great and free-slip surface area is small, hence the overall effect is to increase the suspension 1026 

viscosity. In contrast, at high deformation regimes, the bubbles will undergo significant elongation 1027 

(Ca>1), thus favouring small flow-line distortion, greater free-slip surface area and  a decrease in 1028 

the suspension viscosity (Hinch and Acrivos, 1980, Llewellin and Manga, 2005; Vona et al., 2013, 1029 

2017). 1030 

However, the capillary number Ca implies an equilibrium between viscous and interfacial 1031 

forces, and it can be applied only for steady flows, in which the conditions of shear have remained 1032 

constant for a long enough time. As a consequence, if the shear strain rate is changing, the flow is 1033 

unsteady and to describe unsteadiness Llewellin et al. (2002a, b) introduced the dynamic capillary 1034 

number 𝐶𝑑 = ఎ଴·௥·
ఛ

ఊ̈
ఊ̇
, where the double derivative of strain-rate is the speed of strain-rate variation. 1035 

For Cd≪1, the changes in shear environment are slow enough to allow the bubbles to reach their 1036 

equilibrium shape, hence flow is steady and the dynamic regime is controlled by the capillary 1037 
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number Ca. On the other hand, if Cd≫1, flow is unsteady, the bubbles are not able to reach their 1038 

equilibrium shape in response to fast strain rate and they are, therefore, unrelaxed (they are actively 1039 

deforming). In other words, in these conditions the rate of bubble deformation is large compared 1040 

with the bulk strain rate and, therefore, most of the strain is accommodated by deformation of the 1041 

gas in the bubbles. Since the gaseous phase has a negligible viscosity, this leads to a decrease of 1042 

viscosity as the bubble content increases. Llewellin and Manga (2005) parameterized the effect of 1043 

bubbles on the relative viscosity of a bubbly suspension, considering a single equation for the 1044 

positive dependence of ηr on ϕb and a single equation for the negative dependence of ηr on ϕb, 1045 

regardless of whether the decrease in viscosity in the latter case is related to steady (Ca>1) or 1046 

unsteady (Cd>1) flow. Based on existing literature models (Bagdassarov and Dingwell, 1992, 1993; 1047 

Pal 2003, Llewellin et al., 2002a,b), the authors suggested two different parameterizations for each 1048 

viscous regime (increasing and decreasing ηr), considering two limiting cases corresponding to a 1049 

minimum (MIN) and a maximum (MAX) effect of the bubbles on the viscosity of the suspensions.  1050 

For Ca<1 (increasing ηr): 1051 

ηr=(1-ϕb)-1 (MIN: Pal 2003); ηr=(1+9ϕb) (MAX: Llewellin, 2002a,b)  (Eq. A3.13) 1052 

For Ca>1 or Cd>1 (decrasing ηr): 1053 

ηr =(1-ϕb)5/3(MIN: Pal 2003); ηr =[1/(1+22.4ϕb)] (MAX: Bagdassarov & Dingwell, 1992) (Eq. 1054 

A3.14)  1055 

Online resources: a synthesis of the results obtained by Llewellin research can be found at 1056 

the following webpage: http://community.dur.ac.uk/ed.llewellin/rheology.htm 1057 

Quane and Russell (2005), Russell and Quane (2005) and Robert et al (2008a, b) by 1058 

performing uniaxial compression experiments on porous samples modelled the effective evolving 1059 

viscosity (𝜂௘) and porosity (φ) as from Russell and Quane (2005):  1060 
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log 𝜂௘ = log 𝜂଴ –[αφ/(1-φ)]β        (Eq. A3.15) 1061 

where α, β are unknown adjustable coefficients and ηo is the unknown effective viscosity of the 1062 

melt plus crystal cargo at zero porosity. The parameter β was added to the original model of 1063 

Ducamp and Raj (1989) to capture the full range of data and preserve a concave down equation 1064 

form in the variables space (𝜂, φ). The employed model was used to estimate the timescale for the 1065 

welding of the block and ash flow deposits at Mount Meager. The results of the specific 1066 

measurements of Quane and Russell (2005), Russell and Quane (2005), Robert et al (2008a, b) and 1067 

new data on natural samples were compared by Vona et al. (2016) with the modelling proposed by 1068 

Mader et al (2013), based on the analysis of analogue materials. Those results are in better 1069 

agreement with the model proposed by Bagdassarov and Dingwell (1992). Finally, Vona et al. 1070 

(2016) proposed a model to evaluate the strength of vesiculated magmas based on Eq. A3.15. 1071 

 1072 

A3.2. Crystal-melt suspensions  1073 

In the last decades a significant number of experimental studies have investigated the 1074 

rheological properties of different solid-bearing suspensions constituted by synthetic analogues 1075 

(Mueller et al., 2011; Cimarelli et al., 2011; Moitra and Gonnermann, 2015; Truby et al., 2015; 1076 

Klein et al., 2017, 2018; Dobson et al., 2015, 2016); synthetic silicate melts (Lejeune and Richet, 1077 

1995; Caricchi et al., 2007; Champallier et al., 2008 and Costa et al., 2007a, 2009) and crystal-1078 

bearing natural magmas at subliquidus temperatures (e.g., Gay et al., 1969; Shaw, 1969; Marsh, 1079 

1981; Ryerson et al., 1988; Pinkerton and Stevenson, 1992; Pinkerton and Norton, 1995; Sato, 1080 

2005; Ishibashi and Sato, 2007; Caricchi et al., , 2008; Ishibashi, 2009; Vona et al., 2011, 2017; 1081 

Campagnola et al., 2016; Kolzenburg et al., 2016, 2017, 2018). 1082 

In crystal-melt suspensions, the dispersed phase acts as a ‘hard’ (non-deformable) inclusion 1083 

which increases the viscosity of the suspension through both hydrodynamic and mechanical 1084 

interaction among crystals. For low solid fractions, the viscosity increases slowly with the particle 1085 
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volume fraction (ϕ), and the suspension maintains a Newtonian rheological behavior (strain-rate 1086 

independent). When ϕ exceeds a critical value (ϕc), particles start to interact with each other and a 1087 

solid network of particles begins to form, causing a strong increase in viscosity and the onset of 1088 

non-Newtonian flow, characterized by Bingham-like rheology and/or shear thinning effects (Eq. 1089 

(1)). As the solid fraction is further increased, the system reaches another rheological threshold, 1090 

corresponding to the maximum packing density of solid particles (ϕm) Fig. 2), which causes the 1091 

transition from melt and melt+crystal to solid-state creep rheology (e.g., Kohlstedt and Zimmerman, 1092 

1996; Lavallée et al., 2007, 2008, 2012). The value of ϕc is defined by both the crystal content as 1093 

well as by the crystal size and crystal shape distributiosn (e.g. Costa et al., 2009; Cimarelli et al., 1094 

2011; Vona et al., 2011). The increase in viscosity and the non-Newtonian flow depend on textural 1095 

features (crystal and bubble distribution) and deformation regimes (e.g., Costa et al., 2009; Petford, 1096 

2009; Mueller et al., 2011). 1097 

A number of models have been proposed describing the effect, on the suspensions rheology, 1098 

of the crystal volume fraction and their,shape and size distributions as well as particles roughness 1099 

and deformability  (e.g., Einstein, 1906; Roscoe (1952); Maron and Pierce, 1956; Krieger and 1100 

Dougherty, 1959; Frankel and Acrivos, 1970; Jeffrey and Acrivos, 1976; Marsh, 1981; McBirney 1101 

and Murase, 1984; Costa, 2005; Hsueh and Becher, 2005; Stickel and Powell, 2005; Caricchi et al., 1102 

2007; Champallier et al., 2008; Costa et al., 2009; Ishibashi, 2009; Mueller et al., 2011; Cimarelli et 1103 

al., 2011; Vona et al., 2011, Mader et al., 2013; Moitra and Gonnermann; 2015; Klein et al.,  2017, 1104 

2018). The various models can be applied to represent the viscosity variation from a dilute (ϕ<0.03, 1105 

where viscosity increase is linear with crystal content and it is Newtonian) to a semi-dilute (ϕ<0.25-1106 

0.40<ϕc, where viscosity shows an increasing dependence of crystal fraction, but it is still 1107 

Newtonian) until a concentrated regimes (ϕc<ϕ<ϕm, for which viscosity shows a rapid increase and 1108 

the onset of non-Newtonian rheology). For  ϕ>ϕm a solid creep-dominated rheology is observed 1109 

until the occurrence of brittle failure. The crystal fraction ϕ at the transition between one and the 1110 
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other regime depends strongly from the shape and size distributions (e.g. Saar et al., 2001; Costa et 1111 

al., 2009). 1112 

So far, one of the most comprehensive models describing the relative viscosity variation 1113 

from dilute to highly concentrated regimes is that proposed by Costa et al. (2009)(CM). According 1114 

to that model: 1115 

𝜂𝑟(𝜙) = ଵାఝഃ

[ଵିி(ఝ,క,ఊ)]ಳഝ∗       (Eq. A3.3) 1116 

where 1117 

𝐹 = (1 − 𝜉)𝑒𝑟𝑓 ቂ √గ
ଶ(ଵିక) 𝜑(1 + 𝜑ఊ)ቃ      (Eq. A3.4) 1118 

with 𝜑 = 𝜙/𝜙∗ where 𝜙∗, ξ, J and G are adjustable parameters that depend on the 1119 

deformation rate (Costa et al., 2009) and B is the Einstein coefficient (Einstein, 1906). The 1120 

parameter 𝜙∗ represents the critical solid fraction at which the rheological transition from a 1121 

dominant liquid phase regime switches to a regime where the effect of crystals is predominant and 1122 

the viscosity values are much higher [Costa, 2005; Costa et al., 2009]. The CM is calibrated using 1123 

suspensions containing crystal fractions, isotropically distributed, in the interval I = 0.1 - 0.8. 1124 

Figure A2.1 shows, based on the Costa et al. (2009) model (CM), the strain-rate dependence 1125 

of the relative viscosity at varying crystal volume fractions. The relative viscosity of two-phase 1126 

mixture increases following a sigmoid curve with exponential increase above a critical solid 1127 

fraction (ϕc), corresponding to the first inflection point in Fig. 2. This documents how variations of 1128 

crystal content may cause orders of magnitude changes in suspension viscosity. A further important 1129 

point in models of suspension rheology is that the maximum critical crystal volume fraction (ϕm) 1130 

depends strongly on crystal shape, size distribution, crystal surface roughness and crystal 1131 

orientation (e.g. Mueller et al., 2011; Mader et al., 2013; Klein et al., 2017; 2018). In general, ϕc and 1132 

ϕm decrease with increasing crystal alignment and particle shape anisotropy (i.e., equant vs 1133 
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elongated) and increases with dispersion in object size and surface roughness (e.g. Chong, 1971; 1134 

Lejeune and Richet, 1995; Saar et al., 2001; Caricchi et al., 2007., 2008; Costa et al., 2009; Vona et 1135 

al., 2011; Mueller, 2011; Mader et al., 2013; Klein 2018). 1136 

 1137 

Fig. A.2.1. (a) Relative viscosity as a function of crystal volume fraction of spheres at different strain-rates as 1138 
calculated with the Costa et al. (2009) model. The figure shows, at first approximation, the inflection points at ϕc and 1139 
ϕm, separating the semi-dilute, concentrated and solid-like deformation regimes and the dilute regime as described in 1140 
the text. The inflection points are a function of the applied shear rates and shape and size distributions. 1141 
 1142 

Mueller et al. (2011) by studying the rheological response of monodisperse suspensions with 1143 

different aspect ratios, and adopting the Maron-Pierce equation, where 1144 

𝜂௥ = ቀ1 − థ
థ೘

ቁ
ିଶ

        (Eq. A3.5) 1145 

concluded that both the flow index n and (Eq A3.1) the critical crystal fraction depend on 1146 

the average particle aspect ratio (R), such that: 1147 

 𝑛 = 1 − 0.2𝑅 ቀ థ
థ೘

ቁ
ସ
        (Eq. A3.6) 1148 

where the dependence of the ϕc from R-parameter is given, as in Mueller et al. (2011) by: 1149 
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𝜙௠ = ଶ
଴.ଷଶଵோାଷ.଴ଶ

         (Eq. A3.7)  1150 

 It is worth mentioning that the parameterization of Mueller et al (2011) and Mader et al. (2013) 1151 

cannot extended above the critical solid fraction 𝜙௠.Other authors (e.g  Ishibashi, 2009; Mueller et 1152 

al., 2011; Vona et al., 2011) proposed parameterizations obtained by modifications of the strain rate 1153 

independent KD equation (Krieger and Dougherty, 1959) 1154 

𝜂௥ = ቀ1 − థ
థ೘

ቁ
ି஻థ೘

        (Eq. A3.8) 1155 

to take into account the shear thinning effect on the rheology of suspensions. These authors 1156 

provided modified strain rate dependent KD equations based on rheological measurements on low 1157 

SiO2 melts. Ishibashi (2009) provided the following expression for the relative viscosity: 1158 

𝜂௥ = ቀ1 − థ
థ೘

ቁ
ି஻భథ೘[ଵାఒ ௟௡(ଵିథ/థ೎)௟௡ఊ̇]

     (Eq. A3.9) 1159 

where ϕm = 0.6 (as in the ER equation), B1 = 5.46 represents the intrinsic (melt) viscosity at 1160 

γ̇ =1 s-1 and λ = 0.118 is an empirical constant which takes the shear thinning effect into account. In 1161 

the Ishibashi (2009) parameterization, the fitting parameters were not related to the textural features 1162 

of the suspensions (e.g., crystal shape, crystal shape dispersion, crystal size dispersion and 1163 

orientation dispersion), such that the parameterization cannot be applied to other suspensions.   1164 

 Later, Cimarelli et al. (2011) by using a KD expression extended the application of the 1165 

parameterization provided by Mueller et al (2011) to account for bimodal shape polydispersion of 1166 

particles. 1167 

Finally Vona et al. (2011) on the basis of rheological measurements on crystallizing 1168 

polydispersed crystal-rich basalts provided a similar KD-derived parameterization  1169 

𝜂௥ = ቀ1 − థ
థ೘

ቁ
ିଶ[ଵିఈlog(ఊ̇)]

       (Eq. A3.10) 1170 
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in which α is an empirical parameter equal to 0.06 and the effect of crystal shape can be 1171 

evaluated using the equation proposed by Mueller et al. (2011) (Eq. (9)) where, in order to account 1172 

for the disperse particle size distribution of the natural samples investigated, the average particles 1173 

ratio (Rഥ) is calculated by averaging the contribution of each group of particles having a certain 1174 

aspect ratio and is called as it follows: 1175 

𝑅ത = ∑ థ೔ோത೔
థ

         (Eq. A3.11) 1176 

where ϕi and Rഥ୧ are the crystal fraction and the mean aspect ratio of phase i. The model by 1177 

Vona et al. (2011) is able to describe the rheological behavior of suspensions as a function of strain 1178 

rate and textural features (i.e., crystal fraction, aspect ratios and shape polydispersion) and can be 1179 

therefore applied to the complexities of natural magmas. An additional step ahead is provided by 1180 

the work of Klein et al (2017, 2018) which express the critical crystal aspect ratio (ϕc) as a function 1181 

of a polydispersity parameter (χ)(γ in Klein et al., 2018): 1182 

ϕc = 1- (1- ϕc,0) χα        (Eq. A3.12) 1183 

where ϕc,0 represents the ϕc  for a unimodal distribution of particles and α is an adjustable 1184 

parameter (α = 0.173). The polydispersity employed is the ratio of the specific surface of a 1185 

polydispersed system and that of a monodisperse system (Torquato, 2013; Wadsworth et al., 2017). 1186 

Klein and coauthors employing Maron-Pierce kind of equation (Eq. A3.5) to express the relative 1187 

viscosity and the parameterization of Mueller et al (2011) to account for the crystal ratio obtain and 1188 

interesting expression for the relative viscosity of a polydisperse suspention and provide as 1189 

supplementary material online an user-friendly spreadsheet .to calculate such a value 1190 

(https://doi.org/10.1016/j.jvolgeores.2018.04.018).  1191 

 1192 
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A3.3. Three phase mixtures 1193 

Only few studies have explored the rheology of crystal and bubble-bearing magmas (e.g. 1194 

Cordonnier et al., 2009; Pistone et al. 2012, 2013; 2015, 2016; Campagnola et al., 2016; Plese et al., 1195 

2018). Lavallée et al. (2007), Avard and Whittington (2011) have investigated natural lavas from 1196 

domes by uniaxial deformation experiments. The authors have observed pseudo-plastic behavior 1197 

with a strong shear thinning component for all the investigated magmas and provided equations 1198 

describing the apparent viscosity as a function of temperature and strain rate for the multiphase 1199 

magmas. Pistone et al. (2012) showed that three crystal and vesicle contents domains where non-1200 

Newtonian rheological behaviour varying from shear thinning (e.g. viscosity decreases as strain-rate 1201 

increases and the flow index n < 1, Eq. A3.1) to shear thickening (e.g. viscosity increases as strain-1202 

rate increases and the flow index n > 1, Eq. A3.1) through intermediate between shear thickening 1203 

and shear thinning were observed. The authors concluded that shear thinning occurred in crystal-1204 

rich suspensions (55-65 vol%) and bubble content of 9-10 vol% as due to crystal size reduction and 1205 

shear localization. Shear tickening was instead observed in dilute suspensions (24 vol% crystal 1206 

content, 12 vol% bubbles) as due to bubbles coalescence and boudinage which favoured water loss 1207 

from the melts and sample degassing. Intermediate behaviour was observed for samples with 44 1208 

vol% crystals and 12 vol% bubbles probably due to the different temperatures and the time of 1209 

experiments which did not give always time to the bubbles and crystal to orient along the flow lines, 1210 

passing from prolate to oblate. The authors also showed that, caused by crystals and bubbles 1211 

interactions, the interactions between flow-lines and crystals plus bubbles cannot be compared to 1212 

that occurring for crystals and bubbles in only two-phase suspensions. Results from Pistone et al 1213 

(2012) were applied to understand the process of viscous death and rejuvenation of magmatic 1214 

bodies stored at depth (e.g. Bachmann and Bergantz, 2006).  1215 

The individual effect of crystal and bubbles was theoretically parameterized by Phan-Thien 1216 

and Pham (1997) and later applied by Harris and Allen (2008) for the study of basaltic magmas 1217 
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from Mauna Loa and Mount Etna. Depending on the relative size of crystals (Фxtl, tot) and vesicles 1218 

(Фb), Phan-Thien and Pham (1997) present three equations: 1219 

1. For crystals smaller than vesicles: 1220 

𝜂 = 𝜂௟ ቀ1 − థೣ೟೗,೟೚೟
ଵିథ್

ቁ
ିఱ

మ (1 − 𝜙௕)ିଵ      (Eq. A3.16) 1221 

2. For crystals and vesicles of equal size: 1222 

𝜂 = 𝜂௟ ൣ1 − 𝜙௫௧௟,௧௢௧ − 𝜙௕൧

ቀషఱФೣ೟೗,೟೚೟శమФ್ቁ

൬మቀФೣ೟೗,೟೚೟శФ್ቁ൰     (Eq. A3.17) 1223 

3. For crystals larger than vesicles: 1224 

𝜂 = 𝜂௟ ൬1 − థ್
ଵିథೣ೟೗,೟೚೟

൰
ିଵ

൫1 − 𝜙௫௧௟,௧௢௧൯
ିఱ

మ    (Eq. A3.18) 1225 

This treatment does not take into account the effect of textural variability, being applicable 1226 
to spherical particles only, and strain rate dependency on the rheology.  1227 

 1228 
  1229 
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Appendix A4. Equations to estimate rheological properties or constrain characteristic 1230 
flow laws parameters starting from field observation of the geometrical features of lava 1231 
flows. 1232 

 1233 
Where direct measurement of the viscosity of lava flows (see A1.5) is not accessible the 1234 

most accurate method to estimate the viscosity of lava flows is the so-called flow rate method (e.g. 1235 

Kolzenburg et al., 2017, 2018a; Belousov and Belousova, 2018). Measuring accurately the flow rate 1236 

of active lava flows allows calculating the apparent viscosities of the lava flows using Jeffreys’ 1237 

equations: 1238 

𝜂 = 𝜌𝑔ℎଶ ∗  ௦௜௡(ఈ)
ଷ𝓋

 (Eq. A4.1); 𝜂 = 𝜌𝑔ℎଶ ∗  ௦௜௡(ఈ)
ଶ𝓋

 (A4.2) 1239 

where η is the viscosity of lava (Pa s), ρ is the bulk density (kg/ m3), g is the gravitational 1240 

acceleration (9.8 m/s2), h is the thickness of the lava flow (m), α is the surface slope (degrees), and 1241 

𝓋 is the velocity of lava flow (m/s). Eq. A4.1 is commonly used for data observing the flow front 1242 

velocity, and the Eq. A4.2 is used for velocity observations of the flow surface behind the flow front 1243 

(e.g. Nichols 1939; Gauthier 1973; Panov et al. 1988; Belousov nd Belousova, 2018). 1244 

Measurements using this procedure are reported in several studies (e.g. Nichols 1939; Minakami 1245 

1951; Macdonald 1963; Einarsson 1966; Walker 1967; Gautier 1973; Andreev 1978; Fink and 1246 

Zimbelman 1986; Vande-Kirkov 1987; Moore 1987; Panov 1988; Soldati 2016). Limitations of 1247 

Jeffrey’s equations have been discussed at  3.1.2. 1248 

Lava flow morphologies are thought, under particular assumptions, to reflect the rheological 1249 

characteristic of the lavas (e.g., Wilson and Head, 1983; Hiesing et al., 2007). Assuming that: i) the 1250 

rheological properties can be estimated from remote sensing data; ii) the geometry of the flow 1251 

depends on lava rheology and that lava behaves as a Bingham fluid (i.e. a fluid whose rheological 1252 

law is expressed by τ= τ0+η*𝛾̇; where τ is the shear stress and τo is yield strength, that is, the shear 1253 

stress necessary to first determine the beginning of the flow); iii) no inflation of the lava has 1254 

occurred; then the yield strength of the lava flow (Pa) and the lava flow viscosity can be related to 1255 
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its geometry according to the equations proposed by Moore et al. (1978). These equations, 1256 

commonly employed in planetary science, have been recently adopted in numerous scientific 1257 

contributions which also provide exhaustive reviews of the present state of art for the application of 1258 

this method (e.g. Hiesinger et al., 2007; Chevrel et al., 2015; Castruccio et al., 2010, 2014; 1259 

Kolzenburg et al., 2018a amongst the others). These contributions together with the new advances, 1260 

due to comprehend the effect of crystalline and bubbles phases on the rheology of multiphase lavas, 1261 

pointed out that this method, given the strong constitutive assumptions (in particular, single value of 1262 

viscosity and yield strength during lava field evolution and emplacement), are not accurate enough 1263 

to be employed, for instance, for real-time monitoring of lava flows (Chevrel et al., 2015).1264 
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