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M. Ceria

A PROOF OF THE “AXIS OF EVIL THEOREM” FOR
DISTINCT POINTS

Abstract. In this work we provide a complete and constructive proof of Marinari-Mora’s
“Axis of Evil Theorem”. Given a finite set X ⊆ An(k) of distinct points and fixed on
P := k[x1, ...,xn] the lexicographical order, the theorem states that one can produce a “lin-
ear” factorization for a minimal Groebner basis of the ideal I(X)▹P , via interpolation and a
combinatorial algorithm. We display here the related algorithm showing its termination and
correctness.

1. Introduction.

In this paper we face the problem of constructing a linear factorization of a suitable
lexicographical Groebner basis for every zerodimensional radical ideal I ▹P .
In the literature we can find many papers studying the zerodimensional ideals of P .
This work, in particular, is inspired by [1] and [13, 14, 15], by M.G. Marinari and
T. Mora, in which they study zerodimensional ideals, not necessarily radical, describing
them via their Macaulay bases.
One of the most significant results, named “Axis of Evil theorem” by T. Mora in some
lecture notes written soon after, presents a precise description for the structure of these
ideals in the most interesting cases.
In what follows, we will call the Axis of Evil Theorem AoE for short.

The AoE theorem (see for example [1]) represents, to all intents and purposes,
an enhancement for the description of a Groebner basis of an ideal in k[x1,x2] given
by Lazard in [9], in the case of radical ideals of P and also for some of the non radical
ones, namely Cerlienco-Mureddu ideals [18].
Roughly speaking, it states that I admits a minimal Groebner basis w.r.t. the lexico-
graphical order (we assume x1 < x2 < ... < xn) constituted by polynomials fτ which
have a “linear factorization" i.e. a decomposition in factors of the following shape. If
τ := xd11 · · ·xdnn then fτ is the product of factors xm− gmδ(x1, . . . ,xm−1), one for each
choice of integers (m,δ), 1≤ m≤ n and 1≤ δ≤ dm.
In order to get such a basis, in [1, 13, 14, 15], the authors use Cerlienco-Mureddu
algorithm and an interpolation over suitable sets of functionals. These sets represent a
partition of the set characterizing I.
The book [18] states the result, but with no proof, giving meaningful examples showing
the existence of a minimal Groebner basis of the form stated above.
Aim of this work is to provide a complete, totally algorithmic proof of the AoE in
the case of radical ideals, namely when I = I(X) is the ideal of a finite set of distinct
points X.
The resulting algorithm will be called Axis of Evil algorithm (see section 4).
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The starting point of our procedure is the identification of the lexicographical Groeb-
ner escalier N= N(I), which can be constructed directly from X, using one of the well
known combinatorial algorithms as Cerlienco-Mureddu Correspondence [2, 3, 4], Lex
Game [7, 11], Gao-Rodrigues-Stroomer algorithm [8] or Lederer’s algorithm [10].
Then we exploit an algorithm due to Lazard [6] in order to get the basis of the initial
ideal of I efficiently.
Finally, we use interpolation over suitable subsets of the set of points X, in order to get
the “linear factorization” we are looking for.
After defining the notation (section 2) and briefly recalling both Cerlienco-Mureddu
Correspondence and Lazard algorithm (section 3), we explain the Axis of Evil algo-
rithm, outlining its main properties (section 4).

Finally, in section 5 we give a detailed example of execution of the algorithm.

2. Notation.

Throughout this paper we follow the notation of [18].
We denote by P := k[x1, ...,xn] the ring of polynomials in n variables and coefficients
in the base field k. The semigroup of terms in the variables x1, ...,xm is:

T [m] := {xα11 · · ·xαmm , (α1, ...,αm) ∈ N
m}.

We simply write T if m= n.
For each semigroup ordering < on T (i.e. a total ordering on T , such that
τ1 < τ2 ⇒ στ1 < στ2, ∀σ,τ1,τ2 ∈ T ), we can represent a polynomial f ∈ P as a linear
combination of terms arranged w.r.t. <:

f =
r

∑
i=1

c( f ,τi)τi : c( f ,τi) ∈ k∗, τi ∈ T , τ1 > ... > τr;

we denote by T( f ) := τ1 the leading term of f and call tail of f the polynomial
tail( f ) := f − c( f ,τ1)τ1.
We always consider the lexicographical order on P induced by x1 < ... < xn, i.e:
xα11 · · ·xαnn < xβ11 · · ·xβnn ⇔ ∃ j |α j < β j, αi = βi, ∀i > j. This is a term order, that is
a semigroup ordering such that 1 < xi, ∀xi ∈ {x1, ...,xn} or, equivalently, it is a well
ordering.
For each term τ ∈ T , if x j|τ, we call j-th predecessor of τ the term τ

x j .
A subsetN⊆ T is an order ideal if τ∈N⇒ σ∈N , ∀σ|τ. Observe that the subset ofNn

of the exponents of terms in an order ideal is called Ferrers diagram (see, for example,
[18]). A subset N ⊆ T is an order ideal if and only if T \N = J is a semigroup ideal
(i.e. τ ∈ J ⇒ στ ∈ J, ∀σ ∈ T ). For all subsets A ⊂ P , T{A} := {T(g), g ∈ A}. We
denote by T(A) the semigroup ideal of leading terms w.r.t. a fixed semigroup ordering
{τT(g), τ ∈ T ,g ∈ A}. Notice that for each ideal I ▹P , T(I) = T{I}.
For each semigroup ideal J ⊂ T , we have N(J) := T \T(J) and the monomial basis
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G(J) of the semigroup ideal J satisfies the conditions below

G(J) = {τ ∈ J | each predecessor of τ is in N(J)}=
= {τ ∈ T |N(J)∪{τ}order ideal, τ /∈ N(J)}.

For any ideal I ▹P the basis of the semigroup ideal T(I) = T{I} is called monomial
basis of I and denoted again by G(I).

LEMMA 1. Fix a term order < on P and consider an ideal I ▹P ; we denote by
abuse of notation N(I) := N(T(I)) w.r.t. <. The following statements hold:
1) P = I⊕Spank(N(I));
2) P/I ∼= Spank(N(I));
3) ∀ f ∈ P , ∃!g ∈ Spank(N(I)), such that f −g ∈ I.

The polynomial g of lemma 1 is called canonical form of f w.r.t. I and usually denoted
by Can( f , I).

DEFINITION 1. For each term order < on T :

• a Groebner basis of I is a set G ⊂ I s.t. T(G) = T{I};

• a minimal Groebner basis is a Groebner basis H s.t. T{H } = G(I). Then,
divisibility relations among the leading terms of its members do not exist;

• the unique reduced Groebner basis of I is the set
G ′(I) := {τ−Can(τ, I) : τ∈ G(I)}. Each member of the reduced Groebner basis
has a monic leading term which does not divide any term of another member.

Let X= {P1, ...,PS}⊂ kn be a finite set of distinct points, Pi := (ai1, ...,ain); we denote
by I(X) := { f ∈ P : f (Pi) = 0,∀i} the ideal of points of X.
Finally, we define the projection maps:

πm : kn → km

(α1, ..,αn) 0→ (α1, ...,αm),

πm : kn → kn−m+1

(α1, ..,αn) 0→ (αm, ...,αn)

With the same notation πm we denote also

πm : T −→ T [m](1)
xα11 · · ·xαnn 0→ xα11 · · ·xαmm .

3. Cerlienco-Mureddu Correspondence and Lazard algorithm.

Consider a finite ordered set of distinct points X := (P1, ...,PS) ⊂ kn and let
X= {P1, ...,PS} the associated non-ordered set.
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L. Cerlienco and M. Mureddu [2, 3, 4] provided a purely combinatorial algorithm
computing a monomial basis B = {[τ1], ..., [τS]} for the quotient algebra P/I(X) with
τ1 < ... < τS w.r.t. lex, namely N(I(X)) = T \T(I(X)).
The basis B obtained by their algorithm is minimal w.r.t. <, i.e. for each monomial
basis B ′ = {[τ′1], ..., [τ′S]}, with τ′1 < ... < τ′S it holds τi ≤ τ′i, ∀i= 1, ...,S.
In the aforesaid papers, they define an operator Φ, associating to each X an ordered
Ferrers diagram Φ(X) := (δ1, ...,δS)⊂ Nn, δi ̸= δ j for i ̸= j such that

• |Φ(X)|= |X|= S;

• ∀m< S (δ1, ..δm) =Φ((P1, ...,Pm)).

This way, they determine a biunivocal correspondence between X and Φ(X), associat-
ing δi to each Pi, i= 1, ...,S.
From now on, we denote by Φ(X) := {δ1, ...,δS} the non-ordered set associated to
Φ(X). Clearly, a biunivocal correspondence between X and Φ(X) is naturally estab-
lished from the one described above.
The set Φ(X) contains the exponents lists of the terms in N(I(X)), the lexicographi-
cal Groebner escalier associated to I(X). Identifying each δi ∈ Nn with xδi ∈ T , we
can say that Cerlienco and Mureddu state a biunivocal correspondence between X and
N(I(X)). We call it Cerlienco-Mureddu correspondence and we denote it by Φ by
abuse of notation. We write then indifferently Φ(Pi) = δi and Φ(Pi) = xδi , depending
on the context.
The input of Cerlienco-Mureddu algorithm is the ordered set X; the output is
the set Φ(X).
In order to describe the algorithm, for P ∈ kn, we let

Πs(P,X) := {Pi ∈ X |πs(Pi) = πs(P)},

Πs(P,X) := {Pi ∈ X |πs(Pi) = πs(P)},

extending in the obvious way the meaning of πs(d),πs(d),Πs(d,D),Πs(d,D) to
d ∈ Nn ⊂ kn and D⊂ Nn.

We sketch below the main steps of Cerlienco-Mureddu algorithm.

• S = |X| = 1 then Φ(X) = {(0, ...,0)}. By definition, the only order ideal with
cardinality one is the singleton {1}.

• If S > 1, suppose to know by induction hypothesis the ordered set
Φ(X′) = (δ1, ...,δS−1) with X′ = (P1, ...,PS−1) and look for δS = Φ(PS) =
(δS,1, ...,δS,n), performing the following steps.

1. Compute the σ-value of PS w.r.t. X′ (denoted by σ(PS,X′) or by σ for short)
namely the maximal integer number σ s.t. Πσ−1(PS,X′) ̸= /0. Notice that
1≤ σ≤ n. Indeed, for each j ≥ n+1, Π j−1(PS,X′) = /0 and we assume by
convention that Π0(P,Y) ̸= /0, for each point P and for each set Y.
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The numbers δS,i, i= 1, ...,n are computed iteratively as follows.

2. If i> σ, δS,i = 0, so that, at the present state, δS = (?, ...,?︸ ︷︷ ︸
σ−1

,0, ...,0︸ ︷︷ ︸
n−σ+1

).

3. If i= σ, compute the maximal integer m s.t

πσ−1(Pm) = πσ−1(PS),

πσ+1(δm) = (0, ...,0) = πσ+1(δS),

called σ-antecedent of PS w.r.t. X′ and Φ(X′) and set δS,σ = δm,σ+1.
4. If i< σ compute the set

W (PS,X) := {P ∈ X| denoted Φ(P) := δ, πσ(δ) = (δS,σ,0, ...,0)}=

= {Pj1 , ...,Pjr}.
It holds Pjr = PS. Set Q := πσ−1(W (PS,X))⊂ kσ−1.
Notice that if h< r, πσ−1(Pjh) ̸= πσ−1(PS) and, more generally, if h< k≤ r,
then πσ−1(Pjh) ̸= πσ−1(Pjk), so also |Q | = r. Being r < S, by induction
hypothesis Φ(Q ) = {δ̃1, ..., δ̃r} and it holds δ̃i = πσ−1(δji) , for i = 1, ...,
r−1. We set then πs−1(δS) = δ̃r.

Cerlienco and Mureddu proved the following

PROPOSITION 1. ([2]) With the above notation {[xδ]|δ ∈ Φ(X)} is a minimal
monomial basis for P/I(X) with respect to lex.

EXAMPLE 1. Take the set X= {(0,0),(1,0),(1,1),(0,2),(0,3)}⊂ k2. Apply-
ing Cerlienco-Mureddu algorithm on X, we get N(I(X)) = {1,x1,x2,x1x2,x22}. Since
T ∼= N2, we identify each xα11 x

α2
2 ∈ N(I(X)) with (α1,α2) ∈ N2 and we represent the

terms of the Groebner escalier in a bidimensional picture:

1 x1

x2 x1x2

x22

Finally, we can represent the elements in X in an analogous picture, substituting each
term τ ∈ N(I(X)) with the point Φ−1(τ):

(0,0) (1,0)

(1,1) (0,2)

(0,3)



218 M. Ceria

REMARK 1. We point out that the outputΦ(X) of Cerlienco-Mureddu algorithm
is different if we modify the order of the input points contained in X.
For example if we take the set X′ = {(1,0),(0,0),(1,1),(0,2),(0,3)}⊂ k2, instead of
example 1’sX= {(0,0),(1,0),(1,1),(0,2),(0,3)}, we getΦ(X′) = {1,x1,x2,x1x2,x22}
and we can represent the biunivocal correspondence via the picture below

(1,0) (0,0)

(1,1) (0,2)

(0,3)

which is different from the one displayed in example 1.
Clearly the support is the same, being actually the lexicographical Groebner escalier of
I(X) = I(X′).

We call the picture above (2-dimensional) tower picture of X, because of its shape.
The above argument can be generalized to n > 2 variables, obtaining n-dimensional
tower pictures.

Lazard algorithm is a very simple but powerful tool in order to study zerodi-
mensional ideals.
It has been developed in [6], actually being a part of FGLM algorithm. For more de-
tails, see [6], [12], Lemma 13 pg. 117, [18], Alg.29.2.3 pg. 424.
Given N(I(X)) = {τ1, ...,τS}, Lazard algorithm computes the monomial basis G(I(X))
of the zerodimensional radical ideal I(X)▹P , iteratively on the terms in N(I(X)).
If |N(I(X))| = 1, namely N(I(X)) = {1}, then the monomial basis is
G1 := G(I(X)) = {x1, ...,xn}‡ . Set L = [x1, ...,xn] i.e. store a list containing the
products 1 · x j, for j = 1, ...,n.
The above steps constitute the basis for the procedure.
Let now |N(I(X))| > 1, Gi−1 := {τ′1, ...,τ′h} be the monomial basis associated to the
order ideal Ni−1 := {τ1 = 1,τ2, ...,τi−1}, i ≤ S and L be the list (ordered w.r.t. lex)
containing products of the form τkx j, for k = 1, ..., i−1, j = 1, ...,n, with τkx j /∈ Ni−1.
We do not allow repetitions in L, so if σ = x j0τ j0 = x j1τ j1 , σ is reported only once in
L, but it is marked with a number, i.e. the number of times it has been computed.
Consider then τi ∈ N(I(X)); in order to compute the monomial basis Gi associated to
Ni = {τ1, ...,τi}, Lazard algorithm performs the steps displayed below on τi.

• removes τi from L;

• Computes all the products σ j,i = x jτi, for each j = 1, ...,n.

• Inserts each σ j,i in L. For each σ j,i already appearing in L, the algorithm up-
grades the number of times it has been computed and selected for insertion.

‡For each j ∈ n, the only existing predecessor of x j is 1 ∈ N(I(X)). No other term σ can belong to
G(I(X)), being multiple of at least one variable.
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• All the terms appearing in L, marked exactly with the number of the variables
dividing them, are the elements of Gi, the monomial basis associated to Ni.

For more details on both Cerlienco-Mureddu correspondence and Lazard algorithm,
see also [18].

4. The Axis of Evil algorithm.

The Axis of Evil Theorem by Marinari and Mora [1, 13, 14, 15, 18] remarkably im-
proves Lazard structural theorem [9], extending it to the case of n variables, n > 2,
provided that the given ideal I ▹P is zerodimensional and radical.
In this work, we give a constructive proof for

THEOREM 1 (Marinari-Mora). Consider a zerodimensional radical ideal I ▹P ,
fixing on P the lexicographical order “<”, induced by x1 < ... < xn. Denote by N(I)
the associated (lexicographical) Groebner escalier and by

G(I) = {τ1, ...,τr}⊂ T , τi := xdi,11 · · ·xdi,nn

the monomial basis for the (lexicographical) semigroup ideal T(I).
Then, there exist polynomials

γmδi = xm−gmδi(x1, ...,xm−1),

for each i ∈ {1, ...,r}, m ∈ {1, ...,n} and δ ∈ {1, ...,di,m} such that the products

fi =∏
m
∏
δ

γmδi, i= 1, ...,r

form a minimal Groebner basis of I, with respect to <.

Clearly, for the polynomials fi of theorem 1, we have T( fi) = τi for i= 1, ...,r.
Hence, taken a finite set of distinct points X = {P1, ...,PS} and denoted by I := I(X)
the ideal of X, in order to find the factorized minimal Groebner basis G := G(I(X))
of I we need to get the monomial basis G(I).
As explained in section 3, we can obtain G(I) directly from N(I) via Lazard algo-
rithm, whereas N(I) can be computed via Cerlienco-Mureddu correspondence. Ac-
tually, there are some alternative algorithms to Cerlienco-Mureddu correspondence,
namely Felszeghy-B. Ráth-Rónyai Lex Game [7], Gao-Rodrigues-Stroomer method
[8] or Lederer’s algorithm [10]. Following [18] we only use Cerlienco-Mureddu
correspondence, but we can indifferently employ any of the other methods in order to
get N(I).
We point out that the polynomials γmδi of theorem 1 are only linear in the leading terms.
From now on, we will call such a factorization (linear) Axis of Evil factorization.
The pseudocode of the algorithm is displayed in 1 below.
For an implementation, see [19].
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Algorithm 1 The Axis of Evil algorithm.
1: procedure AOE(X,N(I(X)),G(I(X)) := {τ1, ...,τr})→ R ◃ R contains a factorized
minimal Groebner basis of I.

Require: Denote τ j = xd j,11 · · ·xd j,nn for j = 1, ...,r.
2: R= /0
3: for j = 1 to r do
4: N1(τ j) := {xi1| i< d j,1}
5: A1(τ j) := {Φ−1(xi1x

d j,2
2 · · ·xd j,nn )| i< d j,1}⊂ X.

6: B1(τ j) := π1(A1(τ j))⊂ k.
7: γ1τ j :=∏a∈B1(τ j)(x1−a).
8: for m= 2 to n do
9: ζmτ j :=∏m−1

ν=1 γντ j .
10: Dm0 := {Pi ∈ X/ζmτ j(Pi) ̸= 0}.
11: if |Dm0|= 0 then
12: R= [R,ζmτ j ].
13: break
14: end if
15: Nm(τ j) := {ω ∈ T [m], τ j > ωxd j,m+1m+1 · · ·xd j,nn ∈ N}.
16: for δ= 1 to d j,m do
17: Amδ(τ j) := {Φ−1(vxd j,m−δm xd j,m+1m+1 · · ·xd j,nn )|v ∈ T [m− 1], vxd j,m−δm ∈

Nm(τ j)}∩Dm(δ−1)(τ j).
18: Emδ(τ j) :=Φ(πm(Amδ(τ j))).
19:

γmδτ j := xm+ ∑
ω∈Emδ(τ j)

c(γmτ j ,ω)ω,

such that γmδτ j(P) = 0, ∀P ∈ Amδ(τ j).
20: ξmδ :=∏m−1

ν=1 γντ j∏
δ
d=1 γmdτ.

21: Dmδ(τ j) := {Pi ∈ X/ξmδ(Pi) ̸= 0}⊆ X
22: if |Dmδ(τ j)|= 0 then
23: R= [R,ξmδ].
24: break
25: end if
26: end for
27: γmτ j :=∏δ γmδτ j .
28: end for
29: end for
30: return R.
31: end procedure

Since I ▹P is a zerodimensional ideal, then G(I) contains a pure power of each
variable so, in particular, τ1 := xd1,11 ∈ G(I) and it is the smallest term w.r.t. lex in
the monomial basis. Computing the Axis of Evil factorization of f1 ∈ G , such that
T( f1) = τ1, is particularly simple. Indeed, all the terms 1,x1, ...,x

d1,1−1
1 ∈ N(I). As
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a consequence of Cerlienco-Mureddu Correspondence (or Moeller algorithm [16]),
1,x1, ...,x

d1,1−1
1 ∈ N(I) means that the points in X have exactly d1,1 different first coor-

dinates. If we compute the set

N1(τ1) := {xi1/ i< d1,1},

we get exactly N1(τ1) = {1,x1, ...,x
d1,1−1
1 }.

These terms correspond, by Cerlienco-Mureddu correspondence, to the first d1,1 points
with different first coordinates, say A1(τ1) = {Pα1 , ...,Pαd1,1}.
For each 1≤ j ≤ d1,1, let a j be the first coordinate of Pα j .
We let B1(τ1) = {a1, ...,ad1,1} and we compute the polynomial

γ1τ1 :=
d1,1

∏
j=1

(x1−a j).

Since T(γ1τ1) = τ1 and γ1τ1 vanishes over all X, f1 = γ1τ1 , we have found an element
of the minimal Groebner basis G . Moreover, besides the factors composing f1 being
reduced, f1 is also reduced itself, since

Supp( f1)\{τ1}⊆ {1,x1, ...,x
d1,1−1
1 }⊆ N(I).

We point out that f1 has been determined as the product of exactly d1,1 factors.

EXAMPLE 2. Let us consider the set

X= {(2,3),(4,6),(0,7),(1,0),(5,2),(2,6),(4,1),(0,6),(2,7)}⊂ R
2.

The corresponding Groebner escalier is
N(I(X)) = {1,x1,x21,x31,x41,x2,x1x2, x21x2,x22}.
The associated tower picture is

2,3 4,6 0,7 1,0 5,2

2,6 4,1 0,6

2,7

The monomial basis is G(I(X)) = {x51,x31x2,x1x22,x32} and we consider
x51 =min<(G(I(X))).
We examine the execution of Algorithm 1 on X, for the part related to x51. For this
term we get N1(τ1) := {1,x1,x21,x31,x41}, corresponding via Cerlienco-Mureddu corre-
spondence to the points A1(τ1) = {(2,3),(4,6),(0,7), (1,0),(5,2)}. The projection
π1(A1(τ1)) is the set containing the first coordinates, so it turns out to be B1(τ1) =
{2,4,0,1,5}. Then, through the steps displayed in lines from 4 to 7 of Algorithm 1, we
obtain the polynomial

f1 = γ1τ1 = x1(x1−2)(x1−4)(x1−1)(x1−5) = x51−12x41+49x31−78x21+40x1,
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clearly vanishing at all X.
We know that f1 belongs to the minimal Groebner basis of theorem 1, but it also be-
longs to the reduced Groebner basis, since x1,x21,x31,x41 ∈ N(I(X)). Actually, if we
compute using Singular [5] the reduced Groebner basis of I(X) we get

• x51−12x41+49x31−78x21+40x1, that is exactly our f1;

• 2x31x2−12x21x2+16x1x2− x41+7x31−14x21+8x1;

• 4x1x22−8x22+6x21x2−64x1x2+104x2−9x41+107x31−426x21+664x1−336;

• 12x32−192x22−18x21x2+36x1x2+972x2−149x41+1583x31−5218x21+5296x1−
1512.

Now, we show the execution of Algorithm 1 on a generic term τ j = xd j,11 · · ·xd j,nn ,
j ≤ r = |G(I(X))|, in order to produce the polynomial f j ∈ G with T( f j) = τ j of
theorem 1.
Similarly to what done for τ1, we first study the first coordinates, namely we compute
the set

N1(τ j) := {xi1/ i< d j,1}.

Notice that, even if in line 4 of algorithm 1 we define the set N1(τ j) by characterizing
explicitly its elements, we have that

N1(τ j) = {ω ∈ T [1], τ j > ωxd1,22 · · ·xd1,nn ∈ N(I)},

so this set is constructed exactly in the same way as the Nm(τ j)’s, with 2 ≤ m ≤ n.
Moreover, notice that for N1(τ j) we have d1,2 = ...= d1,n = 0.
By Cerlienco-Mureddu correspondence, each term in N(I) is associated to a point
of X, so we can define A1(τ j) := {Φ−1(xi1x

d j,2
2 · · ·xd j,nn )/ i < d j,1} ⊂ X and we get

B1(τ j) := π1(A1(τ j))⊂ k. The factors in x1 are of the form (x1−a) for a ∈ B1(τ j), so
the partial factor in xd j,11 is

γ1τ j := ∏
a∈B1(τ j)

(x1−a).

At this point, we have executed the steps displayed in lines from 4 to 7 of Algorithm 1.
We construct now the set D20 := {Pi ∈X/γ1τ j(Pi) ̸= 0}, containing all the points in the
given X such that γ1τ j does not vanish in them. If D20 is empty, then f j = γ1τ j . In this
case, we stop the execution on τ j (we have executed what prescribed in lines 9-14).
We notice that such an eventuality happens only for the term τ1 since, by the minimality
of G(I), only one pure power of x1 can occur in G(I).
Otherwise, we construct the set

N2(τ j) := {ω ∈ T [2], τ j > ωxd j,33 · · ·xd j,nn ∈ N(I)},
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containing the terms ω in the two variables x1,x2 such that τ j > ωxd j,33 · · ·xd j,nn in the
Groebner escalier (line 15) and, for each δ from 1 to d j,2 we compute the set of points
in which to interpolate, namely

A2δ(τ j) := {Φ−1(vxd j,2−δ2 xd j,33 · · ·xd j,nn )|v ∈ T [1],vxd j,2−δ2 ∈ N2(τ j)}∩D2(δ−1)(τ j)

and the set of terms appearing in the current factor, i.e. E2δ(τ j) :=Φ(π2(A2δ(τ j))).
With the above data, we perform the interpolation step and we finally get the factor

γ2,δτ j := x2+ ∑
ω∈E2δ(τ j)

c(γ2τ j ,ω)ω,

such that γ2,δτ j(P) = 0, ∀P ∈ A2δ(τ j).
We compute then D2δ(τ j) := {Pi ∈ X/ξ2δ(Pi) ̸= 0} ⊆ X, where ξ2δ is the product of
all the factors we have already computed for τ j. We stop if D2δ(τ j) is empty.
Repeating for each δ, we get all the factors with leading term x2.
At this point, we check whether the product of the current factors vanishes over all X.
If so, such a product is f j, otherwise, we repeat for x3, ...,xn, stopping the procedure on
τ j and storing f j when we reach the last coordinate or when the product of the current
factors vanishes over all X (see line 8-14).

Once f j has been stored, we proceed in the same way with all the other elements
of G(I(X)) (line 3).

REMARK 2.

(i) Since each polynomial has the shape xm− f , f ∈ k[x1, ...,xm−1] it obviously holds
that T(γmδτ j) = xm.

(ii) Even if Algorithm 1 leans on Cerlienco-Mureddu correspondence, whose most
important feature is iterativity on the points, it is not iterative on the elements
of X.
Indeed all the Cerlienco-Mureddu biunivocal correspondence and the monomial
basis have to be known in order to proceed in the execution of the algorithm.

(iii) Let τ j := xd j,11 · · ·xd j,nn ∈ G(I(X)).
The output polynomial f j = τ j + tail( f j) ∈ G(I(X)) has exactly, as required,
d j = ∑ni=1 d j,i factors: d j,1 with leading term x1, d j,2 with leading term x2 and so
on. Each variable xi, i = 1, ...,n, appears only d j,i times in the execution of the
algorithm, j = 1, ...,n, as one can see by lines 4, 7 and 16 of Algorithm 1.

REMARK 3. The sets

Nm(τ j) := {ω ∈ T [m], τ j > ωxd j,m+1m+1 · · ·xd j,nn ∈ N(I)}

are constructed in order to find the points where to interpolate.
We point out that Nm(τ j)⊆ Nh(τ j) for m≤ h.



224 M. Ceria

If ω ∈ Nm(τ j), ω ∈ T [m] and τ j > ωxd j,m+1m+1 · · ·xd j,nn ∈ N(I). Since m ≤ h, ω ∈ T [h]; as
ωxd j,h+1h+1 · · ·xd j,nn | ωxd j,m+1m+1 · · ·xd j,nn we have ωxd j,h+1h+1 · · ·xd j,nn ∈ N(I) and

ωxd j,h+1h+1 · · ·xd j,nn ≤ ωxd j,m+1m+1 · · ·xd j,nn < τ j

.
Since for each term µ ∈ N(I) such that µ> τ j, Cerlienco-Mureddu provides

a point Pµ′ such that µ′ < µ and ∃k ∈ {1, ...,n} : πk(Pµ) = πk(Pµ′), in order to obtain
polynomials vanishing at all the points of X it is not necessary to interpolate in the
whole Φ−1(N) as it suffices to consider only those corresponding to µ ∈ N(I) with
µ< τ j.

The example 3 below concretely illustrates what explained in remark 3.

EXAMPLE 3. Consider the set

X= {(0,1,2),(1,4,5),(0,2,1),(1,5,3),(0,3,0),(0,2,5),(1,4,6),(1,5,4)}⊆ k3.

The lexicographical Groebner escalier of the ideal of points I := I(X) is

N(I) = {1,x1,x2,x1x2,x22,x3,x1x3,x2x3} :

0,1,2 1,4,5

0,2,1 1,5,3

0,3,0

0,2,5

1,5,4

1,4,6

The monomial basis is then G(I) = {x21,x1x22,x32,x1x2x3,x22x3,x23}.
We focus on τ2 = x1x22 and we observe that x2x3 ∈ N(I) is greater than τ2 w.r.t. the
lexicographical order induced by x1 < x2 < x3.
With the notation due to Cerlienco-Mureddu , we can say that Φ−1(x2x3) = (1,5,4),
and we can notice that:

• the factor x2− 5 produced in order to make f2 vanish on the point (1,5,3) also
makes f2 vanish on the point (1,5,4), since π2(1,5,3) = (1,5) = π2(1,5,4);

• we have (1,5,3) =Φ−1(x1x2) and x1x2 < τ2.

For the sake of completeness, we report here the whole Axis of Evil factorization of I,
computed using Singular:

x21: f1 = x1(x1−1);
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x1x22: f2 = x1(x2−5)(x2−4);

x32: f3 = (x2−3)(x2−3x1−2)(x2−3x1−1);

x1x2x3: f4 = (x1−1)(x2−2)(x3+ x2−3);

x22x3: f5 = (x2−5)(x2−2x1−2)(x3+ x2−3)

x23: f6 = (x3+2x2−5x1−9)(x3+ x1x2+ x2−10x1−3).

REMARK 4. For each δ∈ {0, ...,d j,m} and for each τ j ∈G(I(X)), τ j ̸= τ1, define
the sets

Smδ(τ j) := {vxd j,m−δm ∈ Nm(τ j), v ∈ T [m−1]}⊂ Nm(τ j).

Notice that, for δ1,δ2 ∈ {0, ...,d j,m}, δ1 ̸= δ2, we get Smδ1(τ j)∩Smδ2(τ j) = /0 and that
Nm(τ j) =

⋃d j,m
δ=0 Smδ(τ j): the subsets Smδ(τ j) which are nonempty form a partition of

Nm(τ j).
Even if in Algorithm 1 there is no need to define explicitly the subsets Smδ(τ j), those for
δ ∈ {1, ...,d j,m} are essentially used in the construction of the sets Amδ(τ j),
δ ∈ {1, ...,d j,m} (see line 17). This means that the subsets Smδ(τ j) come into play
in the choice of the points where to interpolate while constructing the current factor.
Notice that

Sm0(τ j) = {vxd j,mm ∈ Nm(τ j), v ∈ T [m−1]}⊂ Nm(τ j).

is not used in the construction (in line 16 we consider δ = 1, ...,d j,m), even if by any
chance Sm0(τ j) ̸= /0. Actually, it holds Sm0(τ j) ⊆ Nm−1(τ j), so each σ ∈ Sm0(τ j)
has already been considered: the current factorized polynomial already vanishes in
Φ−1(σxd j,m+1m+1 · · ·xd j,nn ).

REMARK 5.

(1) The steps described in lines 18 and 19 of Algorithm 1, namely the contruction of
Emδ(τ j) and of the associated interpolating polynomial γmδτ j can be performed in
different ways. For example Emδ(τ j) can be computed via Cerlienco-Mureddu
correspondence on the points of πm(Amδ(τ j)) [2, 3, 4], or via the alternative
methods described in [7, 8, 10]. Moreover, there are many interpolation methods
in order to compute γmδτ j .
We point out that a possible way to compute both Emδ(τ j) and γmδτ j is to apply
Moeller algorithm [16] to πm(Amδ(τ j)).

(2) Fix a term τ j ∈G(I). If some P= (a1, ...,an)∈X belongs to Amδ(τ j), 2≤m≤ n,
1 ≤ δ ≤ d j,m, then the linear factor vanishing in P, namely γmδτ j , is constructed
involving only the first m coordinates of P, i.e. a1, ...,am.

(3) Although the minimal Groebner basis f1, ..., fr got from the Axis of Evil algo-
rithm is not the reduced one, we can point out that the single linear factors γmδτ j
we get, are reduced in the sense that

Supp(γmδτ j)\{xm}⊆ {τ ∈ N(I) |τ< xm},



226 M. Ceria

by the construction of Emδ(τ j).

EXAMPLE 4. If we consider the set X= {(0,0),(1,2),(0,2),(3,4),(0,6)}, the
minimal Groebner basis produced by the Axis of Evil algorithm is

G = {x3−4x2+3x,xy− x2− x,y3−
4
3
xy2−8y2+

32
3
xy+12y−16x},

and the linear factors identifying G are a = x, b = x− 1, c = x− 3, d = y− x− 1,
e = y− 6, f = y− 2 and g = y− 4

3x. Factors a, b, c, e, f are of the form x− l,y− h,
with l,h constants, so their support is formed by the leading terms x or y and by 1 ∈ N.
Factors d and g satisfy again the property of remark 5 (3), since

• Supp(y− x−1)\{y}= {1,x}⊂ N(I) and 1< x< y;

• Supp(y− 4
3x)\{y}= {x}⊂ N(I) and x< y.

REMARK 6. Developing an algorithm one has to face the problems of termina-
tion and correctness.
Termination of our algorithm is guaranteed since it is made up for the following three
nested loops:

− a loop on the elements of G(I) (line 3);

− a loop on the variables of the polynomial ring (line 8);

− for each variable appearing in a term τ j ∈ G(I), a loop on its exponent (line 16).

The first loop is clearly finite by Dickson’s Lemma (c.f. [18]), whereas the second is
finite since the polynomial ring has a finite number of variables. Concerning the third
one, it is trivially finite since the exponents are natural numbers. Moreover, the steps
inside each loop can be performed in a finite time. Indeed, the algorithm could go to
infinity if it were |N(I)| = ∞, but this is not the case for our zerodimensional radical
ideal I. Moreover, the Axis of Evil Algorithm relies on Cerlienco-Mureddu algorithm
and Moeller algorithm so also the computation of the set Amδ(τ j) and the interpolation
step terminate.

Let us study the correctness of the algorithm.

PROPOSITION 2. The factorized polynomials we get from Algorithm 1 vanish
on each point of X.

Proof. Consider the polynomial associated to τ= xα11 · · ·xαnn ∈G(I) and name it fτ. We
prove that it vanishes on Pµ ∈ X, corresponding, via Cerlienco-Mureddu , to the term
µ= xβ11 · · ·xβnn ∈ N(I).
Since τ ∈ G(I) and µ∈ N(I), τ ̸= µ. Therefore, there are only two possibilities:
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1. µ<Lex τ. By definition of Lex, ∃i, 1≤ i≤ n with αi > βi, say βi = αi−δ, δ> 0
and α j = β j for each i+ 1 ≤ j ≤ n. We set ω := xβ11 · · ·xβii . By hypothesis,
µ= ωxαi+1i+1 · · ·xαnn < τ and µ∈ N(I), so ω ∈ Ni(τ).

Moreover Pµ=Φ−1(µ) =Φ−1(xβ11 · · ·xβi−1i−1 x
αi−δ
i xαi+1i+1 · · ·xαnn ) so, either

Pµ /∈ Di(δ−1)(τ) (thus fτ vanishes in Pµ), or Pµ ∈ Aiδ(τ) but, in this case, by the
interpolation step (lines 18-19), fτ vanishes in Pµ.

2. µ>Lex τ. Now ∃i, 1≤ i≤ n with βi > αi, β j = α j for j ∈ {i+1, ...,n}.

By Cerlienco-Mureddu correspondence, ∃µ′ := xβ
′
1
1 · · ·xβ

′
nn ∈ N(I) such that:

a. Φ−1(µ′) = Pµ′ with πi−1(Pµ) = πi−1(Pµ′);
b. β′h = αh, ∀h ∈ {i, i+1, ...,n}.

If µ′ < τ, then µ′ ∈ Ni−1(τ) so, as in 1., fτ vanishes in Pµ′ and the linear factor
making fτ vanish in Pµ′ is computed involving at most the first i−1 coordinates
of Pµ (c.f. remark 5(2)), so fτ turns out to vanish also in Pµ. If µ′ > τ, we can
repeat with µ′ instead of µ and conclude by induction.

COROLLARY 1. The ideal generated by the output polynomials is exactly I(X).

Proof. The polynomials f1, ..., fr of theorem 1 form aminimal Groebner basis because
they vanish on all the points of X (lemma 2) and because their heads T( f1) = τ1, ...,
T( fr) = τr form exactly G(I(X)).

If τ j = xd j,11 · · ·xd j,nn ∈ G(I(X)), the output polynomials contain exactly ∑ni=1 di
factors. It is impossible for a “partial product” (less than ∑ni=1 di factors) to vanish on
the whole X. Indeed, if so, there would be a polynomial f ∈ I(I(X)) such that T( f ) /∈
(G(I(I(X)))), being T( f ) | τ j ∈ G(I(I(X))).

Algorithm 1 and corollary 1 constitute a constructive proof of the Axis of Evil
Theorem 1.
Moreover, corollary 1 implies also that the termination criteria for Algorithm 1 are
correct.

REMARK 7. As mentioned above, Cerlienco-Mureddu correspondence works
on an ordered set of points. We point out that, for each ordering given to X, Algorithm
1 allows to produce an Axis of Evil factorization for a minimal Groebner basis of
I(X).

It is well known that Cerlienco-Mureddu correspondence allows to compute
the Groebner escalier of zerodimensional ideals, even if they are not radical. Unfortu-
nately, in general, it is not possibile to produce an Axis of Evil factorization in case of
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multiplicity.
We display here a meaningful example of this fact, due to M.G. Marinari and T. Mora.

EXAMPLE 5 ([14, 18]). Consider the following ideal, given with its primary
decomposition:
J := (x21,x2+ x1,x3)∩ (x21,x2− x1,x3−1) =
= (x21,x1x2,x22,x1x3−

1
2x1−

1
2x2,x2x3−

1
2x1−

1
2x2,x

2
3− x3)▹C[x1,x2,x3].

Denote by f1, ..., f6 the generators. J is 0-dimensional being x21,x22,x23 ∈T(J) (see [18]),
but it is not radical as

√
J = (x2,x23− x3,x1). For such an ideal the Axis of Evil does

not hold. Consider the polynomial f4 = x1x3− 1
2x1−

1
2x2.

According to theorem 1, its factorization should be of the form:

(x1+ l)(x3+ f (x1,x2)), l ∈ k, f (x1,x2) ∈ k[x1,x2]

and we should have

(x1+ l)(x3+ f (x1,x2))≡ f4 mod ( f1, f2, f3).
Since f1, f2, f3 are terms, the degree one terms in f4 have to come from the product,
not being possible for them to come from the reduction.
We show that it is impossible for − 1

2x2. We would like to have a product of the form

k ∗hx2,

with h,k constants such that hk =− 1
2 , in particular both different from 0.

A priori, there are two possibilities:
- (x1+ k)(x3+hx2+ ...);
- (x1+hx2+ ...)(x3+ k+ ...).
The second one is impossible: the polynomial having x1 as head can not contain

variables greater than x1, so we consider only:

(x1+ k+ ...)(x3+hx2+ ...) obtaining x1x3+hx1x2+ kx3−
1
2
x2+ ...

We can delete the term x1x2 but kx3 can not be reduced.

The Axis of Evil Theorem can be generalized in case of Cerlienco-Mureddu
ideals (see [18] for more details).

5. The Axis of Evil in pratice: a detailed example.

In this paragraph, we simulate in detail the Axis of Evil algorithm, giving a precise
example of its main features. We will examine the tower picture associated to the
given set, in order to mark the points making the current factorized polynomial vanish
at each step.
Consider the set
X= {(4,0,0),(2,1,4),(2,4,0),(3,0,1),(2,1,3),(1,3,4),(2,4,3),(2,4,2),(1,0,2)}.
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First of all we getN= {1,x1,x2,x21, x3,x31,x2x3,x23,x1x2}, applying Cerlienco- Mureddu
algorithm on X; then we obtain G= {x41,x21x2,x22, x1x3,x2x23,x33} via Lazard algorithm.

4,0,0 2,1,4 3,0,1 1,3,4
2,4,0 1,0,2

2,4,3
2,1,3

2,4,2

The setsX, N and G= {τ1, ...,τ6} are exactly the in-
put for the Axis of Evil algorithm. We denote them
by τi for i= 1, ...,6.
Starting with τ1 = x41, we getN1(τ1)= {1, x1,x21,x31}
and A1(τ1) = {(4,0,0),(2,1,4), (3,0,1),(1,3,4)},
containing the corresponding points via Cerlienco-
Mureddu, whose first coordinates belong to
B1(τ1) = {4,2,3,1}.

4,0,0 2,1,4 3,0,1 1,3,4
2,4,0 1,0,2

2,4,3
2,1,3

2,4,2

We get γ1τ1 = (x1− 4)(x1− 2)(x1− 3)(x1− 1): all
the linear factors depend only on x1 and they have
been computed at the same time. We highlight in
the picture the points making γ1τ1 vanish and we dis-
tinguish them, using colours, w.r.t. the linear factor
vanishing on them (i.e. w.r.t. their first coordinates).

Set m= 2: ζ2τ1 = γ1τ1 . Since, as we can also see in the picture above, D20(τ) = /0, we
stop here obtaining, as first result, a polynomial f1 := ζ2τ1 = γ1τ, whose leading term
is τ1 ∈ G, whereas the lower terms belong to N. By construction, f1 ∈ I(X), since it
vanishes in every point of X: it belongs to our minimal Groebner basis.

4,0,0 2,1,4 3,0,1 1,3,4
2,4,0 1,0,2

2,4,3
2,1,3

2,4,2

For τ2 = x21x2 we get N1(τ2) = {1,x1}, A1(τ2) =
{(2,4,0),(1,0,2)} and the corresponding first coor-
dinates are B1(τ2) = {2,1}, so γ1τ2 = (x1−2)(x1−
1).
Passing to m= 2 we have ζmτ2 = γ1τ2 andD20(τ2) =
{(4,0,0),(3,0,1)} (the two non-colored points in
the picture). We cannot stop here, since we got a
polynomial not vanishing at all the points.

Moreover, we point out that T(ζmτ2) ̸= τ2 ∈ G.
We compute N2(τ2) = {1,x1,x21,x31,x2,x1x2}; doing so, we find all the terms of the
previous step and some new ones. We start the loop on δ: for δ = 1, A21(τ2) =
{(4,0,0),(3,0,1)}= D20.

4,0,0 2,1,4 3,0,1 1,3,4
2,4,0 1,0,2

2,4,3
2,1,3

2,4,2

The terms vxdm−δm of line 17 of Algorithm 1
are 1,x1,x21,x31, corresponding to the points
P1,P2,P4,P6. Since the polynomial already
vanishes on P2,P6, we consider only P1,P4.
We get E21(τ2) = {1,x1}, γ21τ2 = x2; ξ21 =
γ1τ2γ21τ2 = (x1−2)(x1−1)x2; D21(τ2) = /0.
Remark that γ2τ2 is actually γ21τ2 .

Continue with τ3 = x22: N1(τ3) = /0; A1(τ3) = /0; B1(τ3) = /0. For m= 2, D20(τ3) = X;
N2(τ3) = {1,x1,x21,x31,x2,x1x2}. We set δ = 1, getting A21(τ3) = {(2,4,0),(1,0,2)};
E21(τ3) = {1,x1}; γ21τ3 = x2−4x1+4; ξ21 = γ1τ3γ21τ3 = x2−4x1+4.
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4,0,0 2,1,4 3,0,1 1,3,4
2,4,0 1,0,2

2,4,3
2,1,3

2,4,2

We have D21(τ3) = {(4,0,0),(2,1,4),(3,0,1),
(2,1,3),(1,3,4)}. Setting δ = 2, we get
A22(τ3) = {(4,0,0),(2,1,4), (3,0,1), (1,3,4)}.
The terms vxdm−δm are 1,x1,x21,x31 corre-
sponding exactly to P1,P2,P4,P6. E22(τ3) =
{1,x1,x21,x31}; γ22τ3 = 2x2− x21+7x1−12;
ξ22= (x2−4x1+4)(2x2−x21+7x1−12); D22(τ3) =
/0;

Consider τ4 = x1x3 :

4,0,0 2,1,4 3,0,1 1,3,4
2,4,0 1,0,2

2,4,3
2,1,3

2,4,2

N1(τ4) = {1}; A1(τ4) = {(2,1,3)}; B1(τ4) = {2}
γ1τ4 = (x1 − 2). Set m = 2 : N2(τ4) = {1},
D20(τ4) = {(4,0,0),(3,0,1), (1,3,4),(1,0,2)}.
For δ= 1; D21(τ) = D20(τ);
Set m = 3 : N3(τ4) = {1,x1,x2,x21,x3,x31,
x1x2}; ζ3τ4 = (x1 − 2); D30(τ4) = {(4,0,0),
(3,0,1),(1,3,4),(1,0,2)}.

4,0,0 2,1,4 3,0,1 1,3,4
2,4,0 1,0,2

2,4,3
2,1,3

2,4,2

For δ = 1, A31(τ4) = {(4,0,0),(3,0,1),(1,3,4),
(1,0,2)}. The terms are 1,x1,x21,x31,x2,x1x2, cor-
responding to P1,P2,P3,P4,P6,P9, and P2,P3 can
be neglected. We have E31(τ4) = {1,x1,x21,x2};
γ31(τ4) = 6x3−4x2+ x21− x1−12;
ξ31 = (x1−2)(6x3−4x2+x21−x1−12); D31(τ4) =
/0 and γ3τ4 = γ31(τ4).

4,0,0 2,1,4 3,0,1 1,3,4
2,4,0 1,0,2

2,4,3
2,1,3

2,4,2

Set τ5 = x2x23 : we get N1(τ5) = /0; A1(τ5) = /0;
B1(τ5) = /0.
For m= 2 we have N2(τ5) = {1}; D20(τ5) = X;
δ= 1: A21(τ5) = {(2,4,2)}; E21(τ5) = {1};
γ21τ5 = x2 − 4 ξ21 = x2 − 4; D21(τ5) = {(4,0,0),
(2,1,4),(3,0,1),(2,1,3),(1,3,4),(1,0,2)};

4,0,0 2,1,4 3,0,1 1,3,4
2,4,0 1,0,2

2,4,3
2,1,3

2,4,2

For m= 3 we get ζ3τ5 = x2−4; D30(τ5) = D21(τ5);
N3(τ) = N(X). We set δ = 1 and we obtain
A31(τ) = {(2,1,3)}; E31(τ) = {1}; γ21τ = x3 − 3;
ξ31 = (x2−4)(x3−3);
D31(τ) = {(4,0,0),(2,1,4),(3,0,1),(1,3,4),
(1,0,2)};
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4,0,0 2,1,4 3,0,1 1,3,4
2,4,0 1,0,2

2,4,3
2,1,3

2,4,2

For δ = 2 A32(τ) = D31(τ); E32(τ) =
{1,x1,x21,x31,x2};
γ32τ = x3−4x2−5x31+41x21−96x1+48;
ξ32 = (x2 − 4)(x3 − 3)(x3 − 4x2 − 5x31 + 41x21 −
96x1+48); D32(τ) = /0;
γ3τ = (x3−3)(x3−4x2−5x31+41x21−96x1+48);

4,0,0 2,1,4 3,0,1 1,3,4
2,4,0 1,0,2

2,4,3
2,1,3

2,4,2

For τ6 = x33, N1(τ6) = /0; A1(τ6) = /0 and B1(τ6) = /0.
Set thenm= 2 :D20(τ6) =X; N2(τ6) = /0. For δ= 1,
we obtain A21(τ6) = /0 and D21(τ6) = X. Setting
m = 3 we get D30 = X; N3(τ6) = N(X). For δ = 1,
A31(τ6) = {(2,4,2)}; E31(τ6) = {1}; γ31τ6 = x3−2;
ξ31 = x3− 2; D31(τ6) = {(4,0,0),(2,1,4),(2,4,0),
(3,0,1),(2,1,3),(1,3,4),(2,4,3)}.

4,0,0 2,1,4 3,0,1 1,3,4
2,4,0 1,0,2

2,4,3
2,1,3

2,4,2

Now we consider δ= 2.
For this value, we have A32(τ6) = {(2,1,3),
(2,4,3)}, E32(τ6) = {1,x2} and the polynomial
γ32τ6 = x3−3.
Then ξ32 = (x3−2)(x3−3) and, finally, the
set D32 = {(4,0,0),(2,1,4),(2,4,0),(3,0,1),
(1,3,4)};

4,0,0 2,1,4 3,0,1 1,3,4
2,4,0 1,0,2

2,4,3
2,1,3

2,4,2

For δ = 3, A33(τ6) = D32; E33(τ6) = {1,x1,x21,
x31,x2}; γ33τ6=6x3+8x2−5x31+35x21−54x1+24.
Then ξ33 = (x3 − 2)(x3 − 3)(6x3 + 8x2 − 5x31 +
35x21−54x1+24); D33(τ6) = /0.
γ3τ6 = (x3 − 2)(x3 − 3)(6x3 + 8x2 − 5x31 + 35x21 −
54x1+24).

The factorized minimal Groebner basis for I(X) w.r.t. lex is:

G(I(X)) =
{
(x1−4)(x1−2)(x1−3)(x1−1),(x1−2)(x1−1)x2,

(x2−4x1+4)(2x2− x21+7x1−12),(x1−2)(6x3−4x2+ x21− x1−12),
(x2−4)(x3−3)(6x3−4x2−5x31+41x21−96x1+48),

(x3−2)(x3−3)(6x3+8x2−5x31+35x21−54x1−24)
}
,
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whereas the reduced Groebner basis of I(X) w.r.t. lex is:

G ′(I(X)) =
{
x41−10x31+35x21−50x1+24,x2x21−3x2x1+2x2,

x22−2x2x1− x2+2x31−16x21+38x1−24,x3x1−2x3−
2
3x2x1+

4
3x2+

+ 1
6x
3− 1

2x
2
1−

5
3x1+4,x

2
3x2−4x23−7x3x2+28x3+

8
3x2x1+

+ 20
3 x2−

16
3 x

3+48x2− 344
3 x1+32,x

3
3−5x23+

8
3x3x2−

14
3 x3−

16
9 x2x1

− 40
9 x2+

73
9 x

3
1−

197
3 x

2
1+

1358
9 x1−72

}
,

Since we have considered the elements of G(I(X)) in lexicographical order (x1 < ... <
xn), the reduced Groebner basis is obtained by reducing the polynomials in G(I(X)),
each one w.r.t. the previous ones.
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