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1 Introduction

Exact results in quantum field theories are rare and for some time the gauge/gravity dual-

ity [1–3] has been a main tool for obtaining such results in a growing variety of situations.

More recently, it has been appreciated that exact non-perturbative computations can be

performed in certain supersymmetric field theories defined on curved Riemannian mani-

folds, using the technique of localization [4]. On the one hand, this has motivated the

systematic study of rigid supersymmetry in curved space [5], and on the other hand it has

prompted the exploration of the gauge/gravity duality in situations when the boundary su-

persymmetric field theories are defined on non-trivial curved manifolds. This programme

has been initiated in [6], where a simple (Euclidean) supersymmetric solution of four-

dimensional minimal gauged supergravity was proposed as the dual to three-dimensional

supersymmetric Chern-Simons quiver theories defined on a squashed three-sphere (ellip-

soid), for which the exact partition function had been computed previously in [7]. Gen-

eralizations have been discussed by some of the authors in [8–10]. Further examples of

four-dimensional gravity solutions with curved boundary, where in the dual field theory the

path integral can be computed exactly using localization, have been discussed in [11, 12].

In this case, the exactly calculable quantity on both sides of the duality is the so-called

supersymmetric Rényi entropy [13], which is a simple modification of the partition func-

tion on the ellipsoid [7] (see also [6]). In five bulk dimensions a supersymmetric solution,

where holographic computations have been compared with exact four-dimensional results

in N = 1 SCFTs, has been recently constructed in [14], while in [15] the gravity dual

to supersymmetric gauge theories on a squashed five-sphere has been constructed in Ro-

mans F (4) gauged supergravity in six dimensions, and the holographic free energy and

BPS Wilson loops successfully matched to localization computations in five dimensions.

Gravity solutions dual to exact localization results have also been discussed in [16] (for

three-dimensional N = 2 theories on S3) and in [17–19] (for four-dimensional N = 2∗

theories on S4). These, however, have conformally flat boundaries.

Using localization, the partition function Z of a large class of N = 2 three-dimensional

Chern-Simons theories defined on a general manifold with three-sphere topology was com-

puted explicitly in [20]. This has provided a unified understanding of all previous localiza-

tion computations on deformed three-spheres [6, 7, 13, 21], and has shown that the partition

function on these manifolds depends only on a single parameter b1/b2, related to a choice

of almost contact structure.1 Specifically, for a general toric metric on the three-sphere,

the real numbers b1, b2 specify a choice of Killing vector K in the torus of isometries.

For a broad class of Chern-Simons quiver theories, the large N limit of the free energy

F = − log |Z| can be computed using saddle points methods [6], giving the general result

lim
N→∞

F b1
b2

=
1

4

(√∣∣∣∣b1b2
∣∣∣∣+

√∣∣∣∣b2b1
∣∣∣∣
)2

F1 , (1.1)

where F1 is the large N limit of the free energy on the round three-sphere, scaling with

N3/2 [23].

1This fact has been recovered independently in [22], using different methods.
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On the gravity side this yields a universal prediction for the holographically renormal-

ized on-shell action of the corresponding supergravity solutions. Indeed, the on-shell action

of the solutions of [6, 8, 9], and [10] reproduced this formula, for certain choices of met-

rics and background gauge fields. More precisely, these are all supersymmetric solutions

of minimal four-dimensional gauged supergravity in Euclidean signature, and comprise a

negatively curved Einstein anti-self-dual metric on the four-ball,2 with a specific choice

of gauge field with anti-self-dual curvature, that we refer to as an instanton. The result

of [20] raises two questions: 1) given an arbitrary (toric) metric on the three-sphere, with

a background gauge field satisfying the rigid Killing spinor equations [24, 25], can one con-

struct a dual supegravity solution? 2) Assuming such a supergravity solution exists, can

one compute the corresponding holographic free energy and show that it matches (1.1)?

The purpose of this paper is to address these two questions. Working in the context of

minimal gauged supergravity, and assuming an ansatz that the solutions are anti-self-dual

and have the topology of the ball, we will be able to provide rather general answers to both

these questions. In the concluding section we will discuss the possibility of extending our

results beyond the class of solutions considered in this paper.

Regarding the first question, we will show that given a (non-singular) anti-self-dual

metric on the ball with U(1)2 isometry, and a choice of an arbitrary Killing vector therein,

we can construct a (non-singular) instanton configuration, such that together these give

a smooth supersymmetric solution of minimal gauged supergravity. Moreover, assuming

this metric is asymptotically locally (Euclidean) AdS, we will show that on the conformal

boundary the four-dimensional solution reduces to a three-dimensional geometry solving

the rigid Killing spinor equations of [24, 25], in the form presented in [20]. We will illustrate

this construction through several examples, including previously known as well as new

solutions. We will also discuss how all the examples that we will present can be understood

as arising from an infinite-dimensional family of explicit “m-pole” metrics [26].

We will be able to answer the second question, regarding the computation of the holo-

graphic free energy, independently of the details of a specific solution. Namely, assuming

only that a smooth solution with given boundary conditions exists, we will show that the

holographically renormalized on-shell action takes the form

I =
π

2G4
· (|b1|+ |b2|)2

4|b1b2|
, (1.2)

precisely matching the large N field theory prediction from localization (1.1)! We emphasize

that (1.2) will be derived without reference to a specific solution, and that it receives non-

zero contributions from the boundary (as expected), as well as from the bulk, specifically

from the “centre” of the ball. This latter contribution may be understood as arising from

the fixed point of the torus action, and can be determined from a fixed point theorem, using

the Berline-Vergne formula. We will also present formulas relating the renormalized on-

2References [8] and [9] also discuss several solutions with topology different from the four-ball; however,

currently the precise field theory constructions dual to these remain unknown. In the present paper we will

not discuss topologies different from the four-ball.
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shell action to topological invariants of the bulk and conformal invariants of the boundary,

by using the Atiyah-Patodi-Singer index theorem, which may be of independent interest.

The rest of this paper is organized as follows. In section 2 we discuss the local geometry

of Euclidean supersymmetric solutions of minimal four-dimensional gauged supergravity. In

section 3 we turn to global and smooth asymptotically locally Euclidean AdS solutions, with

the topology of the four-ball. Section 4 contains the derivation of the general formula (1.2)

for the holographic free energy. In section 5 we present examples. In section 6 we conclude

by discussing possible extensions of this work. Appendices A and B contain details about

the geometry, while in appendix C we present a unified view of all the examples, arising as

particular cases of the m-pole metrics [26].

2 Local geometry of self-dual solutions

The action for the bosonic sector of four-dimensional N = 2 gauged supergravity [27] is

ISUGRA = − 1

16πG4

∫ (
R+ 6− F 2

)√
det g d4x , (2.1)

where R denotes the Ricci scalar of the four-dimensional metric gµν , we have defined

F 2 ≡ FµνF
µν , and the cosmological constant has been normalized to Λ = −3. The

graviphoton is an Abelian gauge field A with field strength F = dA. The equations of

motion derived from (2.1) are

Rµν + 3gµν = 2

(
F ρ
µ Fνρ −

1

4
F 2gµν

)
,

d ∗4 F = 0 . (2.2)

This is simply Einstein-Maxwell theory with a cosmological constant Λ = −3. Notice that

when F is anti-self-dual the right hand side of the Einstein equation in (2.2) is zero, so

that the metric gµν is necessarily Einstein.

A solution is supersymmetric provided it admits a (not identically zero) Dirac spinor

ε satisfying the Killing spinor equation(
∇µ − iAµ +

1

2
Γµ +

i

4
FνρΓ

νρΓµ

)
ε = 0 . (2.3)

This takes the same form as in Lorentzian signature, except that here the gamma matrices

generate the Clifford algebra Cliff(4, 0) in an orthonormal frame, so {Γµ,Γν} = 2gµν .

Notice that we may define the charge conjugate of the spinor ε as εc ≡ Bε∗, where B is the

charge conjugation matrix satisfying B−1ΓµB = Γ∗µ, BB∗ = −1 and may be chosen to be

antisymmetric BT = −B [6]. Then provided the gauge field A is real (as it will be in the

present paper) εc satisfies (2.3) with A→ −A.

In [28, 29] the authors studied the local geometry of Euclidean supersymmetric solu-

tions to the above theory for which F is anti-self-dual, ∗4F = −F . It follows that the metric

gµν then has anti-self-dual Weyl tensor, and adopting a standard abuse of terminology we
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shall refer to such solutions as “self-dual”.3 Supersymmetry also equips this background

geometry with a Killing vector field K. Self-dual Einstein metrics with a Killing vector

have a rich geometric structure that has been well-studied (see for example [31]), and are

well-known to be related by a Weyl rescaling to a (local) Kähler metric with zero Ricci

scalar. Such metrics are described by a solution to a single PDE, known as the Toda equa-

tion, and this solution also specifies uniquely the background gauge field A. In fact we will

show that F = dA is 1
2 the Ricci-form of the conformally related Kähler metric, so that A

is the natural connection on K−1/2, where K denotes the canonical bundle of the Kähler

manifold. Moreover, we will reverse the direction of implication in [28, 29] and show that

any self-dual Einstein metric with a choice of Killing vector field admits (locally) a solution

to the Killing spinor equation (2.3). This may be constructed from the canonically defined

spinc spinor that exists on any Kähler manifold.

2.1 Local form of the solution

In this section we briefly review the local geometry determined in [28, 29]. The existence

of a non-trivial solution to the Killing spinor equation (2.3), together with the ansatz that

F is anti-self-dual and real, implies that the metric gµν is Einstein with anti-self-dual Weyl

tensor. There is then a canonically defined local coordinate system in which the metric

takes the form

ds2
SDE =

1

y2

[
V −1(dψ + φ)2 + V

(
dy2 + 4ewdzdz̄

)]
, (2.4)

where

V = 1− 1

2
y∂yw , (2.5)

dφ = i∂zV dy ∧ dz − i∂z̄V dy ∧ dz̄ + 2i∂y(V ew)dz ∧ dz̄ , (2.6)

and w = w(y, z, z̄) satisfies the Toda equation

∂z∂z̄w + ∂2
yew = 0 . (2.7)

Notice that the function w determines entirely the metric. The two-form dφ is easily

verified to be closed provided the Toda equation (2.7) is satisfied, implying the existence

of a local one-form φ.

The vector K = ∂ψ is a Killing vector field, and arises canonically from supersymmetry

as a bilinear Kµ ≡ iε†ΓµΓ5ε, where ε is the Killing spinor solving (2.3) and Γ5 ≡ Γ0123.

Notice that the corresponding bilinear in the charge conjugate spinor εc is i(εc)†ΓµΓ5ε
c =

−Kµ. Thus as in the discussion after equation (2.3) we may change variables to ε̃ = εc, Ã =

−A. In the tilded variables the equations of motion (2.2) and Killing spinor equation (2.3)

are identical to the untilded equations, but now Ã = −A and K̃ = −K. Thus the sign

of the instanton is correlated with a choice of sign for the supersymmetric Killing vector,

with charge conjugation of the spinor changing the signs of both A and K.

3Einstein four-manifolds with anti-self-dual Weyl tensor and non-zero scalar curvature are also sometimes

called quaternionic Kähler four-manifolds, with the condition on the Weyl tensor being referred to as half-

conformally flat. See, for example, [30].
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As we shall see in the next section, the coordinate y determines the conformal factor

for the conformally related Kähler metric, and is also the Hamiltonian function for the

vector field K = ∂ψ with respect to the associated symplectic form. The graviphoton field

is given (in our conventions) by

A = −1

4
V −1∂yw(dψ + φ) +

i

4
∂zwdz − i

4
∂z̄wdz̄ . (2.8)

We are of course free to make gauge transformations of A, and we stress that (2.8) is in

general valid only locally.

Having summarized the results of [28, 29], in the next two sections we study this local

geometry further. In particular we show that any self-dual Einstein metric with Killing

vector K ≡ ∂ψ, which then takes the form (2.4), admits a Killing spinor ε solving (2.3),

where A is given by (2.8).

2.2 Conformal Kähler metric

As already mentioned, every self-dual Einstein four-metric with a Killing vector is confor-

mally related to a scalar-flat Kähler metric. This is given by

ds2
Kahler ≡ dŝ2 = y2ds2

SDE

= V −1(dψ + φ)2 + V
(
dy2 + 4ewdzdz̄

)
. (2.9)

Introducing an associated local orthonormal frame of one-forms

ê0 = V 1/2dy , ê1 = V −1/2(dψ + φ) , ê2 + iê3 = 2(V ew)1/2dz , (2.10)

the Kähler form is

ω = ê01 + ê23 , (2.11)

where we have denoted ê0 ∧ ê1 = ê01, etc. That (2.11) is indeed closed follows immediately

from the expression for dφ in (2.6). The Kähler form is self-dual with respect to the natural

orientation on a Kähler manifold, namely ê0123 above, and it is with respect to this orienta-

tion that the curvature F and Weyl tensor are anti-self-dual. We denote the corresponding

orthonormal frame for the self-dual Einstein metric (2.4) as ea = y−1êa, a = 0, 1, 2, 3.

Next we introduce the Hodge type (2, 0)-form

Ω ≡ (ê0 + iê1) ∧ (ê2 + iê3) , (2.12)

and recall that the metric (2.9) is Kähler if and only if

dΩ = iP ∧ Ω , (2.13)

where P is then the Ricci one-form, with Ricci two-form R = dP. It is straightforward to

compute dΩ for the metric (2.9), and one finds that

P = 2A , (2.14)

– 6 –
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where A is given by (2.8). Thus the gauge field is the natural connection on K−1/2, where K
denotes the canonical line bundle for the Kähler metric. The curvature is correspondingly

F = dA = 1
2R, where recall that Rµν = 1

2R̂µνρσω
ρσ where R̂µνρσ denotes the Riemann

tensor for the Kähler metric. A computation gives

− 2R∧ ω =
1

V ew
[
∂z∂z̄w + ∂2

yew
]
ê0123 , (2.15)

so that the Kähler metric is indeed scalar flat if the Toda equation holds. Since the Ricci

two-form has Hodge type (1, 1) and the metric is scalar flat, it follows immediately that F =
1
2R is anti-self-dual. This is because the anti-self-dual two-forms on a Kähler four-manifold

are precisely the primitive (1, 1)-forms (i.e. having zero wedge product with ω, as in (2.15)),

so Λ2
−
∼= Λ

(1,1)
0 . An explicit computation shows that with respect to the frame (2.10)

F = −1

4
∂y
[
V −1∂yw

] (
ê01 − ê23

)
+

1

8ew/2

[
i(∂z − ∂z̄)[V −1∂yw]

(
ê02 + ê13

)
−(∂z + ∂z̄)[V

−1∂yw]
(
ê03 − ê12

) ]
, (2.16)

which is then manifestly anti-self-dual. One can also derive the formula

F = −
(

1

2
ydK[ + y2K[ ∧ JK[

)−
, (2.17)

where K[ denotes the one-form dual to the Killing vector K (in the self-dual Einstein

metric), and J is the complex structure tensor for the Kähler metric (2.9), and a further

short computation leads to

F =

(
1

y
i∂∂̄y

)−
=

1

y
i∂∂̄y +

1

4y

(
∆̂y
)
ω , (2.18)

where ∂̄ denotes the standard operator on a Kähler manifold, the superscript “−” in (2.18)

denotes anti-self-dual part, and ∆̂ denotes the scalar Laplacian for the Kähler metric.

Let us note that the Kähler form is explicitly

ω = dy ∧ (dψ + φ) + 2iV ewdz ∧ dz̄ . (2.19)

Thus dy = −∂ψyω, which identifies the coordinate y as the Hamiltonian function for the

Killing vector K = ∂ψ. Of course, y2 is also the conformal factor relating the self-dual

Einstein metric to the Kähler metric in (2.9).

2.3 Killing spinor: sufficiency

In this section we show that a self-dual Einstein metric with Killing vector K = ∂ψ, which

necessarily takes the form (2.4), admits a solution to the Killing spinor equation (2.3) with

gauge field given by (2.8). The key to this construction is to begin with the canonically

defined spinc spinor that exists on any Kähler manifold.

The positive chirality spin bundle on a Kähler four-manifold takes the form S+
∼=

K1/2⊕K−1/2, where K denotes the canonical bundle. The spin bundle then exists globally

– 7 –
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only if the latter admits a square root, but the spinc bundle S+⊗K−1/2 ∼= 1⊕K−1 always

exists globally. In particular the first factor in S+ ⊗K−1/2 ∼= 1⊕K−1 is a trivial complex

line bundle, whose sections may be identified with complex-valued functions, and there is

always a section ζ satisfying the spinc Killing spinor equation(
∇̂µ −

i

2
Pµ
)
ζ = 0 . (2.20)

Here the hat denotes that we will apply this to the conformal Kähler metric (2.9) in the

case at hand, and P is the Ricci one-form potential we encountered above. The connection

term in (2.20) precisely corresponds to twisting the spin bundle S+ by K−1/2. Using the

result earlier that P = 2A the spinc equation (2.20) may be rewritten as(
∇̂µ − iAµ

)
ζ = 0 , (2.21)

which may already be compared with the Killing spinor equation (2.3).

More concretely, the solution to (2.20), or equivalently (2.21), is simply given by a

constant spinor ζ, so that ∂µζ = 0. This equation makes sense globally as ζ may be

identified with a complex-valued function. To see this it is useful to take the following

projection conditions

Γ̂1ζ = iΓ̂0ζ , Γ̂3ζ = iΓ̂2ζ , (2.22)

following e.g. reference [32]. Here Γ̂a, a = 0, 1, 2, 3, denote the gamma matrices in the

orthonormal frame (2.10).4 The covariant derivative of ζ is then computed to be

∇̂µζ =

(
∂µ +

1

4
ω̂ νρ
µ Γ̂νρ

)
ζ = ∂µζ +

i

2

(
ω̂ 01
µ + ω̂ 23

µ

)
ζ = ∂µζ + iAµζ , (2.23)

where ω̂ νρ
µ is the spin connection of the conformal Kähler metric, and we have used the

explicit form of this in appendix A together with the formula (2.8) for A. It follows that

simply taking ζ to be constant, ∂µζ = 0, solves (2.20). This is a general phenomenon on

any Kähler manifold.

Using the canonical spinor ζ we may construct a spinor ε that is a solution to the

Killing spinor equation (2.3). Specifically, we find

ε =
1√
2y

(
1 + V −1/2Γ̂0

)
ζ . (2.24)

To verify this one first notes that the spin connections of the Kähler metric and the self-dual

Einstein metric are related by

∇̂µζ = ∇µζ +
1

2
Γ̂ ν
µ (∂ν log y)ζ , (2.25)

where Γ̂µ = yΓµ in a coordinate basis. The Killing spinor equation then takes the form[
∂µ +

1

4
ω̂ νρ
µ Γ̂νρ −

1

2
Γ̂ ν
µ (∂ν log y) − iAµ +

1

2y
Γ̂µ +

i

4
yFνρΓ̂

νρΓ̂µ

]
ε = 0 . (2.26)

4Strictly speaking the hats are redundant, but we keep them as a reminder that in this section the

orthonormal frame is for the Kähler metric.
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To verify this is solved by (2.24) one simply substitutes (2.24) directly into the left-hand-

side of (2.26). Using the explicit expressions for the spin connection, the gauge field, the

field strength, as well as the projection conditions on the canonical spinor ζ and (2.20),

one sees that (2.26) indeed holds.

From this analysis we can conclude that the self-dual Einstein metric (2.4) and the

gauge field (2.8), which are solutions to Einstein-Maxwell theory in four dimensions, yield a

Dirac spinor ε that is solution to the Killing spinor equation (2.3). This implies that these

self-dual Einstein backgrounds are always locally supersymmetric solutions of Euclidean

N = 2 gauged supergravity. We turn to global issues in the next section.

3 Asymptotically locally AdS solutions

In this section and the next we will assume that we are given a complete (non-singular) self-

dual Einstein metric with a Killing vector, which then necessarily takes the local form (2.4).

Moreover, we shall assume this metric is asymptotically locally Euclidean AdS,5 and in later

subsections also that the four-manifold M4 on which the metric is defined is topologically

a ball. A two-parameter family of such self-dual solutions on the four-ball, generalizing all

previously known solutions of this type, was constructed in [10]. In section 5 we shall review

these solutions, and also introduce a number of further generalizations. In particular, the

results of the current section allow us to deform the choice of Killing vector (which was

essentially fixed in previous results), and we will also explain how to generalize to an

infinite-dimensional family of solutions satisfying the above properties, starting with the

local metrics in [26].

With the above assumptions in place, we begin in this section by showing that if the

Killing vector K = ∂ψ is nowhere zero in a neighbourhood of the conformal boundary three-

manifold M3 then it is a Reeb vector field for an almost contact structure on M3. We then

reproduce the same geometric structure on M3 studied from a purely three-dimensional

viewpoint in [25]. In particular the asymptotic expansion of the Killing spinor ε leads to

the same Killing spinor equation as [25]. This is important, as it shows that the dual field

theory is defined on a supersymmetric background of the form studied in [25], for which the

exact partition function of a general N = 2 supersymmetric gauge theory was computed

in [20] using localization. Having studied the conformal boundary geometry, we then turn

to the bulk in section 3.4. In particular we show that, with an appropriate restriction on the

Killing vector K, the conformal Kähler structure of section 2.2 is everywhere non-singular.

This allows us to prove in turn that the instanton and Killing spinor defined by the Kähler

structure are everywhere non-singular.

In particular this means that each of the self-dual Einstein metrics in section 5 leads to

a one-parameter family (depending on the choice of Killing vector K) of smooth supersym-

metric solutions. In other words, if the self-dual Einstein metric depends on n parameters,

the complete solution will depend on n + 1 parameters. We emphasize that in the previ-

5Since the metric has Euclidean signature one might more accurately describe this boundary condition

as asymptotically locally hyperbolic, which is often used in the mathematics literature.
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ously known solutions the only example of this phenomenon is the solution of [6]. There

the Einstein metric was simply AdS4, which doesn’t have any parameters.

3.1 Conformal boundary at y = 0

We are interested in self-dual Einstein metrics of the form (2.4) which are asymptotically

locally Euclidean AdS (hyperbolic), in order to apply to the gauge/gravity correspondence.

From the assumptions described above there is a single asymptotic region where the metric

approaches dr2

r2
+ r2ds2

M3
as r → ∞, where M3 is a smooth compact three-manifold. In

fact the metrics (2.4) naturally have such a conformal boundary at y = 0. More precisely,

we impose boundary conditions such that w(y, z, z̄) is analytic around y = 0, so

w(y, z, z̄) = w(0)(z, z̄) + yw(1)(z, z̄) +
1

2
y2w(2)(z, z̄) +O(y3) . (3.1)

It follows that

V (y, z, z̄) = 1− 1

2
yw(1)(z, z̄)− 1

2
y2w(2)(z, z̄) +O(y3) , (3.2)

and that the metric (2.4) is

ds2
SDE = [1 +O(y)]

dy2

y2
+

1

y2

[
(dψ + φ0)2 + 4ew(0)dzdz̄ +O(y)

]
. (3.3)

Setting r = 1/y this is to leading order

ds2
SDE '

dr2

r2
+ r2

[
(dψ + φ0)2 + 4ew(0)dzdz̄

]
, (3.4)

as r →∞, so that the metric is indeed asymptotically locally Euclidean AdS around y = 0.

Here we have also expanded the one-form tangent to M3

φ(y, z, z̄) |M3= φ(0)(z, z̄) + yφ(1)(z, z̄) +O(y2). (3.5)

In fact by expanding (2.6) one can show that φ(1) = 0. Of course, as usual one is free to

redefine r → rΩ(ψ, z, z̄), where Ω is any smooth, nowhere zero function on M3, resulting

in a conformal transformation of the boundary metric ds2
M3
→ Ω2ds2

M3
. However, in the

present context notice that r = 1/y is a natural choice of radial coordinate.

With the analytic boundary condition (3.1) for w it follows automatically that K = ∂ψ
is nowhere zero in a neighbourhood of the conformal boundary y = 0. As we shall see,

this will reproduce the same structure on M3 as [25], but we should stress that this is

not the general situation. For example, one could take the standard hyperbolic metric for

Euclidean AdS, conformally embedded as a unit ball in R4, and take K to be the Killing

vector that rotates the first factor in R2 ⊕R2 ∼= R4. In fact this will be the natural choice

of K that arises in the two-monopole solution described in appendix C.3. The ansatz (3.1)

is thus certainly a restriction on the class of possible globally regular solutions, although

all examples in section 5 have choices of Killing vector for which this expansion holds.
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Returning to the case at hand, the conformal boundary is a compact three-manifold

M3 (by assumption), and from the above discussion a natural choice of representative for

the metric is

ds2
M3

= (dψ + φ0)2 + 4ew(0)dzdz̄ . (3.6)

Notice that the form of the metric (3.6) is precisely of the form studied in [20]. In that

reference an important role is played by the one-form

η ≡ dψ + φ0 , (3.7)

which has exterior derivative

dη = dφ0 = 2i∂y(V ew) |y=0 dz ∧ dz̄ = iw(1)e
w(0)dz ∧ dz̄ . (3.8)

The form η is a global almost contact one-form on M3. The most straightforward way to

derive this in the case at hand is to note the form of the boundary Killing spinor equation

in section 3.2 and appeal to the results of [25].

The Killing vector K = ∂ψ is the Reeb vector for the almost contact form η, as follows

from the equations

Kyη = 1 , Kydη = 0 . (3.9)

The orbits of K thus foliate M3, and moreover this foliation is transversely holomorphic

with local complex coordinate z. When the orbits of K all close it generates a U(1)

symmetry of the boundary structure, and the orbit space M3/U(1) is in general a compact

orbifold surface, on which z may be regarded as a local complex coordinate. These are

generally called Seifert fibred three-manifolds in the literature. On the other hand, if K

has at least one non-closed orbit then since the isometry group of a compact manifold is

compact, we deduce that M3 admits at least a U(1) × U(1) symmetry, and the structure

defined by η is a toric almost contact structure. In this case we may introduce standard

2π-period coordinates ϕ1, ϕ2 on the torus U(1)×U(1) and write

K = ∂ψ = b1∂ϕ1 + b2∂ϕ2 . (3.10)

From (3.8) we deduce that the Taylor coefficient w(1) is a globally defined basic function

on M3 — that is, it is invariant under K = ∂ψ. Moreover, the almost contact form η is

a contact form precisely when the function w(1) is everywhere positive. We shall see later

that there are examples for which η is contact and not contact. On the other hand,

the coefficient w(0) is in general only a locally defined function of z, z̄, as one sees by

noting that the transverse metric gT = ew(0)dzdz̄ is a global two-tensor, but in general the

complex coordinate z is defined only locally.6 It will be useful in what follows to define a

corresponding transverse volume form

volT ≡ 2iew(0)dz ∧ dz̄ . (3.11)

Again, this is a global tensor on M3, with

dη = dφ0 =
w(1)

2
volT . (3.12)

6For example, for Euclidean AdS4 realized as a hyperbolic ball and with K = ∂ψ generating the Hopf

fibration of the boundary S3 then gT is the standard metric on the round two-sphere, implying that

w(0)(z, z̄) = −2 log(1 + |z|2) which blows up at z =∞ (which is a smooth copy of S1 ⊂M3
∼= S3).
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3.2 Boundary Killing spinor

In this section we show that the Killing spinor ε induces a Killing spinor χ on the conformal

boundary M3 that solves the Killing spinor equation in [25].

We begin by recalling the orthonormal frame of one-forms

e0 =
1

y
V 1/2dy , e1 =

1

y
V −1/2(dψ + φ) , e2 + ie3 =

2

y
(V ew)1/2dz , (3.13)

for the self-dual Einstein metric (2.4). We introduce a corresponding frame for the three-

metric ds2
M3

on the conformal boundary:

e1
(3) = dψ + φ(0) , e2

(3) + ie3
(3) = 2ew(0)/2dz , (3.14)

and will use indices i, j, k = 1, 2, 3 for this orthonormal frame.

We next expand the four-dimensional Killing spinor equation (2.3) as a Taylor series

in y. One starts by noting that Γµ = eµaΓ
a = O(y). But as Γµ = eaµΓa = O(1/y) and the

field strength expands as F = F(0) + yF(1) +O(y2) we see that

i

4
FνρΓ

νρΓµ = O(y) . (3.15)

After a computation we then obtain[
∇(3)
µ − iA(0)µ +

1

2y

(
1 +

1

4
yw(1)

)
ei(3)µ(Γi − Γi0) +O(y)

]
ε = 0 , (3.16)

where µ = ψ, z, z̄, and where

A(0) = −1

4
w(1)e

1
(3) +

i

8
e−w(0)/2(∂z − ∂z̄)w(0)e

2
(3) −

1

8
e−w(0)/2(∂z + ∂z̄)w(0)e

3
(3) , (3.17)

is the lowest order term in the expansion of A given by (2.8). The Killing spinor ε then

expands as

ε =
1√
2y

[
1 + Γ0 +

1

4
yw(1)Γ0 +O(y2)

]
ζ0 , (3.18)

where ζ0 is the lowest order (y-independent) part of the Kähler spinor ζ. Substituting this

into (3.16) gives a leading order term that is identically zero. The subleading term then

reads [(
∇(3)
i − iA(0)i

)
(1 + Γ0) +

1

8
w(1)(Γi0 − Γi)

]
ζ0 = 0 . (3.19)

The projections (2.22), in the current context, read

Γ1ζ0 = iΓ0ζ0 , Γ3ζ0 = iΓ2ζ0 . (3.20)

We may choose the following representation of the gamma matrices:

Γi =

(
0 σi

σi 0

)
, Γ0 =

(
0 iI2
−iI2 0

)
, (3.21)
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with σi the Pauli matrices.7 The projection conditions then force ζ0 to take the form8

ζ0 =

(
χ

0

)
where χ =

(
χ0

χ0

)
. (3.22)

Here χ is a two-component spinor and χ0 is simply a constant. The three-dimensional

Killing spinor equation then becomes(
∇(3)
i − iA(0)i −

i

8
w(1)σi

)
χ = 0 . (3.23)

This three-dimensional Killing spinor equation is precisely of the form found in [25], and

studied in [20]. More precisely, this is the form of the Killing spinor equation in the case

where the background geometry has real-valued fields, with the metric given by (3.6), and

the Killing spinor χ and its charge conjugate χc give rise to a supersymmetric background

admitting two supercharges of opposite R-charge. In the notation of these references we

have that the three-dimensional gauge field V = 0 (or rather there exists a gauge in which

this is true — see appendix B), while A = A(0) and the function H = − i
4w(1). This

result shows that there indeed exists a spinor χ with the required properties to construct

supersymmetric field theories on M3.

We close this subsection by remarking that supersymmetry singled out a natural rep-

resentative (3.6) of the conformal class of the boundary metric. However, one is free to

make the change in radial coordinate r → rΩ, with Ω any smooth, nowhere zero function

on M3, resulting in a conformal transformation of (3.6) by ds2
M3
→ Ω2ds2

M3
. In particular,

in the metric (3.6) the Killing vector K = ∂ψ has length 1, while the latter conformal

rescaling gives ‖K‖M3 = Ω. In this case one instead finds that the vector V in [20, 25]

is non-zero, with gauge-invariant and generically non-zero components V2 = ∂3 log Ω and

V3 = −∂2 log Ω. This is then in agreement with the three-dimensional results of [20]. For

further details of this conformal rescaling we refer the reader to appendix B.

3.3 Non-singular gauge

In a neighbourhood of the conformal boundary the Kähler metric is defined on [0, ε)×M3,

for some ε > 0. This follows since via the conformal rescaling (2.9) the Kähler metric

asymptotes to

ds2
Kahler ' dy2 + ds2

M3
, (3.24)

near to the conformal boundary y = 0. In particular the Kähler structure is smooth and

globally defined in a neighbourhood of this boundary. Recall also that the gauge field A is

a connection on K−1/2. Since every orientable three-manifold is spin the canonical bundle

7In this basis the charge conjugation matrix B, appearing in εc ≡ Bε∗, is B =

(
ε 0

0 −ε

)
where ε =(

0 −1

1 0

)
.

8Notice that although our frame coincides with that of [25], our three-dimensional gamma matrices are a

permutation of those in the latter reference, which is why the spinor solution takes a slightly different form.
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K admits a square root in this neighbourhood, and so A restricts to a bona fide connection

one-form on M3. The corresponding U(1) principal bundle can certainly be non-trivial for

generic topology of M3. In this section we analyse the simpler case where M3
∼= S3. Here A

necessarily restricts to a global one-form A(0) on the conformal boundary, but as we shall see

the explicit representative (3.17) is in a singular gauge. Correspondingly, since the bound-

ary Killing spinor χ is a spinc spinor, the solution (3.22) to (3.23) is similarly in a singular

gauge. In this section we correct this by writing A(0) as a global one-form on M3
∼= S3.

The expression (3.17) for the restriction of A to the conformal boundary is of course

only well-defined up to gauge transformations. We may rewrite the expression in (3.17) as

Alocal
(0) = −1

4
w(1)(dψ + φ0) +

i

4
∂zw(0)dz −

i

4
∂z̄w(0)dz̄ , (3.25)

adding the superscript label “local” to emphasize that in general this is only a local one-

form. The first term is −1
4w(1)η, which is always a global one-form on M3, independently

of the topology of M3. However, the last two terms are not globally defined in general. We

may remedy this in the case where M3
∼= S3 by making a gauge transformation, adding an

appropriate multiple of dψ:

A(0) = −1

4
w(1)η + γ

[
dψ +

i

4γ
∂zw(0)dz −

i

4γ
∂z̄w(0)dz̄

]
. (3.26)

This is then a global one-form on M3
∼= S3 if and only if the curvature two-form of

the connection in square brackets lies in the same basic cohomology class as dη = dφ0.

Concretely, we write

γdψ +
i

4
∂zw(0)dz −

i

4
∂z̄w(0)dz̄ ≡ γdψ +B ≡ γη + α , (3.27)

and compute

dB = − i

2
∂z∂z̄w(0)dz ∧ dz̄ =

(
w2

(1) + w(2)

)
ew(0)

i

2
dz ∧ dz̄

=
1

4

(
w2

(1) + w(2)

)
volT , (3.28)

where we used the Toda equation (2.7) and Taylor expanded. Since η is a global one-form

on M3
∼= S3, it follows that (3.26) is a global one-form precisely if α defined via (3.27) is

a global basic one-form, i.e. α is invariant under L∂ψ and satisfies ∂ψyα = 0. In this case

we have ∫
M3

η ∧ 1

γ
dB =

∫
M3

η ∧ dη , (3.29)

which may be interpreted as saying that [ 1
γdB] = [dη] ∈ H2

basic(M3) ∼= R lie in the same

basic cohomology class. Indeed, this is the case if and only if 1
γdB and dη differ by the

exterior derivative of a global basic one-form.

The integral on the right hand side of (3.29) is the almost contact volume of M3:

Volη ≡
∫
M3

η ∧ dη =

∫
M3

w(1)

2
η ∧ volT =

∫
M3

w(1)

2

√
det gM3 d3x . (3.30)
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This played an important role in computing the classical localized Chern-Simons action

in [20], which contributes to the field theory partition function on M3. Using (3.28), (3.29)

and (3.30) we see that A(0) in (3.26) is a global one-form if we choose the constant γ via

1

4γ

∫
M3

(
w2

(1) + w(2)

) √
det gM3 d3x = Volη . (3.31)

We shall return to this formula in section 3.5

3.4 Global conformal Kähler structure

Recall that at the beginning of this section we assumed we were given a complete self-dual

Einstein metric with Killing vector K = ∂ψ, of the local form (2.4). We would like to

understand when the conformal Kähler structure, studied locally in section 2.2, is then

globally non-singular. As we shall see, this is not automatically the case. Focusing on

the case of toric metrics on a four-ball (all examples in section 5 are of this type), with

an appropriate restriction on K we will see that the conformal Kähler structure is indeed

everywhere regular. It follows in this case that the Kähler spinc spinor and instanton

F = 1
2R are globally non-singular, and thus that the Killing spinor ε given by (2.24) is also

globally defined and non-singular. Before embarking on this section, we warn the reader

that the discussion is a little involved, and this section is probably better read in conjuction

with the explicit examples in section 5. In fact the Euclidean AdS4 metric in section 5.1

displays almost all of the generic features we shall encounter.

The self-dual Einstein metrics of section 5 are all toric, and we may thus parameterize

a choice of toric Killing vector K as

K = b1∂ϕ1 + b2∂ϕ2 , (3.32)

where we have introduced standard 2π-period coordinates ϕ1, ϕ2 on the torus U(1)×U(1).

It will be important to fix carefully the orientations here. Since the metrics are defined

on a ball, diffeomorphic to R4 ∼= R2 ⊕ R2 with U(1) × U(1) acting in the obvious way, we

choose ∂ϕi so that the orientations on R2 induce the given orientation on R4 (with respect

to which the metric has anti-self-dual Weyl tensor). This fixes the relative sign of b1 and b2.

Given that we have also assumed that K has no fixed points near the conformal boundary,

we must also have b1 and b2 non-zero. Thus b1/b2 ∈ R \ {0}, and its sign will be important

in what follows.

Since the self-dual Einstein metric is assumed regular, the one-form K[ and its exterior

derivative dK[ are both globally defined and regular. The self-dual two-form

Ψ ≡
(

dK[
)+
≡ 1

2
(dK[ + ∗dK[) , (3.33)

is a twistor [26], and the invariant definition of the function/coordinate y in section 2 is

given in terms of its norm by

2

y2
= ‖Ψ‖2 ≡ 1

2!
ΨµνΨµν . (3.34)
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The complex structure tensor for the conformal Kähler structure is correspondingly

Jµν = −yΨµ
ν , (3.35)

where indices are raised and lowered using the self-dual Einstein metric. It is then an

algebraic fact that J2 = −1. The conformal Kähler structure will thus be everywhere

regular, provided the functions y and 1/y are not zero. Of course y = 0 is the conformal

boundary (which is at infinity, and is not part of the self-dual Einstein space). We are free

to choose the sign when taking a square root of (3.34), and without loss of generality we take

y > 0 in a neighbourhood of the conformal boundary at y = 0. Since everything is regular,

in particular the norm of the twistor Ψ cannot diverge anywhere (except at infinity), and

thus y 6= 0 in the interior of the bulk M4. It follows that y is everywhere positive on M4.

The Killing vector K is zero only at the “NUT”, namely the fixed origin of R4 ∼=
R2 ⊕ R2. At this point the two-form dK[, in an orthonormal frame, is a skew-symmetric

4×4 matrix whose weights are precisely the coefficients b1, b2 in (3.32).9 It follows from the

definitions (3.33) and (3.34), together with a little linear algebra in such an orthonormal

frame, that

yNUT =
1

|b1 + b2|
. (3.36)

The conformal Kähler structure will thus be regular everywhere, except potentially

where 1/y = 0. Suppose that 1/y = 0 at a point p ∈ M4 \ {NUT}. Then K = ∂ψ |p 6= 0,

and thus from the metric (2.4) we see that 1/(V y2) |p 6= 0. It follows that the function

V must tend to zero as 1/y2 as one approaches p. We may thus write V = c
y2

+ o(1/y2),

where c = c(z, z̄) is non-zero at p. Using the definition of V in terms of w in (2.5) we thus

see that ∂yw = 2
y −

2c
y3

+o(1/y3). There are then various ways to see that the corresponding

supersymmetric supergravity solution is singular. Perhaps the easiest is to note from the

Killing spinor formula (2.24), together with the fact that we may normalise ζ†ζ = 1, we have

ε†ε =
1

2y

(
1 + V −1

)
, (3.37)

which from the above behaviour of V then diverges as we approach the point p. It follows

that the Killing spinor ε is divergent at p, and the solution is singular.

The solutions are thus singular on M4 \ {NUT} if and only if {1/y = 0} \ {NUT} is

non-empty. Since yNUT = 1/|b1 + b2|, the analysis will be a little different for the cases

b1/b2 = −1 and b1/b2 6= −1. We thus assume the latter (generic) case for the time being.

As in the last paragraph, let us suppose 1/y |p= 0. Due to the behaviour of V and w

near p, it follows from the form of the metric (2.4) that p must lie on one of the axes,

i.e. at ρ1 = 0 or at ρ2 = 0, where (ρi, ϕi) are standard polar coordinates on each copy of

R2⊕R2 ∼= R4 ∼= M4, i = 1, 2.10 In either case there is then an S1 3 p locus of points where

1/y = 0, as follows by following the orbits of the Killing vector ∂ϕ2 or ∂ϕ1 , respectively.

9This is perhaps easiest to see by noting that to leading order the metric is flat at the NUT, so one can

compute dK[ in an orthonormal frame at the NUT using the flat Euclidean metric on R2 ⊕ R2.
10Notice that when b1/b2 = −1 in fact 1/y = 0 at the NUT itself, ρ1 = ρ2 = 0.
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To see when this happens, our analysis will be based on the fact that, since the Killing

vector has finite norm in the interior of M4, one can straightforwardly show that y diverges

if and only if ||dy|| = 0. It is then convenient to consider the function y restricted to the

relevant axis, i.e. y |{ρ1=0}≡ y2(ρ2) or y |{ρ2=0}≡ y1(ρ1). We have y1(0) = y2(0) = yNUT >

0. Suppose that yi(ρ) (for either i = 1, 2) starts out decreasing along the axis as we move

away from the NUT. Then in fact it must remain monotonic decreasing along the whole

axis, until it reaches y = 0 at conformal infinity where ρ =∞. The reason for this is simply

that if yi(ρ) has a turning point then11 dy = 0, which we have already seen can happen

only where y diverges: but this contradicts the fact that yi(ρ) is decreasing from a positive

value at ρ = 0 (and is bounded below by 0). On the other hand, suppose that yi(ρ) starts

out increasing at the NUT. Then since at conformal infinity yi(∞) = 0, it follows that

yi(ρ) must have a turning point at some finite ρ > 0. At such a point y will diverge, and

from our above discussion the solution is singular.

This shows that the key is to examine dy at the NUT itself. Recall that the coordinate

y is a Hamiltonian function for the Killing vector K, i.e. dy = −Kyω. From (3.35),

we also know that ω is related to the two-form Ψ =
(
dK[

)+
by ω = −y3Ψ, yielding

dy = y3Ky
(
dK[

)+
. At the NUT we may again use the polar coordinates (ρi, ϕi) for the

two copies of R2, where the metric is to leading order the metric on flat space. In the usual

orthonormal frame for these polar coordinates, using the above formulae we then compute

to leading order

(dy)|NUT '


− b1

(b1+b2)2
sign(b1 + b2)ρ1

0

− b2
(b1+b2)2

sign(b1 + b2)ρ2

0

 . (3.38)

Thus when b1/b2 > 0 we see that yi(ρ) starts out decreasing at the NUT, for both i = 1, 2,

and from the previous paragraph it follows that the solution is then globally non-singular!

On the other hand, the case b1/b2 < 0 splits further into two subcases. For simplicity let us

describe the case where b2 > 0 (with the case b2 < 0 being similar). Then when b1/b2 < −1

we have y2(ρ) starts out increasing at the NUT, which then leads to a singularity along the

axis ρ1 = 0 at some finite value of ρ2; on the other hand, when −1 < b1/b2 < 0 we have

that y1(ρ) starts out increasing at the NUT, which then leads to a singularity along the

axis ρ2 = 0 at some finite value of ρ1. Notice these two subcases meet where b1/b2 = −1,

when we know that 1/y = 0 at the NUT itself, ρ1 = ρ2 = 0.

This leads to the simple picture that all solutions with b1/b2 > 0 are globally regular,

while all solutions with b1/b2 < 0 are singular, except when b1/b2 = −1. In this latter

case y is infinity at the NUT. As one moves out along either axis y is then necessarily

monotonically decreasing to zero, by similar arguments to those above. Thus the b1/b2 =

−1 solution is in fact also non-singular, although qualitatively different from the solutions

with b1/b2 > 0. One can show that, regardless of the values of b1 and b2, the complex

structure (3.35) is always the standard complex structure on flat space at the NUT, meaning

11Notice that dy necessarily points along the axis, given the form of the metric (2.4).

– 17 –



J
H
E
P
0
8
(
2
0
1
6
)
0
8
0

that when b1/b2 > 0 the induced complex structure at the NUT is C2, while when b1/b2 =

−1 the NUT becomes a point at infinity in the conformal Kähler metric, with the Kähler

metric being asymptotically Euclidean. In particular the instanton is zero at the NUT in

this case, and so is regular there.

Notice that, for the regular solutions, since K is nowhere zero away from the NUT we

may deduce that also dy = −Kyω is nowhere zero (as ω is a global symplectic form on

M4 \ {NUT}). In particular y is a global Hamiltonian function for K, and in particular it

is a Morse-Bott function on M4. This implies that y has no critical points on M4 \{NUT},
and thus that yNUT is the maximum value of y on M4. Moreover, the Morse-Bott theory

tells us that constant y surfaces on M4 \ {NUT} are all diffeomorphic to M3
∼= S3.

We shall see all of the above behaviour very explicitly in section 5 for the case when the

self-dual Einstein metric is simply Euclidean AdS4. The more complicated Einstein metrics

in that section of course also display these features, although the corresponding formulae be-

come more difficult to make completely explicit as the examples become more complicated.

3.5 Toric formulae

In this section we shall obtain some further formulae, valid for any toric self-dual Einstein

metric on the four-ball. These will be useful for computing the holographic free energy in

the next section.

We first note that for M3
∼= S3 with Reeb vector (3.10) the almost contact volume

in (3.30) may be computed using equivaraint localization to give

Volη =

∫
M3

η ∧ dη = −(2π)2

b1b2
. (3.39)

This formula also appeared in [20], although in the present paper we have been more

careful with sign conventions. One proves (3.39) by an analogous computation to the

Duistermaat-Heckman formula in [33]. Specifically, we define a two-form

ω̃ ≡ 1

2
d(%2η) , (3.40)

on M4, where % is a choice of radial coordinate with the NUT at % = 0 and the conformal

boundary at % =∞, and notice that

Volη = −
∫
M4

e−%
2/2 1

2!
ω̃ ∧ ω̃ . (3.41)

The minus sign arises here because the natural orientation on M3 defined in our set-up

is opposite to that on the right hand side of (3.41). Specifically, y is decreasing towards

the boundary of M4, so that dy points inwards from M3 = ∂M4, while % is increasing

towards the boundary, with d% pointing outwards.12 One then evaluates the right hand

side of (3.41) using equivariant localization. Specifically, the integrand is

exp

[
−%

2

2
+ ω̃

]
, (3.42)

12Notice that we could have avoided this by choosing y to be strictly negative on the interior of M4,

rather than strictly positive.
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which since Kyω̃ = −d(%
2

2 ) is an equivariantly closed form for K, i.e. is closed under d+Ky.

The Berline-Vergne equivariant integration theorem then localizes the integral to the fixed

point set of K, and one obtains precisely (3.39), with the bi appearing as the weights of

the action of K at the NUT.13

Finally, let us return to the equation (3.31). In fact there is another interpretation

of the constant γ, in terms of the charge of the Killing spinor under K. To see this,

recall that the solution (3.22) to the three-dimensional Killing spinor equation (3.23) is

simply constant in our frame, but that was for the case where the gauge field A(0) is given

by (3.25), which as we saw in section 3.3 is always in a singular gauge on M3
∼= S3. The

gauge transformation A(0) → A(0) + γdψ that we made in (3.26) to obtain a non-singular

gauge implies that the correct global spinor χ has a phase dependence

χglobal = eiγψ

(
χ0

χ0

)
, (3.43)

where χ0 is a constant complex number. Since the frame is invariant under K = ∂ψ, we

thus deduce that γ is precisely the charge of the Killing spinor under K.

On the other hand, the total four-dimensional spinor is constructed from the canonical

spinor ζ on the conformal Kähler manifold, via (2.24). Thus γ is also the charge of ζ under

K. This immediately allows us to write down that

|γ| = |b1|+ |b2|
2

. (3.44)

This formula may be fixed by looking at the behaviour at the NUT, where recall that the

complex structure is that of C2. In terms of complex coordinates z1 = |z1|eiψ1 , z2 = |z2|eiψ2 ,

the Kähler spinor ζ, and hence also our Killing spinor, has charges 1
2 under each of ∂ψi ,

i = 1, 2. However, one must be careful to correctly fix the orientations, which leads to the

modulus signs in (3.44). More precisely, for b1/b2 > 0 the conformal Kähler metric fills the

interior of a ball in C2, while for b1/b2 = −1 instead it is the exterior — see, for example,

the discussion at the end of section 5.1.

4 Holographic free energy

In this section we compute the regularized holographic free energy for a supersymmetric

self-dual asymptotically locally Euclidean AdS solution defined on the four-ball, deriving

the remarkably simple formula (1.2) quoted in the introduction.

4.1 General formulae

The computation of the holographic free energy follows standard holographic renormaliza-

tion methods [34, 35]. The total on-shell action is

I = Igrav
bulk + IF + Igrav

bdry + Igrav
ct . (4.1)

13This is then the Duistermaat-Heckman formula when ω̃ is a symplectic form, i.e. when η is a contact

form.
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Here the first two terms are the bulk (Euclidean) supergravity action (2.1)

ISUGRA = Igrav
bulk + IF ≡ − 1

16πG4

∫
M4

(
R+ 6− F 2

)√
det g d4x , (4.2)

evaluated on a particular solution with topology M4. The boundary term Igrav
bdry in (4.1)

is the Gibbons-Hawking-York term, required so that the equations of motion (2.2) follow

from the bulk action (4.2) for a manifold M4 with boundary. This action is divergent,

but we may regularize it using holographic renormalization. Introducing a cut-off at a

sufficiently small value of y = δ > 0, with corresponding hypersurface Sδ = {y = δ} ∼= M3,

we have the following total boundary terms

Igrav
bdry + Igrav

ct =
1

8πG4

∫
Sδ

(
−K + 2 +

1

2
R(h)

)√
deth d3x . (4.3)

Here R(h) is the Ricci scalar of the induced metric hij on Sδ, and K is the trace of the

second fundamental form of Sδ, the latter being the Gibbons-Hawking-York boundary term.

It is convenient to rewrite the latter using∫
Sδ
K
√

deth d3x = Ln
∫
Sδ

√
deth d3x , (4.4)

where n is the outward pointing normal vector to the boundary Sδ.

4.2 The four-ball

In this section we evaluate the total free energy (4.1) in the case of a supersymmetric

self-dual solution on the four-ball M4
∼= B4 ∼= R4.

We deal with each term in (4.1) in turn, beginning with the gauge field contribution

IF =
1

16πG4

∫
M4

F 2
√

det g d4x = − 1

8πG4

∫
M4

F ∧ F =

∫
M3

A(0) ∧ F(0) . (4.5)

Here in second equality we have used the fact that ∗4F = −F is anti-self-dual, while in the

last equality we used the fact that on the four-ball M4 = B4 ∼= R4 the curvature F = dA

is globally exact. Thus we may apply Stokes’ theorem with M3 = ∂M4, recalling that

the natural orientation on M3 is induced from an inward-pointing normal vector, as in the

discussion of (3.41).14 Notice also that here the gauge field action is already finite, so there is

no need to realize the conformal boundary M3 as the limit limδ→0 Sδ. Next we compute the

integrand in (4.5) using the global form of A(0) (3.26) in section 3.3. Recall that this reads

A(0) = −1

4
w(1)η + γdψ +B = −1

4
w(1)η + γη + α , (4.6)

where in particular α is a global basic one-form. We then compute

A(0) ∧ F(0) =
w3

(1)

32
η ∧ volT −

1

4
w(1)η ∧ dB − γ

8
w2

(1)η ∧ volT

+γη ∧ dB − 1

4
α ∧ dw(1) ∧ η . (4.7)

14Concretely, the integral over y is
∫ 0

yNUT
dy, where we chose the convention that yNUT > 0.
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When we integrate this over M3, the last term may be integrated by parts, giving an integral

that is equal to the integral of −1
4w(1)η∧dα, which then combines with the first line of (4.7).

On the other hand, the first term on the second line of (4.7) may be evaluted in the U(1)×
U(1) toric case using (3.28), the integral (3.31) and the formula (3.44) for |γ|. This leads to

IF = − π

2G4
· (|b1|+ |b2|)2

4b1b2
+

1

8πG4

∫
M3

w3
(1)

32

√
det gM3 d3x

− 1

8πG4

∫
M3

1

8
(w3

(1) + w(1)w(2))
√

det gM3 d3x . (4.8)

Notice that the first term closely resembles the free energy appearing in (1.2) — we shall see

momentarily that this combines with a term coming from the gravitational contribution.

We turn next to the bulk gravity part of the action, which when evaluated on-shell is

Igrav
bulk =

1

16πG4

∫
Mδ

4

6vol4 . (4.9)

Here M δ
4 is cut off along the boundary Sδ = {y = δ} ∼= M3, which is necessary as the

volume is of course divergent. The volume form of interest is

vol4 =
1

y4
dy ∧ (dψ + φ) ∧ V ew2idz ∧ dz̄ . (4.10)

A computation reveals that this may be written as the exact form

− 3vol4 = dΓ , (4.11)

where we have defined the three-form

Γ ≡ 1

2y2
(dψ + φ) ∧ dφ+

1

y3
(dψ + φ) ∧ V ew2idz ∧ dz̄ . (4.12)

We may then integrate over M δ
4 using Stokes’ theorem. To do this let us define % to be

geodesic distance from the NUT — the origin of M4
∼= B4 ∼= R4 that is fixed by the Killing

vector K = ∂ψ. We then more precisely cut off the space also at small % > 0 and let %→ 0,

so that we are integrating over M δ,%
4 . The form Γ may be written

Γ =
1

2y2
(dψ + φ) ∧ dφ+

1

y3
(dψ + φ) ∧ ω , (4.13)

where ω is the conformal Kähler form. As argued in section 3.4, when yNUT is finite ω is

everywhere a smooth two-form, and thus in particular in polar coordinates near the NUT

at % = 0 it takes the form ω ' %d% ∧ β1 + %2β2 to leading order, where β1 and β2 are pull-

backs of smooth forms on the S3 = S3
NUT at constant % > 0. Because of this, the second

term in (4.13) does not contribute to the integral around the NUT. However, notice that∫
S3
NUT

(dψ + φ) ∧ dφ =

∫
My=0

3

(dψ + φ) ∧ dφ = −(2π)2

b1b2
, (4.14)
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follows from a simple application of Stokes’ theorem, where we have used the almost contact

volume (3.39). Using the fact (3.36) that yNUT = 1/|b1 + b2| one thus obtains∫
Mδ

4

vol4 =
(2π)2|b1 + b2|2

6b1b2
+

∫
My=0

3

[
1

3δ3
+
w(1)

4δ2

]√
det gM3 d3x , (4.15)

so that

Igrav
bulk =

π

2G4
· |b1 + b2|2

2b1b2
+

1

8πG4
· 1

δ3

∫
My=0

3

√
det gM3 d3x

+
3

32πG4
· 1

δ2

∫
My=0

3

w(1)

√
det gM3 d3x . (4.16)

In particular notice that the O(0) term at the conformal boundary is zero. This follows

from the identity ∫
M3

(
w3

(1) + 3w(1)w(2) + w(3)

)√
det gM3 d3x = 0 , (4.17)

which arises from Taylor expanding the Toda equation (2.7) as

0 = ∂z∂z̄w(0) + ew(0)

(
w2

(1) + w(2)

)
+y
[
∂z∂z̄w(1) + ew(0)

(
w3

(1) + 3w(1)w(2) + w(3)

)]
+O(y2) . (4.18)

In particular, because w(1) is a smooth global function on M3, the second line implies (4.17).

It remains to evaluate the boundary terms Igrav
bdry + Igrav

ct . After a computation, and

again using (4.17), one obtains

Igrav
bdry + Igrav

ct = − 1

8πG4δ3

∫
My=0

3

√
det gM3 d3x− 3

32πG4δ2

∫
My=0

3

w(1)

√
det gM3 d3x

+
1

256πG4

∫
M3

(
3w3

(1) + 4w(1)w(2)

)√
det gM3 d3x . (4.19)

Adding (4.19) to the bulk gravity term (4.16) we see that the divergent terms do indeed

precisely cancel, and further combining with (4.8) we see that the terms involving the

integrals of w(i) also all cancel.

The computations we have done are valid only for globally regular solutions, and recall

these divide into the two cases b1/b2 > 0, and b1/b2 = −1. In the first case the first term

in (4.8) combines with the first term in (4.16) to give

I =
π

2G4
· (|b1|+ |b2|)2

4|b1b2|
, (4.20)

where notice |b1 + b2| = |b1| + |b2|. On the other hand the isolated case with b1/b2 = −1

has b1 + b2 = 0, so that the free energy comes entirely from the first term in (4.8), which

remarkably is then also given by the formula (4.20). Thus for all regular supersymmetric

solutions we have shown that (4.20) holds.
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4.3 Index theory formulae

Although our main result (4.20) is extremely simple, it is also possible to derive another

interesting formula for the holographic free energy (that however seems less practically

useful). We begin by following [36], which rewrites the gravitational contribution

Igrav = Igrav
bulk + Igrav

bdry + Igrav
ct , (4.21)

to the total holographic free energy I = Igrav + IF . Specifically, we may use the Gauss-

Bonnet formula to rewrite Igrav as [36]

Igrav =
π

2G4
χ(M4)− 1

16πG4

∫
M4

|W |2
√

det g d4x , (4.22)

where W denotes the Weyl tensor and χ(M4) is the Euler number of M4. For example,

for Euclidean AdS, which is conformally flat and has the topology of a four-ball, (4.22)

immediately gives I = π
2G4

.

When the metric on M4 is also anti-self-dual one can go further, using the Atiyah-

Patodi-Singer index theorem [37]. This was first applied, in the current context, in [38].

The index theorem for the signature operator in general reads [37]

σ(M4) = − 1

24π2

∫
M4

Tr (R ∧R) +
1

24π2

∫
∂M4

Tr (Π ∧R)− η(∂M4) . (4.23)

Here σ(M4) is the signature of M4, R is the curvature tensor of M4, Π is the second

fundamental form of the boundary, and η(∂M4) denotes the eta invariant15 of the boundary

conformal structure on ∂M4. Recall that the latter is defined in terms of the analytic

continuation of the series

η(s) =
∑
λ 6=0

signλ

|λ|s
, (4.24)

where the summation is over non-zero eigenvalues λ of the first order differential operator

B = (−1)p(∗d − d∗) acting on even forms Ω2p(∂M4). Specifically, one defines η(∂M4) =

η(0), which may thus be thought of as a regularization of the number of positive eigenvalues

of B minus the number of negative eigenvalues. This is a conformal invariant of the

boundary, but in general depends on the conformal class.

We may apply (4.23) in the case at hand [38] by noting that on a four-manifold

Tr (R ∧R) = −2
(
|W+|2 − |W−|2

)√
det g d4x , (4.25)

where W± denotes the self-dual/anti-self-dual parts of W . Moreover, the boundary term

in (4.23) involving the second fundamental form Π is zero; this follows because Π is pro-

portional to the boundary metric16 for the asymptotically locally Euclidean AdS boundary

15We hope that no confusion arises between this and the almost contact form on M3, which we have also

called η.
16That is, the boundary is totally umbilical.
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condition, and the trace is then zero on using the Bianchi identity for the curvature R. We

thus conclude that
1

12π2

∫
M4

(
|W+|2 − |W−|2

)√
det g d4x = σ(M4) + η(∂M4) , (4.26)

When (M4, ds
2
SDE) is anti-self-dual one can combine (4.26) with (4.22) to obtain (we have

corrected a sign in [39])

Igrav =
3π

4G4
η(∂M4) +

π

4G4
(2χ(M4) + 3σ(M4)) . (4.27)

This expresses the gravitational contribution to the free energy as a conformally invariant

local contribution from the boundary ∂M4, plus a purely topological part depending on

the filling M4.

In the supergravity setting there is also the gauge field contribution IF to the action.

Given that the Killing spinor is charged under the graviphoton field A, the natural operator

on M4 to consider is the index of the associated twisted Dirac operator DA. The index

theorem in this case reads

IndDA =
1

24 · 8π2

∫
M4

Tr (R ∧R)− 1

24 · 8π2

∫
∂M4

Tr (Π ∧R)− 1

8π2

∫
M4

F ∧ F

−1

2
(ηDA(∂M4) + hDA(∂M4)) . (4.28)

Here IndDA is the index of the Dirac operator on M4, twisted by the graviphoton A, with

APS boundary conditions. The eta invariant is defined analogously to (4.24), replacing the

operator B by the restriction of the Dirac operator to the boundary, while hDA(∂M4) is

the number of zero modes for that operator. As for the signature operator, the boundary

term in (4.28) involving the second fundamental form is zero, and we thus find the total

holographic free energy I = Igrav + IF may be written

I =
π

2G4

{[
ηDA(∂M4) + hDA(∂M4) +

7

4
η(∂M4)

]
+

[
χ(M4) + 2IndDA +

7

4
σ(M4)

]}
.

(4.29)

Here the terms in the first square bracket depend only on the conformal boundary, via eta

invariants of the boundary twisted Dirac operator and signature operator, while the terms

in the second square bracket are topological invariants of M4 (each of χ(M4), σ(M4) and

IndDA is of course an integer).

Finally, as a simple corollary of our results notice that we obtain a formula for the

eta invariant of M3
∼= S3, arising as the conformal boundary of a toric self-dual Einstein

metric on the ball:

η(M3) =
|b1 + b2|2

3b1b2
− 2

3
+

1

192π2

∫
M3

(
3w3

(1) + 4w(1)w(2)

)√
det gM3d3x . (4.30)

For example, in section 5.2 below we will see how the general formulae derived thus far

apply when one takes the self-dual Einstein metric on the four-ball to be the Euclidean

Taub-NUT-AdS metric. In this case the conformal boundary is a biaxially squashed three-

sphere. One can then use (4.30) to compute the η invariant of this conformal geometry to

obtain η = −2
3(1 − 4s2)2, where s is the squashing parameter of section 5.2. This agrees

with a direct computation of the eta invariant in [40].
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5 Examples

In this section we illustrate our general results by discussing three explicit families of

solutions. These consist of three sets of self-dual Einstein metrics on the four-ball, studied

previously by some of the authors in [6, 8–10]. We begin with AdS4 in section 5.1. Although

the metric is trivial, the one-parameter family of instantons given by our general results

is non-trivial, and it turns out that this family is identical to that in [6]. The solutions in

sections 5.2 and 5.3 each add a deformation parameter, meaning that the metrics in each

subsequent section generalize that in the previous section. Particular supersymmetric

instantons on these backgrounds were found in [8–10], but our general results allow us

to study the most general choice of instanton, leading to new solutions. Furthermore,

in section 5.4 we indicate how to generalize these metrics further by adding an arbitrary

number of parameters. This is discussed in more detail in appendix C.

5.1 AdS4

The metric on Euclidean AdS4 can be written as

ds2
EAdS4

=
dq2

q2 + 1
+ q2

(
dϑ2 + cos2 ϑdϕ2

1 + sin2 ϑdϕ2
2

)
. (5.1)

Here q is a radial variable with q ∈ [0,∞), so that the NUT is at q = 0 while the conformal

boundary is at q = ∞. The coordinate ϑ ∈ [0, π2 ], with the endpoints being the two axes

of R2 ⊕ R2 ∼= R4. The AdS4 metric is of course both self-dual and anti-self-dual.

Writing a general choice of Reeb vector field as K = b1∂ϕ1 + b2∂ϕ2 , as in our general

discussion (3.32), the function y is then defined in terms of K via (3.33) and (3.34). Using

these formulae one easily computes

y(q, ϑ) =
1√

(b2 + b1
√
q2 + 1)2 cos2 ϑ+ (b1 + b2

√
q2 + 1)2 sin2 ϑ

. (5.2)

Notice that indeed yNUT = 1/|b1 + b2|, in agreement with (3.36). Using (5.2) one can also

verify the general behaviour in section 3.4 very explicitly. In particular we see the very

different global behaviour, depending on the sign of b1/b2. If b1/b2 > 0 then 1/y is nowhere

zero, while if b1/b2 < 0 instead 1/y has a zero on M4. More precisely, if −1 < b1/b2 < 0

then 1/y = 0 at {ϑ = 0, q =
√
b22 − b21/|b1|}, while if b1/b2 < −1 then 1/y = 0 at {ϑ =

π
2 , q =

√
b21 − b22/|b2|}. These are each a copy of S1 at one or other of the “axes” of R2⊕R2,

at the corresponding radius given by q. In the special case that b1 = −b2 we have 1/y = 0

at the NUT itself, where the axes meet. These comments of course all agree with the

general analysis in section 3.4, except here all formulae can be made completely explicit.

We thus indeed obtain smooth solutions for all b1/b2 > 0, as well as the isolated non-

singular solution with b1/b2 = −1. In fact it is not difficult to check that the former are

precisely the solutions first found in [6], where the parameter b2 = b2/b1 (compare to the

formulae at the beginning of section 2.5 of [6]). To see this we may compute the instanton
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using the formulae in section 2, finding

A =

(
b1 + b2

√
q2 + 1

)
dϕ1 +

(
b2 + b1

√
q2 + 1

)
dϕ2

2

√
(b2 + b1

√
q2 + 1)2 cos2 ϑ+ (b1 + b2

√
q2 + 1)2 sin2 ϑ

, (5.3)

which agrees with the corresponding formula in [6]. In particular one can check that this

gives a regular instanton when b1/b2 > 0, with the particular cases that b1/b2 = ±1 giving

a trivial instanton, and correspondingly the conformal Kähler structure is flat. We shall

comment further on this below. Moreover, one can also check that the singular instantons

with b1/b2 < 0 are singular at precisely the locus that 1/y = 0, again in agreement with

our general discussion.

In this case we may also compute all other functions appearing in sections 2, 3 and 4

explicitly. For example, we find

V (q, ϑ) =
(b2 + b1

√
q2 + 1)2 cos2 ϑ+ (b1 + b2

√
q2 + 1)2 sin2 ϑ

q2(b21 cos2 ϑ+ b22 sin2 ϑ)
, (5.4)

while the functions w(1) and w(2) on ∂M4 = M3
∼= S3 appearing in the free energy compu-

tations are given by

w(1) =
−4b1b2√

b21 cos2 ϑ+ b22 sin2 ϑ
, w(2) =

−2
(
3b21b

2
2 + b41 cos2 ϑ+ b42 sin2 ϑ

)
b21 cos2 ϑ+ b22 sin2 ϑ

. (5.5)

Using these expressions one can verify all of the key formulae in our general analysis. For ex-

ample, the integrals in (3.39), (4.8), (4.16) and (4.19) are all easily computed in closed form.

Finally, let us return to discuss the special cases b1/b2 = ±1, where recall that the

instanton is trivial and the conformal Kähler structure is flat. The latter is thus locally

the flat Kähler metric on C2, but in fact in the two cases b1/b2 = ±1 the Euclidean AdS4

metric is conformally embedded into different regions of C2. Notice this has to be the case,

because the conformal factor y of the b1/b2 = +1 solution has yNUT = 1/(2|b1|), while for

the b1/b2 = −1 solution instead yNUT =∞. We may see this concretely by writing the flat

Kähler metric on C2 as

ds2
flat = dR2 +R2

(
dϑ2 + cos2 ϑdϕ2

1 + sin2 ϑdϕ2
2

)
. (5.6)

In both cases the change of radial coordinate to (5.1) is

q(R) =
2R

|R2 − 1|
. (5.7)

However, for the b1/b2 = +1 case the range of R is 0 ≤ R < 1, with the NUT being at

R = 0 and the conformal boundary being at R = 1; while for the b1/b2 = −1 case the range

of R is instead 1 < R ≤ ∞, with the NUT being at R =∞ (and the conformal boundary

again being at R = 1). In particular the two conformal factors are

y(R) =
1

2|b1|
|R2 − 1| . (5.8)
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The two solutions b1/b2 = ±1 thus effectively fill opposite sides of the unit sphere in C2,

and because of this they induce opposite orientations on S3. Again, this may be seen

rather explicitly in various formulae. For example, w(1) = ∓4|b1| in the two cases, so

that the boundary Killing spinor equation (3.23) on the round S3 becomes respectively

∇(3)
i χ = ∓ i

2 |b1|γiχ, where one can take the gamma matrices to be the Pauli matrices

γi = σi in an orthonormal frame.

5.2 Taub-NUT-AdS4

The Taub-NUT-AdS4 metrics are a one-parameter family of self-dual Einstein metrics on

the four-ball, and have been studied in detail in [8, 9]. The metric may be written as

ds2
4 =

r2 − s2

Ω(r)
dr2 + (r2 − s2)(τ2

1 + τ2
2 ) +

4s2Ω(r)

r2 − s2
τ2

3 , (5.9)

where

Ω(r) = (r ∓ s)2[1 + (r ∓ s)(r ± 3s)] , (5.10)

and τ1, τ2, τ3 are left-invariant one-forms on SU(2) ' S3. The latter may be written in

terms of Euler angular variables as

τ1 + iτ2 = e−iς(dθ + i sin θdϕ) , τ3 = dς + cos θdϕ . (5.11)

Here ς has period 4π, while θ ∈ [0, π] with ϕ having period 2π. The radial coordinate r

lies in the range r ∈ [s,∞), with the NUT (origin of the ball ∼= R4) being at r = s. The

parameter s > 0 is referred to as the squashing parameter, with s = 1
2 being the Euclidean

AdS4 metric studied in the previous section. Indeed, the metric is asymptotically locally

Euclidean AdS as r →∞, with

ds2
4 ≈

dr2

r2
+ r2(τ2

1 + τ2
2 + 4s2τ2

3 ) , (5.12)

so that the conformal boundary at r =∞ is a biaxially squashed S3.

Using the results of this paper we may write a general choice of Reeb vector field as

K = (b1 + b2)∂ϕ + (b1 − b2)∂ς , as in our general discussion (3.32), and the function y is

then defined in terms of K via (3.33) and (3.34). Using these one computes

1

y(r, θ)2
= [2(b1 − b2)(r − s)s+ (b1 + b2)(1 + 2(r − s)s) cos θ]2

+(b1 + b2)2 [1 + (r − s)(r + 3s)] sin2 θ . (5.13)

Notice that indeed yNUT = limr→s y(r, θ) = 1/|b1 + b2|. We see that if b1/b2 > 0 or b1/b2 =

−1 then 1/y is indeed never zero (except at the NUT in the latter case), as expected. In this

way we obtain a two-parameter family of regular supersymmetric solutions, parametrized

by the squashing parameter s and b1/b2. One can also compute explicitly the corresponding

instanton F for a general choice of s and b1/b2, although in practice it turns out to be more

convenient to derive this as a special limit of the Plebanski-Demianski solutions, discussed

in section 5.3. We do this in appendix C.6, where the resulting expression for F is given
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in (C.111). In the remainder of this subsection we shall instead discuss further some special

cases, making contact with the previous results [8, 9].

While the Taub-NUT-AdS metric (5.9) has SU(2)×U(1) isometry, a generic choice of

the Killing vector K = (b1 + b2)∂ϕ + (b1− b2)∂ς breaks the symmetry of the full solution to

U(1)×U(1). In particular, this symmetry is also broken by the corresponding instanton A.

On the other hand, in [8, 9] the SU(2)×U(1) symmetry of the metric was also imposed on

the gauge field, which results in two one-parameter subfamilies of the above two-parameter

family of solutions, which are 1/4 BPS and 1/2 BPS, respectively. In each case this

effectively fixes the Killing vector K (or rather the parameter b1/b2) as a function of the

squashing parameter s.

1/4 BPS solution. This solution is simple enough that it can be presented in complete

detail. The coordinate transformation to the (2.4) form for the 1/4 BPS solution reads

r − s = 1/y , − 2sτ3 = dψ + φ , (5.14)

and

y2(r2 − s2) = ewV (1 + |z|2)2 ,
r2 − s2

Ω(r)
= y2V . (5.15)

Notice immediately that at the NUT r = s we have 1/y = 0, so that this solution must

have b1 = −b2 — we shall find this explicitly below. The metric (τ2
1 + τ2

2 ) is diffeomorphic

to the Fubini-Study metric on CP1 ∼= S2:

τ2
1 + τ2

2 =
4dzdz̄

(1 + |z|2)2
. (5.16)

The metric functions then simplify to

V (y) =
1 + 2sy

1 + 4sy + y2
, w(y, z, z̄) = log

1 + 4sy + y2

(1 + |z|2)2
, (5.17)

and it is straightforward to check these satisfy the defining equation (2.5) and Toda equa-

tion (2.7). The conformally related scalar-flat Kähler metric is

ds2
Kahler =

1 + 2sy

1 + 4sy + y2
dy2 + (1 + 2sy)(τ2

1 + τ2
2 ) +

4s2(1 + 4sy + y2)

1 + 2sy
τ2

3 , (5.18)

with Kähler form

ω = −dy ∧ 2sτ3 + (1 + 2sy)τ1 ∧ τ2 = −d [(1 + 2sy)τ3] . (5.19)

Using the formula (2.8) for the gauge field A, we compute

A =
1

2
(4s2 − 1)

r − s
r + s

τ3 + pure gauge , (5.20)

which we see reproduces the 1/4 BPS choice of instanton in section 3.3 of [9].17 The

supersymmetric Killing vector is K = ∂ψ = − 1
2s∂ς and so generates the Hopf fibration of

17Notice that in [9] the opposite orientation convention was chosen, so that that instanton in [9] is self-

dual, rather than anti-self-dual. Recall also from the discussion above equation (2.8) that the overall sign of

the instanton is correlated with the sign of the supersymmetric Killing vector K. Here K = − 1
2s
∂ς , which

is minus the expression in [9], hence leading to the opposite sign for the instanton gauge field A.
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S3. Since ς = ϕ1 − ϕ2, ϕ = ϕ1 + ϕ2 we hence find

b1 = −b2 = − 1

4s
, (5.21)

which using (1.2) yields

I1/4 BPS =
π

2G4
. (5.22)

This formula matches the result of section 5.4 of [9].

1/2 BPS solution. The Taub-NUT-AdS metric (5.9) also admits a 1/2 BPS solution [8,

9]. We hence have two linearly independent Killing spinors, which may be parametrized

by an arbitrary choice of constant two-component spinor χ(0) =

(
p

q

)
∈ C2 \ {0}.18 The

correspondong Killing vector is given by the unlikely expression

K = (2s+
√

4s2 − 1)
[
2Im [eiϕpq̄]∂θ +

(
|p|2 − |q|2 + 2Re [eiϕpq̄] cot θ

)
∂ϕ

]
(5.23)

+

[
(|p|2 + |q|2)

(
1

2s
− 2s−

√
4s2 − 1)

)
− 2Re [eiϕpq̄](2s+

√
4s2 − 1) csc θ

]
∂ς .

Since multiplying χ(0) by a non-zero complex number λ ∈ C∗ simply rescales K by |λ|2,

this leads to a CP1 family of choices of Killing vector K in this case. Of course, the

vector (5.23) is not toric for generic choice of χ(0). Nevertheless, one can still compute the

various geometric quantities in section 2. In particular one can check that the formula (2.18)

for the instanton gives

A = s
√

4s2 − 1
r − s
r + s

τ3 + pure gauge , (5.24)

for any choice of K in (5.23), which agrees with the expression in [8, 9]. Notice that

the instanton is invariant under the SU(2) × U(1) symmetry of the metric, even though

a choice of Killing vector K breaks this symmetry. Indeed, in this case the conformal

factor y = y(r, θ) for toric solutions given by (5.13) depends non-trivially on both r and

θ, thus also breaking the SU(2) symmetry of the underlying Taub-NUT-AdS metric. This

is to be contrasted with the 1/4 BPS solution, where instead (5.13) reduces simply to

y = y(r) = 1/(r − s) (see (5.14)).

The toric choices of K for these 1/2 BPS solutions correspond to the poles of the CP1

parameter space. For example, choosing p = 1, q = 0 above gives

K =
(

2s+
√

4s2 − 1
)
∂ϕ +

(
1

2s
− 2s−

√
4s2 − 1

)
∂ς , (5.25)

so that

b1 =
1

4s
, b2 = − 1

4s
+ 2s+

√
4s2 − 1 . (5.26)

The free energy (1.2) is thus

I =
2πs2

G4
, (5.27)

which of course matches the result obtained in section 4.4 of [9].

18The full Killing spinor is given by substituting this into the right hand side of (2.29) of [9].
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5.3 Plebanski-Demianski

The Taub-NUT-AdS metric has been extended to a two-parameter family of smooth self-

dual Einstein metrics on the four-ball in [10], which lie in the Plebanski-Demianski class

of local solutions [41] to Einstein-Maxwell theory. We will henceforth refer to the solution

of [10] as “Plebanski-Demianski”. The metric may be written as

ds2
PD =

P(q)

q2 − p2
(dτ + p2dσ)2 − P(p)

q2 − p2
(dτ + q2dσ)2 +

q2 − p2

P(q)
dq2 − q2 − p2

P(p)
dp2, (5.28)

where

P(x) = (x− p1)(x− p2)(x− p3)(x− p4) . (5.29)

The roots of the quartic P(x) can be expressed in terms of the two parameters of the

solution, â and v, as

p1 = −1

2
−
√

1 + â2 − v2 , p3 =
1

2
− â ,

p2 = −1

2
+
√

1 + â2 − v2 , p4 =
1

2
+ â . (5.30)

The coordinate p ∈ [p3, p4] is essentially a polar angle variable, while q ∈ [p4,∞) plays the

role of a radial coordinate, with the conformal boundary being at q =∞. The NUT/origin

of R4 is located at p = p3, q = p4. The Killing vectors ∂τ , ∂σ generate the U(1)2 torus sym-

metry of the solution, with the coordinates related to our standard 2π-period coordinates

ϕ1, ϕ2 on U(1)2 via

τ =
2p2

3

P ′(p3)
ϕ1 −

2p2
4

P ′(p4)
ϕ2 ,

σ = − 2

P ′(p3)
ϕ1 +

2

P ′(p4)
ϕ2 . (5.31)

In order that the metric is smooth on the four-ball the parameters must obey v2 > 2|â|,
with the â = 0 limit being the Taub-NUT-AdS metric of the previous section, and further

setting v = 1 one recovers Euclidean AdS4 (we refer the reader to [10] for further details).

It is straightforward, but tedious, to express the metric (5.28) in the form (2.4), with

an arbitrary choice of toric Killing vector K = b1∂ϕ1 + b2∂ϕ2 . For the special case of the

Killing vector/instanton in the solution of [10], we work out the change of coordinates

explicitly towards the end of section C.4, cf. equations (C.76), (C.83)–(C.85).

In the (τ, σ) coordinates an arbitrary Killing vector may be written as

K = bτ∂τ + bσ∂σ , (5.32)

where

bτ =
2p2

3

P ′(p3)
b1 −

2p2
4

P ′(p4)
b2 , bσ = − 2

P ′(p3)
b1 +

2

P ′(p4)
b2 . (5.33)
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Using (3.33) and (3.34) one can calculate

1

y(p, q)2
=

1

4

1

(q2 − p2)2

{[(
2P(q)

q − p
− P ′(q)

)
(bτ + bσp

2)

−
(

2P(p)

q − p
+ P ′(p)

)
(bτ + bσq

2)

]2

− 4b2σP(q)P(p)(q + p)2

}
. (5.34)

Notice that this is a sum of two non-negative terms. Furthermore, these terms may vanish

only when evaluated at the roots p = p3, p = p4 or q = p4, which correspond to the axes

of R4 = R2 ⊕ R2. Let us calculate these limits:

lim
p→p3

1

y2
=

(
(b1 + b2)v2 + 2âb1 + b2(2q − 1)

v2 + 2â

)2

,

lim
p→p4

1

y2
=

(
(b1 + b2)v2 − 2âb2 + b1(2q − 1)

v2 − 2â

)2

, (5.35)

lim
q→p4

1

y2
=

(
(b1 + b2)v2 − 2âb2 + b1(2p− 1)

v2 − 2â

)2

.

A careful analysis of the above limits shows that 1/y does not vanish, and hence the

metric is regular, whenever b1/b2 > 0, while 1/y = 0 only at the NUT when b1/b2 = −1.

On the other hand, the the solution is indeed singular if b1/b2 < 0 and b1/b2 6= −1.

Notice that we also easily recover the formula (3.36) for the conformal factor at the NUT:

limp→p3, q→p4 y = 1/|b1 + b2|.
In [10] particular supersymmetric instantons (particular choices of b1/b2 for fixed â

and v) were studied for this two-parameter family of metrics, which by construction lie

within the Plebanski-Demianski ansatz. The results of this paper extend these results to

a general choice of instanton on the same background, parametrized by b1/b2, leading to

a three-parameter family of regular supersymmetric solutions. The general expression for

this instanton is lengthy, but computable, and the interested reader may find the details

in appendix C.5.

5.4 Infinite parameter generalization

In each subsection we have generalized the metrics of the previous subsection by adding

a parameter, and one might wonder whether one can find more general self-dual Einstein

metrics on the four-ball. In fact from the gauge-gravity point of view it is more natural to

ask the question of which conformal structures on S3 may be filled by a self-dual Einstein

metric. Of course one expects this problem to be overdetermined, and some general results

in this direction appear in [42]. Roughly speaking, as long as the conformal class of the

boundary metric [gS3 ] is sufficiently close to the round metric [g0
S3 ], then one can write

[gS3 ] = [g0
S3 ]+[g+

S3 ]+[g−
S3 ], where [g0

S3 ]+[g±
S3 ] bound self-dual/anti-self-dual Einstein metrics

on the four-ball B4, respectively. Equivalently, viewed as self-dual fillings these induce

opposite orientations on S3. This may be regarded as a generalization of the well-known

result of Fefferman-Graham [43] to the self-dual case. Another important general result
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is that these fillings are unique: that is, two self-dual Einstein four-manifolds (M
(1)
4 , g(1)),

(M
(2)
4 , g(2)) inducing the same conformal structure on M3 = ∂M4 are isometric [44].

However, starting with a particular (conformal) three-metric and trying to construct

a global filling explicitly is likely to be very difficult. In order to construct further explicit

examples one might instead attempt to directly generalize the Plebanski-Demianski met-

rics of the previous subsection. A natural way to do this is explained in more detail in

appendix C. Specifically, in [26] the authors studied the general local geometry of toric self-

dual Einstein metrics, which thus includes all the solutions (locally) above. In appropriate

coordinates19 the metric takes the form

ds2
toric =

4ρ2(F2
ρ + F2

η )−F2

4F2
ds2
H2 +

4

F2(4ρ2(F2
ρ + F2

η )−F2)

[(
ycan
ρ dν

+(ηycan
ρ − ρycan

η )dϕ
)2

+
(
ycan
η dν + (ρycan

ρ + ηycan
η − ycan)dϕ

)2 ]
. (5.36)

where we have defined

ycan(ρ, η) ≡ √ρF(ρ, η) , (5.37)

and

ds2
H2 =

dρ2 + dη2

ρ2
(5.38)

is the metric on hyperbolic two-space H2, regarded as the upper half plane with boundary

at ρ = 0. The metric (5.36) is entirely determined by the choice of function F = F(ρ, η),

and the metric is self-dual Einstein if and only if this solves the eigenfunction equation

∆H2F =
3

4
F ⇐⇒ Fρρ + Fηη =

3

4ρ2
F , (5.39)

where Fρ ≡ ∂ρF , etc. Unlike the Toda equation (2.7) this is linear, and one may add

solutions. In particular there is a basic solution

F(ρ, η;λ) =

√
ρ2 + (η − λ)2

√
ρ

, (5.40)

where λ is any constant. Via linearity then

F(ρ, η) =
m∑
i=1

αiF(ρ, η;λi) , (5.41)

also solves (5.39), for arbitrary constants αi, λi, i = 1, . . . ,m. We refer to (5.41) as an m-

pole solution. Of course, one could also replace the sum in (5.41) by an integral, smearing

the monopoles in some chosen charge distribution.

Thus the local construction of toric self-dual Einstein metrics is very straightforward

— the above gives an infinite-dimensional space. However, understanding when the above

metrics extend to complete asymptotically locally hyperbolic metrics on a ball (or indeed

19Below, and in appendix C, η is a coordinate. We hope that no confusion arises between this, the almost

contact form on M3, and the η invariant. The latter uses will not appear in the remainder of the paper.
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any other topology for M4) is more involved. In appendix C we take some steps in this

direction by showing that the general 2-pole solution is simply (Euclidean) AdS4, while the

general 3-pole solution is precisely the Plebanski-Demianski solutions of section 5.3. This

requires taking into account the symmetries of (5.36) (in particular the PSL(2,R) symmetry

ofH2), and then making a number of rather non-trivial coordinate transformations. We also

analyse in detail the global structure of Euclidean AdS4 in the (ρ, η) coordinates, together

with some global properties of the Plebanski-Demianski solutions in the (ρ, η) coordinates.

Some work has also been done on global properties of the metrics (5.36) in [45], al-

though the focus in that paper is on constructing complete asymptotically locally Eu-

clidean scalar-flat Kähler metrics, which are conformal to (5.36). However, these have

non-trivial Lens space boundaries S3/Γ, and correspondingly the second Betti number

b2 = dimH2(M4,R) of the filling M4 is non-zero (they contain “bolt S2s”). The corre-

sponding complete self-dual Einstein metrics in Theorem B of that paper then also do not

have the topology of the ball. Thus it remains an interesting open problem to understand

when the general m-pole metrics extend to complete metrics on the ball.20

Finally, let us remark that in [30] Lebrun has constructed infinitely many self-dual

Einstein metrics on the four-ball using twistor methods. This is essentially a deformation

argument, where one starts with (the twistor space of) Euclidean AdS4, and perturbs the

twistor space. However, as such this is rather more implicit than the toric metrics above,

and in order to construct supersymmetric solutions one needs to ensure that the resulting

self-dual Einstein metric has at least one Killing vector field. Nevertheless, this might be

an alternative method for analysing regularity of the above m-pole solutions, at least in a

neighbourhood of Euclidean AdS4 in parameter space.

6 Conclusions

The main result of this paper is the proof of the formula (1.2) for the holographically

renormalized on-shell action in minimal four-dimensional supergravity. This result is anal-

ogous to the general formula for the volume functional of a toric Sasakian manifold in [46].

Indeed, the latter was also entirely determined by the Reeb vector field of the correspond-

ing Sasakian manifold, and was later shown to agree with the large N limit of the trial a

function in a dual four-dimensional field theory [47].21 Moreover, we have provided a gen-

eral construction of regular supersymmetric solutions of this theory,22 based on self-dual

Einstein metrics on the four-ball equipped with a one-parameter family of instanton fields

for the graviphoton. Specifically, if the self-dual Eintein metric admits n parameters, our

constuction produces an (n + 1)-parameter family of solutions. We have shown that the

renormalized on-shell action does not depend on the n metric parameters, but only on this

last “instanton parameter”. This matches beautifully the field theory results of [20].

20At the end of reference [26] it is briefly noted that one can obtain regular m-pole metrics by deforming,

for example, a given 3-pole solution. It would be interesting to examine the details of this deformation

argument further.
21A similar general result, valid for the trial free energy of a three-dimensional field theory with AdS4

dual, was conjectured in [48].
22Of course, these uplift to solutions of eleven-dimensional supergravity using the results of [49].
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We have also shown how all the previous examples in the literature, as well as some new

examples that we have presented, can be understood as arising from an infinite-dimensional

family of local self-dual Einstein metrics with torus symmetry [26]. In section 5.4 we have

suggested that using this family of local metrics, it should be possible to construct global

asymptotically locally (Euclidean) AdS self-dual Einstein metrics on the four-ball, thus

obtaining an infinite family of completely explicit metrics. It will be interesting to analyse

these m-pole solutions in more detail.

In this paper we have achieved a rather general understanding of the gauge/gravity

duality for supersymmetric asymptotically locally Euclidean AdS4 solutions. Nevertheless,

there are a number of possible extensions of our work. First, it is possible to extend the

matching of the free energy (1.2) for the class of self-dual backgrounds we have consid-

ered to other BPS observables. In particular in [50] the Wilson loop around an orbit of

the Killing vector K is shown to be BPS in the field theory, and may also be computed

via localization. The gravity dual is an M2-brane wrapping a calibrated copy of the M-

theory circle in the internal space [51], and computing its renormalized action one finds an

analogously simple formula to (1.2), namely

lim
N→∞

log 〈W 〉 =
|b1|+ |b2|

2
` · log 〈W 〉1 , (6.1)

where 〈W 〉1 denotes the large N limit of the Wilson loop on the round sphere/AdS4, whose

log scales as N1/2, and 2π` denotes the length of the orbit of K (for example, such or-

bits always close over the poles of the S3, where ` = 1/|b1| or ` = 1/|b2|, respectively;

notice that for these Wilson loops (6.1) is again a function only of |b1/b2|). Details of this

computation are given in [50].

One might further generalize our results by relaxing one or more of the assumptions

we have made. For example, remaining in the context of minimal gauged supergravity, it

would be very interesting to investigate the more general class of supersymmetric, but non-

(anti-)self-dual solutions [28]. Several examples of such solutions were constructed in [8, 9],

and these all turn out to have a bulk topology different from the four-ball. This suggests

that self-duality and the topology of supersymmetric asymptotically AdS4 solutions are

two related issues, and it would be desirable to clarify this. On the other hand, at present

it is unclear to us what is the precise dual field theory implication of non-trivial two-cycles

in the geometry, and therefore this direction is both challenging and interesting. Perhaps

related to this, one of our main results is that a smooth toric self-dual Einstein metric

on the four-ball with supersymmetric Killing vector K = b1∂ϕ1 + b2∂ϕ2 gives rise to a

smooth supersymmetric solution only if b1/b2 > 0 or b1/b2 = −1. Specifically, for other

choices of b1/b2 the conformal factor/Killing spinor are singular in the interior of the bulk.

Nevertheless, the conformal boundary is smooth for all choices of b1, b2, and the question

arises as to how to fill those boundaries smoothly within gauged supergravity. A natural

conjecture is that these are filled with the non-self-dual solutions mentioned above.

Another assumption that should be straightforward to relax is in taking the gauge field

A to be real. In general, if A is complex the existence of one (Euclidean) Killing spinor

does not imply that the metric possesses any isometry [28]. However, we expect that if one
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requires the existence of two spinors of opposite R-charge, then there will be canonically

defined Killing vectors, and therefore it should be possible to analyse the solutions with

the techniques of this paper.

All the above extensions would be important conceptually, in order to address the issue

of uniqueness of the filling of a given conformal boundary geometry. In fact, this could also

motivate the study of this problem in a more general consistent truncation, or directly in

eleven-dimensional supergravity.

Of course, in any of these more general set-ups a central issue will be to prove a general-

ized version of the formula (1.2) for the renormalized on-shell action. In this respect, some

of the methods that we employed to derive this may be more amenable to generalization

than others. For example, the expression (4.29), given in terms of boundary conformal in-

variants and bulk topological invariants, might extend to the class of non-self-dual metrics

and/or non-ball topology. We also expect that some of the results of the present paper can

be adapted to dimensions different from four. In particular, on the one hand it would be

very nice to understand better the structure of the holographically renormalized on-shell

action in five dimensions, and on the other hand, to enlarge the list of examples, extending

the work of [14].
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A Spin connection of the Kähler metric

For the Kähler metric (2.9) in the frame (2.10) the spin connection reads

ω̂01 = −
(
∂yw + y∂2

yw
)

4V 3/2
ê1 +

iy∂y (∂z − ∂z̄)w
8V 3/2ew/2

ê2 − y∂y (∂z + ∂z̄)w

8V 3/2ew/2
ê3 ,

ω̂02 = −y∂y(∂z + ∂z̄)w

8V 3/2ew/2
ê0 +

iy∂y (∂z − ∂z̄)w
8V 3/2ew/2

ê1 +

(
∂yw + y∂2

yw
)
− 2V ∂yw

4V 3/2
ê2 ,

ω̂03 = − iy∂y(∂z − ∂z̄)w
8V 3/2ew/2

ê0 − y∂y (∂z + ∂z̄)w

8V 3/2ew/2
ê1 +

(
∂yw + y∂2

yw
)
− 2V ∂yw

4V 3/2
ê3 ,

ω̂12 = −ω̂03 ,

ω̂13 = ω̂02 ,

ω̂23 = −
(
∂yw − y(∂yw)2 − y∂2

yw
)

4V 3/2
ê1 +

i [2V (∂z − ∂z̄)w − y∂y(∂z − ∂z̄)w]

8V 3/2ew/2
ê2

−2V (∂z + ∂z̄)w − y∂y(∂z + ∂z̄)w

8V 3/2ew/2
ê3 . (A.1)

Here we have used both (2.5) and (2.6).
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B Weyl transformations of the boundary

In section 3 of the main text we studied the boundary geometry and Killing spinor equation

using the radial coordinate r = 1/y defined naturally by supersymmetry. This gives a pre-

ferred representative for the conformal class of the boundary metric on M3. In this appendix

we study the more general choice r = 1/(Ωy), where Ω = Ω(z, z̄) is an arbitrary smooth,

basic, nowhere zero function on M3. This results in a Weyl transformation of the boundary

geometry and corresponding Killing spinor equation. We will see that we precisely recover

the boundary structure, derived from a purely three-dimensional perspective, in [20, 25].

For comparison with [20], we begin by rescaling the constant-norm Kähler spinor ζ as

ζ ≡ Ω−1/2(z, z̄) ζ̂ , (B.1)

so that the norm of ζ̂ is Ω1/2 if we normalize ζ to have unit norm. We then also have a

rescaling of the four-dimensional Killing spinor ε,

ε̂ ≡ Ω1/2ε =
1√
2y

(
1 + V −1/2Γ̂0

)
ζ̂ . (B.2)

Recall ε solves the Killing spinor equation (2.3), with the gauge field Aµ given by (2.8).

Using instead ε̂ this Killing spinor equation reads(
∇µ − iAµ −

1

2
∂µ log Ω +

1

2
Γµ +

i

4
FνρΓ

νρΓµ

)
ε̂ = 0 , (B.3)

where the third term appears due to the rescaling.23

With the new choice of radial coordinate the boundary metric is

ds2
M3

= Ω2(z, z̄)
[
(dψ + φ0)2 + 4ew(0)dzdz̄

]
. (B.4)

As always, we introduce an orthonormal frame for this metric:

e1
(3) = Ω(dψ + φ0) , e2

(3) + ie3
(3) = 2Ωew(0)/2dz . (B.5)

The four-dimensional geometry is the same as before, namely

ds2
SDE =

1

y2

[
V −1(dψ + φ)2 + V (dy2 + 4ewdzdz̄)

]
, (B.6)

and we will use the frame

e0 =
1

y
V 1/2dy , e1 =

1

y
V −1/2(dψ + φ) , e2 + ie3 =

2

y
(V ew)1/2dz . (B.7)

Calculating the spin connection of (B.7), expanding in y and comparing to the spin con-

nection of (B.5), we find

ω12 = ω12
(3) − ∂2 log Ω e1

(3) +O(y) ,

ω13 = ω13
(3) − ∂3 log Ω e1

(3) +O(y) ,

ω23 = ω23
(3) − ∂3 log Ω e2

(3) + ∂2 log Ω e3
(3) +O(y) ,

ω0i =
1

y
Ω−1

(
1 +

1

4
yw(1)

)
ei(3) +O(y) , (B.8)

23As this term is a total derivative it can formally be absorbed into a complex gauge transformation of

Aµ, although as we shall see all gauge fields will in the end be real.
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with i = 1, 2, 3.

We next expand the Killing spinor equation with the rescaled spinor, ε̂. As in section 3

the term i
4FνρΓ

νρΓµ = O(y) does not contribute. One gets[
∇(3)
µ − iA(0)µ −

1

2
∂µ log Ω +

1

2y
Ω−1

(
1 +

1

4
yw(1)

)
ei(3)µ(Γi − Γi0) (B.9)

− 1

2
∂2 log Ωei(3)µΓi2 −

1

2
∂3 log Ωei(3)µΓi3 +O(y)

]
ε̂ = 0 ,

where µ = ψ, z, z̄, and A(0)µ is the lowest order expansion of the gauge field (2.8), which

in the frame (B.5) reads

4A(0) = −Ω−1w(1) e
1
(3) + ∂3w(0) e

2
(3) − ∂2w(0) e

3
(3) . (B.10)

The Killing spinor ε̂ expands as

ε̂ =
1√
2y

[
1 + Γ0 +

1

4
yw(1)Γ0 +O(y2)

]
ζ̂0 , (B.11)

and when substituted into (B.9) gives a vanishing leading order term. The subleading term

reads [(
∇(3)
i − iA(0)i −

1

2
∂i log Ω

)
(1 + Γ0)− 1

8
w(1)Ω

−1(Γi − Γi0)

−1

2
∂2 log ΩΓi2(1 + Γ0)− 1

2
∂3 log ΩΓi3(1 + Γ0)

]
ζ̂0 = 0 . (B.12)

The projection conditions (2.22) imply the following form for ζ̂0,

ζ̂0 =

(
χ̂

0

)
where χ̂ =

(
χ̂0

χ̂0

)
. (B.13)

The three-dimensional Killing spinor equation then becomes[
∇(3)
i + i(Vi −A(3)

i ) +
1

2
Hσi +

1

2
εijkVjσk

]
χ̂ = 0 , (B.14)

with

H = − i

4
w(1)Ω

−1 + iV1 , A
(3)
1 = A(0)1 +

3

2
V1 ,

A
(3)
2 = A(0)2 −

3

2
iV3 −

3

2
i∂2 log Ω +

3

2
∂3 log Ω ,

A
(3)
3 = A(0)3 +

3

2
V3 ,

V2 + iV3 = −i∂2 log Ω + ∂3 log Ω . (B.15)

The Killing spinor equation (B.14) is precisely of the form found in [25], which allows

for the construction of supersymmetric field theories on M3. The identifications of A(3), V
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and H are not unique because equation (B.14) has some symmetry properties,24 cf. (4.2)

of [25]. In particular this gauge freedom allows one to freely choose V1, as shown in (2.10)

of [20]. Recall that A(0) is real. If we demand also the boundary gauge field A(3) to be

real, one finds from the equations in (B.15) that also V is real with

V2 = ∂3 log Ω , V3 = −∂2 log Ω . (B.16)

This is exactly the result obtained for V in [20] using the purely three-dimensional analysis

of [25]. The remaining equations in (B.15) then further simplify to

H = − i

4
w(1)Ω

−1 + iV1 , (B.17)

A
(3)
i = A(0)i +

3

2
Vi . (B.18)

Again this is consistent with [20], where it was found (in our notation) that

A(3)
µ = − i

2
He1

(3)µ + Vµ + jµ , (B.19)

where

jµ =
i

4Ω2
(s∂µs̄− s̄∂µs) +

1

2
ω 23
µ(3) , (B.20)

and |s| = Ω is the square norm of the three-dimensional spinor,

χ̂ =
√
s(ψ, z, z̄)

 1√
2

1√
2

 . (B.21)

Hence we have s = Ωe2iυ(ψ,z,z̄). Equation (B.20) then reads

jµ = ∂µυ +
1

2
ω 23
µ(3) (B.22)

= ∂µυ −
1

8
Ω−1w(1)e

1
(3) +

1

4

(
∂3w(0) + 2∂3 log Ω

)
e2

(3) −
1

4

(
∂2w(0) + 2∂2 log Ω

)
e3

(3) ,

where we also used equation (2.6). Substituting equation (B.16), (B.17), and (B.22) into

the right hand side of (B.19), this gives

A(3)
µ = −1

4
Ω−1w(1) e

1
(3)µ +

1

4
∂3w(0) e

2
(3)µ −

1

4
∂2w(0) e

3
(3)µ +

3

2
Vµ + ∂µυ

= A(0)µ +
3

2
Vµ + ∂µυ , (B.23)

where in the second line we used equation (B.10). As the last term in equation (B.23) is a

total derivative, it can be absorbed into a gauge transformation of A(0). Thus we see that

equation (B.19) reproduces (B.18) up to a gauge transformation. Indeed, such a gauge

transformation with υ = γψ was shown in section 3.3 to be necessary in order for the

gauge field to be globally well-defined on M3
∼= S3.

24With an abuse of language, in this paper we refer to this symmetry as a “gauge” symmetry. Although

V is not a gauge field, and hence does not transform under gauge transformations. Hopefully this will not

cause any confusion.
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C Toric self-dual Einstein metrics on the four-ball

In this appendix we indicate how the metrics in section 5 may be extended to include arbi-

trarily many parameters, leaving further details of this construction for another occasion.

The local form of these metrics was determined in [26], and is given in terms of so-called

m-pole solutions. We discuss in detail the special cases of m = 2 and m = 3, showing that

they correspond to Euclidean AdS4 and a particular metric discussed in [10]. The latter

originates from a class of metrics originally studied by Plebanski-Demianski. Below we will

also provide more details on the general instantons associated to a given self-dual Einstein

metric, and a choice of Killing vector in the U(1)2 torus of isometries.

C.1 Local form of the metrics and instanton

Following [26], the local form of a toric self-dual Einstein metric can be written as25

ds2
toric =

4ρ2(F2
ρ + F2

η )−F2

4F2
ds2
H2 +

4

F2(4ρ2(F2
ρ + F2

η )−F2)

[(
ycan
ρ dν

+(ηycan
ρ − ρycan

η )dϕ
)2

+
(
ycan
η dν + (ρycan

ρ + ηycan
η − ycan)dϕ

)2 ]
. (C.1)

Here we defined

ycan(ρ, η) ≡ √ρF(ρ, η) , (C.2)

with F = F(ρ, η) and the superscript “can” indicating that this is a canonical choice for

the function y (see below). We also have that

ds2
H2 =

dρ2 + dη2

ρ2
(C.3)

is the metric on hyperbolic two-space H2, regarded as the upper half plane with boundary

at ρ = 0. Even though the metric (C.1) is local, this global description of H2 will be

important. In particular, in the global construction of [45] the coordinate singularities

along which Killing vectors vanish are mapped onto the boundary ρ = 0 of H2, and we

shall see this for the examples that we study below. The metric (C.1) is entirely determined

by the choice of function F(ρ, η), and the metric is self-dual Einstein if and only if this

solves the eigenfunction equation

∆H2F =
3

4
F ⇐⇒ Fρρ + Fηη =

3

4ρ2
F , (C.4)

where Fρ ≡ ∂ρF , etc. Crucially this is a linear equation, so we may add solutions as in the

more familiar “multi-centre” types of solutions in other contexts.

As discussed in the main part of the paper, any self-dual Einstein metric with a choice

of Killing vector gives rise to a conformal scalar-flat Kähler metric, with an associated

conformal factor y. For the above metric (C.1) a natural canonical choice of Killing vector

is K = ∂ν , and this leads to the associated conformal factor y = ycan given by (C.2).

25We have reversed the sign of the metric (1.1) in [26], so that for 4ρ2(F2
ρ +F2

η )−F2 > 0 our metric (C.1)

has Euclidean signature (+,+,+,+) and negative scalar curvature.

– 39 –



J
H
E
P
0
8
(
2
0
1
6
)
0
8
0

Scalar-flat Kähler metric (2.9)

Self-dual Einstein metric (2.4)

Toric metric (5.36)

m-pole solution (5.41)

3-pole: Plebanski-Demianski (5.28)2-pole: AdS4 (5.1)

3-pole: Taub-NUT-AdS4 (5.9)

U(1)-symmetry

U(1)2-symmetry

y2

1 parameter

2 parameters0 parameters

Figure 1. Overview of the metrics discussed in the main part of the paper and in the present

appendix. The arrows point from a metric to a special case of the metric, except the wavy arrow

which corresponds to a conformal transformation, i.e. equation (2.9).

Depending on global constraints, the Killing vector ∂ν may have fixed points, and the

associated supersymmetric solution may then be singular. However, we are also free to pick

the supersymmetric Killing vector K to be an arbitrary linear combination of Killing vectors

K = bν∂ν + bϕ∂ϕ , (C.5)

with real coefficients bν , bϕ, giving the following (bν , bϕ)-dependent conformal factor

y(ρ, η) =

√
ρF(ρ, η)√

(bν + bϕη)2 + b2ϕρ
2

=
ycan(ρ, η)√

(bν + bϕη)2 + b2ϕρ
2
. (C.6)

Of course for bν = 1 and bϕ = 0 one recovers y = ycan. It is simple to check that the

conformally rescaled metric

ds2 =
ρF2(ρ, η)

(bν + bϕη)2 + b2ϕρ
2
ds2

toric (C.7)

is Kähler and scalar-flat.

A key feature of this construction will be that the conformal boundary ycan = 0 will in

general only be an implicit equation in the (ρ, η) coordinates. However, these coordinates

are well-suited for the discussion of regularity of the metric in the interior. The opposite is

true in the y-coordinates given by supersymmetry in (2.4). Before discussing the general

family of m-pole solutions, and the examples m = 2, 3, let us present the general explicit
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form of the instanton associated to the Killing vector (C.5). Using the following general

formula for the instanton

F = −
(

1

2
ydK[ + y2K[ ∧ JK[

)−
, (C.8)

where K[ denotes the one-form dual to the Killing vector K, and J the complex struc-

ture (3.35), we compute

F =
yF

c11
√
ρ
(
F2 − 4ρ2

(
F2
η + F2

ρ

))2
[

(g13 + g24)
[
2c11ρ

{
Fρ
(
2bϕρ

2Fη − η̂F
)

+2ρFρρ
(
2bϕρ

2Fη − 2η̂ρFρ − η̂F
)

+ 2ρ2Fρη (bϕF − 2η̂Fη − 2bϕρFρ)
}

+c13η̂
(
F2 − 4ρ2F2

η

)
− 8c12ρ

2η̂F2
ρ

]
+ ρ(g12 − g34)

[
2c11

{
2ρ2Fρρ

(
bϕF − 2bϕρFρ

−2η̂Fη
)

+ 2ρFρη
(
η̂F + 2ρη̂Fρ − 2bϕρ

2Fη
)

+ 3bϕρFFρ + 4η̂FFη + 2ρη̂FηFρ
}

−8b3ϕρ
4F2

ρ − 4bϕc13ρ
2F2

η − bϕc31F2
]]

. (C.9)

Here y is given by the expression in (C.6) and we have defined η̂ ≡ bν + bϕη and cmn =

cmn(ρ, η) ≡ mη̂2 + n b2ϕρ
2. The vielbein are defined as

g1 =

√
4ρ2

(
F2
η + F2

ρ

)
−F2

4ρ2F2
dη ,

g2 =
2√

F2
(
4ρ2

(
F2
η + F2

ρ

)
−F2

)( (ηycan
ρ − ρycan

η

)
dϕ+ ycan

ρ dν
)
,

g3 =
2√

F2
(
4ρ2

(
F2
η + F2

ρ

)
−F2

)( (ηycan
η + ρycan

ρ − ycan
)

dϕ+ ycan
η dν

)
,

g4 =

√
4ρ2

(
F2
η + F2

ρ

)
−F2

4ρ2F2
dρ . (C.10)

C.2 m-pole solutions

There is a basic solution to (C.4), namely

F(ρ, η;λ) =

√
ρ2 + (η − λ)2

√
ρ

, (C.11)

where λ is any constant. We will refer to this as a single monopole solution, and via

linearity then

F(ρ, η) =

m∑
i=1

αiF(ρ, η;λi) , (C.12)

also solves (C.4), for arbitrary constants αi, λi, i = 1, . . . ,m. We will refer to (C.12) as

an m-pole solution. Of course, one could also replace the sum in (C.12) by an integral,
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smearing the monopoles in some chosen charge distribution. The local construction of

infinitely many self-dual Einstein metrics is thus straightforward via this construction.

For the m-pole solution (C.12) the metric (C.1) depends on only 2m − 4 of the 2m

constants in (C.12). This follows from taking into account symmetries. Recall that the

isometry group of the hyperbolic upper half plane H2 is PSL(2,R). In terms of the (ρ, η)

coordinates in (C.3) this is generated by the three simple transformations

Translation : η → η + b ,

Rescaling : η → µ2η , ρ → µ2ρ ,

Inversion : η → − η

ρ2 + η2
, ρ → ρ

ρ2 + η2
. (C.13)

We may write these as SL(2,R) matrices by defining the complex coordinate Z ≡ η + iρ,

so that PSL(2,R) acts as

Z → aZ + b

cZ + d
,

(
a b

c d

)
∈ SL(2,R) . (C.14)

The above three transformations are then

T =

(
1 b

0 1

)
, R =

(
µ 0

0 1
µ

)
, I =

(
0 −1

1 0

)
, (C.15)

respectively. The symmetries (C.13) extend to isometries of the self-dual Einstein met-

ric (C.1) by also acting on the angular coordinates via

Translation : ν → ν − bϕ ,

Rescaling : ν → µν , ϕ → 1

µ
ϕ ,

Inversion : ν → −ϕ , ϕ → ν , (C.16)

respectively, and for the m-pole solution (C.12) one acts on the monopole parameters αi,

λi via

Translation : λi → λi + b ,

Rescaling : λi → µ2λi , αi →
1

µ
αi ,

Inversion : λi → −
1

λi
, αi → αi|λi| , (C.17)

respectively. Most of these are easily verified, apart from the action of inversion on the

angular coordinates. Here it is useful to establish a number of transformation properties,

such as η∂ρ − ρ∂η → −η∂ρ + ρ∂η under inversion. In addition to the above PSL(2,R)

transformations, we may also simply rescale

F(ρ, η)→ κF(ρ, η) , ν → κν , ϕ → κϕ , (C.18)

which for the m-pole solution simply scales αi → καi.
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Note that under the PSL(2,R) symmetry action on the coordinates (ρ, η), the basic

monopole solution transforms as

α

√
ρ2 + (η − λ)2

√
ρ

→ α′
√
ρ2 + (η − λ′)2

√
ρ

, (C.19)

where

α′ = α|cλ+ d| , λ′ =
aλ+ b

cλ+ d
, (C.20)

with ad − bc = 1. One can then use these symmetries to fix 4 of the 2m parameters

in (C.12). We shall see this explicitly for the 2-pole and 3-pole solutions that we examine

in detail below.

C.3 AdS4 from 2-pole solution

The simplest example of the construction described above is the 2-pole solution, which

turns out to be Euclidean AdS4, that is the four-dimensional hyperbolic space. Using the

PSL(2,R) symmetry plus the overall scaling symmetry discussed in section C.2, we can set

λ1 = −λ2 = 1 and α1 = −α2 = −1
2 without loss of generality. Therefore we have

FEAdS =

√
ρ2 + (η + 1)2 −

√
ρ2 + (η − 1)2

2
√
ρ

, (C.21)

with the conformal factor for a generic choice of Killing vector

y(ρ, η) =

√
ρ2 + (η + 1)2 −

√
ρ2 + (η − 1)2

2
√

(bν + bϕη)2 + b2ϕρ
2

. (C.22)

Identifying ϕ = ϕ1, ν = ϕ2 (so that bϕ = b1, bν = b2), and introducing the change of

coordinates

ρ =
4r1r2

(1 + r2
1 + r2

2)2 − 4r2
1

, η =
(1 + r2

1 + r2
2)(1− r2

1 − r2
2)

(1 + r2
1 + r2

2)2 − 4r2
1

, (C.23)

the general toric metric takes the form

ds2
EAdS4

=
4

(1− r2
1 − r2

2)2

(
dr2

1 + r2
1dϕ2

1 + dr2
2 + r2

2dϕ2
2

)
, (C.24)

which is manifestly the metric of Euclidean AdS4, realised as a hyperbolic ball. In partic-

ular, r1, r2 ≥ 0 are constrained by r2
1 + r2

2 < 1, with {r2
1 + r2

2 = 1} being the conformal

boundary S3. In these coordinates the conformal factor reads

y(r1, r2) =
1− r2

1 − r2
2√

2
(
b22 − b21

) (
r2

2 − r2
1

)
+ (b2 − b1)2

(
r2

1 + r2
2

)2
+ (b1 + b2)2

. (C.25)

It is instructive to analyse how the (ρ, η) coordinates behave globally, in this simple

example. First note that the polar axes map precisely to ρ = 0. That is, ρ = 0 if and only
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if r1 = 0 or r2 = 0. Looking more closely at the axes, we have

ρ(r1, 0) = 0 , η(r1, 0) =
1 + r2

1

1− r2
1

,

ρ(0, r2) = 0 , η(0, r2) =
1− r2

2

1 + r2
2

. (C.26)

In particular the origin O = {r1 = r2 = 0}, which is the NUT, maps to the point (ρ, η) =

(0, 1). Indeed, inserting these values into either (C.25) or (C.22), we recover the general

expression (3.36) for

yNUT =
1

|b1 + b2|
. (C.27)

The axis (r1, r2) = (0, r2) for r2 ∈ [0, 1) then maps to η ∈ (0, 1], while the axis (r1, r2) =

(r1, 0) for r1 ∈ [0, 1) maps to η ∈ [1,∞). Notice

(1 + r2
1 + r2

2)2 − 4r2
1 ≥ (1− r2

1)2 ≥ 0 , (C.28)

with equality holding in the first inequality if and only if r2 = 0. It follows from this that

ρ ≥ 0 and η > 0. The coordinate region {r2
1 + r2

2 < 1} then in fact maps one-to-one to the

positive quadrant {ρ ≥ 0, η > 0}, with the axes mapping to ρ = 0 in the above way. The

conformal boundary {r2
1 +r2

2 = 1} = {ycan = 0} is mapped to {η = 0}∪{(ρ =∞, η =∞)},
namely the axis ρ ≥ 0 plus the point at infinity in H2, the latter corresponding to the point

(r1, r2) = (1, 0).

Looking at the collapsing Killing vectors for this solution, we see that ∂ϕ2 collapses

along {ρ = 0, η ≥ λ1 = 1}, while ∂ϕ1 collapses along {ρ = 0, η ∈ (0, 1]}, where the

(ρ, η)−plane is cut off at η = 0 by the conformal boundary. In fact on the whole of H2 we

have that ∂ϕ2 collapses on {ρ = 0, η ≥ λ1 = 1} ∪ {ρ = 0, η ≤ λ2 = −1}, while ∂ϕ1 collapses

on the interval {ρ = 0, η ∈ [λ2, λ1] = [−1, 1]}. We thus see the division of the η-axis into

the three segments λ3 = −∞ < λ2 = −1 < λ1 = 1 < λ0 =∞, with different Killing vectors

collapsing in each of the 3 regions. However, the conformal boundary actually cuts off half

this axis.

It is straightforward to check that the metric in the (ρ, η) coordinates is non-singular

near the loci where the Killing vectors collapse. Using the expansions, the angular part of

the metric reads

ds2
angular =

 dϕ2 + ρ2

(η2−1)2
(dν2 − dϕ2) +O(ρ4) , |η| > 1 ,

dν2 + ρ2

(1−η2)2
(dϕ2 − dν2) +O(ρ4) , |η| < 1 ,

(C.29)

and one sees explicitly that ∂ϕ1 = ∂ϕ collapses along {ρ = 0, |η| < 1}, while ∂ϕ2 = ∂ν
collapses along {ρ = 0, |η| > 1}, which agrees with the statements above. The factor in

front of this angular part of the metric in (C.1) is

Υ(ρ, η)2 ≡ 4

F2[4ρ2(F2
ρ + F2

η )−F2]
=

4
√
ρ2 + (1− η)2

√
ρ2 + (1 + η)2(√

ρ2 + (1− η)2 −
√
ρ2 + (1 + η)2

)2 . (C.30)
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(a) Constant r1 contours in the (ρ, η)

quadrant. The axis r1 = 0 maps to η ∈
(0, 1] on ρ = 0.
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(b) Constant r2 contours in the (ρ, η)

quadrant. The axis r2 = 0 maps to η ∈
[1,∞) on ρ = 0.
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Figure 2. Contour plots in the (ρ, η) quadrant.

Notice that the denominator is non-zero on the quadrant {ρ ≥ 0, η > 0} ⊂ H2, while the

numerator is zero precisely at the origin ρ = 0, η = 1. This is necessary in order that the

metric is regular at the origin. In particular, we find

(1− r2
1 − r2

2)2Υ2ds2
angular = 4r2

1dϕ2 + 4r2
2dν2 +O(r4

1, r
4
2) . (C.31)

Notice that the canonically defined Killing vector ∂ν = ∂ϕ2 has a fixed point set along

the axis r2 = 0, which is a copy of R2. Thus the induced Killing vector on the conformal

boundary is not a Reeb vector field. Indeed, setting b1 = 0, b2 = 1 in (C.25) we see that

ycan(r1, r2) =
1− r2

1 − r2
2√

(1 + r2
1 + r2

2)2 − 4r2
1

. (C.32)

In particular, ycan(r1, 0) ≡ 1 for r1 ∈ [0, 1) is constant along the axis where the associated

Killing vector ||∂ν || = 0. But also ycan = 0 defines the conformal boundary, which contains

the point (r1, r2) = (1, 0). Thus actually ycan is not even a continuous function on the

conformal compactification: it is identically 1 along the axis, which intersects the conformal

boundary at infinity, where it jumps to 0. Thus the general expansions we have made are

not valid and this case is not covered by our analysis. On the other hand, assuming b1 6= 0,

b2 6= 0 and expanding (C.25) near the points r1 = 0, r2 = 1 and r1 = 1, r2 = 0 we find

y(r1 = 0, r2) =
(r2 − 1)2

b22
+O((r2 − 1)3) ,

y(r1, r2 = 0) =
(r1 − 1)2

b21
+O((r1 − 1)3) , (C.33)

respectively, so that y(r1, r2) is now a continuous function on the conformal compactifica-

tion, and we automatically obtain a non-singular instanton.
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Doing a further change of coordinates, setting

r1 =

√
q2 + 1− 1

q
cosϑ , r2 =

√
2 + q2 − 2

√
1 + q2 sinϑ

q
, (C.34)

the metric becomes

ds2
EAdS4

=
dq2

q2 + 1
+ q2

(
dϑ2 + cos2 ϑdϕ2

1 + sin2 ϑdϕ2

)
, (C.35)

and the conformal factor reads

y(q, ϑ) =
1√(

b2 + b1
√
q2 + 1

)2
cos2 ϑ+

(
b1 + b2

√
q2 + 1

)2
sin2 ϑ

, (C.36)

in agreement with the formulas in section 5.1.

Finally, let us present the instanton in the various coordinate systems introduced. In

the original (ρ, η) coordinates the general instanton simplifies to

F =
y(ρ, η)(b21 − b22)

√
ρFEAdS(ρ, η)

2c11

√
(ρ2 + (η + 1)2) (ρ2 + (η − 1)2)

[
(g13 + g24)

(
η̂
(
η2 − 1

)
− ρ2(b2 + 3b1η)

)
+ρ(g12 − g34)

(
2b2η + b1

(
3η2 − 1

)
− b1ρ2

) ]
. (C.37)

In the (r1, r2)-coordinates, we have instead

F =
2(b22 − b21)y(r1, r2)3(

1− r2
1 − r2

2

)3 [(
r1dr1 ∧ dϕ1 − r2dr2dϕ2

)(
b2
(
1− r2

1 + r2
2

)
+b1

(
1 + r2

1 − r2
2

) )
− 2(b2 − b1)r1r2

(
r2dr1 ∧ dϕ2 + r1dr2 ∧ dϕ1

)]
, (C.38)

and the corresponding gauge field reads

A =

[
b1
(
1− r2

1 − r2
2

)
+ b2

(
1 + r2

1 + r2
2

) ]
dϕ1 +

[
b1
(
1 + r2

1 + r2
2

)
+ b2

(
1− r2

1 − r2
2

) ]
dϕ2

2
√

2(b22 − b21)(r2
2 − r2

1) + (b1 − b2)2(r2
1 + r2

2)2 + (b1 + b2)2
.

In the (ϑ, q) coordinates this becomes

A =

(
b1 + b2

√
q2 + 1

)
dϕ1 +

(
b2 + b1

√
q2 + 1

)
dϕ2

2

√(
b2 + b1

√
q2 + 1

)2
cos2 ϑ+

(
b1 + b2

√
q2 + 1

)2
sin2 ϑ

, (C.39)

which is the expression written in section 5.1 and originally presented in [9].

C.4 Plebanski-Demianski from 3-pole solution

In section 5.3 we discussed a two-parameter family of self-dual Einstein metrics on the four-

ball. Although this was constructed in [10] starting from the local Plebanski-Demianski

metric, it turns out that it is related to the 3-pole solutions of section C.2. However,

the relationship is complicated and involves various changes of coordinates and conformal

– 46 –



J
H
E
P
0
8
(
2
0
1
6
)
0
8
0

(C.45) ortho-toric (ξ, µ)

(C.44) 3-pole (R,S)(C.1) 3-pole (ρ, η)

(C.71) self-dual Einstein (y, z) (C.58) Plebanski-Demianski (p, q)

R2
ortho

R2
ortho

Figure 3. Overview of the metrics and coordinate transformations in this subsection. Straight

arrows denote changes of coordinates, while wavy arrows denote conformal transformations (with

the indicated conformal factor). The bottom arrow points only one way, to represent the fact that

the Plebanski-Demianski metric, with a choice of Killing vector K, is a special case of the general

self-dual Einstein metric.

transformations. These are illustrated in figure 3, and in the rest of this section will discuss

the links in detail. Some of these relations were discussed in [26], albeit somewhat implicitly.

In this section we will not be interested in global properties of these metrics, as metrics

on the ball; in particular the various angular coordinates that will be introduced do not

have canonical periodicities, and the action of the associated Killing vectors generically

have non-closed orbits. Global properties were discussed in detail in [10], in the (p, q)

coordinate system.

From (ρ, η) coordinates to (R,S) coordinates. We begin noting that applying the

PSL(2,R) symmetry transformation in (C.19), (C.20) to the m = 3 case, we see that we

can choose for example λ′1 = 1, λ′2 = 0, λ′3 = −1, so that the general 3-pole solution can

be written in the form

F(ρ, η) =
b+ c

2

√
ρ2 + (η + 1)2

√
ρ

+
a
√
ρ

+
b− c

2

√
ρ2 + (η − 1)2

√
ρ

, (C.40)

as presented in [26].26 Using the residual scaling symmetry one of the three parameters

a, b, c could be set to an arbitrary non-zero value. However, in the following we will find it

convenient to keep the three parameters in the expressions. The metric (C.1) with F(ρ, η)

given by (C.40) corresponds to the top left corner of figure 3. Following [26], let us define

new coordinates27 R, θ̂ as

ρ =
√
R2 − 1 cos θ̂ , η = R sin θ̂ , (C.41)

so that

ycan(R, θ) = a+ bR+ c sin θ̂ , (C.42)

26In [26] the 3-pole solution appears written in terms of a parameter m, such that m2 = ∓1. In this

reference these two cases are referred to as Type I and Type II metrics, respectively. Here we are interested

only in the case m2 = 1, corresponding to the expression in (C.40).
27This change of coordinates may be easily inverted as

R2 =
1

2

(
1 + ρ2 + η2 +

√
(1 + ρ2 + η2)2 − 4η2

)
, sin θ̂ =

η

R
.
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R

S

A

B

η

ρ

A B

conformal boundary

ρ=0

ρ=0

conformal
boundary

η=1

10

η=0η=-1

-1

NUT

NUT

Figure 4. An illustration of the map between (ρ, η)-coordinates and (R,S)-coordinates: ρ =√
R2 − 1

√
1− S2, η = RS. The conformal boundary, defined by ycan=0, is simply a segment in the

(R,S) plane. This is mapped to an arc intersecting the ρ = 0 axis at two points (A and B). The

three marked points on this axis η = −1, 0, 1 correspond to the location of the three monopoles

in (C.40), with η = 1 corresponding to the NUT. The parameters a, b, c are choosen to correspond

to region C in figure 3 of [26].

and

ρ−1

(
1

4
F2 − ρ2

(
F2
ρ + F2

η

))
=

b(aR+ b)− c(a sin θ̂ + c)

R2 − sin2 θ̂
. (C.43)

Then further defining S = sin θ̂, the metric (C.1) becomes28

ds2
RS =

c2 − b2 − a(bR− cS)

(a+ bR+ cS)2

(
dR2

R2 − 1
+

dS2

1− S2

)
+

1

(a+ bR+ cS)2(c2 − b2 − a(bR− cS))(R2 − S2)

×
(

(R2 − 1)(1− S2)
[
(bR− cS)dν + (bS − cR)dϕ

]2
+
[(
bS(R2 − 1) + cR(1− S2)

)
dν

−
(
cS(R2 − 1) + bR(1− S2) + a(R2 − S2)

)
dϕ
]2)

. (C.44)

This form of the 3-pole metric appears at page 21 of [26] (with opposite sign — see foot-

note 25) and in figure 3 it corresponds to the second box in the upper part. Reference [26]

discusses the moduli space of these metrics, parametrized by (a, b, c), including different

topologies and boundary conditions. Here we are only interested in the negative curvature

case, and we note that in general the domain of existence in the (R,S) plane is strictly

contained in the strip R ∈ [1,+∞), S ∈ [−1, 1], where the conformal boundary is a segment

on the line a + bR + cS = 0. In figure 4 this domain is the triangle on the right-bottom

28We find that the formula corresponding to (C.43) in [26] (middle of page 18) has a sign error. Moreover,

the angular variables ψ, ϕ in the metric gRS in [26] (top of page 21) are inverted with respect to those in

our equation (C.44).
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corner of the strip, which maps back to a compact domain in the (ρ, η) plane. Although

this behaviour appears to be qualitatively different from that in the AdS4/2-pole case of

the previous section, we notice that via PSL(2,R) transformations we may first shift the

point B in figure 4 to the origin, and then using inversion we may map this to ∞. In this

way ycan = 0 becomes a semi-infinite line joining a point (ρ = 0, η0) on the ρ = 0 axis to

∞, as in the AdS4/2-pole case. However, we will not further discuss global issues of the

3-pole metrics in the (ρ, η) coordinates, referring to [10] for global considerations, in the

final (p, q) (Plebanski-Demianski) coordinates.

From (R,S) coordinates to (ξ, µ) coordinates. It was noted in [26] that the 3-pole

metric must be conformally related to the following ortho-toric [52] Kähler metric

ds2
ortho = (ξ − µ)

(
dξ2

f(ξ)
− dµ2

f(µ)

)
+

1

ξ − µ

[
f(ξ) (dt+ µdv)2

−f(µ) (dt+ ξdv)2
]
, (C.45)

with

f(x) = (x− x1)(x− x2)(x− x3)(x− x4) , (C.46)

and x1 +x2 +x3 +x4 = 0, so that the quartic polynomial has no cubic term. Here ξ+µ and

ξµ are the trace and the Pfaffian of the normalized Ricci form of the metric (C.44), and

(ξ + µ)2 is the conformal factor necessary to pass from the Einstein metric (C.44) to the

Kähler metric (C.45). Note that this Kähler metric is not scalar flat, and therefore it cannot

be related by a change of coordinates to the canonical Kähler metric of section 2.2. Indeed,

it will become clear shortly that one has to make two different conformal transformations

to relate the Kähler metric (C.45) to the Kähler metric (2.9).

The conformal transformation relating (C.44) and (C.45) reads

ds2
ortho = κ2

(
a+ bR+ cS

b2 − c2 + a(bR− cS)

)2

ds2
RS , (C.47)

where κ is an arbitrary constant. In particular, computing the Ricci scalars of the metrics

on each side of equation (C.47) and equating these, yields the relation

κ3

a (b2 − c2)
(ξ + µ) = κ

a+ bR+ cS

b2 − c2 + a(bR− cS)
. (C.48)

As noted below (C.40), using the scaling symmetry the three parameters a, b, c can be

multiplied by an overall non-zero constant, while gRS is invariant. For example one could

arrange for the conformal factor (C.47) to be simply (ξ+µ)2. Instead, leaving the arbitrary

paramater κ, we find that the change of coordinates is given by

R =
1

2ab∆

[
2κ2

((
b2 − c2

)2 − 3a2b2 − a2c2
)

(ξ + µ) + 4κ4
(
a2 + b2 − c2

)
ξµ

+
(
b2 − c2

)3
+ a2

(
4a2b2 − 3b4 + c4 + 2b2c2

) ]
, (C.49)

S =
1

2ac∆

[
2κ2

((
b2 − c2

)2 − 3a2c2 − a2b2
)

(ξ + µ) + 4κ4
(
a2 − b2 + c2

)
ξµ

−
(
b2 − c2

)3
+ a2

(
4a2c2 − 3c4 + b4 + 2b2c2

) ]
, (C.50)
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where

∆ ≡ 2κ2a2(ξ + µ)− 4κ4ξµ− 2a2(b2 + c2) + (b2 − c2)2 . (C.51)

Note that R and S are rational functions of the trace ξ + µ and the Pfaffian ξµ. The

polynomial f(x) takes the form

f(x) =

(
x− −b

2 + c2 − 2ab

2κ2

)(
x− −b

2 + c2 + 2ab

2κ2

)(
x− b

2 − c2 − 2ac

2κ2

)(
x− b

2 − c2 + 2ac

2κ2

)
.

(C.52)

The angular coordinates are linearly related as

ϕ = ε
abc(c2 − b2)

κ6

(
2κ2 t+ a2 v

)
,

ν = ε
a(b2 − c2)

2κ6

(
2κ2(a2 − b2 − c2) t+

(
a2
(
b2 + c2

)
−
(
b2 − c2

)2)
v
)
, (C.53)

with the choices ε = ±1. Setting κ2 = 1
2 by using the scaling symmetry, one recovers the

form of f(x) written in [26], up to a change of sign of the roots xi → −xi, due to the

different overall sign difference in the metrics ds2
RS here and in [26].

The inverse change of coordinates is given by

ξ =
1

2κ2

a(b2 − c2)(a+ bR+ cS)±
√
W (R,S)

b2 − c2 + a(bR− cS)
,

µ =
1

2κ2

a(b2 − c2)(a+ bR+ cS)∓
√
W (R,S)

b2 − c2 + a(bR− cS)
, (C.54)

where

W (R,S) ≡ 4a4b2c2
(
R2 + S2

)
+ 4a2bc

((
b2 − c2

)2 − a2
(
c2 + b2

))
RS

+(b2 − c2)2(a− b− c)(a+ b− c)(a− b+ c)(a+ b+ c) . (C.55)

Let us show that this makes sense, checking that W (R,S) ≥ 0 everywhere in the domain

of existence of the metric. Of course, it is sufficient to show that W (R,S) ≥ 0 in the strip

[1,+∞)× [−1, 1]. By explicit computation one finds that for any value of (R,S) the unique

solution of ∂RW = ∂SW = 0 is R = S = 0, so that W does not have an extremal point in

the interior of [1,+∞)× [−1, 1]. On the boundary of this strip we compute

W (R,S = ±1) =
(
(b2 − c2)2 − a2(b2 + c2 ∓ 2bcR)

)2
,

W (R = 1, S) =
(
(b2 − c2)2 − a2(b2 + c2 − 2bcS)

)2
, (C.56)

and for R→ +∞ we have W → 4a4b2c2R2 > 0 for any S ∈ [−1, 1], therefore for any large

value Rc of R, W is non-negative. Since W (R,S) is a continuous bounded function, by the

extreme value theorem it must attain an absolute maximum and an absolute minimum on

the boundary of the domain [1, Rc]× [−1, 1]. As there are no extremal points in the interior

of the domain, it follows that the maximum and the minimum must be on the boundary.

Therefore, since at the boundary W ≥ 0, the absolute minimum is also non-negative. This

is clearly still true when we let the cut-off Rc →∞.
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Notice that the ortho-toric Kähler metric (C.45) strongly resembles the Plebanski-

Demianski Einstein metric (5.28). In particular, both metrics are characterized by a quar-

tic polynomial without cubic term. Thus it would be tempting to think that, up to a

conformal transformation, the two sets of coordinates may be simply related. However,

this is not the case.

From (ξ, µ) coordinates to (p, q) coordinates. Here we will show that after undoing

the conformal transformation (C.47), transforming the ortho-toric Kähler metric (C.45)

into an Einstein self-dual metric, this is related by a non-trivial change of coordinates to

the Plebanski-Demianski metric (5.28). In particular, we will show that

ds2
PD =

8a2(b2 − c2)2

(ξ + µ)2
ds2

ortho , (C.57)

displaying the explicit change of coordinates. Note that the conformal factor is simply

proportional to the square of the Ricci scalar of the ortho-toric Kähler metric, namely

Rortho = −12(ξ + µ).

Recall the Plebanski-Demianski metric in the (p, q)-coordinates reads

ds2
PD =

P(q)

q2 − p2
(dτ + p2dσ)2 − P(p)

q2 − p2
(dτ + q2dσ)2 +

q2 − p2

P(q)
dq2 − q2 − p2

P(p)
dp2 , (C.58)

where

P(x) = (x− p1)(x− p2)(x− p3)(x− p4)

≡ x4 + Ex2 − 2Mx+ L . (C.59)

Here we will denote the constant coefficient of the quartic P(x) with the symbol L, instead

of using the notation “−Q2 + α” of [10]. This is to emphasize the fact that L is a genuine

metric parameter, while Q and α are not, and are meaningful only when discussing the

instanton. Rewriting the polynamial f(x) in (C.52) as

f(x) = x4 +Hx2 + Tx+ U , (C.60)

where T = 8a2(b2−c2)2, the non-angular part of the change of coordinates is then given by

ξ =

(
T

4M2

)1/3 −M ± 1
2

√
Ξ(p, q)

(p+ q)
,

µ =

(
T

4M2

)1/3 −M ∓ 1
2

√
Ξ(p, q)

(p+ q)
, (C.61)

with

Ξ(p, q) = 4M2 + 4M(p+ q)(2pq − E) + (p+ q)2
(
E2 − 4L

)
. (C.62)

Let us postpone showing that Ξ(p, q) ≥ 0 until the end of this subsection. Remarkably, in

spite of this complicated relationship, in both sets of coordinates the metrics are charac-

terized by a single quartic polynomial without the cubic term. The angular coordinates
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are given by the linear combination,

t =

(
|M |
4T 2

)1/3

(Eσ − 2τ) , v =
2|M |
T

σ , (C.63)

while the remaining parameters are related as

H = −1

4

(
T 2

2M4

)1/3 (
E2 − 4L

)
, (C.64)

U =
1

64

(
T 2

2M4

)2/3 (
32M2E +

(
E2 − 4L

)2)
. (C.65)

Of course these parameters are also related to the original constants a, b, c as

H = −2((b2 − c2)2 + 2a2(b2 + c2)) ,

U = 16a4b2c2 + (b2 − c2)4 − 4a2(b2 − c2)2(b2 + c2) . (C.66)

Let us now show that Ξ(p, q) ≥ 0 in the domain of definition of the coordinates (p, q).

Adopting the conventions of [10], we have p ∈ [p3, p4] and q ∈ [p4,+∞), with p4 > 0 and

p4 > p3, and we must check that Ξ(p, q) ≥ 0 everywhere in the strip [p3, p4]× [p4,+∞]. On

the boundary of the strip, we find29

Ξ(p3, q) =
(
p3

3 + p1p3p4 + p1p4(p1 + p4)− q
(
p2

1 + p1p4 + p2
4 − p2

3 + p1p3 + p3p4

))2
,

Ξ(p4, q) =
(
p2

1(p3 − q) + p1(p3 + p4)(p3 − q)− p2
3q + p4q(p4 − p3) + p3

4

)2
, (C.67)

Ξ(p, p4) =
(
−p
(
p2

1 + p1(p3 + p4) + p2
3 + p3p4 − p2

4

)
+ p1p3p4 + p1p3(p1 + p3) + p3

4

)2
,

and for q →∞ we have

Ξ → q2(8Mp+ E2 − 4L) ≡ q2Ξ∞(p) . (C.68)

One checks that Ξ∞(p) ≥ 0 at p = p3 and p = p4, and because Ξ∞(p) is linear in p one

concludes that Ξ(p, q) ≥ 0 for all p ∈ [p3, p4] for q → ∞. Therefore Ξ(p, q) ≥ 0 on the

boundary of the rectangular domain [p3, p4] × [p4, qc], for any large qc. A computation

shows that there exist four points (p, q) where ∂pΞ = ∂qΞ = 0. Two of these points are

p = −q = ±
√
−E
2

, (C.69)

and exist only if E ≤ 0. In any case, it’s easy to see that the line p = −q intersects the

strip only at q = p4, p = p3 = −p4. In [10] it is shown that in order for the instanton to

be non-singular, the condition p3 + p4 > 0 must hold, so these two points are never inside

the strip. Two further points take the form

p = q = α+
√
β and p = q = α−

√
β , (C.70)

for some combinations of the parameters denoted α and β, and again it’s simple to see

that the line p = q intersects the strip only at p = p4 = q. Therefore there are no extremal

points in the interior of the domain [p3, p4] × [p4, qc] and the argument to conclude that

Ξ(p, q) ≥ 0 is then exactly the same as that used earlier to show that W (R,S) ≥ 0.

29Here we have used p2 = −p1 − p3 − p4.
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From (y, u) coordinates to (p, q) coordinates. Finally, let us show that the

Plebanski-Demianski metric can be cast in the canonical coordinates characterising the

self-dual Einstein metric (2.4), which we recall here

ds2
SDE =

1

y2

[
V −1(dψ + φ)2 + V

(
dy2 + 4ewdzdz̄

)]
. (C.71)

Although in principle this can be done for any choice of Killing vector K, the general

expressions are unwieldy. We will present an expression for the instanton constructed from

a general Killing vector in subsection C.5. Here we will consider only the special choices

of Killing vector K corresponding to the instantons studied in [10], for which the formulas

simplify considerably. Moreover, as assumed everywhere in this paper, we have to restrict

to the real solutions in [10], so that in particular Q and
√
α are real.

Starting from [10]

K = ∂ψ = 2
√
α∂τ + 2 ∂σ , (C.72)

where

2
√
α =

M2

Q2
+ E , (C.73)

and using equations (3.33) and (3.34), in section 5.3 we find that

1

y(p, q)2
=

4
(
Q2(p+ q) +Mpq −M

√
α
)2

Q2
. (C.74)

Notice that the relation (C.73) was derived in [10] by imposing supersymmetry, but in

doing so the authors were employing a specific ansatz for F . It is the compatibility of

that ansatz with supersymmetry that yielded (C.73). However, in our general context we

know that supersymmetry is automatic for any choice of Killing vector, and therefore we

cannot expect a new relation, such as (C.73) to be found. Thus (C.73) corresponds merely

to a very special choice of Killing vector. This will become more manifest after writing the

general instanton in section C.5.

Assuming the second U(1) isometry of the general metric (C.71) may be parametrized

by a local angular coordinate Θ, defined through z = ueiΘ, the self-dual Einstein metric

becomes

ds2
SDE =

1

y2

[
V −1(dψ + φ)2 + V

(
dy2 + 4ew(du2 + u2dΘ2)

)]
. (C.75)

The angular coordinates (ψ,Θ) must be linearly related to the angular coordinates (σ, τ)

of the Plebanski-Demianski metric (C.58) as(
τ

σ

)
=

(
A C

B D

)(
ψ

Θ

)
, (C.76)

where A = 2
√
α and B = 2, whereas the entries C,D are arbitrary, provided the trans-

formation (C.76) is invertible. Comparing the relevant terms, we find that the function

V (p, q) is

V (p, q) =
1

4y(p, q)2

q2 − p2

P(q)(
√
α+ p2)2 − P(p)(

√
α+ q2)2

, (C.77)
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and the one-form φ is

φ =
1

2

P(q)(
√
α+ p2)(C +Dp2)− P(p)(

√
α+ q2)(C +D q2)

P(q)(
√
α+ p2)2 − P(p)(

√
α+ q2)2

dΘ . (C.78)

The coordinate u is found by integrating the following relation

du2

u2
=

1

Q2(C −D
√
α)2

((
Mp+Q2

)
P(p)

dp+

(
Mq +Q2

)
P(q)

dq

)2

. (C.79)

If all four roots pi of the polynomial P(x) are distinct this is solved by

u(p, q) = C̃
4∏
i=1

[
(p− pi)(q − pi)

]± (Mpi+Q
2)

Q(C−D
√
α)P′(pi) , (C.80)

where C̃ an integration constant. When p1 = p2, equation (C.79) can also be solved by a

function u(p, q), but we will not give this expression here. Finally, the function w(p, q) is

given by

ew(p,q) = −y(p, q)4

u(p, q)2

(
C −D

√
α
)2 P(p)P(q) . (C.81)

From these expressions, one can verify that equations (2.5), (2.6), and (2.7) are satisfied.

Notice that choosing C = 0 and D = 1
2
√
α

so that the angular change of variables (C.76)

is an SL(2,R) transformation, the formulas simplify slightly. One can also write more con-

crete expressions for u(p, q) in (C.80), obtained upon using the various solutions for Q [10]:

Q =


± (p3+p1)(p4+p1)

2

± (p3+p4)(p3+p1)
2

± (p3+p4)(p4+p1)
2

, (C.82)

where, as we already noticed, here we restrict to the region of parameter space where Q

is everywhere real. We refer to [10] for details. Setting C̃ = 1, and fixing a choice of sign,

in the first case we have

u(p, q) =

(
(p− p2)(q − p2)

(p− p1)(q − p1)

) 1
p1−p2

(
(p− p3)(q − p3)

(p− p4)(q − p4)

) 1
p3−p4

, (C.83)

in the second case we have

u(p, q) =

(
(p− p2)(q − p2)

(p− p3)(q − p3)

) 1
p2−p3

(
(p− p4)(q − p4)

(p− p1)(q − p1)

) 1
p1−p4

, (C.84)

and in the third case we have

u(p, q) =

(
(p− p3)(q − p3)

(p− p1)(q − p1)

) 1
p1−p3

(
(p− p2)(q − p2)

(p− p4)(q − p4)

) 1
p2−p4

. (C.85)

Perhaps not surprisingly these changes of coordinates are very similar to those appearing

in equation (25) of [53].
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C.5 General instanton on Plebanski-Demianski

Here we illustrate the construction of the general one-parameter instanton, starting directly

from the Plebanski-Demianski metric

ds2
PD =

P(q)

q2 − p2
(dτ + p2dσ)2 − P(p)

q2 − p2
(dτ + q2dσ)2 +

q2 − p2

P(q)
dq2 − q2 − p2

P(p)
dp2, (C.86)

with

P(x) = x4 + Ex2 − 2Mx+ L , (C.87)

and a Killing vector

K = bτ∂τ + bσ∂σ, (C.88)

with generic coefficients bτ , bσ. As before, we will denote the constant coefficient of the

quartic P(x) with the symbol L, instead of “−Q2 +α”. This is to emphasize the fact that

in our general set up the parameters L, bτ , bσ are independent.

Recall that given the one-form K[, dual to K, and the expression for y in (3.34), the

instanton F can be derived using the following formula

F = −
(

1

2
ydK[ + y2K[ ∧ JK[

)−
, (C.89)

where the complex structure tensor is

Jµν = −ygµρ
(

dK[
)+

ρν
. (C.90)

Here gµν is the inverse of the self-dual Einstein metric, and the contraction with the complex

structure is defined as JK[ = JµνK
[
µdxν . We then obtain the following general expression

1

y2
=

1

4

1

(q2 − p2)2

{[(
2P(q)

q − p
− P ′(q)

)
(bτ + bσp

2)−
(

2P(p)

q − p
+ P ′(p)

)
(bτ + bσq

2)

]2

−4b2σP(q)P(p)(q + p)2

}
. (C.91)

Inserting the polynomial P(x), we see that this is actually a polynomial of degree two,

symmetric in p and q, namely

1

y(p, q)2
= p2q2

(
2bτ bσ − b2σE

)
+ 2pq

(
bτ bσE − b2τ − b2σL

)
+
(
p2 + q2

) (
b2τ − b2σL

)
+ 2b2σM

(
p2q + pq2

)
− 2bτ bσM(p+ q) + 2bτ bσL+ b2σ(M2 − EL) . (C.92)

In the frame

ẽ1 =

√
q2 − p2

−P(p)
dp , ẽ2 =

√
−P(p)

q2 − p2
(dτ + q2dσ) ,

ẽ3 =

√
P(q)

q2 − p2
(dτ + p2dσ) , ẽ4 =

√
q2 − p2

P(q)
dq , (C.93)
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the instanton takes the form

F = (ẽ13 + ẽ24)
y(p, q)3

√
−P(p)P(q)

2(q + p)

(
b3σ
(
M2 − EL

)
− 2b3τ + b2τ bσE + 2bτ b

2
σL
)

+(ẽ12 − ẽ34)
y(p, q)3

32Q8(p+ q)2

3∑
m,n=0

amnq
mpn , (C.94)

with symmetric coefficients, amn = anm, given by

a00 = 2bτ bσM
(
2bτL+ bσ

(
M2 − EL

))
,

a01 = −2b3τL+ b2τ bσ
(
EL− 6M2

)
+ 2bτ b

2
σL

2 + b3σL
(
M2 − EL

)
,

a02 = M
(
4b3τ + b2τ bσE − 4bτ b

2
σL+ b3σ

(
−EL+M2

))
,

a03 = −b3τE + 2b2τ bσL+ bτ b
2
σ

(
EL−M2

)
− 2b3σL

2 ,

a11 = 6bτ bσM (bτE − 2bσL) ,

a12 = −b3τE + b2τ bσ
(
6L− E2

)
+ bτ b

2
σ

(
EL+ 9M2

)
+ b3σ

(
E2L− EM2 − 6L2

)
,

a13 = 6bσM
(
b2σL− b2τ

)
,

a22 = 6b2σM(2bσL− bτE) ,

a23 = −2b3τ + b2τ bσE + 2bτ b
2
σL− b3σ

(
EL+ 5M2

)
,

a33 = 2b2σM(bσE − 2bτ ) . (C.95)

These are all homogeneous degree three polynomials in the parameters bτ , bσ, but only

their ratio is important, so we could set one of them to unity. We can also express the

instanton in terms of b1 and b2, using the relations

bτ =
2p2

3

P ′(p3)
b1 −

2p2
4

P ′(p4)
b2 , (C.96)

bσ = − 2

P ′(p3)
b1 +

2

P ′(p4)
b2 . (C.97)

The (ẽ13 + ẽ24) component is rather simple and reads

F |(ẽ13+ẽ24) =
y3(p3 − p4)

√
−P(p)P(q)

(q + p)P ′(p3)P ′(p4)
(C.98)

×(b1 + b2)
(
b1(p4 − p1)− b2(p3 − p2)

)(
b1(p4 − p2)− b2(p3 − p1)

)
,

whereas the (ẽ12 − ẽ34) component does not simplify and we will not write it here.

Notice that the second line in (C.98) vanishes precisely in the three cases corresponding

to the solutions in [10], where this part of the instanton is absent. These correspond

precisely to the special choice

bτ
bσ

∣∣∣∣
MP

=
1

2

(
M2

Q2
+ E

)
. (C.99)

Inserting this into (C.92) one finds that 1/y2 factorizes, so that 1/y becomes homo-

geneous of degree one in p and q, as in (C.74). Similarly, the symmetric polynomial
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∑3
m,n=0 amnq

mpn also becomes the cube of a degree one polynomial, so that the two func-

tions cancel, leaving the enormously simplified instanton

F = − Q

(q + p)2
(ẽ12 − ẽ34) , (C.100)

in agreement30 with (2.28) of [10].

We also note that under the exchange of p and q the two terms transform as

(ẽ12 − e34) → (ẽ12 − ẽ34) ,

(ẽ13 + e24) → −(ẽ13 + ẽ24) , (C.101)

respectively, while the functions entering in F are all symmetric. Therefore, the special

instantons in [10] are symmetric under this exchange, while the general instanton is neither

symmetric nor antisymmetric, thus breaking this symmetry completely.

In conclusion, in this subsection we have explicitly shown how starting from a metric

with two non-trivial parameters (E,M,L mod scaling symmetry) we have obtained an

instanton, and hence a full supersymmetric solution, depending on one further non-trivial

parameter (bτ , bσ modulo scaling symmetry). By contrast, in the construction of [10],

the full solution depends on only two non-trivial parameters, already appearing in the

Plebanski-Demianski metric, and the instanton does not introduce a new parameter due

to the relation (C.99).

C.6 Taub-NUT-AdS4 as a limit of Plebanski-Demianski

Here we will show how to recover the Taub-NUT-AdS4 metric

ds2
4 =

r2 − s2

Ω(r)
dr2 + (r2 − s2)(dθ2 + sin2 θdϕ2) +

4s2Ω(r)

r2 − s2
(dς + cos θdϕ)2 , (C.102)

with

Ω(r) = (r − s)2
(
1 + (r − s)(r + 3s)

)
, (C.103)

from a limit of the Plebanski-Deminaski metric (C.58), thus demonstrating that the former

is a one-parameter sub-family of the toric 3-pole metric, where the isometry enhances to

SU(2)×U(1). Applying the same limit to the general instanton on the Plebanski-Demianski

metric (C.94) we will also obtain an explicit expression for the general toric instanton on

the Taub-NUT-AdS4 metric.

Following [10] we parameterise the four roots of P(x) in terms of two constants â, s as

p1 = −1

2
−
√
â2 − 2M , p2 = −1

2
+
√
â2 − 2M ,

p3 =
1

2
− â , p4 =

1

2
+ â , (C.104)

with31

2M =
1

4s2
− 1 . (C.105)

30Up to an overall sign related to charge conjugation of the spinor — see the discussion in the paragraph

before equation (2.8).
31In [10] the squashing parameter s was denoted 1

2v
.
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Then we make the following change of coordinates

p =
1

2
− â cos θ , q =

r

2s
, (C.106)

and

τ = −
(

4s2 +
k

4

)
ς − s2

â
ϕ , σ = kς +

4s2

â
ϕ , (C.107)

with k an arbitrary real number. Substituting p, q, τ, σ above into the Plebanski-Demianski

metric and taking the limit â→ 0, it is straightforward to verify that one obtains precisely

the Taub-NUT-AdS4 metric (C.102).

Comparing the expression of the Killing vector in section C.5, namely

K = ∂ψ = bτ∂τ + bσ∂σ , (C.108)

with that given in section 5.2, namely

K = (b1 + b2)∂ϕ + (b1 − b2)∂ς , (C.109)

we deduce that the parameters bτ , bσ must be related to b1, b2 as

bτ = −s
2

â
(b1 + b2) +

(
k

4
+ 4s2

)
(b2− b1) , bσ =

4s2

â
(b1 + b2) + k(b1− b2) . (C.110)

Inserting these into the expression for y(p, q) in (C.92) along with (C.106) and (C.107),

and then taking the limit â→ 0, one finds precisely the y(r, θ) given in (5.13). Notice that

the final result does not depend on k.

Finally, using this change of coordinate/parameters in the instanton (C.94), we find

the following explicit expression for general instanton on the Taub-NUT-AdS4 metric

F =
y3

2
(b1 + b2)

(
16b1b2s

2 − (b1 + b2)2
)

(r − s) sin θ

(
2sΩ(r)

r2 − s2
dθ ∧ τ3 + sin θdr ∧ dϕ

)
+
y3(r − s)2

2(r + s)

(
2s

r2 − s2
dr ∧ τ3 − τ1 ∧ τ2

)
×

(
− (b1 + b2)2 sin2 θ

[ (
4s2 − 1

)
(b1 + b2)

(
4r2s+ 4rs2 + r − 8s3 + 3s

)
cos θ

+2s(b1 − b2)

(
r2
(
8s2 − 1

)
+ 2sr

(
4s2 + 1

)
− 16s4 + 11s2 +

2s

r − s

)]
+(2s(r − s) + 1)

(
4s2 − 1

) [
s(4s2 − 1)− r(4s2 + 1)− 2s

]
(b1 + b2)3 cos3 θ

−2s(b1 − b2)(b1 + b2)2 cos2 θ

×
(
r2
(
48s4 − 4s2 − 1

)
− 4r

(
24s5 − 14s3 + s

)
+ s2

(
48s4 − 52s2 + 17

)
+

2s

r − s

)
−8s3(b1 − b2)2(b1 + b2) cos θ

(
1 + 2(r − s)

(
6rs2 − r − 6s3

)
+
r − s

2s
(16s2 − 1)

)
−8s3(b1 − b2)3(r − s)2

(
4s2 − 1

))
, (C.111)
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where y(r, θ) is given by (5.13) and τi are the SU(2) left-invariant one-forms

τ1 = cos ς dθ + sin ς sin θ dϕ ,

τ2 = − sin ς dθ + cos ς sin θ dϕ ,

τ3 = dς + cos θ dϕ . (C.112)

Indeed, for b1 = −b2 this reduces to the 1/4-BPS instanton in (5.20)

F 1
4

BPS =
1

2

(
4s2 − 1

)( 2s

(r + s)2
dr ∧ τ3 −

r − s
r + s

τ1 ∧ τ2

)
, (C.113)

up to a sign related to charge conjugation of the spinor. While for

b1 =
1

4s
, b2 = − 1

4s
+ 2s+

√
4s2 − 1 , (C.114)

it reduces to the 1/2-BPS instanton in (5.24)

F 1
2

BPS = s
√

4s2 − 1

(
2s

(r + s)2
dr ∧ τ3 −

r − s
r + s

τ1 ∧ τ2

)
, (C.115)

again up to a sign related to charge conjugation.

Finally, taking the limit r → ∞ of (C.111), it is straightforward to extract the back-

ground gauge field induced on the boundary. This has field strength

F(0) =

√
2s

X 3/2

[
τ1 ∧ τ2

( (
4s2 − 1

)2
b3+ cos3 θ + 12s2

(
4s2 − 1

)
b−b

2
+ cos2 θ

+2
(
24s4b2− + 16s2b1b2 − b2+

)
b+ cos θ +

(
8s2 − 1

)
b−b

2
+ + 4s2

(
4s2 − 1

)
b3−

)
+b+

(
16s2b1b2 − b2+

)
sin θ dθ ∧ τ3

]
, (C.116)

where we defined b± ≡ b1 ± b2 and

X = b2+ sin2 θ + 4s2(b− + b+ cos θ)2 . (C.117)

The corresponding gauge field takes the form

Alocal
(0) = fϕ(θ)dϕ+ fς(θ)dς , (C.118)

where

fϕ(θ) =
s√
X
(
b+ − (4s2 − 1)(b− + b+ cos θ) cos θ

)
,

fς(θ) = − s√
X
(
4s2b− + (4s2 − 1)b+ cos θ

)
. (C.119)

This provides an explicit one-parameter family of three-dimensional backgrounds interpo-

lating between those of [7] and [21]. Of course, in general this preserves only a U(1)×U(1)

subgroup of the isometry group of the biaxially squashed sphere, which is enhanced to

SU(2)×U(1) in the two special cases above.
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