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Short Commentary
Background

Predictions of real-valued dependent variables from independ-
ent ones (or regression) is a widespread problem in biology. 
This is also true for bioinformatics applications, where statisti-
cal and machine learning methods have been extensively 
applied. Some examples of applications in bioinformatics 
(more information can be found in the reference therein) 
include the prediction of residue solvent accessibility,1 protein 
folding kinetics,2 protein stability changes on residue muta-
tions,3,4 protein affinity changes on residue mutations,5,6 and 
binding affinity between RNA and protein molecules.7 Given 
that all prediction methods exploit data that may contain a 
broad range of experimental variability, an estimate of the the-
oretical upper bound for the prediction is crucial for the under-
standing and interpretation of the results.

The basic idea we worked on can be explained as follows. We 
start with a set of N  dependent variables { }yi  we want to pre-
dict using some input features. The { }yi  can be, as an example, 
the folding free energy variation on residue mutations ∆∆Gfloding 
3 or any other set of relevant quantities we would like to predict. 
These different variables { }yi  represent different measures (such 
as the values of relative solvent accessibility in all positions of a 
group of proteins and the biding affinities of a set of pairs of 
proteins and DNA molecules) that our model should be able to 
predict. Each variable yi  has an associated experimental uncer-
tainty σ i , which can be different for each experiment i . The 
concept of experimental measure tells us that if we repeat the 
experiment i  a very large number of times (ideally infinite), the 
mean value of all experiments converges to the “real measure” µi. 
This collection has a distribution that we refer to as the data set 

distribution (or database distribution), with a corresponding 
variance σDB

2 . Formally, we indicate that a measure yi is drawn 
from a probability distribution p y p yi i i i( ) ( , )= | µ σ , to which 
we do not require to possess any particular form (can be normal, 
exponential, Poisson, for example). Following this representation, 
we want to compute an upper bound to the prediction accuracy of 
different score measures, as a function of the data uncertainty and 
the data set variance. The idea is that if we have a very narrow data 
set distribution with a variance that has the same order of magni-
tude of the experimental uncertainty, the theoretical upper bounds 
can be lower than expected. Finally, to derive the theoretical upper 
bounds, we use the fact that given a set of experiments of different 
variables, the best predictor (of those variables) is another set of experi-
ments taken in the same conditions. No computational method can be 
better than a set of similar experiments.

Exploiting this idea, recently, we estimated a lower bound of 
the mean square error mse  and an upper bound of Pearson cor-
relation ρ .3 Although the derivation was worked out in the 
context of the prediction of the free energy variation on single 
point mutation in proteins, the final equation is general, and it 
is independent of the type of data used. The lower bound of the 
mean square error is

mselb ≈ 2
2σ  (1)

where mselb  depends on the average uncertainty of the meas-
ures (the mean variance σ 2), which reads as

σ σ2

1

2=
1
N

N

∑ i  (2)

whereas the upper bound for the Pearson correlation is more 
interesting as it depends on 2 quantities
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where we define the theoretical variance of the distributions of 
the experiments

σDB
2 µ µ= 1

1

2

N

N

i∑ −( )  (4)

It worth remembering that, by the weak law of large numbers, 
when the number of samples N  is sufficiently large, the mean 
value of an empirical data distribution y  converges in probabil-
ity to the mean value of the theoretical distribution µ- .The 
upper bound in equation (3) indicates that when the experi-
mental errors are negligible with respect to the variance for the 
sets of the experimental values, the upper bound of the Pearson 
correlation is 1, as everybody expects. However, when we have 
a very narrow distribution of the experimental values, and at 
the same time the data uncertainty is not negligible, the upper 
bound up  can be significantly lower than 1.

An upper bound for the coeff icient of determination R2

The coefficient of determination ( )R2  is probably the most 
extensively used index to score the quality of a linear fit, in our 
case between predicted and observed values. Here, for the first 
time, we derive an upper bound for R2 , similar to what we did 
for the Pearson correlation.3 To compute R2  upper bound, we 
use a set of observed experimental values { }yi  as predictors for 
another set of observed values { }ti . We assume that no compu-
tational method can predict better than another set of experi-
ments conducted in similar conditions; this R2  represents an 
upper bound for the coefficient of determination that any 
model trying to predict { }ti  can achieve. Furthermore, in what 
follows, we consider a sufficiently large number of samples to 
compute the expectations. The coefficient of determination in 
its general form is defined as

R S
S

e

t

2 = 1−  (5)

where Se  is the residual sum square that scores the difference 
between the predicted { }yi  and the observed { }ti  values, as

S y te
i

N

i i=
=1

2∑ −( )  (6)

and St  is total sum of squares (proportional to the variance)

S t tt
i

N

i=
=1

2∑ −( )  (7)

Here, we assume that the sets of { }yi  and { }ti  are experiments 
conducted in the same conditions, by which we mean that we 
assume that yi  and ti  are independent and identically distrib-
uted with first and second moment finite and defined as follows

y t p t t dt ii i i i i= == µ( )
−∞

∞
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Here, we use the symbol 〈 〉f  to indicate the expectation of f ,  
which is equivalent to the [ ]f  notation.

Estimating R2 directly is very difficult, as it is the expectation 
of the ratio 〈 〉 − 〈 〉R S Se t

2 = 1 / , which in general is different 
from (the easier computation of ) the ratio of the expectations 
( )1 /− 〈 〉 〈 〉S Se t . However, when the ratio is uncorrelated to its 
denominator (the covariance is 0), the 2 forms are equivalent.8 In 
our case, S Se / t  is uncorrelated of St , and we can see this by gen-
erating an infinite set of different St values by scaling the original 
variables y k yi i′ ⋅=  and t k ti i′ ⋅=  while maintaining the same 
value for the ratio S Se t/ .

Thus, we can estimate the 2 parts of the fraction indepen-
dently. For Se , we have
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where we use the trick of adding and subtracting the term µi. 
Then, taking the square, we obtain
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The double product does not appear because 
i

i i i i ii i it y t
=1
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2 = 2 0
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y
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 .

This is due to the independence of ti  and yi  and the definition 
of the mean (equation (8)). The last equality of equation (11) 
comes from the definition of σ 2  reported in equation (2).

The expectation of the denominator St  can be computed in 
a similar way
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The last passage becomes true for large N  when the mean of 
the experimental values t  converges to the mean of the 
expected values µ-, and the last term is N  times data set 
variance.

Putting every piece together, for the expected upper bound 
for the coefficient of determination R2 , we have
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As expected from statistics, the R2 upper bound is lower 
than those obtained for the Pearson correlation (equation 
(3)). When the distribution of the data and the uncertainty 
of the data take place, the theoretical upper bound for a 
predictor measured using R2  can be significantly lower 
than 1. Furthermore, given the fact that the ratio σ σ2 2/ DB  
is bounded between 0 and 1, in general, the upper bound of 
σ 2  is also larger than that of R2 . However, when the value 
x DB= /2 2σ σ  is negligible (tends to zero), the upper bounds 
of R2  and σ 2  are the same. Actually, at the first order, we 
have

Rub
2 21 2≈ − ≈x ubρ  (14)

Figure 1. The upper bound value of the coefficient of determination R2  as a function of the average experimental uncertainty for different dataset 

variance.
The figure reports the values obtained using equation (13) and simulated data with empirically computed R2 .

This is what we know about the relation between R2  and 
correlation ρ in standard statistical cases.

Discussion and conclusions

Equations (3) and (13) state that it is possible that a method per-
formance has an upper bound lower than 1. To better appreciate 
the meaning of these upper bounds, we simulated different cases 
and graphically visualized the limits. We generated several data-
sets with different distributions (variance) and with variable 
uncertainties. Each dataset consists of 1000 random number 
pairs, and each pair was derived from the same distribution 
( )p yi( ) , which is different for every ith pair. One set of 1000 
numbers has been used as the target, and the other as the predic-
tor. This is to simulate 2 sets of equivalent experiments. Each pair 
of 1000 numbers has been sampled 10 times to acquire standard 
deviations of the simulations. We computed the empirical R2 for 
each run using the definition reported in equation (5). Then, we 
compared the values obtained with the simulated data with those 
computed using the upper bound equation, equation (13). The 
results reported in Figure 1 show an excellent agreement between 
the upper bound closed form and the simulation. Furthermore, 
from that figure, we may have an idea of the upper bounds of cur-
rent datasets. For instance, in Figure 2, we report some available 
data set distributions. In the case of prediction of protein stability 
variation on residue mutation, the σDB

2  ranges from 2 to 9, with 
a data uncertainty that it is estimated in the range of 0.25 to 1.0.3 
This means that the corresponding R2 upper bound, in the worst 
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case, can be only 0.5. In the case of residue solvent accessibility,1 
the average data variance is very low (≈ 0.01). However, the data 
variance is very low too (≈0.74), leading to an upper bound of R2  
lower than 0.90. These are just a few examples that show how 
relevant is knowing the distribution and data uncertainty to pre-
vent misleading comparison between predictors tested on data 
with different quality or data with different variance. Of course, in 
practical cases, the performances achieved after correct training 
and testing the predictors can be significantly lower than their 
theoretical upper bounds. Nonetheless, knowing the upper 
bounds can help to identify improper training and testing proce-
dures, when method performances greater than those obtainable 
using equations (3) and (13) are reported.

Authors' Note
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