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ABSTRACT: We discuss localization of the path integral for supersymmetric gauge theories
with an R-symmetry on Hermitian four-manifolds. After presenting the localization locus
equations for the general case, we focus on backgrounds with S x S2 topology, admit-
ting two supercharges of opposite R-charge. These are Hopf surfaces, with two complex
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allowing for a very large class of Hermitian metrics, and prove that this is proportional
to the supersymmetric index with fugacities p,q. Using zeta function regularisation, we
determine the exact proportionality factor, finding that it depends only on p, ¢, and on the
anomaly coefficients a, ¢ of the field theory. This may be interpreted as a supersymmetric
Casimir energy, and provides the leading order contribution to the partition function in a
large N expansion.
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1 Introduction

The complete information of a quantum field theory is contained in the generating func-
tional of correlation functions; however, in an interacting theory this is very hard to com-
pute exactly. In favourable situations the technique of supersymmetric localization [1]
allows one to perform exact non-perturbative computations of special types of generating
functionals and other observables. In particular, in certain supersymmetric field theories
defined on compact Riemannian manifolds, it is possible to evaluate a class of BPS ob-
servables by reducing the functional integrals over all the field configurations to Gaussian
integrals around a supersymmetric locus. In this paper we will present a detailed cal-
culation of the partition function of A/ = 1 supersymmetric field theories, defined on a
four-dimensional complex manifold.

A systematic procedure for constructing supersymmetric field theories in a fixed back-
ground geometry has been put forward in [2]. In four dimensions, one way to obtain
supersymmetric theories is by taking a suitable limit of new minimal supergravity [3-5],
that contains two auxiliary vector fields, one of which is the gauge field for a local chi-
ral symmetry. In such rigid limit, these, together with the metric, provide background
fields coupled to a supersymmetric gauge theory with an R-symmetry, comprising ordinary
vector and chiral multiplets. Explicit expressions for supersymmetric Lagrangians and
supersymmetry transformations can be obtained from [3—5] and will be presented below.

Supersymmetric theories may be defined only on backgrounds admitting solutions to
certain Killing spinor equations (see (2.1), (2.2) below), which in Euclidean signature are
equivalent to the requirement that the four-dimensional manifold is complex and the metric
Hermitian [6, 7]. In this paper we will construct Lagrangians that are total supersymmetry
variations, and therefore can be utilised to implement the localization technique in A/ = 1
field theories defined on arbitrary Hermitian manifolds. We will then employ these to
compute in closed form the partition function of general supersymmetric gauge theories, in
the case that the manifold admits at least two supercharges of opposite R-charge, and has
the topology of S! x S3. These manifolds are then Hopf surfaces, with complex structure
characterised by two parameters p, ¢, that we will denote as H,, ; ~ S x 83,

The main result of this paper is the derivation of a formula for the partition function
Z of an N' = 1 supersymmetric field theory with an R-symmetry, defined on a Hopf surface
Hp,q, endowed with a very general Hermitian metric. Namely, we will show that

Z[Hypq = e 70D I(p,q), (1.1)

where Z(p, q) is the supersymmetric index with p, g fugacities and F(p, q) is a function of
the complex structure parameters given by

Ib1] + |b2|> (2o Tl + 1ba|)?

3c—2a), 1.2
1]l 2 Toalbal ¢ ). (12)

4
Fip.a) = (1onl+ el -



where p = e~ 2701l ¢ = ¢=27lb2 and a, c are the R-symmetry traces, appearing in the Weyl
and R-symmetry anomalies of superconformal field theories [8, 9]. As we will explain, the
real parameters bi, by characterise an almost contact structure in the three-dimensional
theory obtained from dimensional reduction on S*, allowing us to make contact with the
results of [10], where the localized partition function of three-dimensional ' = 2 supersym-
metric gauge theories was computed. The supersymmetric index was introduced in [11-13]
in the context of superconformal field theories, and has been used in [14-17] (and many
others) to test non-perturbative dualities.

The authors of [18] have shown that very generally the path integral of a supersym-
metric field theory defined on a Hermitian manifold can depend only on complex structure
deformations of the background. Based on this result, they have conjectured that the par-
tition function defined on a Hopf surface H, , is proportional to the supersymmetric index
Z(p,q), up to possible local counterterms. Our explicit computation confirms the validity
of this conjecture,! although we expect that the ratio e™/ between these two quantities
generically cannot be expressed in terms of local counterterms. This provides an interesting
quantity characterising a four-dimensional supersymmetric field theory, that we will refer
to as supersymmetric Casimir energy.

Some progress towards obtaining the partition function (1.1) using localization was
made in [19], where the one-loop determinant of an A/ = 1 chiral multiplet on a Hopf
surface was computed. In particular, in this reference the authors considered a specific
Hermitian metric compatible with |p| = |¢|. Localization computations of supersymmetric
gauge theories on S* x S% with a conformally flat metric have appeared in [20, 21].

One of our motivations for computing the partition function from first principles arose
from holography [22]. In situations where there exist simple AdSs gravity duals, the gravity
side predicts that the logarithm of the partition function, at leading order in a large N
expansion, should be proportional to N2. In one dimension lower, the analogous problem is
well understood: the N3/2 scaling of the on-shell action on the gravity side can be matched
to the large N limit of the localized free energy [23]; it has been shown in [24] that this
agreement can be extended to a broad class of N/ = 2 gauge theories, whose partition
function was computed in [10]. In four dimensions the supersymmetric index scales like NV
at large N [12, 25], implying that the N? scaling of the logarithm of the partition function
must arise as an extra contribution. We find that this contribution is contained in (1.2).

Thus, for superconformal field theories with Sasaki-Einstein gravity duals (so that ¢ =
a at leading order in N), we obtain a prediction for the holographically renormalised action
of five-dimensional gauged supergravity, evaluated on a solution dual to a supersymmetric
field theory defined on a Hopf suface H,, = 0Ms. In particular, we expect that for a
solution M5 ~ S x R%, the renormalised on-shell action will be given by

w2 ([ba] + [ba])?
54G5  |bi[|ba]

SSdsugra[M5] = (13)

up to finite local counterterms.

'For simplicity we will restrict attention to the case where the parameters p, ¢ are real.



The rest of this paper is organized as follows. Section 2 contains a discussion of the
background geometry of four-manifolds allowing for at least one supercharge, and sets
the stage for implementing localization in general four-dimensional ' = 1 gauge theories
with an R-symmetry. In section 3 we discuss the specific background geometry for Hopf
surfaces with S*x S? topology and U(1)? isometries. In section 4 we perform the localization
computation on the Hopf surfaces. In section 5 we compare our result for the exact partition
function with the supersymmetric index. We emphasize the presence of the extra pre-factor
and define the supersymmetric Casimir energy. We also comment on the implications of
our results for gravity duals. We conclude in section 6 by outlining some perspectives for
future work. We also included several appendices. Appendix A contains our conventions.
Appendix B provides a proof that the partition function is independent of the conformal
factor of the metric. Appendix C describes familiar examples of the background geometries
considered in section 3. Appendix D elaborates on possible generalizations of our results
by considering non-direct product metrics, associated to complex values of the complex
structure moduli. Appendix E includes computations used in section 3. Appendix F
contains details of the reduction of four-dimensional backgrounds to three dimensions.
Appendix G contains the details of the regularization of one-loop determinants.

2 Supersymmetric backgrounds and Lagrangians

We begin our analysis by reviewing and elaborating results about the new minimal formu-
lation of rigid supersymmetry on curved space. Our considerations in this section will be
entirely local, while global properties will be discussed in section 3.

2.1 Background geometry

As shown in [2], in the presence of an R-symmetry the supersymmetry transformations and
the Lagrangian of a field theory defined on a curved manifold can be derived by coupling the
theory to the new minimal formulation of off-shell supergravity [3-5] and freezing the fields
in the gravity multiplet to background values, in such a way that the gravitino variation
vanishes. The bosonic fields in the gravity multiplet are the metric and two auxiliary vector
fields A, V,; after the rigid limit, these play the role of background fields. In Euclidean
signature, A, and V), are allowed to take complex values, whereas for simplicity the metric
will be constrained to be real.

The real part of A, is associated to u(1) g R-symmetry transformations, and transforms
(locally) as a gauge field, while the imaginary part must be a well-defined one-form. Being
the Hodge dual of a closed three-form, V = xdB is assumed to be a globally defined one-
form, constrained by V#V,, = 0. In Euclidean signature, the condition that the gravitino
variation vanishes corresponds to two independent first-order differential equations

(Vu — iAu) C+ z’V“C + iV”aWC =0,
(Vyu+iA,) ¢ —iV,C — VY6, =0, (2.2)

where ¢ and Z are two-component complex spinors of opposite chirality, and with opposite
charge under the background gauge field A, associated with the R-symmetry. Solutions to



these equations are either identically zero or nowhere vanishing. Throughout the paper,
spinors with no tilde transform in the (2,1) representation of the Spin(4) = SU(2)4+ X
SU(2)_ Lorentz group, while spinors with a tilde transform in the (1,2). See appendix A
for further details on our notation and conventions.

It was shown in [6, 7] that a necessary and sufficient condition for a Riemannian four-
manifold to have a solution ¢ to (2.1) is that it admits an integrable complex structure J*,.
Lowering an index with the Hermitian metric, the corresponding fundamental two-form can
be constructed as a spinor bilinear,

2i
Ty = P e (2.3)
One can also introduce a complex two-form bilinear as P,, = (o0,,( , which is anti-

holomorphic with respect to the complex structure J#,. Together these define a U(2)
structure on the four-manifold. The solution of (2.1) can be expressed in terms of a nowhere

vanishing complex function s as (, = \/g G)), and the background fields are determined by

1
V, = _ivﬂjpu +U,, (2.4)
C 1 14 . 14 3
A, = Au — 1(5" —1J,")VPd 0 + §U“ , (2.5)
where AfL is defined as
C 1 14 Z
Al = ZJ“ 0y log /g — 5(9“ log s, (2.6)

with ¢ the determinant of the metric in complex coordinates. The solution contains an
arbitrariness parametrised by the vector field U*, which is constrained to be holomorphic,
namely J#,U" =iU", and to obey V,U" = 0. Note that the combination A7’ = A, — %Vu
is independent of the choice of U, u'2 Of course a solution E to (2.2) is also equivalent to the
existence of an integrable complex structure defined by

2

= 205 @)

and leads to expressions for the background fields A, and V,, analogous to the ones above,
with a few sign changes; see [7] for the explicit formulae.

When there exist both a non-zero solution ¢ to (2.1) and a non-zero solution ¢ to (2.2),
namely in the presence of two supercharges of opposite R-charge, the four-dimensional
manifold is endowed with a pair of commuting complex structures J*,, j",,, inducing
opposite orientations, and subject to certain compatibility conditions [7]. This means
that the manifold admits a specific ambihermitian structure® [26]. Solutions with two

2We denote this as A as it is the background field arising when the theory is coupled to conformal
supergravity.

3Note that the similar term “bihermitian” refers to the different case where the two commuting complex
structures induce the same orientation on the manifold.



supercharges of opposite R-charge may be more efficiently characterised by a complex
vector field K*, constructed as a spinor bilinear as

K = (otC. (2.8)

In particular, one can show that K* is holomorphic with respect to both complex struc-
tures and satisfies the algebraic property K, K" = 0 as well as the differential condition
V. Ky) = 0, therefore it comprises two real Killing vectors. If K* commutes with its com-
plex conjugate, K*V,K* — K¥V,K* = 0, then the vector field U* above is restricted to
take the form U* = kK*, where s is a complex function such that K#9,x = 0, but other-
wise arbitrary [7].# Moreover, introducing adapted complex coordinates w, z (holomorphic
with respect to J#,) such that the complex Killing vector is K = 9,,, the metric takes the

form
ds? = Q%[(dw 4 hdz)(dw + hdz) + c2dzdZ], (2.9)
where €(z, z) and c¢(z, z) are real, positive functions, while h(z, z) is a complex function.
It is useful to introduce the complex frame®
el =Qcdz, e = Q(dw + hdz). (2.10)
We choose the orientation by fixing the volume form as voly = —iel Ael Ae? Al Then,
as a one-form, K reads
1 - 1.5
K = §QQ(dw—|—hd2) = 5952, (2.11)

and the real two-forms associated with the commuting complex structures are

21 — 1 ] 7 5
= AR AR - 022 —:_7(1 1, 2 -2)
J 0z A 5 c“dz Ndz 5 e Ne +e " Ne” ),
_ 9 G ) ) )
J:K%KAK+%W8MA&:%(&AE—¥Aé>. (2.12)

With our choice of orientation .J is self-dual while .J is anti-self-dual.® Following [7], we
will require also that
KMo,k = K", ls| = K*9,|s| =0, (2.13)

so that both K and K preserve A and V in addition to the metric. With these restrictions,
the functions k and |s| do not depend on w, w, but can still have an arbitrary dependence
on z and z. In the frame (2.10), the spinors ¢ and ¢ solving (2.1) and (2.2) read

s (0 92 (1
Caz\/;(1>7 C—\/g@. (2.14)

Tt is shown in [7] that if [K, K] # 0, then the manifold is locally isometric to R x S% with the standard
round metric on S

®Here e! and e? are exchanged with respect to those appearing in [7]. This implies that the E given
in (2.14) below has swapped components with respect to the one in [7].

50ur convention for the Hodge star is 0t = L %1k

(4719)!E Qk41---04
frame. This is related to the complex frame as e! = 01 +i02, €2 = 0° + i0*; so the volume form introduced
above is voly = 0" A 0% A 0> N O

Ok+1--%4 " where 6 denotes a real



Let us present more explicit formulae for A and V. Noting that V#J,,dz# = xd* J =

« d.J and using the expression for J in (2.12), simple manipulations show that (2.4) and (2.5)

can be written as’

. 2
V =d%logQ + 2 Im (0:h K) + kK, (2.15)
1 N . 3 i
= — ¢ —_ = —_ —_ 0= .1
A 2d log (92°¢c) 2dlog (Q7's) + (2/£ Q2C28Zh>K’ (2.16)

where we used /g = 04
For later applications it is important to observe that we can use the freedom in choosing
k and s to arrange for A to be real. Indeed, requiring Im A = 0 in (2.16) and separating
the different components, we obtain the conditions
2
3022

where we fixed an irrelevant multiplicative constant in |s|. With these choices of x and |s],

|s| =€, K Ozh , (2.17)

the gauge field A takes the simple form
1 1
A=de log(Q3¢) + 54w, (2.18)

where w denotes the phase of s, i.e. s = |s|e. Note that w has not been fixed so far,
while it will be determined by our global analysis in section 3. The one-form V' in general
remains complex . .

1 7
302¢2 022
Recalling that 2 and ¢ are real and depend only on the z, Z coordinates, we can also write

V =dlog ) — O:h K + 0,h K . (2.19)

more explicitly

1
A =1Im|0, log(Q3¢) dz] + §dw,
1

302¢2

1

V = 2Im[0,log Q2 dz] — 022

Osh K + 0.h K . (2.20)

Finally, the spinors (2.14) take the form

Q s (0 S
Ca:\/;e <1>, =y (0> (2.21)

2.2 Supersymmetry transformations and Lagrangians

In this section we present the supersymmetry variations and relevant Lagrangians of the
theories that we consider in this paper. In Euclidean signature, defining NV = 1 supersym-
metry requires to double the number of degrees of freedom in each multiplet. This can
be realized formally by thinking about a given field and its Hermitian conjugate as trans-
forming independently under supersymmetry. To define the path integral over the fields of
a multiplet, one then has to make a choice of reality conditions, reducing the number of
degrees of freedom in a multiplet to the usual one. In the following, we will first consider
a vector multiplet and then a chiral multiplet.

"For any function f we define d°f = J,,”d, fda* = —i(0 — 0)f.



2.2.1 Vector multiplet

The N = 1 vector multiplet contains a gauge field A, a pair of two-component complex
spinors A, X of opposite chirality and an auxiliary field D, all transforming in the adjoint
representation of the gauge group G. As already noted, a priori in Euclidean signature the
fermionic fields A, \ are independent, and the bosonic fields A, D are not Hermitian. We
define a covariant derivative as

D, =V, —iA, —iqrA,, (2.22)

where - denotes the action in the relevant representation, and the R-charges gr of the fields
(Au, A, A, D) are given respectively by (0,1, —1,0). The supersymmetry transformations of
the fields in the multiplet are

5A, = iCouh+iCauN,
S\ = Foy 0" ¢ +iDC
OA = Fp 6" ¢ —iDC,

0D = —(o* (D#X - SQZVHX) + (" <Du>\ + BQZV#A> , (2.23)

where F,, = 0, A, —0,A,—i[A,, A)]. Note that the two independent spinorial parameters
¢, ¢ need to be solutions to the equations (2.1), (2.2), and are commuting variables. It
is understood that when one of the two equations only admits the trivial solution, the
corresponding spinor is set to zero in the supersymmetry transformations. The fermionic
fields A, \ are anti-commuting, and therefore correspondingly the supersymmetry variation
6 is defined as a Grassmann-odd operator. Note also that in the above transformations
only the conformal invariant and U*-independent combination of background fields Aj} =
A, - %Vu appears, in the covariant derivative Di? =V, —iA,- —iqrA}.
The supersymmetry algebra is given by

{0¢,0¢} = {6707} =0,
0] = [6226] = 0.
{6C’5Z} = 2i0p, (2.24)

where ¢ (respectively, 6<~) means that Z (respectively, () is set to zero in the supersym-
metry transformations (2.23), and on a field of R-charge qr we have dx = L — iK* A, -
—iqr K" A, where L is the Lie derivative along K. If there is only one Killing spinor ¢,
then one just has 52- =0.
A tedious calculation shows that the Lagrangian
Loetor = Tt | SFWFy — 22 4 Lxonpesk 4 L3 gupesy (2.25)
vector — 4 Ty 5 oLy, 9 oL, .

is invariant under the supersymmetry transformations (2.23). Here Tr is the trace in the
adjoint representation of the gauge group. We will show momentarily that if both spinors



¢, Z exist, then this Lagrangian is the sum of two supersymmetry variations; this will be
important for applying the localization argument.

Given that in Euclidean signature the degrees of freedom are doubled, it is conceptually
clearer to impose reality conditions on the fields only after computing the supersymme-
try variations. Therefore, to define various supersymmetry-exact terms, we introduce an
involution ¥ acting as

(Ay, D)F = (A, —D), =, (2.26)

and as complex conjugation on numbers.® Then we define

vector

cH = s v =5 (4|2’2Tr (5@)%)

1 1
qep T BN = T & ((6c)) A
= sV 45D (2.27)

The bosonic term is straightforward to evaluate and reads

1
sV = ;T ( FHFHmw _ Dz) 7 (2.28)

where F,S??L) = 1(F £ *F), . The fermionic term reads

1 .
‘ng) RITGE Tr [ —(¢To™ N)o¢ Fpu +i(CTA)S: D } (2.29)

and with some manipulations can be rewritten as

SV = Tr[ %)\a“ (DMX - ?;VMX)] : (2.30)

To obtain this we used the following expression for the supersymmetry variation of the
gauge field strength F,,

§Fu = 2iCop Dy + ViuCoA + Vi (Co™N)
+2i (5, DA — V(oA + € V(G (2.31)

We have thus shown that

£y <1 F i w _ L

2 i Y
P D +2)\U“fo)\> . (2.32)

If there exists a second Killing spinor E , then the previous computations can be repeated
with trivial modifications. Namely, we can define

& v s (1L VX
Ll or =07V ) = 5C<4’Z‘2Tr (60) A)

8We will not need to define the action of ¥ on A and .



1

- 1 N~
Tr (§:0)F0:N @Tr 5z ((5EA)1) A

41¢J2

= (7) (7)

=0V, o +0Vi, s (2.33)
with . ' .
= _ — —) pv 2 LY~ cs
Evector =Tr <4]:;(w)-7:( )M - ZD + 5)\ UMDM /\) . (2.34)
The sum of the two terms is
_ 1 1 ] ~ i~ X

£\(z:c)tor + Egec)tor = Tr|: Z}—;WJ:W - EDQ + %)\ U“D/C;h)\ + %)\ O‘“chf)\:| = Lyector - (2.35)

Therefore, we have shown that the vector multiplet Lagrangian Lyector in (2.25) is the sum
of a d¢ -exact term and a 5Z—exact term. Note that to derive this result we have not imposed
any reality condition, and correspondingly at this stage the bosonic part of the Lagrangian
is not positive semi-definite.

In order to apply the localization arguments, it will be important that Egc)tor and
Es,gc)tor are separately invariant under both supersymmetries associated with ¢ and ¢, so that
Oc L hor = 007V ) = tot der,

0L\ L e = 0:0:V ) = tot der, (2.36)

where “tot der” denotes a total derivative. Recalling that 5? = 02 = 0, these are equivalent
to the fact that the vector multiplet Lagrangian is invariant under both supersymmetry
variations, namely d¢Lyector = 55£vect0r = tot der.

2.2.2 Chiral multiplet

The N = 1 chiral multiplet contains two complex scalars ¢, 5, a pair of two-component
complex spinors 1, {/; of opposite chirality, and two complex auxiliary fields F) F. As for
the fields of the vector multiplet, in Euclidean signature the fermionic fields 1, 1; and
the complex scalars ¢, QNS, and F, F are all independent. The fields (¢, 4, F) transform in
a representation R, while (¢~5, @Z, F ) transform in the conjugate representation R*. The
R-charges qr entering in (2.22) for the fields (¢, 1), F, b, 10, F) are given by (ryr — 1,7 —
2, —r,—r + 1, —r + 2) respectively, with r arbitrary. The supersymmetry transformations
of the fields in the multiplet can be read off from [2, 4, 27] and are

51 = V2 FC +iv/2(0"C) Dy

§F = iv/2Co" <DM¢ - ;Vw) — 2i((N)¢

51 = V2 FC +iv2(6"¢) Dy
§F = iv/2(¢o" <D,ﬁ/? + ;V,J{E> + 20 (CA) (2.37)

,10,



These preserve the Lagrangian
Latiral = Db D6+ V*(iDyb ¢ — i6D,0) + 7 (R+ 6V, V") 66 + 6D6 — FF
-~ 1~ . ~ —
+ i G Dy + SV G + iV2(pM) — P N . (2.38)

This depends on both background fields A and V', except when the R-charge takes the
value 7 = 2/3, in which case these only appear in the combination A® = A — %V and
the Lagrangian is conformal invariant. Below we will show that the existence of a single
supersymmetry parameter ( is enough to express Lepiral s a total supersymmetry variation,
up to an irrelevant boundary term.

In general, one can consider several chiral multiplets with different R-charges r, with
Lagrangian given by the sum of the (2.38) for each multiplet, and also add to this a
superpotential term Ly, as in flat space. The explicit expression in component notation is
given in [2]. The superpotential W can be an arbitrary holomorphic function® of the fields
¢r1, and in order not to break the R-symmetry of the theory it must be homogeneous of
degree two in the R-charges. This follows from the fact that the fermions 1; have R-charges
r; — 1 and in components the superpotential contains a fermionic piece

2
%@Dﬂb] € Lw, (2.39)
whose R-charge is r[W| —r; —rjy+ (r; — 1) + (r; — 1). On integrating out the auxiliary
fields F; one obtains!? .
Fr = a—W, Fr = o
8¢1 8¢ I

In order to write the supersymmetry-exact terms we extend the action of the involution

(2.40)

 used for the vector multiplet to the bosonic fields of the chiral multiplet as

<¢7 F? 57 ﬁ>i - (57 _ﬁa ¢7 _F) : (241)

While we will not need to define how ¥ acts on 1, @Z and on V,, we will need its action on
A,. There are two natural definitions we can take, which in general are not equivalent.
If we define Aﬁ = A,, then the computation below shows that the Lagrangian Lepiral is
d¢-exact (up to a boundary term) without any restriction on A,. However, notice that this
Lagrangian is not invariant under changes of U,,, and its bosonic part is not positive semi-
definite even after imposing reality conditions on the dynamical fields. If instead we define
Aﬁ = AL, then the localizing term that we will choose in the next section does not depend
on U, and its bosonic part is positive semi-definite after choosing suitable reality conditions.
However, for complex A,,, this does not reconstruct the Lagrangian (2.38). In the following
we will assume that A, is real, so that the two definitions are equivalent; as showed at the
end of section 2.1, this is certainly possible in the presence of two supercharges of opposite
R-charge. Later we will make some comments about relaxing this choice.

In this paper we assume that W is a polynomial in the fields ¢;.
10 A priori W is an arbitrary function of ¢;, but reality conditions will relate this to W.

— 11 —



We consider
0 Vehiral = (5§V1 + 5(‘/2 + 5CV3 + 5<VU
— 5 (2‘ & [0 = 96:0) ]) + OV + 6V
=3 CI2 (6 ocy + b ((0cw) ) + (8ch)Focts + o (6ch)?) +2idc (6 ¢PA o)
— V20 (Ul 0) |
= 5Vbosl + (n/fer 1+ 5Vb082 + 5vaer2 + 6Vb053 + (5‘/fer3 + 5VbosU + (ﬂ/ferU . (242)
For the bosonic part, the supersymmetry transformations (2.37) lead to
5Vb051:—ﬁF,
0Vhosa=(g"" — i.J"') Dy Dy
—D“¢D“¢ 2i(VH— U“)qﬁD“qH— (R+6V,V*) qﬁqH— J””(;S}"qu—zv (J’“’(ED,,qﬁ),

SVhoss= 5 /" G F s + 5D,
OVhosy =2 U Dy, (2.43)

where to go from the first to the second line in the second term we have used the iden-
tity (A.12), and in the last line we used the holomorphicity of U¥, namely J*,U" = iU*.
As for the fermionic terms, after some computations involving the Fierz identities in (A.8)
we find

V2 ~

Vierr = ~5 D3 — ST DD T + 5 2|<|2 “(4%{/?)@%) —ZWMA)(W)

SViers = 20T Dy — S TG 5, Dty + VIG5 3 dg VA(Tou)(Ch) = iv29 X6,
OViers = |\</,;¢>(CT )(C¥)

Vier r=—U"1p 1), (2.44)

where in the last equality we used holomorphicity of U*, in the form U*,{ = 0. The
total fermionic part can be written as

~ 1.~ , ~ _
5‘/fer1+ 5‘/1%1"2"1' 5vaer3 + 5vaerU = W JuD,uw + §VM¢ O—/ﬂ/) =+ Z\/§ (d»‘dj - ¢ )\Cb)
_t B TE Ve G
5Dy ((5 y — i) 5 w) . (2.45)
Adding everything up, we obtain

6chhiral = £chiral + V/JYM 5 (246)

where Lpira) is the Lagrangian (2.38) and the total derivative term is
YH = —iJ"™¢D,p —i(VF — 2U*)dp — %(5% —iJP )T (2.47)

In a similar way, one can see that L.nia1 18 also exact under the variation generated by Z .
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2.3 Supersymmetric locus equations

Let us now discuss how to use the results above to compute the path integral of supersym-
metric field theories, using the localization method. The standard localization arguments
require to deform the path integral defined by a supersymmetric action by adding a term
that is a supersymmetry variation, and whose bosonic part is positive semi-definite. In
this way the complete path integral is given by the one-loop determinant around the locus
where this bosonic part vanishes. We will address the vector multiplet and chiral multiplet
separately.

2.3.1 Vector multiplet

If the manifold admits one Killing spinor {, then we can deform the vector multiplet
Lagrangian (2.25) by adding to it the dc.-exact term (2.27) with an arbitrary parameter ¢,
namely

S = / diz./g (ﬁvem + t54V<+>) : (2.48)

We see that imposing the reality conditions Al = A, Dt = —D implies that the bosonic
part (2.28) of the deformation term is positive semi-definite.!! The localization locus is

)

given by 5Vb(;; = 0, yielding the conditions

Fi) =0, D=o. (2.49)

Of course this is also equivalent to dA = 0, whose independent components give .J,,, F*¥ =
P, F* =0 = D. The conclusion is that when there exists only one supercharge as-
sociated with ¢, the localization locus is given by anti-instanton configurations. In the
case of a supercharge associated with Z , the same argument works by considering the term
(5<~V(_) in (2.33), with the conclusion being that the localization locus is given by instanton
configurations.

If the manifold admits both ¢ and Z , then we can deform the vector multiplet La-
grangian (2.25) by adding both the 6. -exact and 5z—exact terms, namely

S - /d4ib‘\/§ (Evector + t+5CV(+) + t,(SEV(_)) . (250)

To see that the path integral is independent of the parameter ¢ one notes that ¢ Lyector =
5<65V(_) = totder. Similarly, the path integral is also independent of the parameter
t_. In the end one can take ty = t_ = t and omit the first term, without affecting the
conclusions. The localization locus then is given by 5Vb(;;) = 5Vb(gs) = 0, which is equivalent
to the conditions

Fuw =0, D =0, (2.51)

so that both the self-dual and the anti-self-dual parts of the gauge field strength vanish. We
will discuss the solutions to these equations in section 4.1, after specializing the topology
of the four-dimensional manifold.

1We note that actually the weaker reality condition F;JJ)T = .7-'&? is sufficient to guarantee positivity of
the deformation term. The condition .AL = A, implies that also the original Lagrangian (2.25) has positive
bosonic part, but this is not necessary for the localization argument.
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Notice that the conclusions above are manifestly independent of the choice of the holo-
morphic vector field U*, as well as of the reality properties of the background fields A,,, V.

2.3.2 Chiral multiplet

If the manifold admits one Killing spinor ¢, then we can deform the chiral multiplet La-
grangian (2.38), possibly supplemented by a superpotential, by adding to it the d--exact
term 0¢ (V1 + V2) defined in section 2.2.2. Namely, we consider

S= / A0\ /G [ Loriral + Lo + £ 5c(Vi + Va)] | (2.52)

where t is an arbitrary parameter. We must then choose reality conditions such that
0 Vbos 1 and 6Vi,o2 are positive semi-definite.!? The former requirement is satisfied i 1mposmg
F = —Ft. In order to ensure that 2|¢[26Vios2 = (5&#)15@/) is positive we require gb = ¢f
(hence the involution ! acts as the Hermitian conjugation Jf). Note that dV},,s2 does not
depend on the background field V,,, thefore there are no reality constraints to impose on
the latter. On the other hand, it does depend on the background field A,,, hence its choice
may a priori affect positivity. When A is real,!® the localization locus is defined by the
conditions 6V},051 = 0Vhos2 = 0, so that in particular d¢¢) = 541; = 0. These are equivalent
to

F =0, J''D'¢ = iD'¢. (2.53)

The second equation means that D“qz is a holomorphic vector, or equivalently that qg
is a holomorphic section on a suitable line bundle. These configurations are still very
complicated and in this paper we will not analyse them further. Before moving to the case
of two supercharges, let us briefly comment on the role of U*. Since this is a holomorphic
vector, it drops out from the supersymmetry transformations (2.37), and therefore, if we
define Ai = AL, it also drops out from the localizing term and hence from the locus
equations (2.53). In this case the positivity property of 0V}es2 is not affected by the choice
of UM,

Let us now discuss the case when the manifold admits both ¢ and Z . In this case, the
same deformation term in (2.52) can be written also as dz-exact term 55(‘71 + V3), with
tilded and untilded objects appropriately swapped. Assuming the same reality conditions,
and in particular choosing A, real (with again no reality condition on V},), the localization
locus becomes ;1 = 5@,; = 551/1 = 55& = 0. Contracting with appropriate spinors this
can be recast into the equations

F=0, J'D'¢ =iD'$,  JM,D'¢ = iDV¢ . (2.54)

The last two equatlons unply K'D, ¢ = K “Duqb = 0. Notice that the locus equations
JH D”gf) = zD“qS and JH, D ¢ = iDP¢ are derived from two deformation terms that

2 he reason why we are not using simply ¢ Lcnira1, which is also d¢-exact, is that its bosonic part contains
the terms dVi0s3 and 0V, which are not positive after imposing the reality conditions.
13For example, on Kihler manifolds, the canonical choice is to take A real and V = 0.
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are equal up to a total derivative (exactly equal when integrated over the compact four-
manifold). This means that although the two equations may be different locally, they admit
the same global solutions.

As in the case of the vector multiplet, the solutions to the locus equations (2.54) depend
on the global structure of the four-manifold considered. In section 4.1 we will solve (2.54)
in the case of My = S x Mj, where Mj3 is topologically a three-sphere, allowing for a very
general class of metrics.

Before moving to the analysis of the localization on Hopf surfaces, it is interesting to
note that, for manifolds amitting two Killing spinors of opposite R-charge, one can prove
that the localization locus and one-loop determinants do not depend on the conformal factor
Q of the metric. This argument is presented in appendix B. It is in agreement with [19],
that showed that the partition function is independent of small metric deformations that
do not affect the complex structures. We will see in section 4.3 how indeed the dependence
on €2 drops from the computation.

3 Hopf surfaces

In this section we focus on a particular class of geometries admitting two spinors of opposite
R-charge, requiring that the four-dimensional manifold has the topology of S* x S. This
will play an important role in the calculation of the localized partition function in section 4.
Furthermore, in order to make contact with the results of [10], we will assume that there
exists a third Killing vector commuting with K, and that the metric is a direct product.

3.1 Generalities

A Hopf surface is essentially a four-dimensional complex manifold with the topology of
S x 83, and it may be defined as a compact complex surface whose universal covering is
C? — (0,0). Any such surface arises as the quotient by a finite group I' of a primary Hopf
surface, which is defined as having fundamental group isomorphic to Z [28, 29]. In the
following we will restrict our attention to primary Hopf surfaces, referring to them simply
as Hopf surfaces. These are described as a quotient of C — (0,0), with coordinates z1, 2o
by a cyclic group

(21,22) ~ (pz1 + A\23', qz2) (3.1)

where ~ denotes identification of coordinates, m € N, and p, ¢, A are complex parameters,
such that 0 < |p| <¢| < 1 and (p — ¢™)A = 0. See e.g. [30]. It was shown in [28, 29] that
all primary Hopf surfaces are diffeomorphic to S' x S3. Moreover, it is shown in [18] that
Hopf surfaces with!* A # 0 admit only one Killing spinor ¢, and we will not consider them
further. We will only consider Hopf surfaces with A = 0, showing that these admit a very
general class of metrics, compatible with both complex structures J and J. , and hence both
solutions ¢ and Z .

From the geometric point of view, the question that usually arises is whether on a man-
ifold there exists a particular type of metric. In the case of Hopf surfaces, a class of metric

Y“These are referred to as of “class 07 in [30], while those with X\ = 0 are referred to as of “class 17.
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that appears to be of interest is that of locally conformally Kdihler (LCK) metrics [30]. This
means that there exists, at least locally, a conformal rescaling of the metric, to a Kéahler
one. A simple way to state this property is that the Lee form associated to the complex
structure is closed: df = 0. Indeed ref. [30] constructed a large class of LCK metrics on a
Hopf surface. However, from the point of view of rigid supersymmetry, there is no natural
condition on the curvature of a metric, and indeed the LCK property is too restrictive.
From the expressions (2.4), (2.5) we see that this property is equivalent to the requirement
that the curvature of the conformally invariant background field A is purely real:

Im[dA®] =0 < LCK. (3.2)

Although the Hermitian metric discussed in [22] (see e.g. equation (5.38) of this reference)
is indeed LCK, as can be seen from the expression of A% in (5.10), in general this property
is not satisfied by Hermitian metrics admitting two Killing spinors of opposite R-charge.

Notice also that the metrics written in equation (4.7) of [18] arise from the particular
choice of complex coordinates on C? — (0,0) made in this reference. Below we will present
a different construction, where we will start with a smooth metric on S* x S3, containing
arbitrary functional degrees of freedom. This will make transparent the fact that the
constants p, ¢ parameterise the complex structure of the Hopf surface, while the metric is
largely independent of these.

3.2 Global properties

We will discuss the geometries of interest starting from a four-dimensional metric that is by
construction a non-singular complete metric on S' x 3. Requiring that this is compatible
with an integrable complex structure ensures that it is a metric on a Hopf surface [28, 29].
The existence of two Killing spinors (, Z is guaranteed imposing that the metric admits a
complex Killing vector K commuting with its complex conjugate and satisfying K, K* = 0.

The global analysis of the geometry is facilitated if we assume that there exists an
additional real Killing vector commuting with K, so that generically the isometry group
of the metric is U(1)3, with a U(1) acting on S and a U(1) x U(1) acting on a transverse
metric on S3. The three-dimensional part is therefore toric, and in particular admits an
almost contact structure and a dual Reeb vector field whose orbits in general do not close.'®
In appendix D we analyse the most general metric with U(1)? isometry, while in the rest

of the present section we will consider the following metric of direct product form'6

ds? = Q2dr? + ds*(M3) = Q%dr? + f2dp? + myyderdey I,J=1,2. (3.3)

151t would be straightforward to analyse the case where the isometry group of the four-dimensional metric
is U(1)2. Since a U(1) factor acts on S*, the other U(1) is generated by a Reeb vector field on Mz ~ S® of
regular type. This case is however less interesting.

Note that this Riemannian metric is related to a supersymmetric Lorentzian metric with time
coordinate ¢ = 47 [31]. This implies that the partition function we will compute in section 4 can also
be thought of as arising from the Euclidean (and compactified) time path integral of a theory defined on
R; x M3s. This partially motivates our choice of restricting to a direct product metric. Other motivations
are discussed in appendix D.
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Here 7 ~ 7 4 27 is a coordinate on S', while for M3 ~ S3 we take coordinates p, @1, P2
adapted to the description of S® as a T2 ~ U(1)? fibration over an interval. In these
coordinates the Killing vectors generating the U(1) x U(1) isometry are 9/9d¢1 and 9/0pa.
Without loss of generality we take canonical 27 periodicities for 1, 2, and assume 0 < p <
1, with the extrema of the interval corresponding to the north and south poles of the three-
sphere. For p € [0, 1], we require that Q@ = Q(p) > 0, f = f(p) > 0 and that the torus metric
mry = mrj(p) is positive-definite. Moreover, in order for the metric to be non-singular,
some conditions need to be satisfied at the poles of S3, which we will spell out below.

Near to an end-point, one of the one-cycles of the torus remains finite, while the
other one-cycle must shrink, in a way such that the associated angular coordinate locally
describes, together with p, a copy of R%. Let us assume that 9/dp; (respectively, 9/0¢2)
generates the one-cycle that shrinks at p — 1 (respectively, p — 0). Then, as p — 0 we
require that

f= o, mi—=m(0), ma=(f2p)* +0(p°), miz=0(p*), (3.4)

where fo > 0 and m;1(0) > 0 are constants. Similarly, as p — 1 we require
f=fis mu=ff(1—=p)?+0((1-p)°), ma —man(l), ma=0[1-p)?, (35)

where f; > 0 and mga(1) > 0 are constants. Note that mr; must degenerate at the poles,
since either one of the vectors 0/9d¢r has vanishing norm there. Indeed, as p — 0 we see
that det(my;) goes to zero precisely as m11(0)(f2p)?, while when p — 1 it goes to zero as
maa (1) f7 (1 — p)*.

It is now simple to construct supersymmetric backgrounds preserving two supercharges
of opposite R-charge, with metric given by (3.3). As reviewed in section 2.1, a solution (
and a solution ¢ to equations (2.1), (2.2) exist if the metric admits a complex Killing vector
K commuting with its complex conjugate, [K, K] = 0, and squaring to zero, K, K" = 0.
We choose

170 o 0
K== N 5
3 ["ap T80 " lar|

where b and by are two real parameters, so that the orbits of ReK generically do not close.

(3.6)

Notice that ReK is a Reeb vector on Ms3, whose dual one-form defines an almost contact
structure. This clearly satisfies [K, K| = 0, while the condition K,K* = 0 is equivalent to

Q2 =blmpb?  for pel0,1]. (3.7)

Note that this can be regarded as a constraint on the g,, component of the metric (3.3),
hence the three-dimensional part of (3.3) is a non-singular metric on Mz ~ S3, independent
of the two parameters by, be [10, 24]. In appendix D we discuss how this condition is
generalised in the case of a non-direct product metric, showing that this is related to
complexifying the parameters by, by .

The background fields A and V' can be determined using the formulae in section 2.1,
which require first casting the metric in the canonical complex coordinates w, z. We will
do this in two steps. Firstly, we will show that the metric can be written as

ds? = Q* [dr? + (d¢ + a)? + *dzd?] (3.8)
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where 1) is an angular coordinate such that

0 0 0
A 3.9
o5~ "o %o, (39)

and z is a complex coordinate defined in terms of p, v1, 2. Moreover, ¢ = ¢(z, z) is a real,
positive function of z, while a = a,(z, z2)dz + az(z, z)dz is a real one-form. Notice that the
three-dimensional part of the metric (3.8) is precisely of the form implied by new minimal
supersymmetry in three dimensions [27], and used in the analysis of [10]. Secondly, we will
introduce another complex coordinate, w, thus arriving at the form (2.9).

A convenient!” choice of Killing vector on M3 independent of (3.6) is

0 0 0
—=b— —by——, 3.10
I 0o 0 (3.10)

with the corresponding change of coordinates given by

o1 = bi(Y +x), 2 = ba(Y —x)- (3.11)

In terms of the 1, x coordinates, the M3 part of the metric (3.3) becomes
ds*(Msz) = Q* [(dy + a)® + Q2 f2dp® + Pdx?] (3.12)
where 2 is given in (3.7), the function ¢ reads

2(b1b
c= |9122|\/det(mu), (3.13)

and the one-form a = a,dy is given by

1

= @ (b% mi1 — b% mgg) . (3.14)

Qy

Next, we define the complex coordinate z as z = u(p) + i x, where the real function u(p) is

_
Qc’
with prime denoting derivative with respect to p. This differential equation can be solved

a solution to

u

(3.15)

for p € (0, 1), so the complex coordinate z, together with ¢, covers S3 everywhere except at
the poles, which are found at Re z — oo (cf. the expansions in (3.25) below). We then see
that the metric takes the desired form (3.8). In these coordinates, the vector K becomes

1/0 0
K= (w_zaJ 7 (3.16)

while as a one-forms it reads

K:%Q2(dw+a—idr). (3.17)

" The only requirement is that the change of coordinates should be invertible.
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Note that although the metric components in (3.12) depend explicitly on by, by, this is just
an artefact of the choice of coordinates. In particular, global properties of the metric may
be analysed only in the coordinates p, ¢1, 2, and not in the coordinates 1, z, as neither ¥
nor x = Im z are period coordinates in general.
Let us now cast the metric (3.8) in the form (2.9), introducing a complex coordinate
w in addition to z. We take
w=1vY+it+ P(z,2), (3.18)

where P(z, Z) is a complex function. With this definition, we have K = 9/0w, and the two
metrics match if we impose

0.P = a, and h = 90.,(P—P), (3.19)

where the first equation can be solved for P, while the second equation determines h. We
can now discuss the background fields V' and A given, for example, in (2.20), with the
latter chosen real for convenience. Noting that (3.19) implies
8:h = dsa, — D.as = —% %2 (da) (3.20)
where %5 denotes the Hodge star of the 2d metric dzdz, with volume form voly, = %dz ANdZz,
we see that the choice of k in (2.17), ensuring that A is real, reads
*g(da)

h=oon (3.21)

so that k is real and completely determined by the metric on M3. Then the formula for V
in (2.20) can be written as

1 .
V = 2Im[0. log 2] — =5 #2(da)(de + a) - 62? %5 (da) dr . (3.22)
In the coordinates p, 1, p2, this becomes

L 2oy (der dwe\ Q) (der dye
V_2f [CQ GC(CLX)}<Z)1 b (ay) + +idr ), (3.23)

where the functions Q(p), ¢(p) and a,(p) are those in (3.7), (3.13), (3.14). Similarly, the
expression for the real gauge field A in (2.20) becomes

1 der  deo 1
A= Q50 L e — —dw. .24
7 (0 (m b2>+2dw (3.24)

Having obtained V' and A in the p, @1, @2 coordinates, we can now discuss their global
properties, in particular their regularity at the poles of S3. Recalling our assumptions on
f and myy, it is easy to see that for p close to zero the functions €2, ¢ and a, behave as

2fs by

‘- vmi1(0) W

0% = b} [m11(0) +m1,(0) p] + O(p?), p+0(p%), ay=1+0(p"),

(3.25)
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with analogous expressions holding for p — 1. Hence, at leading order in p — 0, we see
that V behaves as

1 .
V=k <bd<p1 + ;dr> +O(p), (3.26)
1

where k is a constant.'® This is regular, as neither the one-cycle dual to dy; nor the one
dual to dr shrink to zero size at p = 0. Regularity of V at p =1 is seen in a similar way.

On the other hand, regularity of A is not automatic; by imposing this we determine
w, namely the phase of s. At leading order in p — 0 we have

|ba] (der deo

1

while at leading order in (1 — p) — 0 we have

b1] (dpr  de2) 1
A=——--"F—-—-"F= —d 1—p). .28
s (3 3, ) TwtOl-0) (3.28)
In order to ensure that A does not have a component along the S' that shrinks at either
poles, we must take

w =sgn(b) p1 + sgn(be) g2 . (3.29)

To summarise, starting with an arbitrary non-singular metric ds?(M3) on S3, we have
constructed a non-singular (direct-product) metric on S' x S3, compatible with two com-
muting complex structures, and thus admitting two supercharges with opposite R-charge
¢, C. The choice (3.29) guarantees that the background fields A, V' are non-singular. In
appendix C we illustrate the formulae above in an explicit example based on the Berger
three-sphere.

3.3 Complex structure

The pair (ds?,.J) determines a Hopf surface, which must arise as a quotient of C?—(0,0) as
in (3.1). We now show this explicitly, by relating the complex coordinates w, z to complex
coordinates z1, 2o on C2 — (0,0), and determining the complex structure parameters p, q
in terms of the parameters by, by introduced above. This will provide a relation between
the complex structure in four dimensions, and the almost contact structure in the three-
dimensional geometry obtained by reduction along the S?.
Using (3.15), and taking P(z,z) = iQ(p) with Q(p) a real function, the first equation
in (3.19) becomes
;o Ay
Q = Qe (3.30)

and we claim that an appropriate choice of complex coordinates on C? — (0,0) is given by

2 = e7|b1\(iw+z)7
zp = e Iblliw=2) (3.31)
18 This reads k = _ﬁ [Lmf1(0) — (m51(0))% — (faba/b1)?].

— 20 —



Since these are related to w, z by a holomorphic change of coordinates, they are automat-
ically compatible with the complex structure induced by supersymmetry. In terms of the
globally defined coordinates on S' x S we have

21 = elt1lmeltrl(@—w)g—isen(br)er

2y = oltalTelbal@+w)gisgn(v)es (3.32)

If (21, 29) are indeed coordinates on C? — (0, 0), it is immediate to see that the identi-
fication 7 ~ 7 4 27 leads to

(21,29) ~ (e2”|b1|21,e2”|b2‘zg), (3.33)

corresponding to a Hopf surface with parameters p = e~ 2™l and ¢ = e~ 2712119 Note that
the choice of p, g is independent of the metric on Mgz, and only affects the four-dimensional
metric through Q2.

It remains to show that z1, zo are complex coordinates on C2 — (0,0) when 7 is decom-
pactified, so that 7 € R. From (3.32) it is clear that the phases —sgn(b;)¢; correspond to
the angular directions in polar coordinates for the two copies of C in C? = C@®C. Therefore
we have to show that |z1|, |22| are appropriate radial directions, and that the point (0,0)
is excluded. The proof is given in appendix E, while below we present a simple example
where the function @ derived from (3.30) can be obtained explicitly.

Consider the Berger sphere M3 = S2 with metric

ds?(S3) = d#? + sin® O de? + v?(ds + cos O dy)?, (3.34)
discussed in detail in appendix C. In the special case by = —by = % > 0 we have 0 = mp,
Q=1, f=m c= Lsinb, ay, = cosf. The equations (3.15) and (3.30) become Jpu =
v(sin#)~! and 9yQ = v cotan @ and are solved by

0
u(0) = vlogtan 3 Q(0) =vlogsin, (3.35)
yielding the coordinates
r 0 _,
z1 = V2e2 cos ie_wl )
r 0 _,
29 = V/2e% sin CRI (3.36)

in agreement with [22]. Tt is straightforward to see that these indeed cover C? — (0, 0) when
T € R.

4 Localization

In this section we will compute the partition function of a four-dimensional N’ = 1 super-
symmetric gauge theory defined on a background geometry admitting two supercharges of
opposite R-charge, comprising a Hopf surface with arbitrary (real) parameters p, ¢, and a
very general Hermitian metric with U(1)? isometry. We will consider gauge theories with a
vector multiplet transforming in the adjoint representation of a gauge group G, and chiral
multiplets transforming in arbitrary representations of G.

YGtrictly speaking, it is p = e 271011 g = e727%2l if |by| < |by] and p = 727102l g = e 27I01]if by | < |byl.
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4.1 Localization locus

The vector multiplet supersymmetric locus given by (2.51) implies that A, is a flat con-
nection. After having specified an S x S2 topology, the flat connections are characterized
by the holonomy of constant gauge fields around S!. In particular, up to gauge transfor-
mations, the localized fields of the vector multiplet are

A, = (A A) = (0,4), D=0, (4.1)

where Ag is constant. Notice that this result holds without any further assumption on the
metric, therefore it is true also if the metric is not a direct product or/and it has only a
U(1)? isometry.

Let us fix the vector multiplet fields at their locus values (4.1) and proceed to analyse
the supersymmetric locus of a chiral multiplet with R-charge r, determined by the equa-
tions (2.54). Following the discussion of section 2.3.2, we will choose A, real and impose the
reality conditions 5 = ¢ and F = —F" on the bosonic fields. Then the locus equations read

F=0,
(JHV + juV)Dyd) = 07
(Ju" = 1Y) Dy = —2iDyu . (4.2)

Contracting the second equation with K* and K* leads to K HD,¢p = F“D“qﬁ = 0. Using
the expressions for J, J and K given in section 2.1, the equations for ¢ become
Dré = 0,6 — iAod =0,
D¢¢ = 8¢(Z) - i?’Awgﬁ = 0, (43)
D:¢p = 0506 —irAz¢ =0,
where we have used the fact that A, = 0. The first equation implies that ¢ is proportional
to €407 which is not globally defined on S*, except when Ay = 0 modulo large gauge trans-
formations.?’ Therefore in this case we immediately conclude that ¢ = 0. When Ay = 0

the analysis is slightly more subtle. The first equation implies that ¢ is independent of T,
and using (2.18) the two remaining equations are solved by

¢ = C(z) () 2 e (anlbr)ertsan(ba)e2) (4.4)

with C(z) a (locally) holomorphic function of z. In order to obtain a globally defined solu-

tion, we must impose periodicity around the two S parametrized by ¢1 and 2. Recalling

that z = u(p) + % <f—11 - f—j), periodicity under the shift ;1 — @1 + 27 sgn(by) yields

C(z + |ny> ™" = C(2), (4.5)

and similarly periodicity under g9 — @o + 27 sgn(bs) gives

C(z _ ’Z’) T = CO(2), (4.6)

so that in particular C(z) is a periodic function in the imaginary direction?' C (z +

20We discuss these large gauge transformations below.
21This is true, independently of whether y is a periodic or a non-compact coordinate.

— 9292 —



T

m%) = C(z). Since |¢| = |C(2)|(23c)"2, with Q3¢ vanishing only at the poles
p=10,p =1 (see appendix E), we see that in order to have a non-singular solution ¢ for
r > 0, C(z) must vanish at p = 0,p = 1, that is limpe.—+00 C(2) = 0. Extending C(z)
to the complex (u,x) plane, we see that it is a bounded entire function, and therefore
Liouville’s theorem implies it is a constant. The limits at the poles imply C' = 0, thus
showing that for r > 0, the localization locus is ¢ = 0.

If » < 0 we get the following restriction. The general solution of (4.5) is C'(z) =
> nez Cn e~ [b1lr+20)2 - where €, are constants. Inserting this into (4.6), we see that for
each n € Z, either emb1l(r+2n)+mir — 1 op € = 0. So there can be non-trivial solutions if

and only if the R-charge r takes the very special form

2|b 2[b
—Mgo ., nmeZ. (4.7)
|b1] + |b2]
Thus simply assuming that 7 is not one of the special values (4.7), the chiral multiplet

localization locus is given by
F=¢=0. (4.8)

The full supersymmetric locus is thus completely characterized by the constant Lie
algebra element Ag. Correspondingly, the path integral splits into a matrix integral over Ay,
and a Gaussian integral over all the fluctuations about the saddle point locus (4.1), (4.8).
Following a similar discussion in [32], we will now explain how to use the residual gauge
freedom to extract the correct integration measure of the matrixz model.

4.2 The matrix model

First of all, one can use constant gauge transformations to diagonalize Ay and reduce the
integration to the Cartan subalgebra of the gauge group G, introducing a Vandermonde

determinant
Aol Ao] = H (aAo)Qv (4.9)

acA L

where A denotes the set of positive roots and a4, = a(Ap). In a Cartan basis {Hy} we
have Ag = > ¢, apHj, where r¢ is the rank of the gauge group G. Then for a root o =
{o}, we have aq, = >, apay. One also has to divide by the order of the Weyl group |W| in
order to take care of gauge transformations that permute the elements of the Cartan basis.
Furthermore, the path integral must be invariant under large gauge transformations
along the S, that shift Ay — Ay + > i dHy, where dj, € 7.2 Thus we can restrict
the range of integration of the constants {a;} to be over the maximal torus T"¢ of G,

parametrised by
z={z} = {¥%} c TG (4.10)

The localization argument then reduces the partition function to the form

! dz vect chiral ( J)
/ = W e 27TiZ [-AO] classlc[.Ao Zﬁgfg .Ao HZl loop (4.11)

22We assume that the gauge field is normalized so that all the matter fields have integer charges.
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where the integration measure d. Ay has been replaced by
TG

_ H dzp (4.12)

27TZZk

TG
dAg = H day, —
k=1

27TZZ

Here Zgassic[Ao] is the classical contribution from the vector and chiral multiplets. How-
ever, for the theories that we consider, with Lagrangians (2.25), (2.38) (plus superpoten-

tial couplings), we have Z.ssic = e “classic = 1. The remaining factors Zi"f)?}f [Ap] and
Zfﬁgj;(‘]) [Ag] are the one-loop determinants of the vector multiplet and chiral multiplets

fluctuations around the configurations (4.1) and (4.8).
Denoting by A, and A; the components of the gauge field A, along S' and Ms,
respectively, we will impose the following gauge-fixing conditions

V,a=0, Vid; =0, (4.13)

where a = m f Ms A.. Let us discuss the first condition, while we will deal with the

second condition later [33, 34]. The Faddeev-Popov determinant det’(VTDgo)) associated
to Vra = 0 can be written in terms of ghost fields v,%, yielding an integral over the
following gauge-fixing term

gange—fixing _ / dr T [4(VD®)y + £V,a] | (4.14)

where Dgo) =V, — iAo, | and a prime on the determinant means that it does not contain
the zero mode along S'. The second term is simply a rewriting of the delta function
0(V,a) enforcing the gauge-fixing condition, with £ a Lagrange multiplier. The gauge
fixing action (4.14) can be included in the deformation term by replacing 6V — §'V’, with
§' = 6+ dp, where dp is the BRST transformation, and V' =V + Tr3V; a [35]. We refer
to [1] for a more rigorous treatment of the ghosts.

Writing a = Ap + V¢ and doing the path integral over ¢ introduces a Jacobian factor
(det’ V2)~1/2, which combined with the Faddeev-Popov determinant yields

Zi5am Aol = Aol Ao] ZYSen[ Ao (4.15)
where
As[Ag] = det’ D H H in—iog,) , (4.16)
acg n#0

and « € g labels both non-zero roots and Cartan generators. A straightforward computa-
tion yields

.9
Aol A = 2m)e ] Asin (marg, ) (ZM*‘O), (4.17)
acA L a“AO

where we used the formula sin(rz) = mz[[2, (1 - z—i , and employed zeta function

regularisation to regularise the infinite products. Finally, the matrix model becomes

= 1 dZ vector Chlral J)
7= W TrG 27ri2 [AO Zl 100p 'AO H Zl loop (418)
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with
Aq[Ao] = Aol Ao] Ag[Ag] = 2m)"¢ ] 4sin®(raa,) - (4.19)

OtEA+
4.3 One-loop determinants

Our strategy to compute the one-loop determinants on S' x M3 for the vector and chiral
multiplets is to take advantage of the three-dimensional results?® of [10]. First we expand
the fields into Kaluza-Klein (KK) modes along the S parametrized by 7. Denoting by ®
a generic field (bosonic or fermionic), we take

tT) = Z P, (z) e "7, (4.20)
nes

The four-dimensional one-loop determinant may be replaced by the product over one-loop
determinants for the KK modes on M3

1 loop H Zl loop (421)
nez

The one-loop determinants on Ms were computed in [10] and our aim is to use the results
therein for Z34 loop
for fluctuations around the localization locus, resulting from the deformation terms dV,

[@,,]. For this to be possible we need to show that the Gaussian action

matches the Gaussian action for the three-dimensional fluctuations of [10], with an appro-
priate mapping between fields. Instead of proving this directly, we will take an alternative
route, which is to show that the four-dimensional supersymmetry transformations given
by (2.23), (2.37) reduce under KK decomposition to the three-dimensional supersymmetry
transformations of [10]. Then it will follow that the three-dimensional Gaussian actions for
the KK multiplets are identical to the Gaussian actions of [10] by construction.

In order to proceed with the reduction to three dimensions, we need to relate the four-
dimensional background fields to the three-dimensional ones. This analysis is presented in
appendix F; the explicit relations between the four-dimensional background fields (A, V),)
and the three-dimensional background fields (A;, V;, h) are given in (F.23) (we use a~symbol
to denote three-dimensional quantities). With our choice of real A, the three-dimensional
fields A;, V;, h are also real, as it is assumed in [10].

4.3.1 Vector multiplet

We denote as B; and B; the fluctuations of the gauge field A, along S L and Ms, respectively,
o= Q"1B, and consider the KK fields fluctuations (Bnjson, An, Xn, D,,) around the local-
ization locus (4.1), where it is understood that (Ap)e = 1(04)MX:}. The supersymmetry
transformations (2.23) (with ¢ = 0) read for these KK fields

6B j =il s 500 = Chn
0N, = _%Eijk}—nij MG — i<6j0'n - “%‘Un + é[Aman] + ;ann]> 'ch + (Dn - iLO’n) ¢,

ZPrevious studies of relations between the index of four-dimensional gauge theories and the partition
function in three dimensions include [36-40].
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An =0,

. s y i o\ ~ 1. ~ ; ~ P~ h ~
6D, = —i¢y’ (vj —iA; + ;V]> A+ 5V A + éC[Ao, An] + éncAn + 50, (422)

where we defined D,, = iD,,+ (B—Vw)an and used the convention v/ = —io?57 for the three-

dimensional gamma matrices (see appendix F for more details about the 3d conventions).?*

These transformations correspond to the supersymmetry transformations of the three-

dimensional N/ = 2 vector multiplet fluctuations (Aj, o, M A D) 3q Of [10] with respect to
the three-dimensional spinor 1 = 1/2¢,%> with the map

(an7 On, \@)\ny \/53‘717 Dn) = <Aj, —0, )\T, A, _D>3d ,

n+ [-’407 ] = [007 ] : (423)

The evaluation of the one-loop determinant is done by decomposing all KK fields, denoted
generically ®,,, into the Cartan basis of the gauge algebra

rG

P, = Z O, Hy + Z ®poEo (4.24)
k=1 a€roots

where H; generate the Cartan subalgebra and E,, are the ladder operators. The map (4.23)

descends to the a-component multiplets, with

n+ a4, = alop). (4.25)

The multiplets along the Cartan directions can be associated with “vanishing roots” a = 0.
To be able to map the four-dimensional deformation terms to the three-dimensional
ones, we note that on S' x M3 the deformation terms (2.27) and (2.33), expanded at
quadratic order around the localization locus, are equal: (5<V(+) = 5ZV(_). For the
fermionic part this is obvious, while for the bosonic part this follows from the identity

Tr/ ]—'/\]—":Tr/ d(BAdB —2iAg ANBAB) =0 . (4.26)
S1x M3 StxMs
Hence we have 0Viq = —ﬁéC(Tr (6cA)FA). In section 2.3.1, we saw that the reality

conditions which, along with a real A, ensure positivity of the bosonic deformation terms

24In deriving the KK supersymmetry transformations, we have made use of the relation (F.24). We also
point out the fact that the three-dimensional free parameter % of (F.23) drops from the supersymmetry
transformations and does not affect the whole computation.

%The authors of [10] performed localization using a spinor ¢ of positive charge under A, and wrote ex-
plicitly the supersymmetry transformations for e. In our derivation, the relations between four-dimensional
and three-dimensional background fields imply that the four-dimensional supersymmetry parameter ¢ is
mapped to a three-dimensional supersymmetry parameter n of negative charge under A#, see appendix F
for details. Thus the supersymmetry transformations (4.22) are mapped to the three-dimensional supersym-
metry transformations with respect to a negative charge spinor. These are not detailed in [10], but they can
be derived from the e transformations by changing (in our notations) e, — 74, (A;, Vi, A;) = —(A4;,V;, A;)
and X <> A (also ® < ® for all fields for the chiral multiplet). They are also given in [27]. The fact that
we have a negative charge spinor 7 in three dimensions does not prevent us from using the results of [10],
since the localization computation is unchanged if 7 is used instead of e.
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are A, = Ay, D' = —D. For the fermions we choose ioyA = AT. For the KK modes these
translate into A, , = Al s Dn = —Din and A, = A
Then, using the map (4.23) to three-dimensional fields, the Gaussian action for the

n-th KK mode and « component fluctuations can be expressed as

(na) o o (n,a)
Wiy = 2|<|2 S T3 (0ch ) A = T ‘sz 01 (@12 @)) ) g~ Voo
(4.27)
where the action of ¥ on the KK modes is (P%n 0) = @ (_pn,—a), and the constant scalar for the
(n,@)

resulting three-dimensional deformation term is o5 "’ = n + a4,. This three-dimensional

deformation term is the same as the one considered in [10]. The reality conditions on the

3)

three-dimensional fields in a components obtained from this map are CIJ(a) ES) )T for
bosons and XE:S)) = )\gg) )T for fermions, and match the reality conditions of [10]. Moreover,

the three-dimensional gauge fixing condition V7/B; = 0 chosen above becomes V/ A(S) =0,

reproducing the gauge fixing condition of [10]. We can then use the result of [10] for the
three-dimensional one-loop determinant for each (n, «)-component multiplet. Note that the
contribution from the Faddeev-Popov determinant of the three-dimensional gauge fixing
(namely the second in (4.13)) is included in the result of [10]. We obtain the expected
relation

t
ZiSoss A0 = [T TT 2%y [o6"] (4.28)
acg nez
with a(()n’a) =n+ oy, and here a € g labels both roots and Cartan components.

From [10], we extract

vector
Zl loop (3d) L9 [

(a)] 1 H n1b1 + n2b2 -+ ia(ao) (4‘29)

"~ ia(op) a0 —(n1+ 1)by — (n2 + )by + ia(og)
holding for by,by > 0. A careful re-examination®® of the three-dimensional one-loop com-
putation in [10] shows that for arbitrary real by, be, the one-loop determinant is given by
the formula above with by, by replaced by |b1], |b2]

Renaming n — ng, our one-loop determinant is expressed by the infinite product:

n1biy + naby + ’i(no + aAO)
) H (

Zvector 7 .
1-loop Cartan H H no—i—Oé_AO — n1+1)b1—(n2+1)b2+2(n0+aA0)

a€rootsng€Z ng >0

) by + naby +i(ng + a4,)
= ZCartan AT - : - W30
Carta H H H —(n1+1)by —(n2+1)ba+i(no+a.4,) (430

acroots \ng€Zni,ne>0
We see that the first factor cancels with the matrix model measure A;[Ap], while the
second factor needs to be regularized. We perform this regularization in appendix G, using
multiple Gamma functions. These manipulations yield the Jacobi theta function 60(z,p)

26We thank J. Sparks for discussions about this point.
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and the Pochhammer symbol (z;p), defined for z,p € C and |p| < 1 respectively by

0(z,p) = H (1 —2p™) (1 - zflp’”l) , (z;p) = H(l —z2p"). (4.31)

n>0 n>0

The result is the following expression for the one-loop determinant

@) (D) ] ]
ZYSon = T ST (pip)'S (g5 q)"¢ AT [T 0 (270, p) B (e, q), (4.32)

aEAJ,_
with
' b1 + by b1+ by
0O = " (b by — G gl — ;T2 2 4.33
vec 12 1+ 02 by by | | ’ vec v bibo SV ( )

where p = e7?™1, ¢ = ¢7?™2 |G| is the dimension of G, and we have split the prefactor

into a part \I/‘(,%)C independent of a4, and a part \I/‘(,}g)c depending on « 4,. This result looks

(1) . . . .
im¥vee spoils the invariance under the shifts aq, — a4, + d

for d € 7Z, associated to large gauge transformations Ag — Ao+, dipHy, d € Z. In other

. . i . .
Yvee ig not a function of z, = €>™@4o as it must be. For the final matrix model

puzzling, because the factor e

words, €™
to be consistent, all such “anomalous” terms breaking the symmetry under large gauge
transformations must cancel. We will see in section 5.1 that this is indeed what happens
if the theory satisfies relevant physical constraints.

4.3.2 Chiral multiplet

The evaluation of the one-loop determinant for the chiral multiplet proceeds in a similar
fashion. The KK fields (¢, ¥n, Fn, &MZn, ﬁn) all vanish on the localization locus (4.8),
hence we can keep the same notations for their fluctuations around zero. The supersym-
metry transformations (2.37), with respect to the spinor ¢ = %77, and with the vector
multiplet localized to (4.1), read for these KK fields:

S¢n="n,  O¢n=0,  On=Fm, O6F, =0, (4.34)
~ ) . o~ r . 7 ~ -~
0 = —i (quﬁn +50;log Q) 7= (4 Ao) ¢n ) = rhenn,

IS U ~ ~ 1N, ~
6F, = iy’ (Dj —5Vi+505log Q) Un — g (4 Ao) by — (r - §)hn¢n, (4.35)

with Dj = Vj + iqRr (/1]- — %Vj) acting on a field fluctuation of R-charge ggr, and where
(Vn)a = i(0H)aah® . The match with the three-dimensional multiplet of [10] is given by

(¢n7 _¢TL5 _ZFTLa ;Z;na {Zna _Zﬁn) - Q_T/2(¢7 ¢a Fv ¢T7 ¢Ta F)3d )
n—i-.A() = 00 . (4.36)

The reality conditions ensuring the positivity of the four-dimensional deformation term are
i = ¢_p and Fl = —F_,, for bosons, while for the fermions we choose @ZJIL = —Y_,.
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It follows that the Gaussian action around the locus solution for the n-th KK mode is

oVe) = o (| Gcvn) b — Bul0ctn)?] ) = 6, ([ v + 0!G0 ]), = Vaalof).

(4.37)

with 0(()”) = n+Ap and where we have dropped overall factors of Q that can be cancelled by

irrelevant redefinition of the deformation terms.?” Again we recover the three-dimensional

deformation term used in [10]. The reality conditions on three—dimensional fields following

from our map are (<I>(3)T)T ®®) for bosons and (¢ ) = ¢®) for fermions, match-

ing [10], so that we are able to use their three-dimensional one-loop determinant for each

KK multiplet.

Decomposing the fields along the weight basis of their representation R,%®

> @, (4.38)

p weight

(n.p)

the 4d-3d map holds for the fields @, , with o = n + p4,, where

pa, = p(Ao) = D¢, prag. We obtain the expected result
zifomldl =TT TT 2% ea[o0™"], (4.39)

pEweights neZ

where p € weights denotes a sum over the weights of the chiral multiplet representation R.
From [10], we extract the result (for by, by > 0)

H n1b1 + naba +ip(oo) — %(51 + b2)

Zchlral 24 [ (p)] —
(3d) n1by + ngbay —ip(oo) + 5(b1 + b2)

1-loop

(4.40)

ni,n2>0

For arbitrary real bi, b, the one-loop determinant is given by the formula above with
’bl‘, |b2| instead of bl, b2.
Renaming n — ng, the one-loop determinant is

ehiral _ H H H pA, + 157 2(by + b2) + ng — inyby — ingbs (4.41)

1-loop
pEweights no€Z ni,n2>0 “PA T 5(b1 + b2) —ho— anbl o Z?’L2b2

Again the regularization of the infinite product is detailed in appendix G. This involves
the elliptic gamma function, defined for z,p,q € C and |p| < 1, |¢| < 1 by

1— 2 —1,n1+1, no+1

p q
Te(zpa)= [[ —= ey (4.42)
ni,n2>0
The result is o @
Zti = o™il T D (2% (pa)%.p.q). (4.43)
pPEAR

2TSee also appendix B, where an alternate way to see that Q does not affect the result is given.
%8Note that the fields with a tilde transform in the complex conjugate representation R*, whose weights
are opposite to the weights of R.
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with

, b1+ b
p) = Lt [(r —1)3 (b1 4+ b2)* — (r — 1) (b3 + b3 +2)} IR|, (4.44)
chi 24 by1boy
3
(1) P Ay . bi +b2 4 2 2 2,21 PAo
P = — — —1 3(r—1)“(b b)) —2—b7 —b
R

—27hy —2mbo

where p = e ,qg=¢e , A is the set of weights of the representation R, and |R|

is its dimension. As in the case of the vector multiplet, we have split the prefactor into a

part \Iig]lz independent of Ay, and an “anomalous” part \1'81)1 carrying the inconsistent Ay

dependence. To obtain a consistent result, we will require in the final matrix model that
these “anomalous” terms vanish.

5 The partition function

In this section we present our final result for the exact partition function and compare it
with the supersymmetric index. We find that the two quantities match, up to a prefactor
that defines a Casimir energy for a supersymmetric gauge theory on a curved background.

5.1 Anomaly cancellations and the supersymmetric index

For the matrix model to be well-defined as an integral over the maximal torus 7T7¢, we
have pointed out that the sum of the anomalous parts must cancel

W (Ao) + > Wl ) (Ag) =0, (5.1)
J

where ) ; is a sum over the chiral multiplets of the theory. From (4.33), (4.44), assuming
arbitrary values of by, by, this gives rise to four constraints on the gauge group and matter
content of the theory:2?

(i) ZTTRJ (Ag) =0,
J
(i) Traq (A5) + Y (rs—1)Trg, (43) = 0,

J
(i) D (rs—1)*Tre, (Ag) = 0,

J
(iv) > Tre,(A) =0, (5.2)
J

where Adj denotes the adjoint representation of the gauge group G. Using the Cartan
decomposition Ay = ZZil apHy, with a € R, and requiring (5.2) for all aj leads to

() > T, (Hu HiuHyy) =0,
J

2The translation into group theory language is the following: in a representation R with weights {p’},
the matrix representing Ao in a weight basis is AF = diag[>, arpl, 1 < j < [R|] = diag[ply,, 1 <
j < |R|]. More generally (AF)™ = diag[(p’y,)", 1 < j < |R]|] and the trace in the representation R is

R j n n
T (Af) = T((AF)") = S (0)" = X penn (Pa0)™
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(ii) Tragj (Hep, Hyy)) + Z(rJ—l)TrRJ (H, Hy,)) = 0,
J

(i) D (ry—1)?Trg, (Hy) = 0,

J
(iv) > Tre, (Hy) =0, (5.3)
J

where k = 1,...,rq for all k-indices. These conditions can all be interpreted in terms of
vanishing of triangle Feynman diagrams contributing to various anomalies.?® Condition (i)
is implied by the requirement of the vanishing of the non-Abelian gauge anomaly; condition
(ii) is implied by the vanishing of the ABJ anomaly, responsible for non-conservation of
the R-symmetry current in an instanton background; condition (iii) holds requiring the
vanishing of the mixed gauge-R symmetry anomaly G x U(1)%; condition (iv) is equivalent
to the vanishing of the mixed gauge-gravitational anomaly. All these anomalies arise from
chiral fermions with R-charge r; — 1 in the R ; representation. The contribution from the
gauginos appears only in condition (ii), while it drops out from the other ones, because the
adjoint representation is real.

All the conditions are necessary for the preservation of the dynamical gauge symmetry
at the quantum level, in a generic background. Notice that the conditions (iii) and (iv)
hold automatically when the gauge group G has no U(1) factors. Moreover, the absence of
the ABJ anomaly (condition (ii)), is equivalent to the vanishing of the NSVZ exact gauge
beta functions of the theory [41, 42]. In particular, this is satisfied by all theories that
flow to a SCFT in the infra-red (IR). However, one can also consider theories exhibiting
confinement in the IR, obtained for instance by suitable superpotential deformations [16].
Pure N = 1 super Yang-Mills (SYM) is an example of a theory for which the partition
function (and hence the supersymmetric index) is ill-defined.

Gathering the results of the vector and chiral multiplets (4.33), (4.44), the partition
function on S x Mj is expressed by the exact formula

My ) =T 09) <p;p)7jfjf;q)m [oe oo [T I 00 p.0).

TG acAL J peAy
(5.4)

2P = e?™PAo_ J labels various chiral multiplets of R-charge r;

where 2t = etmiady,

transforming in representation R, A is the set of weights of R 7, and

.o [b1] + |be]
Fi0) = 3 (1l +1a = PE ) (1014 S0 - DR

m (|ba] + |b2])? 3
A e L b VA E —1)° — —1)) IR
Ar |b1|+|b2|> Ar (|ba] + [ba])?
=— |||+ 2] —-———F)(a—Cc)+ =——F—F(3c—2a), 9.9

39See [17] for a discussion of anomalies in relation to the supersymmetric index.
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where in the second line we have used the following definitions

a:%(i%trR?’—trR) 32[2|GH—Z< (ry—1)3 (TJ—1)>’RJ|:|>
:3%(9trR3—5trR) [4G|+Z( (ry—1)° 5(7’J_1)>’RJ|]7 (5.6)

with R the R-symmetry charge and “tr” runs over the fermionic fields of the multiplets of
the theory. When the theory flows to a fixed point, a and c are the central charges of the
SCFT [8, 42, 43].

Comparing with the supersymmetric index Z(p, q) with fugacities p, ¢ given for instance
in [40], we obtain the relation advertised in the introduction

Z[Mpy) = e 7P T(p,q). (5.7)

The partition function depends on the geometry of S! x Mz only through the complex
structure parameters p = e 27b1l ¢ = ¢=27b2| a9 predicted by [18]. More precisely, the
authors of [18] have conjectured that the ratio Z[H,,]/Z(p,q) = e~7 ™% can be set to one
by a choice of local counterterms. However, by computing the partition function explicitly
in a zeta function regularisation scheme, we have found that this ratio depends on the
geometry only through the complex structure parameters, and thus generically it cannot
be given in terms of integrals of densities local in the background fields. This is clear since
generally such densities would depend on (functional) degrees of freedom in the metric.

Notice that for supersymmetric field theories defined on Hopf surfaces the integrated
Weyl anomaly vanishes [9] and therefore the corresponding “logarithmic” term in the par-
tition function, arising from conformal transformations of the functional measure [44], is
absent. Thus (5.7) is the complete answer for the partition function.

In the reminder of this section we will discuss further the interpretation of F(p,q).
Firstly, we will show that this plays a role in the reduction of the partition function to
the partition function of a three-dimensional theory on M3, upon taking the limit of small
S'. Following [40], the reduction along S' is performed by setting by = by, by = B bo,

= Bog and taking the limit 2 — 0 while keeping by, b, 0g fixed. In this limit the
integration over 77¢ for e2™40 becomes an integration over the Cartan sub-algebra R"¢ for
0o. The limits of the various factors in the matrix model are discussed in [40], where it is
shown that this reduces to the matrix model of the dimensionally reduced theory on Ms.
However, it was noticed that a potentially divergent overall factor appears in the reduction
of the index Z(p, q), given by

7 |ba| + |ba B 4mr |b1| + |ba] -
exp [ 25 W <!G| +;(m - 1)|RJ|)] = exp [35 7\51||62] (c a)] (5.8)

and this was dropped to recover the exact three-dimensional partition function. Our results

imply that to complete the reduction one should take into account the contribution from the

F(

prefactor e =79 The linear part in 8 vanishes when 8 — 0 (we discuss this part below),
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while the part proportional to = precmely cancels (5.8). We conclude that the full four-
dimensional partition function, computed using the regularization in appendix G, reduces
to the exact three-dimensional partition function of the dimensionally reduced theory.

5.2 Supersymmetric Casimir energy and large IN limit

We now discuss how the term linear in S appearing in F may be interpreted as a Casimir
energy, and then comment on the large N limit. In general, the vacuum energy of a field
theory defined on S' x M3 may be defined from the path integral as

Ecasimir = — hHl @ lOgZ[/B M3] (59)
where one takes the limit of infinite radius of S!, keeping all other parameters fixed. Using
this definition, our partition function computed with supersymmetric boundary conditions
for the fermions gives:

dr ([by + b))

.. 4, . .
Faney (b1,52) = =X (Jb1] + [Ba]) (a — ) + il
susy (b1, b2) 3 (| 1]+ | 2’) (a—c) 27 |byl|be]

(3c—2a), (5.10)
that we refer to as supersymmetric Casimir energy. This arises from the 8 — oo limit
of (5.5), and we used the fact that limg_, %I = 0. We see that Eg,s depends on the
complex structure parameters of the geometry, and on both the central charges a and c,
characterising the field theory. Since the parameter 3 enters both in the g, component of
the metric and in V-, one can see that Eg.gy, receives contributions both from the energy-
momentum tensor and from the currents in the R-multiplet. When p = ¢, with |b1| =

|ba this reduces to

= o

4
- (a+3c), (5.11)

which agrees?! with the expression for the “index Casimir energy” given in appendix B
of [45]. The latter was defined as tr[(—1)" H], where H is the Hamiltonian commuting with
the supercharges, and a particular supersymmetric regularisation was adopted. Extending

Esusy

to general p, ¢ a prescription given therein for p = ¢, we find that our Eg,s, can be expressed
in terms of the letter indices [12, 14, 25]

T 2—r
(pq)? — (pq) 2 2pg —p—gq
chiral(P, q) = ) vector(Dsq) = 7~ 5.12
with p = 6_2”551, q= 6_2”552, as
s 1 4 |by| + |bof
Esus b,b = —- lim — fh1r1p7 +fvecorpa 5 7, \@a—¢C),
(b1, ) 25*0dﬁan§ﬁe:1ds(c a(p.) + Fuecon(p:0)) = @ = 0

(5.13)
where the finite part reproduces Fg,sy and the O(B72) term is proportional to a — c.

31Up to a factor of 2/3 noted in [22]. Note that (5.11) holds for an arbitrary metric on Mz ~ S*, as
anticipated in [22].
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In order to compare our Eg,sy (131, 62) with other Casimir energies in the literature we
should restrict to the sub-space p = ¢, and assume that the metric is the round one on
St x 83, In this case, it was shown in [46, 47], that in a conformal field theory (not
necessarily supersymmetric) the Casimir energy, defined as

Ey = /S : (T vol(S?), (5.14)

is proportional to the trace anomaly coefficient a, namely

Ey = 12 ina CFT . (5.15)
Note that this result is valid for an arbitrary CFT, where a and c are not necessarily
related. For an A/ = 1 SCFT defined on the round S* x S2, when both can be computed,
Ep and Eg,sy are two different measures of the vacuum energy of a theory.
Notice that in the particular case of N'= 4 SYM theory on S! x S% with G = SU(N),
the Casimir energy, can be computed in the free field limit [48] and agrees with Ejy, while
it differs from Eg.sy by a numerical factor, namely

3(N? —1)
16

4(N?% 1)

E =
free 27

=Fy, Egusy = for N =4 SYM. (5.16)
Although FEg,sy is valid for any value of the coupling constant (and for any N) and in
particular at weak coupling in the N =4 SYM theory, a priori it does not have to coincide
with Epee or Ey. It would be interesting to understand precisely the relationships between
these Casimir energies.

Finally, let us discuss the implications of our results for field theories that admit a
gravity dual. For concreteness, we will now assume that the gauge theory is a quiver, with
gauge group G' = SU(N)* and chiral fields transforming in bi-fundamental representations
(N, N). We also assume that there is a non-trivial superpotential, and that the theory flows
to an interacting fixed point in the IR, with a = ¢ + O(1) = O(N?), in the limit N — oo.
These theories are expected to admit a gravity dual solution in type IIB supergravity with
geometry My x Y5, where Y5 is a Sasaki-Einstein manifold [49] and M5 is a deformation of
AdSs5, supported by N units of five-form flux. Moreover, it should be possible to construct
such solutions within the consistent truncation to minimal gauged supergravity and then
uplift these to ten dimensions, as illustrated in [22]. In these cases, at leading order in a
large N expansion, the prefactor (5.5) in the partition function simplifies to

A (|ba] + [bo])?

‘F(p7q)_ 27 ’bl‘|b2| a7

(5.17)

and using the AdS/CFT relation exp(—Sgravity[M5]) = Zqrr[0Ms5], we obtain the following
prediction for the five-dimensional holographically renormalised on-shell action:

™  (ba] + [b2])?
54Gs  |b1||bo]

S5dsugra[M5] — (518)
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Here we used the relation a = ¢ = % (at leading order in N), with G5 denoting the New-
ton constant of the five-dimensional supergravity, and we have set the AdSs radius ¢ = 1.

In the solution of [22] this formula was found valid, up to some local counterterms. In
particular, in that solution p = g = e~?, albeit the boundary metric comprises a biaxially
squashed three-sphere (see appendix C) and hence it is not conformally flat. In the case of a
solution of the form AdSs x Y5, the expression (5.18) reduces to Ssqsugra[AdSs] = 227”55 and
again this should be contrasted with the computation in [48], giving S5q sugra[AdSs] = 33272?5.
When Ys; = S° the latter agrees with the large N limit of Egee = Ecpr above, while the

former gives a different value. We expect that this difference can be traced to the use of

different holographic regularisation procedures. However, this interesting problem deserves
to be studied in a future occasion.
Finally, it is tantalizing to compare (5.18) with analogous formulae for the on-shell

actions in the case of four-dimensional and six-dimensional gauged supegravities,3?

™ (o] + [b2])”
8Gs  |billba]

2 ([ba] + [ba| + [bs])®

Sad sugra| M| = ’
4d sug [ 4] 4Gy ’ble2Hb3’

Sﬁd sugra [Mfi] =

(5.19)

put forward in [24] and [50], respectively. Here we simply note that these are expressions
for the holographically renormalised on-shell action of supersymmetric solutions dual to
field theories defined on backgrounds with topology of S® and S°, respectively, referring
to [24] and [50] for more details.

6 Conclusions

In this paper we have computed the partition function of A/ = 1 supersymmetric gauge
theories — comprising a vector multiplet for a general gauge group, chiral multiplets with
generic R-charges and possibly a superpotential — defined on a primary Hopf surface H, 4.
We have found that this depends on the background only through the complex structure
moduli p, ¢ of the Hopf surface, and is proportional to the supersymmetric index Z(p, q)
with fugacities p,q. We have carried out the computation reducing the path integral to a
matrix integral over the holonomy of the gauge field around S', and evaluating explicitly
the one-loop determinant using the method developed in [10].

Our result is essentially in agreement with the conjecture made in [18], but we have
also determined the proportionality factor e/ by performing a careful regularisation of
the infinite products, employing generalised zeta function techniques. This factor defines a
supersymmetric Casimir energy, depending on the anomaly coefficients a, ¢ and containing
the leading contribution of log Z in the large N limit. We believe that this term cannot be
expressed as a supersymmetric local counterterm and therefore it should be independent
of the details of the regularisation scheme. We plan to investigate this further, for example
by classifying the possible supersymmetric counterterms.

32The second formula was verified in several explicit examples in [50], and conjectured to hold for general
solutions with the topology of the six-ball. In [50] it is presented in terms of positive coefficients b1, bz, b3,
parameterising a contact structure on the five-sphere.
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Perhaps a related question is that of clarifying the dependence of the partition function
on the function x, parametrising the freedom in choosing the background fields A, V,, [18].
Throughout this paper we have worked with the specific choice of  in (2.17), dictated by
requiring that A, is real. The general arguments presented in [18] imply that the partition
function should not depend on k, at least when the path integral is well defined. However,
for a generic choice of x the Lagrangian (2.38) does not have positive-definite bosonic part,
so that the localization arguments become more formal. It would be nice to analyse the
dependence on x more explicitly.

There are several directions for future work. It would be interesting to apply our
method to compute other BPS observables, such as a supersymmetric Wilson loop. It
should also be possible to prove factorisation of the index [21, 51] using a generalisation
of the arguments in section 5.2 of [10]. As a simple generalisation of our analysis, it
should be possible to consider non-direct-product metrics, thus allowing for general complex
parameters p,q (see appendix D). A more challenging extension is that of performing a
localization computation on Hermitian manifolds with different topologies, requiring only
the existence of one supercharge.

One of the motivations for this work was to clarify the results of [22], by obtaining a
precise prediction for the holographically renormalised on-shell action in five-dimensional
gauged supergravity, which we presented in (5.18). It would be interesting to reproduce
this formula directly from the dual gravitational perspective. We have noted that in
dimensions four, five, and six, the relevant on-shell actions appear to follow a precise
pattern, and we expect that explaining this will improve our general understanding of the
gauge/gravity duality.
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A Conventions and identities

In this appendix we spell out our conventions and give some identities, useful for the
computations in the main text.

Our spinor conventions are as in [7]. A two-component notation is used: left-handed
spinors carry an undotted index, as (,, o = 1,2, while right-handed spinors are denoted
by a tilde and carry a dotted index, as ¢%. These transform in the (2,1) and (1,2)
representations of Spin(4) = SU(2)4+ x SU(2)_, respectively. The Hermitian conjugate
spinors have index structure

(CT)a = (Ca)*7 (gT)o'c = (gd)*7 (Al)

and the spinor norms are given by [(|?> = ¢T®(, and |Z|2 = EC]: Zd.
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The Clifford algebra is generated by 2 x 2 sigma matrices

U(olzd = (&, —Z']lg)’ 5‘“5404 — (_5", —i]lg), (AQ)

where a = 1,...,4 is a frame index, and & = (o!,02,0°) are the Pauli matrices. The

generators of SU(2); and SU(2)_ are given by
1 1

Oab = 7 (0a0b = 040a) , Ty = 7 (0a0h —0p0a) (A.3)
and satisfy
1 1 - -
ieabcd JCd = Ogb, ieabcd UCd = —0Ogb, (A4)
with €1934 = 1, namely they are self-dual and anti-self-dual, respectively. The sigma

matrices have the following hermiticity properties

(UG)T = _5(17 (Uab)T = —Ogb, (b—vab)]L = _&ab, (A5)

and satisfy the relations

0a0b + 0,04 = —204p , 0a0h + 0p0q = —204) 5
0a0p0c = —0ab0c + GacOb — OpcTq + Eabcdad >
0a0b0c = —0ap0c + 0acOph — OpeOq — 6abcclrdval,
1
OabOcd = Z (_eabcd - 25ad0bc + 25acabd - 25bcaad + 25bd0ac - 5ac(5bd + 6ad5bc) )
- - 1 - ~ - ~
TabOed = (+€abed — 20ad0be + 20ac0bd — 20bc0ad + 20640 ac — OacObd + 0addbe) - (A.6)

Our supersymmetry parameters (, Z are commuting spinors, with the supersymmetry
variation d¢, 65 being Grassmann-odd operators; on the other hand, the dynamical spinor
fields are assumed anti-commuting. The spinor indices are raised or lowered acting from
the left with the antisymmetric symbol £*# = —Eaf = gdh = —E44> chosen such that
e'2 = +1. When constructing a spinor bilinear, the indices are contracted as (x = (“Ya
and Z X = Ed X%. Then one has the following relations for commuting spinors

x =—x¢, (X =-X¢,
CoaX = X 0aC , CoabX = XTabC
(0aC) x = —C X , (eabC) X = —CoapX
(0" =x'¢t, X)) =x"¢t,
(Coax)T = —XT7act, (Coanx)t = —xToun (T, (A7)

as well as the Fierz identities

() = 5 (Co) (600,
(xax2)(xsxa) = —(x1x3)(xaxz) — (xaxa)(x2xs) - (A.8)
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When the spinors are anti-commuting one has to include an extra minus sign whenever the
relation involves swapping two of them.
The spinor covariant derivative is given by

Vil =04 — %wwbaabg, Vil =0, — %wuab&abz : (A.9)

where w4 is the spin connection, defined from the vielbein e, and its inverse e/, as
wuab = 26”[“8[Heb}y] - e”[aeblpewa,,edp. (A.10)
From the spin connection we can construct the Riemann tensor via®?

R/,u/ab = 8/ﬁ«‘)z/ab - aVWuab + w,uacwucb - Wuacwucb . (A'll)

The integrability condition of the supersymmetry equation (2.1) implies the following

relations
(R+6VHV,) ¢ = 4i (0,4, — 0,A,) " (,
R+ 6VIV, = 27" (9,4, — 9, A,) . (A.12)
The first is derived using [V, V,]|¢ = —%waaabg , contracted with ¥, and implies the
second.

B Weyl transformations

In this appendix we discuss how the supersymmetry transformations and Lagrangians are
affected by a conformal rescaling of the geometry and of the dynamical fields, in the case
when there exist two supercharges of opposite R-charge. This will explicitly show that the
conformal factor 2 can be rescaled away from the localizing terms, and therefore does not
affect the result of the computation of the one-loop determinants.

We consider a Weyl rescaling of the general metric (2.9),

G = N G (B.1)
corresponding to redefining the conformal factor €2 as
0 =AQ, (B.2)

where here and below a hat denotes the transformed quantities. We assume that A is a
real, positive function depending on z, zZ only, so that rescaled background still admits two
supercharges of opposite R-charge. If A is chosen equal to €2, then the conformal factor of

the new metric is simply €2 = 1. The vielbein and the spin connection transform as

ey =ANeY,, Woab = Wpab + € (6cal”y — 0ep€”a) Oy log A, (B.3)

330ur spin connection and Riemann tensor differ by a sign from those of [7] (so our Ricci scalar is positive
on a round sphere).
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while the two-form J,,, transforms in the same way as the metric, J,, = AQjW, and the
complex structure J¥, remains invariant. As a vector, K is invariant, while as a one-form
it transforms as K, = AQKH. Starting from (2.15), (2.16), we can now deduce how the
background fields A and V transform. We will also assign a weight to |s| and &,

|s| = A3, k=A%, (B.4)

so that both the imaginary part of A and the one of V remain invariant.?* Note that
these conditions are consistent with those ensuring that A is real, given in (2.17). Then
from (2.15) and (2.16) we obtain

V, =V, + (d°log A),,, A, = A, +

| W

(d°log A),., (B.5)

where (d“logA), = J,”0,1log A = —ju”&, log A. Finally, from (2.14) we see that the
spinors transform as R
¢=AY2¢, ¢=AY2(. (B.6)
We now consider the variations of the fields in the supersymmetry multiplets, showing
that these are covariant if the Weyl transformation is accompanied by suitable rescaling of
the fields. Let us start with the gauge multiplet, where we assign the standard conformal
weights

A=A,  X=A2\,  X=AT2X  D=A?D. (B.7)

It is easy to see that the supersymmetry variations (2.23) transform covariantly as
SA,=06A,,  oA=A325N,  SX=AT%26X, D=A"26D, (B.8)

where the variation 4 uses f ) E , and is done on the transformed background defined by §,.,
V and A. The only non-trivial check is for the relation involving D: this follows using the
fact that the A7F = A, — %Vu is invariant under the Weyl transformation, and the following
identity

(VA = ATYECTM(V, — 6,70, 1og A) (AT320) = A2 (5" VA, (B.9)

where we used 0%y, = —% o .
It is also easy to see that the localizing terms, as well as the Lagrangian (2.25) for the
vector multiplet scale as A™%, so that the action is invariant, namely

/d4$ g'cvector = /d4$\/§zvector' (BlO)

We then pass to the chiral multiplet, whose supersymmetry variations were given
in (2.37). For the scalar ¢ we take ¢ = A_’“’d;7 and choose the conformal weight w such as

31The transformation of |s| is necessary to make sure that the spinors transform correctly and that the
imaginary part of A does not transform. The transformation of x is imposed for simplicity: as explained
in section 2 any choice of U, = kK, drops from the supersymmetry variations and the localizing terms, as
long as one defines Aﬂ = AL.
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w = 3r/2. The conformal weight of v, 1; is w+ 1/2, while the one of F, Fis w+1. Again,
one can show that the supersymmetry variations are covariant under the rescaling, namely

Sp=A"op, Sp=A"""125p,  SF=AVT'GF, (B.11)

with exactly the same relations for 5, {/; and F. While this is straightforward for the varia-
tion of ¢, it is less obvious for the others. For instance, in the variation of ¢ in (2.37) we have

- ~ 20 A 3. _
G1C D = ATV250¢ (D# +5irdu 0, log A) (A %)
aAoalaa 3 ~

= ATvT25 ¢ [D“gzﬁ - (w §*, — 27"21]“1,) 9" log A 4 . (B.12)
Since we set w = %r, the second term vanishes because the vector X* =
(0*, —iJ*#,)0"log A is holomorphic, and therefore satisfies X#o,( = 0. We can
now discuss how the localizing term ¢ (V; + Va) for the chiral multiplet transforms. Given
that this is constructed as a combination of supersymmetry variations, it is also covariant
under the Weyl transformation. Specifically, it transforms as

0c(Vi+ Vo) = A2 2 3:(Th + V). (B.13)

Now consider taking A = €2, so that @ = 1. If as a localizing term we consider the
following modified integral weighted by the suitable power of 2

/ Atz /g Q¥ 25:(Vi + Vo), (B.14)

then we see that this precisely equal to the original localizing term, in a background with
) =1, namely

[ e wie v = [ateG 50+ 7). (B.15)

In this way the background dependence on €2 in the localizing term can be reabsorbed by
a redefinition of the dynamical fields.

In conclusion, we have shown that the localizing terms on the left hand side of (B.10)
and (B.15) are equivalent upon rescaling the dynamical fields to the same localizing terms
defined on a background having € = 1. This is in agreement with the results of [18].

C S'x Sff with arbitrary b,, by

In this appendix we apply the formulae of section 3.2 in a familiar example. We will consider

a geometry comprising the Berger sphere S2,

namely the biaxially squashed three-sphere
with SU(2) x U(1) isometry and squashing parameter v. For any value of v, this yields
a family of four-dimensional supersymmetric backgrounds S x S3, depending on the two
parameters by and by which define the Killing vector (3.6). The results of the present paper
show that the partition function depends on by, bs, and not on v. A similar construction
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of three-dimensional backgrounds, obtained from a dual holographic perspective, has been
presented in [24].
We take a four-dimensional metric

ds? = Q2 dr? + ds?(S3), (C.1)
where the metric on the Berger sphere in standard form is
ds?(S2) = d#? + sin® 0 d? + v*(ds + cos O dy)?, (C.2)

with 6 € [0, 7], ¢ € [0,27], ¢ € [0,47], and v > 0 being the squashing parameter. This can
be written in the toric form (3.3) by changing coordinates as

® =1+ P2, C=p1—¥2. (C.3)

Identifying 0 = mwp, so that f = m, the matrix my; reads

0 0 0
my1 = 4cos? = (sin® = + v?cos® = ) | mig = (1 — v2) sin?0,
2 2 2
0 0 0
Moy = 4sin? 5 <v2 sin? 5 + cos? 2) . (C4)

Given the choice of Killing vector K in (3.6), the supersymmetry condition K,K* = 0
yields
0% = b sin® 0 + v (b_ + by cos0)?, (C.5)

where by = by £ ba. The background fields A and V' are obtained from eqgs. (3.23), (3.24)
by first evaluating the functions ¢ and a,, appearing in the form (3.8) of the metric. We find

4
c = U’é;bﬂ sinf ,
1
W = o [b4b_sin® 0 + v (b— + by cos0) (by + b_cos0)] | (C.6)

with the map to the 9, ¥ coordinates being

e =brp+b_x, c=b_th+byx. (C.7)

One can also determine the complex coordinate z = wu(f) + m(l@c — b_¢p) entering
in (3.8) by integrating (3.15), which takes the form

du Q(0)

A6 4v|biby|sind (C.8)

and can be solved in closed form. Then from (3.24) we obtain

A:USg;g);bQ) [Zba_ cos @sin® 6 4+ v?(b_ + by cos0)(b_ cos @ + b cos(26))] (bds — b_dyp)
1
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with

1
w=3 [sgn(b1)(p + <) +sgn(b2)(p — )] , (C.10)
while (3.23) gives
v
R - - * o+ vby[8b2 + 70 b7 11
1% 48|b1b2|Q3{ v*(bg + b cos0)(b— + by cos0)” + v7by[8b7 + Th_b7 (C.11)

+by (2262 + 4b%) cos 6 + 16b_b,. cos(20) + 2(b% + 2b%) cos(30) + b_b. cos(46)) |
+2b% [2(3b% — b2) cos € + b_by (3 + cos(26))] sin® 9}(b+d§ —b_dyp)

byde—b_d ]
+90<+Zd>.

bib 0))— —+by cos 6 2
W[m (26— cos 0+b (14cos® ) v*(b-+by cos )2]< 4b1b
102

30

These expressions simplify in the following two special cases.

Case b; = —bs, with v arbitrary

If we choose by = —by = b/2 > 0, we obtain

in 6
Q= bu, c =2 , ay = cosf. (C.12)

v

The complex coordinate z is given by z = % (log tan% + igo). The background fields A and
V reduce to the SU(2) x U(1) x U(1) invariant expressions

1
A= 3 (ds + cosfdyp) ,
v2 7
V = ? d§ + cos ed@ + ib dT s (013)

with the conformally invariant combination being

3 1 ;
A® =A— §V: 5(1 —v%) (ds + cos Ody) — %va dr. (C.14)
The gravity dual of superconformal field theories on S! x S? with this SU(2) x U(1) x U(1)

invariant choice of background one-forms has been studied in [22].

Case v = 1, with b; and by arbitrary

Let us keep by and by arbitrary, and set v = 1, so that the metric (C.2) becomes the one
of the round three-sphere. Then Q2 ¢ and a,, simplify to

4]b1b2]sin9
cC= ——

0 0
92:4<b%60822+bgsin2>, 02 ,

2
4

0 .90
Iy = 53 <b% cos? 3~ b3 sin’ 2) , (C.15)

and the background fields read

sgn(blbg)

A==

[4 (b +13) cos 0+ (b7 —b3) (143 cos(20))] (b+dg—b_dg0)+%dw, (C.16)
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1
(bydp — b_dg) — zwl(? dr + §dw : (C.17)

cs 3 . Sgn(b1b2)
A® = A— §V = = 5q
As a final remark, we observe that the class of three-sphere metrics (3.3) also comprises
the elliptically squashed three-sphere with U(1)? isometry. This may be obtained redefining
the coordinate p into a coordinate ¥ € [0, /2] such that fdp = [y#sin® 9 +~3 cos® ¥]'/2 9,
and taking mq; = 7% cos? ¥, mag = 7% sin? ¥, mia = 0; here, 71 and 9 are real parameters,
with the squashing being controlled by 72/71. The particular choice 41 = 1/by and o =
1/ba leads to simpler expressions (for instance eq. (3.7) gives 2 = 1 and the background
fields also simplify), however we stress that this choice is not necessary; again, the partition
function depends on b1, by and not on 7y, vs.

D Non-direct product metric

In this paper we consider supersymmetric backgrounds having S! x S3 topology and admit-
ting two supercharges of opposite R-charge. In the main text we focused on direct product
metrics with U(1)? isometry, together with a complex Killing vector K depending on two
real parameters by, ba, cf. egs. (3.3) and (3.6), respectively. We discussed how these data are
sufficient to characterize the supersymmetric background. In this appendix, we relax the
direct product condition and make a preliminary analysis of the more general case in which
St is fibered over S3, still preserving a U(1)? isometry. As we show below, this generaliza-
tion allows to consider complex values of the moduli b1 and by parametrising the complex
structure on the Hopf surface and appearing in the supersymmetric partition function.

The most general metric with U(1)? invariance on the topological product St x $3 can
be written as

ds? = 0? (dr + crde! + édp)2 + f2dp* +mry (dgpI + nldp) (dcpJ + n‘]dp) , (D.1)

where all the metric functions depend solely on the p coordinate. An immediate semplifica-
tion occurs by noting that one can set n/ = & = 0 by a suitable redefinition of the angular
coordinates ¢! and 7; hence with no loss of generality we can restrict to the simpler metric

ds? = Q7 (dr + cfdc,ol)2 + f2dp?® + myyderdey . (D.2)

Further, the Killing vector K in (3.6) can be generalised by analytically continuing the
parameters b; and bs to complex values

1 0 P P
K== |b-L 41,2 ;< D.
2 b184p1+ﬂo26tp2 “or | (D-3)

where by = by + iky, with by and k; real. Since [K, K] = 0 is still satisfied, for the
background to be supersymmetric we just need to solve the condition K,K# = 0. This
constrains the metric as

0% (1 +icb') =blmpb’ . (D.4)

Separating the real and imaginary parts, we obtain

bler = Q Mmy/bimg b7,
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Kep=1—Q 'Rev/bImpsb7. (D.5)

In the generic case where the 2 x 2 matrix (/zi) = (Zi Zz) is invertible, these equations

can be solved for the ¢;. In the main text we considered instead the non-generic case
kr = 0, with the second equation solved by Q2 = b/my;b”, and the first satisfied by setting
c; = 0, namely assuming a direct product metric on S' x Ms. Note that in the generic case
one cannot set ¢; = 0. In both cases, the metric on M3 remains arbitrary, in particular
independent of the by .

Let us discuss regularity of the metric in the generic case. In addition to the conditions
stated in section 3.2, ensuring regularity of the metric on M3, we need that the one-form
describing the S! fibration be well-defined on M3. This amounts to requiring that co — 0 as
p — 0 (where the cycle dual to dyg shrinks to zero size), and that ¢; — 0 as p — 1 (where
the cycle dual to de; shrinks). Let us study the behavior at p — 0, the case p — 1 being
completely analogous. Recalling the requirements (3.4), from (D.5) we see that as p — 0,

Q(O)_l\/mn(O) (ble + klkg) — by

“a = biky — byky )
—00)" 1/ 0) b2 +b
ey —» —HOTVman (0) [brf7+ b1 (D.6)
biko — boky

The regularity condition ¢(0) = 0 fixes 2(0) = {/m11(0) %, which then gives ¢; — Wf—llP .
Apart for the behavior at the poles, in this generic case 2(p) is arbitrary.

In order to complete the global analysis, and check regularity of the background fields
A and V as well, we should proceed as done in the main text for the direct product
case: define complex coordinates w, z and then use the formulae in section 2.1. Although
straightforward, we will not pursue this in the present paper.

E Proof that (zq,22) € C> — (0,0)
Below we complete the proof that the coordinates (3.32), namely

o lbaliwtz) _ lbilr glb1|(Q—uw) i sem(b1)er

21 = )
29 = e 102l(w=2) — glb2|76[b2|(@+u) g —isgn(b2)p2 (E.1)
where the function Q(p), u(p) obey
Q=1 w = (E.2)

Qe T Qc’

span C? — (0,0). Recall that the functions appearing on the right hand side of these
equations are given by

2|b10
c = ‘522‘ Vdet(myy),
1

oz (b mar — b3 mag) |

— 44 —



02 = blmgsb’ (E.3)
with f arbitrary, and obey certain boundary conditions near to the end-points of the
interval [0, 1]. Fixing |zs| = el®21% for finite 5y € R and solving for 7 = § — Q —u, we obtain

[b1162 o—2brfu

|21 = e 22| = el2l%2 (E4)

and similarly fixing |z1| = el1% for finite 6; € R and solving for 7 = §; — Q + u we obtain

b1 61
)

1] = e 29| = elt2lor g2bale (E.5)

The expansion near to p — 0 and p — 1 of the various metric functions imply

W(p) = g + O,
W) = gy +O =), (E.6)
leading to
u(p) = 2|22| log p+ O(p"),
u(p) = —=1—log(1 — p) + O((1 — p)0).. (E.7)
2|01

Using these, and noticing that wu(p) is a monotonically increasing function of p, since
u = é > 0, we see that u(p) is a bijection (0,1) — (—o00,+00). Therefore, at fixed
non-zero |zs|, the radial coordinate |z1| covers R~ (once) and at fixed non-zero |z1|, the
radial coordinate |z3| covers R~ (once).

So far we have seen that for (7, 1, @2, p) € Rx[0,27) x [0,27) x (0, 1), the coordinates
(21, 29) cover C% — {(C,0)} — {(0,C)}. The cases u = 400, corresponding to p = 0 and
p = 1, must be considered separately, since we may not be able to solve for 7 € R in those
cases (T = +oo ¢ R !). Again solving for ) and u near to p — 0 and p — 1, we obtain

1
Q—u=0(p", Q—u:—Wlog(l—p)JrO((l—p)o),
1
Q+u:@10gp+@(p0), Q+u=0((1-p)?. (E.8)
In the limit p = 0 we have
1| = e Im | =0, (E.9)
while in the limit p = 1 we have
21| =0, 20| = eI (E.10)

Then we observe that at |z1] = 0, |z2] covers R (once) and at |z3] = 0, |z1| covers Rsq
(once). This concludes the proof that (21, 22) covers C2 — (0,0).
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F Reduction of the 4d supersymmetry equations to 3d

In this appendix we revisit the 4d — 3d reduction of the supersymmetry equa-
tions (2.1), (2.2) discussed in [27, appendix D] (see also [6]), including a more general iden-
tification between the background fields as well as a non-trivial dilaton. Then we show that
the 4d background described in section 3.2 reduces to the 3d background considered in [10].

General reduction

Similarly to the four-dimensional case, in three dimensions the supersymmetry equation
arising from the rigid limit of “new minimal” supergravity contains different signs depend-
ing on whether the spinor parameter has R-charge +1 or —1. In terms of a spinor ¢ with
R-charge 41 and a spinor  with R-charge —1, one has [27]

. . j . 1 ..
(Vi —id;) e+ %h%e +iViet geglrhe = 0, (F.1)

<k iy . I
(Vi+idi)n+ §h yin—1Vin — ieijkVJ'ykn =0, (F.2)

where 1, j, k are 3d curved indices, and we append a~on 3d quantities that may be confused
with 4d ones. The 3d spinor covariant derivative is defined as

Vie = <8 + wmbe 75>e, (F.3)

(same for 7)), where w,;; is the 3d spin connection, and a, b,¢ are 3d flat indices. More-
over, A; is the 3d background gauge field coupling to the R-current, while V; and A are a
background one-form and a background scalar, respectively. Our 3d gamma matrices are
defined as (7%),” = 0@, .. These are related to the 4d sigma matrices as

Ugd _ imjx)@ﬁggg, Fada _ _i54dﬂ(,ya)ﬁa’ (F4)
which imply
1 i ¢
Oat = — 5% Oab = _5%557 )
~ .
Oat = — 504704, T4 = + eabcmw ‘o4 . (F.5)

In this way, a 4d left-handed spinor (, directly reduces to a 3d spinor, while a 4d right-
handed spinor CO‘ is mapped to a 3d spinor via oy, aCa
Let us consider a 4d metric of the form

ds? = g;(x)dx'da? + ?®(@) (dr + ci(:r)dzni)2 , (F.6)

where we are splitting the 4d coordinates as z* = (z%,7), and §;;, ¢;, ® are a 3d metric,
a 3d one-form and a dilaton function, respectively, depending on the 3d coordinates only.
The 4d vielbein and its inverse can be written as

o _ (€40 po a0 P
o <eq’cze¢>’ o <—Cjéjaeq” (F-7)
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where ¢%; is a vielbein for Jij, with inverse €';. The 4d spin connection w,y, splits as

o gty s ey e B
Weah = € &Wigh s Wyap = —€ ey €aély,

Wag, = e‘I’B[icﬂ éil; éjé, Waaj = éii) 0;P. (FS)

We now reduce the 4d equation for ¢ given in (2.1) along the Killing direction 9/07.
Assuming that ( is independent of 7, we obtain the following 3d equations

ze‘bv’% — %82-(1) v—ie A +ie V. — §(VZ — ciVT)vz} ¢=0, (F.9)

- 1 ) 1 1 .
Vi+ ieq)eijkv]'yk —i(A;—ciA)+i(Vi—ciVy) —i—ie_@VT%—i—iei]k(V} —chT)'yk] ¢=0,(F.10)

where we introduced
vt = —i ek . (F.11)

The first equation is solved by requiring that the 4d one-form
1
U, = U, U;) = (VZ —3¢;Vr + 2¢;Ar — Eeq)vl- +i0;®, 2A; — 2VT> (F.12)

satisfies
Us"¢ =0 & U — ;U )Y C+ie UL =0, (F.13)

which is equivalent to J,” U, = iU, meaning that U, is of type (0,1) with respect to the
complex structure .J defined by ¢. Then eq. (F.10) can be matched with either one of the
3d supersymmetry conditions (F.1), (F.2). As we will need to precisely recover the solution
studied in [10], we choose to match the equation (F.2) for n, although this leads to a map
between 4d and 3d background fields containing some awckward minus signs. Identifying
the spinor parameters as 7 = (, the 3d background fields are given by

A = —(A; — AL — %eq)vi, Vi=—(Vi —ciVy) — %eq’vi, h=—ie ®V,. (F.14)

The reduction of the equation (2.2) for a spinor Z works similarly. In this case, we
need to require that the one-form

1
U, = (U, Uy) = (V — 3¢,V 4+ 2¢ A, — §e% —i0;® | 24, — 2VT> (F.15)

(differing from U, just by the sign of 0;®) satisfies
Z;{VHU'U’Z =0 = (Z;{vl — ¢ gT)vim;gf Z'e_cbgfoqz =0, (F.16)

namely is of type (0,1) with respect to the complex structure J defined by Z . Identifying
the spinors as € = mZ , eq. (F.1) is retrieved by taking exactly the same 3d background
fields as in (F.14).

From (F.14), we see that if we want both the 4d A and the 3d A to be real, then the
purely imaginary v has to vanish. In this case, it is possible to set ¢ to zero by redefining

the 7 coordinate, so that the 4d metric takes a direct product form.

— 47 —



We observe that the 3d background fields are not uniquely determined though, as the
3d equations are invariant under certain shifts [27]. This remains true even if the analogous
shift freedom in 4d has been fixed. For our purposes, it will be enough to discuss this for
real 3d background fields A%, V', h. In this case, given a solution € to (F.1), one also has
a solution to (F.2) by taking the charge conjugate, n = €. This implies the existence of a
real Killing vector K* = efy%e. Then the equations (F.1), (F.2) are invariant under shifting
the background fields as

A—>A+§ F&V,v , V -V+ HV,V , h— h-+Fk, (F.17)
2 VKK, VKIK;

where & is a real function. The identifications (F.14) between 4d and 3d background fields
for a general & become
. kK : . i K
p S AL SR P L
2V/KIK, KK,

= —Vidz', h+k=—ie ®V,, (F.18)

where we have assumed that the 4d metric is in a direct product form, i.e. ¢; = v* = 0, as
this is the case that will be relevant below.
Reduction of our background

We now apply the formulae above and show that the S' x M3 background given in section 3.2
reduces to the 3d background studied in [10]. Here, neither the fact that the 3d metric
admits U(1)? isometry, nor the global constraints discussed in section 3.2 will play any
role. The solution in [10] has real background fields and supercharges related by charge
conjugation. The metric takes the general form

ds%here = [(dw + a)2 + CZdZdE] , (Flg)

where Q = Q(z,2), c = ¢(z,2), a = a,(z, 2)dz + az(z, 2)dz, and for the spinors we take

1 . /)
€ = +/Sthere <0> > = —102€ = \/Sihere <1> ) (F2O)

where |sihere] = Q. Then the 3d Killing vector is K = /01, which as a one-forms reads
K = Q?(dv + a). Finally, the background fields given in [10] read

1 d
Athere = —Tm([0: log (¥c) dz] + SdArg(sinere) + *QEQ“) (d¢ +a),
d
Vihere = —21Im[0, log Q2 dz]| + *2i2a) (d +a),
*Q(da)
fthere = 500 - (F.21)

These expressions are obtained expanding eqs. (2.11)—(2.16) therein and translating to our
notation (in particular cipere = Q¢).
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Reducing our 4d metric (3.8) along 0/07 clearly matches (F.19). In order to match
the spinors in (F.20) with our spinors (2.21), we need to identify

1 a1
ﬁ Na s widgo‘ = \ﬁ €a = w = —Arg(Sthere) - (F.22)

Using the formulae derived above, we can also check that the background fields reduce as

Coz =

needed. Since the 4d metric is a direct product, we set ¢; = v* = 0; in addition, we take
= log 2. Starting from our expressions (2.18), (3.22) for the 4d fields A and V/, it is easy
to check that the conditions on ¢ and U are indeed satisfied. Then (F.18) gives

-« X 1
A+ 250 + @) = ~Ads’ = ~Im[0. log (@) dz] — Ldw,
- : 1
V+&£Q(dy +a) = —Vida' = —21m[d, log Q dz] + 32 %o (da)(dy + a) ,
b . _l o _*g(da)
h+h=-gVr=-2a75" (F.23)

Comparing (F.21) and (F.23), we see that A, V and h agree with Apere; Vinere and Aihere
if we pick & = —ﬁ 9 (da) . However, in the main text it will be not necessary to fix &,
as it actually drops from the 3d supersymmetry transformations.

The condition on U/ translates into the relation

1.
—Vyn=0. (F.24)

(Vi —i0:log Q) ' + 5

This is useful in the 4d — 3d reduction of the supersymmetry variations in section 4.3.

G Regularization of one-loop determinants

In this appendix we proceed with the regularization of one-loop determinants for the vector
multiplet and for the chiral multiplet.
For the vector multiplet the one-loop determinant is given by the infinite product (4.30)

- b1 + naby +i(no + aa,)
Zvector -7 tan A 1 ni 0
1-loop Carta 1 H H H m +1 b1 (ng + 1)b2 + Z(n() + aAO)

a€roots \ ng€Z ni,ne>0

= Zoartan A7" [ Flowag, iy, iba] (G.1)
a€roots
with by > 0,b9 > 0.

A natural regularization is to use the Barnes multiple zeta/gamma functions and we
refer the reader to [52, 53] for definitions, notations and useful formulae, in particular for
the function I's and (3. The first step is to rewrite the infinite product above, labelled by
a root a, with triple gamma functions:

w - H H Wqo +No — N1T — N0 (G2)
@ W + T 4+ 0 +ng +n17 + nao '
no€Zni,na>0
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H 14+ wy +ng—ni7 —ngo

Wo + 7+ 0+ ng+ni1T + ngo
no,n1,n22>0

H —Wq +No +N1T + N20

l—woq—7—0+n9g—m7—ng0
no,n1,n220

 D3(wa +7+0|1,7,0) T3(1 —we — 7 —0 |1,—-7,—0)
B [3(1 4wy |1, —7,—0) I's(—wq |1,7,0)

X

where w, = a4,, and we renamed the parameters by, by into 7 = ib; and o = iby for the
ease of comparison with references [52, 53]. Then using formula (6.4) in [52] we get:

1 — eQﬂi(—wa +ni17+n20)

_ 1m{¢3(0,—wal|1,7,0)—(3(0,wa+7+0|1,7,0)} H
F[wcw T, U] € 1 — e2mi(wa+(n1+1)7+(n2+1)0)
n1,n2>0

_ ez‘w{(g(o,—wa|1,T,U)—C3(0,wa+7+0\177',0)} _ 1
Fe(_waa T, U)

, (G.3)

where T, is the elliptic gamma function defined for z, 7,0 € C and Im(7), Im(c) > 0 by:

- 1— e27ri(fz+(n1+1)7'+(n2+l)o)
Ce(z,1,0) = H QT P . (G.4)

ni,n2>0

In the product over roots o we can combine the factors for the roots o and —a and use
some formulae in [53]:

e (wa,T,0) ]
Flwy, T,0] F[—wa, T,0] = = — = /™Y (Wa,7,0) Oo(we, ) Op(—we, o),
Fe(*wou 7-7 U)FE(wOH 7-7 U)

(G.5)
where
\I/(wa, 7—7 U) = C?)(Oa _wa‘:l? 7—7 U) - 43(07 wa + T + 0—’17 7_7 U)
+ (3(0,wu |1, 7,0) — (3(0, —we + 7+ 0|1, 7,0) (G.6)
and 6y is the Jacobi theta function, defined for wq, 7 € C, Im(7) > 0 by
eo(wa’ 7_) _ H (1 _ e%ri(nr—f—wa)) (1 o eQm‘((n—l—l)T—wa)) ) (G7)
n>0
Formula (5.24) in [52] gives:
1 1 1 1 1
v sy - 2 - - - — — . .
(Wq, T,0) wa<7_+a>+6<7+0+7_+0) (G.8)
In total we have
2y = Zoaran Ay [ €™ o (g, ibr) o (—vay, ib2) - (G.9)
aEA L
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The contribution of a Cartan component corresponds to the contribution of a root o = 0.
To evaluate it we can simply take the square root of the contribution of a positive root «

and send « to zero,3?
. TG em\Pa (90 (aAO, ibl) 90 (_CVAm ibg)
o= (V7). 7= B b o) g

where r¢ is the rank of G (i.e. the number of Cartan generators). This yields

s

ZCartan — 6.7\11(0,7‘,0') rQ (6_27Tb1;e_27rb1)TG (e—QﬂbQ; e—27rb2)’r‘c , (Gll)

with the Pochhammer symbol defined for z,q € C, [q] < 1, by (z;9) = [[,5¢(1 — 2¢").

With the change of notation g (z,y) = 0(e*™*, e?™¥), we have

L (0) . (1) . .
Zvector — em\vaec em\IlveC (p;p)r(; (q; (])TG A;l H 0 (627”&’40,])) 0 (6—27'('10(_,40 , q) 7

1-loop
OCEA+
' b1 + b
0O = L (py by — G
vec 12 1+ 02 bybs ‘ ’7
b1 +b
Wil = —i 1()1—;2 2 %, (G.12)
aEA L

with p = e™2™1 ¢ = ¢72™2 and |G| is the dimension of G, and we have split the prefactor

into a part \I/\(,IC)C depending on a4, and a part \I/‘(,%l independent of a4, .

The regularization of the chiral multiplet one-loop determinant proceeds similarly

gchiral H H H pPA, + i%(bl + b2) + no — in1br — ingby
-100p ir A ;
pEweights no€Z ni,n2>0 “PA T 7(b1 + b2) —ng — ini1by — ingbs
_ H Is(u, |1,7,0) I's(1 —wu, [1,—7,—0) | (@.13)
FS(l + Up =T — O ‘17 -, —O') F3(_up +7+0 |1,T, O')

pEweights
where we have regularized the infinite product using triple Gamma functions,® and we
have defined p4, = p(Ao), up = pa, + 5(7 + ), and again 7 = iby, o = iby.
Using formula (6.4) of [52] leads to
) ) 1 — e2mi(—up+(n1+1)7+(n2+1)o)
chiral __ i (up,7,0)
Z1—100p - H € ’ H 1— 627ri(u,,+n17'+n20)
peweights ni,n2>0
= H TV (up,m0) fe(up,T,J), (G.14)
pEweights

with

(U;,)?’ 2— 72 _ 42 ,

u,, (G.15)

U(up,7,0) =(3(0, 7+ 0 —uyll, 7,0) — (3(0,u,|1,7,0) = 310 Toro

35We consider the square root because the a-factor contains both the contribution of the roots a and —a.
36The product [] has been split into [], .o % I],, <o in the numerator and [], -, % [I, < in the
denominator.

no€”Z
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and w, = u, — 5% = pa, + %(T + o). The full chiral multiplet one-loop determinant is

Z

. o (0) . (1) ) r
Hogp=e ™ e™ai T T (eg’”mo (pa)2,p, q) :
PEAR
(0)_ & b1+ by 3 2 2 | 12
=51 g, (=D (b ba)? — (r = 1) (0 483+ 2)| IR,

3
P . by +b2 PA
L (| 2 —1)2(by+by)2—2— b2 —p2] LA 1
chi pEA 3b]_b2 1(7’ )2b1b2 p.Ao—i_[S(r )(1+ 2) 1 2] 12b1b27 (G 6)
R

where p = e 2™1 g = e7?™2 |R| = dim(R), Ag is the set of weights of R and we have
redefined the ', function as I'e(z, 7,0) = [ (e27, 277, ¢27i7),

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

1]

2]

[9]

[10]

[11]

V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops,
Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [InSPIRE].

G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace,
JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].

M.F. Sohnius and P.C. West, An alternative minimal off-shell version of N' =1 supergravity,
Phys. Lett. B 105 (1981) 353 [INSPIRE].

M. Sohnius and P.C. West, The tensor calculus and matter coupling of the alternative
minimal auziliary field formulation of N =1 supergravity, Nucl. Phys. B 198 (1982) 493
[INSPIRE].

M.F. Sohnius and P.C. West, Supergravity with one auziliary spinor,
Nucl. Phys. B 216 (1983) 100 [inSPIRE].

C. Klare, A. Tomasiello and A. Zaffaroni, Supersymmetry on curved spaces and holography,
JHEP 08 (2012) 061 [arXiv:1205.1062] [INSPIRE].

T.T. Dumitrescu, G. Festuccia and N. Seiberg, Ezploring curved superspace,
JHEP 08 (2012) 141 [arXiv:1205.1115] [INSPIRE].

D. Anselmi, J. Erlich, D.Z. Freedman and A.A. Johansen, Positivity constraints on
anomalies in supersymmetric gauge theories, Phys. Rev. D 57 (1998) 7570
[hep-th/9711035] [INSPIRE].

D. Cassani and D. Martelli, Supersymmetry on curved spaces and superconformal anomalies,
JHEP 10 (2013) 025 [arXiv:1307.6567] [INSPIRE].

L.F. Alday, D. Martelli, P. Richmond and J. Sparks, Localization on three-manifolds,
JHEP 10 (2013) 095 [arXiv:1307.6848] [NSPIRE].

C. Romelsberger, Counting chiral primaries in N =1, D = 4 superconformal field theories,
Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] INSPIRE].

— 52 —


http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/s00220-012-1485-0
http://arxiv.org/abs/0712.2824
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.2824
http://dx.doi.org/10.1007/JHEP06(2011)114
http://arxiv.org/abs/1105.0689
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0689
http://dx.doi.org/10.1016/0370-2693(81)90778-4
http://inspirehep.net/search?p=find+J+Phys.Lett.,B105,353
http://dx.doi.org/10.1016/0550-3213(82)90337-6
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B198,493
http://dx.doi.org/10.1016/0550-3213(83)90489-3
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B216,100
http://dx.doi.org/10.1007/JHEP08(2012)061
http://arxiv.org/abs/1205.1062
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.1062
http://dx.doi.org/10.1007/JHEP08(2012)141
http://arxiv.org/abs/1205.1115
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.1115
http://dx.doi.org/10.1103/PhysRevD.57.7570
http://arxiv.org/abs/hep-th/9711035
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711035
http://dx.doi.org/10.1007/JHEP10(2013)025
http://arxiv.org/abs/1307.6567
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.6567
http://dx.doi.org/10.1007/JHEP10(2013)095
http://arxiv.org/abs/1307.6848
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.6848
http://dx.doi.org/10.1016/j.nuclphysb.2006.03.037
http://arxiv.org/abs/hep-th/0510060
http://inspirehep.net/search?p=find+EPRINT+hep-th/0510060

[12] J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An indez for 4 dimensional super
conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].

[13] C. Romelsberger, Calculating the superconformal index and Seiberg duality,
arXiv:0707.3702 [INSPIRE].

[14] F.A. Dolan and H. Osborn, Applications of the superconformal index for protected operators
and q-hypergeometric identities to N'= 1 dual theories, Nucl. Phys. B 818 (2009) 137
[arXiv:0801.4947] [INSPIRE].

[15] V.P. Spiridonov and G.S. Vartanov, Elliptic hypergeometry of supersymmetric dualities,
Commun. Math. Phys. 304 (2011) 797 [arXiv:0910.5944] [INSPIRE].

[16] V.P. Spiridonov and G.S. Vartanov, Supersymmetric dualities beyond the conformal window,
Phys. Rev. Lett. 105 (2010) 061603 [arXiv:1003.6109] [INSPIRE].

[17] V.P. Spiridonov and G.S. Vartanov, Elliptic hypergeometric integrals and 't Hooft anomaly
matching conditions, JHEP 06 (2012) 016 [arXiv:1203.5677] [INSPIRE].

[18] C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, The geometry of
supersymmetric partition functions, JHEP 01 (2014) 124 [arXiv:1309.5876] [INSPIRE].

[19] C. Closset and 1. Shamir, The N' =1 chiral multiplet on T? x S? and supersymmetric
localization, JHEP 03 (2014) 040 [arXiv:1311.2430] [INSPIRE].

[20] S. Nawata, Localization of N' = 4 superconformal field theory on S* x S and indez,
JHEP 11 (2011) 144 [arXiv:1104.4470] [INSPIRE].

[21] W. Peelaers, Higgs branch localization of N =1 theories on S3 x S*, arXiv:1403.2711
[INSPIRE].

[22] D. Cassani and D. Martelli, The gravity dual of supersymmetric gauge theories on a squashed
St x §3, arXiv:1402.2278 [INSPIRE].

[23] N. Drukker, M. Marino and P. Putrov, From weak to strong coupling in ABJM theory,
Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [InSPIRE].

[24] D. Farquet, J. Lorenzen, D. Martelli and J. Sparks, Gravity duals of supersymmetric gauge
theories on three-manifolds, arXiv:1404.0268 [INSPIRE].

[25] A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, On the superconformal index of N =1 IR
fized points: a holographic check, JHEP 03 (2011) 041 [arXiv:1011.5278] InSPIRE].

[26] V. Apostolov, D.M.J. Calderbank and P. Gauduchon, Ambitoric geometry I: Finstein
metrics and extremal ambi-Kdihler structures, arXiv:1302.6975 [INSPIRE].

[27] C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, Supersymmetric field
theories on three-manifolds, JHEP 05 (2013) 017 [arXiv:1212.3388] INSPIRE].

[28] K. Kodaira, On the structure of compact complex analytic surfaces, II,
Amer. J. Math. 88 (1966) 682.

[29] K. Kodaira, Complex structures on S* x S3, Proc. Nat. Acad. Sci. U.S.A. 55 (1966) 240.

[30] P. Gauduchon and L. Ornea, Locally conformally Kihler metrics on Hopf surfaces,
Ann. Inst. Fourier 48 (1998) 1107.

[31] D. Cassani, C. Klare, D. Martelli, A. Tomasiello and A. Zaffaroni, Supersymmetry in
Lorentzian curved spaces and holography, Commun. Math. Phys. 327 (2014) 577
[arXiv:1207.2181] [INSPIRE].

— 53 —


http://dx.doi.org/10.1007/s00220-007-0258-7
http://arxiv.org/abs/hep-th/0510251
http://inspirehep.net/search?p=find+EPRINT+hep-th/0510251
http://arxiv.org/abs/0707.3702
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.3702
http://dx.doi.org/10.1016/j.nuclphysb.2009.01.028
http://arxiv.org/abs/0801.4947
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.4947
http://dx.doi.org/10.1007/s00220-011-1218-9
http://arxiv.org/abs/0910.5944
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.5944
http://dx.doi.org/10.1103/PhysRevLett.105.061603
http://arxiv.org/abs/1003.6109
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.6109
http://dx.doi.org/10.1007/JHEP06(2012)016
http://arxiv.org/abs/1203.5677
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.5677
http://dx.doi.org/10.1007/JHEP01(2014)124
http://arxiv.org/abs/1309.5876
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.5876
http://dx.doi.org/10.1007/JHEP03(2014)040
http://arxiv.org/abs/1311.2430
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.2430
http://dx.doi.org/10.1007/JHEP11(2011)144
http://arxiv.org/abs/1104.4470
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.4470
http://arxiv.org/abs/1403.2711
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.2711
http://arxiv.org/abs/1402.2278
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.2278
http://dx.doi.org/10.1007/s00220-011-1253-6
http://arxiv.org/abs/1007.3837
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3837
http://arxiv.org/abs/1404.0268
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.0268
http://dx.doi.org/10.1007/JHEP03(2011)041
http://arxiv.org/abs/1011.5278
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5278
http://arxiv.org/abs/1302.6975
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.6975
http://dx.doi.org/10.1007/JHEP05(2013)017
http://arxiv.org/abs/1212.3388
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.3388
http://www.jstor.org/stable/2373150
http://dx.doi.org/10.1073/pnas.55.2.240
http://www.numdam.org/item?id=AIF_1998__48_4_1107_0
http://dx.doi.org/10.1007/s00220-014-1983-3
http://arxiv.org/abs/1207.2181
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.2181

[32] O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The
Hagedorn-deconfinement phase transition in weakly coupled large-N gauge theories,
Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].

[33] D.H. Adams, A note on the Faddeev-Popov determinant and Chern-Simons perturbation
theory, Lett. Math. Phys. 42 (1997) 205 [hep-th/9704159] INSPIRE].

[34] M. Marino, Lectures on localization and matriz models in supersymmetric
Chern-Simons-matter theories, J. Phys. A 44 (2011) 463001 [arXiv:1104.0783] [INSPIRE].

[35] A. Kapustin, B. Willett and 1. Yaakov, Ezact results for Wilson loops in superconformal
Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].

[36] F.A.H. Dolan, V.P. Spiridonov and G.S. Vartanov, From 4d superconformal indices to 3d
partition functions, Phys. Lett. B 704 (2011) 234 [arXiv:1104.1787] [INSPIRE].

[37] A. Gadde and W. Yan, Reducing the 4d index to the S3 partition function,
JHEP 12 (2012) 003 [arXiv:1104.2592] [INSPIRE].

[38] Y. Imamura, Relation between the 4d superconformal index and the S* partition function,
JHEP 09 (2011) 133 [arXiv:1104.4482] [INSPIRE].

[39] P. Agarwal, A. Amariti, A. Mariotti and M. Siani, BPS states and their reductions,
JHEP 08 (2013) 011 [arXiv:1211.2808] [INSPIRE].

[40] O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities,
JHEP 07 (2013) 149 [arXiv:1305.3924] [INSPIRE].

[41] V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Ezact Gell-Mann-Low
function of supersymmetric Yang-Mills theories from instanton calculus,

Nucl. Phys. B 229 (1983) 381 [INSPIRE].

[42] K.A. Intriligator and B. Wecht, The ezact superconformal R symmetry mazimizes a,
Nucl. Phys. B 667 (2003) 183 [hep-th/0304128| [INSPIRE].

[43] D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Nonperturbative formulas for
central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543
[hep-th/9708042] [INSPIRE].

[44] K. Fujikawa, Comment on chiral and conformal anomalies, Phys. Rev. Lett. 44 (1980) 1733
[INSPIRE].

[45] H.-C. Kim and S. Kim, M5-branes from gauge theories on the 5-sphere, JHEP 05 (2013) 144
[arXiv:1206.6339] [INSPIRE].

[46] A. Cappelli and A. Coste, On the stress tensor of conformal field theories in higher
dimensions, Nucl. Phys. B 314 (1989) 707 [nSPIRE].

[47] C.P. Herzog and K.-W. Huang, Stress tensors from trace anomalies in conformal field
theories, Phys. Rev. D 87 (2013) 081901 [arXiv:1301.5002] [INSPIRE].

[48] V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity,
Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

[49] S. Benvenuti and A. Hanany, New results on superconformal quivers, JHEP 04 (2006) 032
[hep-th/0411262] [INSPIRE].

[50] L.F. Alday, M. Fluder, P. Richmond and J. Sparks, The gravity dual of supersymmetric
gauge theories on a squashed five-sphere, arXiv:1404.1925 [INSPIRE].

— 54 —


http://dx.doi.org/10.4310/ATMP.2004.v8.n4.a1
http://arxiv.org/abs/hep-th/0310285
http://inspirehep.net/search?p=find+EPRINT+hep-th/0310285
http://dx.doi.org/10.1023/A:1007442121759
http://arxiv.org/abs/hep-th/9704159
http://inspirehep.net/search?p=find+EPRINT+hep-th/9704159
http://dx.doi.org/10.1088/1751-8113/44/46/463001
http://arxiv.org/abs/1104.0783
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.0783
http://dx.doi.org/10.1007/JHEP03(2010)089
http://arxiv.org/abs/0909.4559
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4559
http://dx.doi.org/10.1016/j.physletb.2011.09.007
http://arxiv.org/abs/1104.1787
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.1787
http://dx.doi.org/10.1007/JHEP12(2012)003
http://arxiv.org/abs/1104.2592
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.2592
http://dx.doi.org/10.1007/JHEP09(2011)133
http://arxiv.org/abs/1104.4482
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.4482
http://dx.doi.org/10.1007/JHEP08(2013)011
http://arxiv.org/abs/1211.2808
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.2808
http://dx.doi.org/10.1007/JHEP07(2013)149
http://arxiv.org/abs/1305.3924
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3924
http://dx.doi.org/10.1016/0550-3213(83)90338-3
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B229,381
http://dx.doi.org/10.1016/S0550-3213(03)00459-0
http://arxiv.org/abs/hep-th/0304128
http://inspirehep.net/search?p=find+EPRINT+hep-th/0304128
http://dx.doi.org/10.1016/S0550-3213(98)00278-8
http://arxiv.org/abs/hep-th/9708042
http://inspirehep.net/search?p=find+EPRINT+hep-th/9708042
http://dx.doi.org/10.1103/PhysRevLett.44.1733
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,44,1733
http://dx.doi.org/10.1007/JHEP05(2013)144
http://arxiv.org/abs/1206.6339
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.6339
http://dx.doi.org/10.1016/0550-3213(89)90414-8
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B314,707
http://dx.doi.org/10.1103/PhysRevD.87.081901
http://arxiv.org/abs/1301.5002
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.5002
http://dx.doi.org/10.1007/s002200050764
http://arxiv.org/abs/hep-th/9902121
http://inspirehep.net/search?p=find+EPRINT+hep-th/9902121
http://dx.doi.org/10.1088/1126-6708/2006/04/032
http://arxiv.org/abs/hep-th/0411262
http://inspirehep.net/search?p=find+EPRINT+hep-th/0411262
http://arxiv.org/abs/1404.1925
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.1925

[61] Y. Yoshida, Factorization of 4d N' =1 superconformal index, arXiv:1403.0891 [INSPIRE].

[52] E. Friedman and S. Ruijsenaars, Shintani-Barnes zeta and gamma functions,
Adv. Math. 187 (2004) 362.

[53] G. Felder and A. Varchenko, The elliptic gamma function and SL(3,7) x Z3,
Adv. Math. 156 (2000) 44 [math.QA/9907061].

— 55 —


http://arxiv.org/abs/1403.0891
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.0891
http://dx.doi.org/10.1016/j.aim.2003.07.020
http://dx.doi.org/10.1006/aima.2000.1951
http://arxiv.org/abs/math.QA/9907061

	Introduction
	Supersymmetric backgrounds and Lagrangians
	Background geometry
	Supersymmetry transformations and Lagrangians
	Vector multiplet
	Chiral multiplet

	Supersymmetric locus equations
	Vector multiplet
	Chiral multiplet


	Hopf surfaces
	Generalities
	Global properties
	Complex structure

	Localization
	Localization locus
	The matrix model
	One-loop determinants
	Vector multiplet
	Chiral multiplet


	The partition function
	Anomaly cancellations and the supersymmetric index
	Supersymmetric Casimir energy and large N limit

	Conclusions
	Conventions and identities
	Weyl transformations
	S**1 x S**3(v) with arbitrary b(1),b(2)
	Non-direct product metric
	Proof that (z(1),z(2))in C**2- (0,0)
	Reduction of the 4d supersymmetry equations to 3d
	Regularization of one-loop determinants

