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The purpose of this study is to present an analysis of the applicability of an analytical

solution to theN−person social dilemma game. Such solution has been earlier developed

for Pavlovian agents in a cellular automaton environment with linear payoff functions and

also been verified using agent based simulation. However, no discussion has been offered

for the applicability of this result in all Prisoners’ Dilemma game scenarios or in other

N−person social dilemma games such as Chicken or Stag Hunt. In this paper it is shown

that the analytical solution works in all social games where the linear payoff functions are

such that each agent’s cooperating probability fluctuates around the analytical solution

without cooperating or defecting with certainty. The social game regions where this

determination holds are explored by varying payoff function parameters. It is found by

both simulation and a special method that the analytical solution applies best in Chicken

when the payoff parameter S is slightly negative and then the analytical solution slowly

degrades as S becomes more negative. It turns out that the analytical solution is only a

good estimate for Prisoners’ Dilemma games and again becomes worse as S becomes

more negative. A sensitivity analysis is performed to determine the impact of different

initial cooperating probabilities, learning factors, and neighborhood size.

Keywords: agent-based simulation, N−person games, cellular automaton, pavlovian agent, skinnerian agent,

equilibrium

AMS Classification Codes 62P25 and 91A20

1. INTRODUCTION

Agent based social simulation is a common method to analyze N-person social dilemma games.
The research on this topic started in the 1990s [1, 2] and has been used to study artificial societies,
world politics, law, and other fields [3–6]. In this paper the applicability of the analytical solution
of such games with Pavlovian agents in a two dimensional cellular automaton environment is
explored when the agents’ decision to cooperate or defect is based on reinforcement learning
with linear payoff functions. The specific model used in this paper has earlier been used to study
prisoner’s dilemma cooperation in a socio-geographic community [7] and a chicken dilemma
selection between public transport and a car in a large city [8]. The applicability of the analytic
solution depends on the way of considering the fact that all probability values have to be between 0
an 1, which was not taken into account in these earlier works. N-person social dilemma games and
this model can also be used to analyze such areas as military expenditures, oil cartels, and climate
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change. The model examined in this paper is equivalent to the
one used in Merlone et al. [9] to develop an analytical model for
the N-Person prisoners’ dilemma game. A new systematic review
of the n-person social dilemma game is given in Merlone et al.
[10] based on the dynamic properties the corresponding systems.
This paper is intended to follow-up on the research presented in
the above mentioned papers. The following paragraphs give an
overview of this model.

Two player social dilemma games are described with a
symmetric matrix based on parameters P,R, S, and T. In this
matrix R is the payoff for both agents if they cooperate, P is
the payoff for both agents if they defect, S is the payoff for
a cooperating agent if the other agent defects, and T is the
payoff for a defecting agent if the other agent cooperates. These
parameters are real numbers and derived from the Prisoners’
Dilemma game and are referred to as Punishment (P), Reward
(R), Sucker’s Bet (S), and Temptation (T). Social games are
defined by the relationship between the parameters P,R, S, and T.
The signs of these parameter values are not specified, only their
orders of magnitude count. For example, Prisoner’s Dilemma
occurs when the parameters of the payoff functions satisfy the
relation T > R > P > S. There are 24 different potential
games since there are 4! = 24 different orderings of these
four parameters. Discussion, classification, and stability of these
symmetric and unsymmetric two player games can be found
in Rapoport and Guyer [11]. In this paper we will assume
R > P. We can do this without loss of generality since if
R < P for a particular game then we simply interchange the
definitions of cooperation and defection to derive an equivalent
game with R > P. This means there are 12 unique games,
each having its own conditions and story. These games include
Prisoners’ Dilemma, Chicken, Leader, Battle of the Sexes, Stag
Hunt, Harmony, Coordination, and Deadlock. In addition, for
most of this paper we will assume that reward R is a positive
payoff and that punishment P is a negative payoff. Later in this
paper, the special cases were R and P are either both positive or
both negative will be investigated.

In multi-person or N-person social games the model takes
into account the collective behavior in society where individual
agents may cooperate with each other for the collective best
interests or defect to pursue their own self interest. This paper
assumes that Pavlovian agents are interacting with each other in a
two dimensional cellular automaton environment. The Pavlovian
agent is defined in Szilagyi [12] and studied in Merlone et
al. [9] among others, as an agent having certain probability p
of cooperating in each time period based on Thorndike’s law
of conditioning [13]; actually in Merlone et al. [9] they are
called Skinnerian. The algorithm computing these probabilities
will be presented in section 2 and is based on reinforcement
learning. In general terms the probability to cooperate increases
if either the cooperating agent is rewarded or defecting agent
is punished; and the probability to cooperate decreases if either
the cooperating agent is punished or defecting agent is rewarded.
Similar reinforcement algorithms and models primarily used for
repeated games can be found in the literature [14–16].

This paper will assume linear payoff functions as shown in
the left hand side of Figure 1. Variable x is the percentage

of cooperators, C (x) is the payoff for those agents that are
cooperating and D (x) is the payoff for those agents that are
defecting. The right hand side of Figure 1 shows the simulation
results with these payoff functions performed on a 50 × 50
cellular automaton grid with each Pavlovian agent having an
initial cooperating probability 0.5 and equal learning factors 0.05.
The figure shows the percentage of cooperators in the automaton
grid after each iteration. The results show that the percentage
of cooperators reaches a steady state around 0.2 after about 50
iterations.

The model moves forward in the iteration process. In each
iteration agents simultaneously decide to cooperate or defect
based on their probability p to cooperate. In the first iteration
this is an assigned initial condition and in subsequent iterations
it is determined by the reinforcement learning algorithm. As
previously stated this algorithm will be presented in section 2. It
is based on the payoff functions, learning factors, neighborhood
size, the percentage of cooperators in the system, and whether
the agent cooperates or defects. The percentage of cooperators of
the entire grid is determined and used as a statistic to evaluate
the state of the system. This repeats for the designated number of
iterations.

A three dimensional simulation plot with varying payoff
function parameters is shown in Figure 2. In this figure each
mesh intersection represents the percentage of cooperators at the
end of a simulation run on a 50×50 cellular automaton grid with
each Pavlovian agent having an initial cooperating probability 0.5
and equal learning factors 0.05. For this simulation each T and
S axis is broken into 40 subdivisions. Thus, Figure 2 represents
the results of 1,600 single simulation runs, each with different
values of T and S. There are three plateaus with varying agent
behavior in each plateau. In the Prisoners’ Dilemma plateau each
agent’s cooperating probability fluctuates around a steady state
equilibrium. These agents are called bipartisan since they are
willing to change their minds from iteration to iteration. In the
Leader and Battle of the Sexes games each agent decides to either
cooperate or defect and then never change their minds. These
agents are called partisan because of their reluctance to change
decision. In the Harmony/Deadlock plateau all agents decide to
cooperate. These agents are called unison since they all make the
same decision.

This paper is intended to be a follow-up to the works of
Szilagyi [12] and Merlone et al. [9]. In these papers analytical
solutions are presented with verification using agent based
simulation for some specific Prisoner’s Dilemma examples,
however no exhaustive analysis is given on the conditions where
it is applicable. In Merlone et al. [10] the dynamic properties of
the corresponding system are the main focus without examining
the applicability of the analytical solution. The purpose of this
paper is to evaluate where the analytical solution works using the
foundations from the previous works. In section 2.1 the analytical
solution is derived and plotted on a S vs. T graph similarly
to Figure 2. The simulation result and analytical solution are
compared over the S vs. T range for a specific case of the R and
P values. It is found that the simulation results and analytical
solution are within 0.01 of each other in certain portions
of the Prisoner’s Dilemma, Chicken, Leader, Stag Hunt, and
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FIGURE 1 | Linear payoff functions and simulation results.

FIGURE 2 | Simulation result with varying S and T values.

Coordination games. Section 2.2 analyzes the boundaries where
the analytical solution is working. In this section some arbitrary

judgments and comparisons are made in order to determine
these boundaries. In section 2.3 a special approach is used to

assess where the analytical solution is working without the use

of these arbitrary judgments and comparisons. In section 3 the

results are reviewed by varying initial cooperating probability,

neighborhood size, learning factors and the values of S. Finally,

section 4 summarizes the main results and presents conclusions.

2. ANALYSIS

2.1. Analytic Solution
In this section we will develop the analytical solution to
the social dilemma game. The review of this analysis is a
key component in determining where the analytical solution
coincides with simulation results. First the expected value of an
agent’s cooperating probability in the next time period will be
determined given the agent’s current cooperating probability and
percentage of cooperators in the system at the current time. From
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that the expected percentage of cooperators in the next time
period is developed given the current percentage of cooperators.
The steady state percentage of cooperators is then given by the
value where the percentage of cooperators does not change from
the current to the next time period. In this paper linear payoff
functions are assumed, however up to this point the analysis
is valid for general payoff functions. So, finally the analytical
solution for the steady state percentage of cooperators will be
given for linear payoff functions in terms of model parameters
α,β , P,R, S, and T. This interaction of the agents is the basis of
the agent based analysis and simulation.

The probability that an agent i will be cooperating in the next
period can be represented by

pnewi =
{

pi + αC (x) if the agent is a cooperator
pi − βD (x) if the agent is a defector

(1)

where x is the current percentage of cooperators, α and β are
real valued learning factors and pnewi denotes the probability that
an agent i will be cooperating in the next time period and x the
percentage of the cooperating agents during the current time
period. C (x) is the payoff for cooperating agents and D (x) is
the payoff for the defecting agents. The behavior of each agent
in the next time period depends on the current behavior of all
agents through the percentage of cooperators. This interaction is
the basis of the agent based analysis and simulation. The agents
also learn about their cooperating probabilities through Equation
(1). Since pnewi is a percentage, it has to be between 0 and 1,
which is not guaranteed by Equation (1). If its value becomes
negative, then it is adjusted to zero and if it becomes larger than 1,
then its value is adjusted to 1. A key assumption in the following
derivation is that the new cooperating probability is obtained
without the use of these adjustments. That is, this derivation will
not be applicable in scenarios where the cooperating probability
for an agent either is consistently going negative and be adjusted
to zero or going above one and being adjusted to one. These
adjustments are not accounted for in the derivation, since it
would become complicated by accounting for the probabilities
P

(

pi < 0
)

and P
(

pi > 1
)

which are not known.
First we obtain the expected value of an agent’s cooperating

probability in the next time period. By definition an agent is a
cooperator with probability pi and a defector with probability
1 − pi. Given these probabilities the expected value of pnewi
becomes

E
(

pnewi

)

=
[

pi + αC (x)
]

pi +
[

pi − βD (x)
] (

1− pi
)

= [αC (x) + βD (x) + 1] pi − βD (x) (2)

Now the percentage of cooperating agents will be evaluated and
the steady state determined. If N is the total number of agents,
then the percentage of the cooperating agents is x = 1

N

∑N
i=1 pi.

By combining this relation and Equation (2) we have

xnew =
1

N

N
∑

i = 1

E
(

pnewi

)

= [αC (x) + βD (x) + 1] x− βD (x) .

(3)

At any steady state x, xnew does not change from x. That is, if
x = x∗, then xnew = x∗ as well. Therefore, from Equation (3) we
conclude that x∗ is a steady state if and only if

x∗ =
[

αC
(

x∗
)

+ βD
(

x∗
)

+ 1
]

x∗ − βD
(

x∗
)

,

which can be written as

x∗αC
(

x∗
)

=
(

1− x∗
)

βD
(

x∗
)

. (4)

The above analysis is valid in the case of general payoff functions
since in the above derivation no special forms are assumed. In the
linear case C (x) = S + (R− S) x and D (x) = P + (T − P) x, so
Equation (4) becomes

x∗α
[

S+ (R− S) x∗
]

=
(

1− x∗
)

β
[

P + (T − P) x∗
]

. (5)

This is a quadratic equation for x∗ and therefore there are at most
two steady states. The solutions of Equation (5) are as follows:

x∗ =
−αS− 2βP + βT ±

√

α2S2 − 2αβST + β2T2 + 4αβPR

2 (αR− αS+ βT − βP)
.

(6)
Figure 3 shows the analytical solutions using parameters R = 1
and P = −1 , with T and S varying between −10 and 10
with learning factors α = β = 0.05. These values of the
learning factors will be used later in all simulation cases except
in Figure 12, where the learning factors will be lowered and
the dependence on the values of the learning factors will be
examined. The left hand graph in the figure represents the
lower or smaller real root and the right hand side represents
the larger real root. Since there is no quantitative restriction
on Equation (6) the roots or solutions may not be real, or they
could be real but may be negative or greater than one. In these
graphs whenever the solution is negative, the percentage of
cooperators is adjusted to zero and if the solution is greater
than one than the percentage of cooperators is adjusted to
one. This occurs in the region with high positive S and high
negative T. Specifically in this case it occurs when S − T > 2.
Obviously in this region the analytical solution is not going
to work since it is giving percentages of cooperators below
zero and above one. Also, it is expected that the analytical
solution will not be applicable if the analytical solution is giving
complex roots. This occurs when |βT − αS| ≥ 2

√
−αβPR

or in this specific case |T − S| < 2. This can be seen in both
charts as a flat strip with a value of 0.5 running in the region
where |T − S| < 2. Thus, the only region where the analytical
solution may work is when |T − S| > 2. By comparing the two
solutions to Figure 2 it appears by observation that the smaller
analytical solution in the left hand side may approximate
the simulation in Figure 2 in the Prisoners’ Dilemma
Plateau.

Figure 4 presents the same simulation results as in Figure 2

with the addition of a black region which compares the
simulation results to the analytical solution. In addition to
presenting the simulation results with the Figure 2 parameter
values, the solution x∗ in Equation (6) for each point is
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FIGURE 3 | Analytical solutions with R = 1 and P = −1.

FIGURE 4 | Comparison between simulation results and analytical solution.

FIGURE 5 | Analytical solution boundaries.
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FIGURE 6 | Agent cooperating probability with high negative S values.

FIGURE 7 | Percentage of agents with cooperating probabilities of one and zero during last iteration.

determined and compared against the simulation result. A black
region has been added to this plot whenever the simulation
result and x∗ are within 0.01. Thus, the black region shows
where the analytical solutions are close to the simulation results.

This tolerance of 0.01 was assigned arbitrarily in order to

determine when the analytical solution starts detracting from
the simulation results. The plot on the right side is a top
down view of the isometric view shown on the left hand
side. The top down view with black regions to depict where
the simulation results and analytical solution are within 0.01
is used often in this paper. These figures indicate that the
analytical solution is within 0.01 of the simulation results in
portions of Prisoner’s Dilemma, Chicken, Leader, Stag Hunt, and
Coordination games.

2.2. Analysis of Boundaries Around
Analytical Solution
From the comparison results shown in Figure 4 three boundaries
can be observed around regions where the analytical solution
is close to the simulation results. Figure 5 repeats Figure 4

with these boundaries. The black singular dots outside of the
boundaries are not areas where the analytical solution is working.
These isolated dots are where plane of Figure 2 obtained by
simulation intercepts the analytical solution plane of Figure 3
after diverging from the boundary area. The first boundary
which will be discussed in this section is the line T − S =
2 where the transition between the Prisoner’s Dilemma and
Harmony/Deadlock transition occurs. This is shown as a gray
line in Figure 5. The second boundary is the transition between
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FIGURE 8 | Area where simulation has no agents with cooperating probability of zero or one.

the Prisoners’ Dilemma and Leader/Battle of the Sexes Plateaus
occurring at S = 0. This is shown as a white line. Finally, the third
boundary is occurring at the points with higher negative S values
within the Prisoners’ Dilemma game. This boundary is shown as
a dashed line. This third boundary is less distinct than the first
two and is arbitrarily inserted where it appears the black region
starts to disappear.

The fact that the derivation of the analytical solution does
not account for any adjustment of probabilities comes up in
evaluating all the boundaries. That is, the analytical solution is
not expected to work in the Leader and Battle of the Sexes games
because in this plateau the agents either cooperate with certainty
or defect with certainty. The cooperating probabilities of the
agents are either going negative and being adjusted to zero or
raising greater than one and being adjusted to unity. It is also
true that the analytical solution is not expected to work in the
Harmony/Deadlock Plateau since all agents have unison behavior

by cooperating with certainty with their cooperating probabilities
raising above one and being adjusted to unity 100% of the time.

First we will look at the transition between the Prisoners’
Dilemma and Harmony/Deadlock Plateaus. This is a steep
transition where the agent behavior changes from bipartisan to
unison. As stated above, it is expected that the analytical solution
will not work in the Harmony/Deadlock plateau as the agents
have unison behavior. That is, the cooperating probability for
each agent in this plateau is greater than one and being adjusted
to one. By observation of Figure 5 it appears that the boundary
is, in fact, the transition when the roots to the analytical solution
become complex which is the line βT − αS = 2

√
−αβPR

previously derived. This boundary was confirmed also by using
other reward (R = 1, 3, 5) and punishment (P = −1,−3,−5)
parameter values.

Now we will look at the transition between the Prisoners’
Dilemma Plateau and the Leader/Battle of the Sexes plateau. This
transition is a step increase where the agent behavior changes

from bipartisan to partisan.Moving from the Prisoners’ Dilemma
Plateau to the Leader/Battle of the Sexes Plateau the bipartisan
behavior disappears when S goes from negative to positive.
Therefore, the analytical solution will not work when S > 0
because there is no bipartisan behavior. Thus, S < 0 is needed
for the analytical solution to work. This boundary was also
confirmed by using other reward (R = 1, 3, 5) and punishment
(P = −1,−3,−5) parameter values.

The last region to be explored is within the Prisoner’s Dilemma
Plateau when S becomes more negative. The simulation results
diverging from the analytical solution in this region is not as
obvious or distinct as in the previous two cases because in
this region the agents are acting in a bipartisan manner with
their cooperating probabilities fluctuating around a steady state
as it was assumed in the derivation of the analytical solution.
The problem is that as S becomes more negative, the agents
become more severely punished per Equation (1) when they

cooperate. At some point the punishment becomes so large
that some agents’ cooperating probabilities become negative if
they cooperate during multiple consecutive iterations and then

their cooperating probabilities have to be adjusted to zero. Then

the agents cooperating probabilities rise above zero upon a

defection on the next iteration and then may fluctuate around
the steady state until the next severe punishment occurs for
multiple consecutive cooperating decisions. If the value of S is
only marginally high negative, then the punishment will result
in only slight adjustments and the analytical solution will be
close to the simulation results. As S becomes more negative,
the punishment becomes higher for cooperation so greater
adjustments are required to bring the cooperating probability
to zero, which implies that the analytical solution will not be
a close estimate. As an example, Figure 6 shows a simulation
run on a 20 × 20 grid with R = 1, P = −1, T = 1, and
S = −9. The figure shows the cooperating probabilities for each
agent during the final iteration. It can be seen that some of the
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FIGURE 9 | Simulation results with varying values of R and P.

agent’s cooperating probability is zero. In fact, these are agents
who had a low cooperating probability in the previous iteration
and cooperated. They were severely punished for cooperating
and had their cooperating probability calculated to be negative
by Equation (1), which was adjusted to zero as necessary. The
analytical solution does not account for these adjustments and as
such will not provide an accurate solution when they occur.

2.3. Analysis of Zeros and Ones
In the previous section the transition between plateaus was
evaluated and boundaries were created where the analytical
solution and the simulation results were within a threshold
0.01. The selection of 0.01 as a tolerance was arbitrary and the
selection of a boundary when S becomes highly negative was a
best fit judgment insertion. Although this does represent cases
where the analytical solution is close to simulation results, we
will now present a different and more unique method to better
depict where the solution is working without the use of arbitrary
tolerances or judgments.

From the analyses above it was concluded that the solution

works when agents’ are bipartisan without any adjustments

being made to any agent’s cooperating probability. That is,

their cooperating probability fluctuates around the steady state

equilibrium and never has to be adjusted because it becomes

greater than one or negative. It is evident from the derivation

of the analytical solution that it does not account for any
adjustments of the cooperating probabilities to one or to zero. It
is also clear that in the plateaus and regions where the analytical
solution doesn’t work some or all of the agents’ cooperating
probabilities are being adjusted to zero or to one. So the idea is
to look at the simulation run and determine the regions with no
agents having a zero or unit cooperating probability. If there are
no agents with a zero or unit cooperating probability, then their
cooperating probabilities must fluctuate around a steady state
value in the bipartisan region for which the analytical solution
works.

In order to test this theory we ran a simulation where we
counted the number of agents with zero or one cooperating
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FIGURE 10 | Difference between simulation and analytical solution when R = 1 and P = −1.

FIGURE 11 | Simulation results for several initial cooperating probabilities with varying value of S.
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FIGURE 12 | Simulation results with learning factors α = β = 0.01.

FIGURE 13 | Simulation results with positive R and P values.

probability at the end of the run. In this simulation R = 1
and P = −1, with T and S varying between −10 and 10. The
simulation is run on a 50 × 50 cellular automaton grid with
each Pavlovian agent having an initial cooperating probability
0.2 and equal learning factors 0.05. Figure 7 shows the results
of this simulation. The right side graph shows the percentage of
agents with zero cooperating probability and the left side graph
shows the percentage of agents with unit cooperating probability.
We will now look at various plateaus in order to interpret these
simulation results.

Consider first the Harmony/Deadlock Plateau where we have
unison agents. From reviewing the graphs shown in Figure 7 we
find that in this region (High Positive S, High Negative T) none
of the agents have zero cooperating probability and 100% of the
agents have unit cooperating probability. This is expected since
all of the agents are cooperating in this region.

Now we look at the Leader/Battle of the Sexes Plateau where
we have partisan agents. We see in Figure 7 that a certain
percentage of the agents have unit cooperating probability, and

the rest of the agents have zero cooperating probability. This is
again expected as we have seen that in this plateau a portion
of the agents cooperate with certainty and the rest defect with
certainty.

Finally, in the Prisoners’ Dilemma Plateau it is seen that
none of the agents have a unit cooperating probability. We
also see that the percentage of agents with a zero cooperating
probability is minimal near S = 0 and increases as S
becomes a larger negative number. This is again expected
from the above analysis where agents are severely punished
as S becomes a larger negative number, so some of the
cooperating probabilities become negative and are adjusted to
zero.

The area where the analytical solution works best is the region
where there are no agents with zero cooperating probability and
also no agents with unit cooperating probability. This is shown
in bright green color in Figure 8. It is seen that the analytical
solution works best in the Chicken/Prisoners’ Dilemma region
and also in parts of Stag Hunt and Coordination games.
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FIGURE 14 | Simulation results with negative R and P values.

In order to expand the solution set, Figure 9 shows the
simulation results for several values of R and P. From these
results it is observed that the analytical solution actually works
best in the Chicken game when S is slightly less than zero. This
is somewhat surprising in comparison to the previous literature
which has only referenced that the analytical solution is working
in the Prisoner’s Dilemma game.

3. SENSITIVITY ANALYSIS AND IMPACT OF
VARIABLES

In sections 2.2 and 2.3 it was presented that the analytical solution
becomes progressively worse in the Prisoners’ Dilemma region as
S becomes more negative. This is due to the fact that as S grows
more negative the punishment for cooperation rises to the point
where an agents cooperating probability by Equation (1) becomes
negative and has to be adjusted to zero. This negatively impacts
the quality of the analytical solution in the Prisoners’ Dilemma
game. The purpose of this section is to evaluate how sensitive the
analytical solution is as S grows more negative and to evaluate
the impact of changing the initial cooperating percentage. After
that, the impact of changing other parameters will be explored
including changing learning factors, allowing R and P to be either
both positive or both negative, and changing neighborhood size.

Figure 10 shows the difference between the analytical solution
and the simulation results for R = 1 and P = −1 with common
learning factor 0.05 and initial cooperating probability 0.2. The
figure shows that the analytical solution is working optimally
when S is slightly less than zero in the Chicken region and
becomes worse with values of S more negative and also with
small value of T. The reason that the difference raises as T
decreases in positive values is that the cooperating probability
does not raise as much with a lower value of T and thus makes
the agent’s cooperating probability more susceptible to become
negative on the next iteration when the agent should cooperate

and be punished. This figure provides good detail on how much
the analytical solution is degrading from the simulation results as
well as where the difference is within the selected 0.01 tolerance.
This figure shows that the analytical solution is only a good
estimate in the Prisoner’s Dilemma region which degrades as S
becomes more negative or T becomes less positive.

Other initial cooperating probabilities will now be evaluated in
order to see if they are sensitive to the previous results. Figure 11
provides five specific simulations (labeled A, B, C, D, and E) with
each simulation presenting several different initial cooperating
probabilities. For example, the top left hand side plot has the
parameter values R = 1, P = −1, T = 5, and S = −1 with
initial cooperating probabilities 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. In
these simulation results the red line is the analytical solution and
the blue lines are the percentages of cooperators at each iteration
given the different initial cooperating probabilities. The insert in
each chart shows a magnified view in steady state condition for
better comparison to the analytical solution. The five simulation
cases in this figure differ from each other only in the value of
S. The bottom right hand plot of Figure 11 shows the specific
simulations depicted with white dots. It can be seen that the
applicability of the analytical solution is not sensitive to the initial
cooperating probability. The only exemption occurs when the
initial cooperating probability is very high. In this case bipartisan
behavior is not achieved as explained in Szilagyi [12]. The slow
degradation of the analytical solution compared to simulation
results can again be seen as S becomes larger negative.

Figure 12 shows the impact of lowering the values of the
learning factors. This simulation is the same as the one shown
in Figure 8 except that the learning factors are α = β = 0.01
instead of α = β = 0.05. It can be seen that the green area
expands when the learning factors are lowered. This is because
as the learning factors are lowered the cooperators have less
punishment by Equation (1) in the Prisoner’s Dilemma game
with fixed S value. In essence, the agent’s cooperating percentage
will get closer to a steady state value when the learning factors are
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FIGURE 15 | Simulation results with different neighborhood sizes.

lowered thus making the analytical solution more applicable for
wider range of S values.

Up to this point we have assumed that reward is a positive
payoff and punishment is a negative payoff. Figure 13 shows
the simulation results for two cases when the reward R and
punishment P values are both positive. In this case the bipartisan
behavior in the Prisoner’s Dilemma disappears and the analytical
solution will not work for any S,T parameter values. This is
shown in Figure 13 by the fact that all of the agents in the
Prisoner’s Dilemma plateau are defectors 100% of the time. In this
region the agents’ cooperating probabilities become negative and
being adjusted to zero. Figure 14 shows the simulation results
when the reward R and punishment P are both negative. In this
case bipartisan behavior can occur in the Harmony/Deadlock
plateau and the analytical solution applicability is expanded. The
reason that the bipartisan behavior is expanded is not explained
completely in the literature. This is an area for potential future
research.

In all previous simulations we assumed that each agent is
interacting with all agents as a whole. We will now look at the
impacts of different neighborhood sizes on the applicability of
the analytical solution. Figure 15 presents the simulation results
using the same parameter values as those used in Figure 8

except with using the Moore neighborhoods of 1, 5, 10, and
50. The results show that the applicability of the analytical
solution expands slightly when the neighborhood size increases.
This difference can be explained by the fact that when the
neighborhoods are in close proximity then their payoff values
become more discreet making an agent’s cooperating probability
oscillate with higher values. For example, in unit neighborhood
size there are only eight other neighbors plus the agent itself in
the neighborhood. This means that there are only 10 possible
percentages of the cooperating agents (0, 11, 22, 33, 44, 56, 67, 78,
89, and 100%) and thus there are only ten possible discrete payoff
values. The values are slightly higher in this case because higher
oscillation results in more instances when an agent’s probability
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becomes negative per Equation (1) and it is artificially increased
to zero. This periodic artificial upward adjustment in an agent’s
cooperating probability from a negative number to zero results
in a slight raise in the percentage of cooperators in the system.

4. CONCLUSIONS

This paper presented the applicability of the analytical solution
of the N−person social dilemma game assuming Pavlovian
agents with linear payoff functions in a two-dimensional cellular
automaton environment.

A derivation of the analytical solution was given. A
key assumption in this derivation is that the cooperating
probability is continuous without the use of adjustments when
the cooperating probability becomes negative or exceeds one.
This derivation will not be applicable in scenarios where the
cooperating probability for an agent is either consistently going
negative and be adjusted to zero or going above one and being
adjusted to one.

The behavior of the agents was reviewed. It was seen that there
are three plateaus where agents act in different manners. The first
plateau consists of predominately the Prisoners’ Dilemma game
where each agent’s cooperating probability fluctuates around a
steady state equilibrium. These agents are called bipartisan since
they are willing to change their minds from iteration to iteration.
The second plateau consists of a region consisting of the Leader
and the Battle of the Sexes games where the agents decide to
either cooperate or defect and then never change their minds.
These agents are called partisan because of their reluctance to
change their decision. The final plateau consists of the region
including the Harmony and the Deadlock games where all
agents decide to cooperate. These agents are called unison since
they all make the same decision. The analytical solution is not
effective for partisan and unison agents since their cooperating
probabilities are consistently becoming negative or exceeding one
and being adjusted.

It was determined with agent based simulation where the
analytical solution is close to the simulation results. This region
consisted of portions of the Prisoners’ Dilemma, Chicken, Stag
Hunt, and Coordination games. A characteristic of this region
is that there are no or few agents with zero or unit cooperating
probability. The area where the analytical solution closely
approximates the simulation results was bounded by using agent
behavior traits, but judgments and arbitrary tolerances were
required to be used.

The area where the solution works optimally was determined
without judgments and arbitrary tolerances using a special
method. This method finds the area where no agents have a

zero or unit cooperating probability in the final run. In this
case the agents are systematically fluctuating around the steady
state without having any cooperating probability adjustments
to zero or one. It is seen that the analytical solution works
optimally in the Chicken game where S is slightly negative and
enters into Prisoner’s Dilemma, Stag Hunt, and the Coordination
games.

It was determined that the analytical solution degrades as S
becomes more negative. A sensitivity analysis was performed
using agent based simulation to assess this degradation in
the Prisoners’ Dilemma game, which was also repeated with
different initial cooperating probabilities. The results confirmed
the degradation of the analytical solution as S became more
negative and indicated that the results are not sensitive to the
initial cooperating probability.

The impact of the reward R and punishment P values being
either both positive and both negative were explored. When they
are positive the analytical solution does not work for any S,T
value. This is because there is no bipartisan behavior in any
region when both parameters are positive. When both the reward
and the punishment are negative then the applicability of the
analytical solution expands into the Harmony/Deadlock plateau
as bipartisan behavior can exist in this region.

The impact of the learning factors and the neighborhood
size were also evaluated. Lowering the value of the learning
factors increases the applicability of the analytical solution for
a given set of parameters in the Prisoner’s Dilemma game
because this reduces the punishment impact of Equation (1) and
thus reduces the chance of an agent’s cooperating probability
becoming negative. Lower neighborhood sizes or close proximity
neighborhood have smaller analytical solution applicability
regions because few neighbors lead to more discrete payoff values
which tend to cause higher fluctuations and thus more situation
where an agent’s cooperating probability becomes negative.

In this paper linear payoff functions and linear probability
updating rules were considered. In our next project we will
consider and analyze nonlinear models.
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