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We introduce spatiotemporal optical dark X solitary waves
of the (2 + 1)D hyperbolic nonlinear Schrédinger equation
(NLSE), which rules wave propagation in a self-focusing
and normally dispersive medium. These analytical solutions
are derived by exploiting the connection between the NLSE
and a well-known equation of hydrodynamics, namely the
type II Kadomtsev-Petviashvili (KP-II) equation. As a re-
sult, families of shallow water X soliton solutions of the
KP-II equation are mapped into optical dark X solitary
wave solutions of the NLSE. Numerical simulations show
that optical dark X solitary waves may propagate for long
distances (tens of nonlinear lengths) before they eventually
break up, owing to the modulation instability of the con-
tinuous wave background. This finding opens a novel path
for the excitation and control of X solitary waves in non-
linear optics.  © 2016 Optical Society of America

OCIS codes: (190.0190) Nonlinear optics; (190.5940) Self-action
effects; (190.3270) Kerr effect.

Laser pulse and beam shaping techniques [1] aiming to obtain
localized distortionless (both nondiffractive and nondispersive)
wave packets [2] are of paramount importance in many fields of
basic and applied research such as atomic physics, spectroscopy,
communications, and medicine. In this context, X waves, origi-
nally discovered in acoustics [3], have been established as a new
paradigm in areas ranging from classical to quantum optics
[4-11]. Specifically, envelope X waves emerged to be the
key for understanding the dynamics in so-called bi-dispersive
settings, e.g., the spatiotemporal dynamics ruled by standard
paraxial diffraction in normally dispersive media. X waves exist
in the linear regime [2,12,13], being non-monochromatic
superpositions of nondiffracting modes (Bessel [14] or cosine
modes in transverse two-dimensional [2D] and one-dimensional
[1D], respectively). However, it is their nonlinear counterpart
(obtained via numerical dressing of linear solutions [5,15]) that

attracted much interest because of their capability to emerge
spontaneously in different experiments involving parametric
converters [5,6], Kerr media [7,8], and periodic structures [10].

The nonlinear regime, however, poses a number of chal-
lenges that remained unaddressed to date. First, there are no
available methods to construct analytical solutions. Exact non-
linear X wave solutions are known only in the presence of a
potential which rules out the most interesting experimental sit-
uations that involve free propagation [16]. Second, only bright
nonlinear X waves have been reported, whereas the possibility
to find dark X waves over a finite background was largely
overlooked.

In this Letter, we show that both restrictions can be over-
come at once by exploiting a transformation [17-19] that
maps the most universal of bidispersive nonlinear models,
namely the (2 + 1)D nonlinear Schrodinger equation (NLSE)
into the (2 4+ 1)D Kadomtsev-Petviashvili (KP) equation. The
latter constitutes the natural extension of the well-known
(1 4+ 1)D Korteweg-de Vries (KdV) equation and is widely em-
ployed in plasma and hydrodynamics (see e.g., [20-25]) in its
two different forms, the so-called KP-I type and KP-II type,
depending on the sign of the transverse perturbation to the
KdV equation. In particular, we first show how the original
two-soliton X-shaped solutions [23] of the KP-II generate non-
linear dark X solitary solutions of the hyperbolic NLSE, which
are potentially observable in the regime investigated experimen-
tally in [6,8,10]. Then, we consider a different family of
X soliton solutions of the KP-II equation, namely the
Toda-type [23], and find their optical dark X solitary counter-
part of the NLSE.

In the presence of group-velocity dispersion and 1D diffrac-
tion, the dimensionless time-dependent paraxial wave equation
in cubic Kerr media reads as [5]

iu, + guﬂ + g”w
namely, the (2+ 1)D, or more precisely (1 + 1+ 1)D,
NLSE, where u(2 y, z) stands for the complex wave envelope,
and ¢, y represent the retarded time (in the frame traveling at

+yluffu=0, (1)



the natural group velocity) and the spatial transverse coordi-
nate, respectively, and z is the longitudinal propagation coor-
dinate. Each subscripted variable in Eq. (1) stands for partial
differentiation. @, f3, y are real constants that describe the effect
of dispersion, diffraction, and Kerr nonlinearity, respectively.

We refer to Eq. (1) as elliptic NLSE if afp > 0, and hyperbolic
NLSE if aff < 0. In the case of weak nonlinearity, weak diffrac-
tion, and slow modulation, the dynamics of optical NLSE dark
envelopes #(t, y,z) may be related to the hydrodynamic KP
variable 7(z, v, ¢) as follows [19]:

u(t, y, 2) = /26 + (2,0, €) rpoe=(r/e) J n(r,ug)df]) @

where p stands for a background continuous wave amplitude,
(7, v, ¢) represents a small amplitude variation, say  ~ O(¢)
with 0 < € <« 1 and the order one background p¢; 5(z, v, )
satisfies the KP equation

3ay a? coP
<_’7g + 2[0 - + 8[‘0 ’7111)1 - 2a Moo = 0) (3)
where 7 =1t-¢yz, v =y, ¢=2z with ¢y = ,/~yap,, and
ay < 0 (see [19] for further details).

In contrast to the case dealt with in [19], which considered
lump solutions of the elliptic NLSE for defocusing media
(&, f > 0,y < 0), derived through Eq. (2) from the KP-I equa-
tion [Eq. (3) with #/a > 0], in this Letter we focus our atten-
tion on the combined action of diffraction and normal
dispersion for self-focusing media. The latter case corresponds
to a <0and f,y > 0, ie., to the focusing hyperbolic NLSE
linked through Eq. (2) to the KP-II equation [f/a <0 in
Eq. (3)]. Interestingly, the results that we derive below have
relevance also in different contexts where the same hyperbolic
NLSE applies, such as the propagation in suitably engineered
lattices giving rise to effective negative diffraction [10,26], or
the dynamics of envelope water waves [27]. (In both cases,
¢ represents an additional spatial variable.)

In order to proceed further we fix, without loss of generality,
the coefficients of Eq. (1) as a = —4/2, p =62,y =22,
and the background to unit pg = 1. On the one hand, this
allows us to cast Eq. (3) in its standard KP-II form
(1. - 61, + Nyrp) . + 30,, = 0. On the other hand, this fixes
the scaling between the dimensionless variables z, #, y in Eq. (1)
and the corresponding real-world quantities Z = Zz,
T = Tyt, Y = Yyy. The longitudinal scaling factor turns out
to be Zy = 2+/2L,, where L, = (7 phys? 0)~! is the usual non-
linear length associated with the intensity 7 of the background
and ¥phys = ko7ys, 7y being the Kerr nonlinear index and
ko the vacuum wavenumber. The “transverse” scales read as
To=+/F'Ly/2 and Y, = /L, /(3kyn), where k"' and n
are the group-velocity dispersion and the linear refractive index,
respectively.

The KP-II equation admits complicated soliton solutions,
mostly discovered in the last decade, which may describe non-
trivial web patterns generated under resonances of line solitons
observable in shallow water [23-25]. Among these, we first
consider the so-called O-zype bright X-shaped two-soliton sol-
ution of the KP-II. (Note that the name O-#ype is due to the fact
that this solution was originally found by the Hirota bilinear
method [23]; it should not be confused with the conical
O-waves of the elliptic NLSE [2], which have no relevance
in the present context.) When considering small amplitude

regimes, a formula for an exact O-gype solution of Eq. (3)
can be expressed as follows [23]:

’7(1’ v, g) = —2(1[1 F)rr) (4)
where the function F(z,v,¢) is given by F = f, + f, with

f1 = (&1 + &) cosh[(e; - &5)7 + 4(8‘? - Eg)g],
fr = 258 coshl(e} - )

€1, & are small real positive parameters which are related to the
amplitude, width, and the angle of the O-#ype X-soliton solutions.

The expression of (2 + 1)D NLSE dark X solitary waves
u(t, 3, z) is directly given through Eq. (2), exploiting the soliton
expression for 7(z, v, ¢) in Eq. (4).

Figure 1 shows the spatiotemporal envelope intensity profile
|u|* of a (2 + 1)D NLSE dark X solitary wave of the hyperbolic
NLSE. The analytical solution is shown in the (y, #) plane, at
z = 0in Fig. 1(a) and at z = 10 in Fig, 1(b). In this particular
example, we have chosen &, = 0.2, &, = 0.001. Specifically,
Figs. 1(a) and 1(b) illustrate a solitary solution that describes
the X-interaction of multiple dark line solitons.
Asymptotically, the solution reduces to two line dark waves
for # <0 and two for #>> 0, with intensity dips 3(e; -¢,)?
and characteristic angles +tan™' (¢; +¢,), measured from the
y axis. The maximum value of the dip in the interaction region
is 2(e) - €))% (e +€2)/(e) + &3 + 2,/€1€;). Next, we nu-
merically verified the accuracy and stability of the analytically
predicted O-zype dark X solitary wave of the NLSE. To this
end, we made use of a standard split-step Fourier technique,
commonly adopted in the numerical solution of the NLSE
Eq. (1). We took the dark wave envelope at z =0 as the
numerical input:  u(t,5,z2=0)=/1+n(t=t,0=y,¢=0)
expligp(z=1t,0=y,6=0)], where 5 is the X-soliton solution
(4) and ¢ = -(y/c,) [. n. Figure 1(c) shows the (y,#) profile
of the numerical solution of the hyperbolic NLSE obtained at
z = 10, which shows excellent agreement with the analytical
solution from Eq. (4) computed at z = 10, and reported in
Fig. 1(b). We estimate the error between the asymptotic formula
and the X solitary wave in the numerics to be lower than 1%.
These results prove that the proposed solutions propagate as X-
shaped nonlinear invariant modes of the NLSE, being subject
only to a net delay due to the deviation ¢ from the natural group
velocity of the medium. The spatiotemporal Fourier spectrum of
these waves is also X-shaped (result not shown). These features
allow us to classify such waves in the broad class of diffraction-
free and dispersion-free X waves. It is worth pointing out, how-
ever, that there are important differences with the more general
nonlinear X wave solution reported in the literature for the
(3 + 1)D hyperbolic NLSE, ie., for 2D diffraction [5,15].
In particular, the latter type of X waves exhibits a characteristic
decay 1/ along the spatial coordinate 7 which is characteristic of
the Bessel functions constituting the building blocks of X waves
in the linear limit. Conversely, in the present case, the dark X
solitary waves have, by construction, a constant asymptotic
(i.e., the line solitons), while the transformation in Eq. (2) be-
comes meaningless in the linear limit. Nevertheless, the asymp-
totic state is compatible with 1D transverse diffraction (see, e.g.,
Fig. 1 in [10]), a regime where the connections between the lin-
ear and nonlinear X-waves have not been exhaustively investi-
gated yet. Of course, any finite energy realization of the
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Fig. 1. Spatiotemporal NLSE envelope intensity distribution |#|?,
in the (3, #) plane, showing a typical dark X solitary wave. (a) |u|? at
z=0 and (b) at z = 10. (c) Numerically computed profile |«|?
according to hyperbolic NLSE (1) at the propagation distance
z = 10. Here, &, = 0.2, &, = 0.001.

present type of solutions should consider a spatiotemporal
envelope modulation of the X solitary wave that decays to zero
sufficiently slowly in (% y) compared with the extension of the
solitary central notch, similar to the case of dark solitons in
(1+ 1)D [28].

The link between the hyperbolic NLSE and the KP-1I equa-
tion is not limited to the type of invariant waves discussed
above. Among the variety of other types of KP-II X-shaped sol-
iton solutions found in the last decade, e.g., so-called T-gype
and P-type soliton solutions [23], below we discuss the rel-
evance of the 7-gpe solitons. They originate from the soliton
solutions found in the Toda lattice equation [29] and describe
a fully resonant interaction of two line solitons. When
considering the small amplitude regime, the exact Toda-type
soliton solution of Eq. (3) can be expressed in the form

’7(1’ v, g) = —2(]_[1 F)rr) (5)
where F = [, + f, with
f1 = (&1 + &)? cosh[(e; - &5)7 + 4(8? - eg)g],

f2 = 2es - &) Jereslcoshl( - o]
+ cosh[4(e] + £3)¢ + (&1 + &)1}
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Fig. 2. Spatiotemporal NLSE envelope intensity distribution |#|?, in
the (y, ¢') plane (#' = ¢ - ¢(z), showing a dark X solitary wave fission.
(@) |u|? at z = 0 and (b) at z = 10. (c) Numerically computed profile
|u|? at the propagation distance z = 10. Here, £, = 0.31, &, = 0.17.

€1, &, are small real positive parameters that rule the amplitude,
width, and angle of the Toda-type solution.

Again, the (2 + 1)D NLSE dark X solitary waves u(, y, z) are
directly obtained through Eq. (2), exploiting the soliton expres-
sion for #7(z, v, ¢) in Eq. (5). Figure 2(a) shows the spatiotemporal
envelope intensity profile |#|> of a (2 + 1)D NLSE dark X soli-
tary wave in the (y, ) plane at z = 0, while the same profile at
z = 10 is shown Fig. 2(b). Here, #' = ¢ - ¢yz stands for the re-
tarded time in the frame where the solitary wave is stationary, and
we set €, = 0.31 and &, = 0.17.

In particular, Fig. 2(a) illustrates an exact X shape, formed at
the intersection point on the origin, which is given by the sum of
the dark line solitary waves. The soludon has, asymptotically,
two line dark waves for # << 0 and two for # > 0, with the in-
tensity dip J (&, + €,)? and the angles of + tan”! (¢, - ¢,), mea-
sured from the y axis. Upon propagation, the initial X shape
experiences a sort of a fission and generates a solitary notch
at the intersection point. The observed amplification of the
notch means that the initial waveform, which is given by the
sum of two dark line solitary waves, creates a large dispersive
perturbation at the intersection point, which opens in a resonant
solitary box. Because of this distortion, the T-type dark X solitary
wave cannot be considered as a strictly invariant wave. In order to
check whether this behavior is fully reproduced in the NLSE

dynamics, we report in Fig. 2(c) the outcome of the numerical



integration of the NLSE at z = 10. By comparing Figs. 2(b) and
2(c), we conclude that T-type analytical solutions provide an ex-
cellent approximation of the dynamics ruled by the hyperbolic
NLSE. In this case, we estimate the error to be lower than 2%.
Remarkably, the approach remains reasonably accurate, even for
relatively strong modulations. For instance, for a modulation
depth up to 0.5p, the error remains lower than 8%.

Let us finally discuss the important issue of the stability of
the predicted dark X solitary waves of the hyperbolic NLSE.
Two instability factors may affect the propagation of these
waves. The first one is the modulation instability (MI) of
the continuous wave background. In the case considered here
(@<0, f, y>0) MI is of the conical type [27,30,31].
Generally, MI can be advantageous to form bright X waves
from completely different initial conditions, both in the ab-
sence [5] or in the presence [32] of the background. The second
mechanism is related to the transverse instability of the line
solitons that compose the asymptotic state of the dark X wave
[33]. We point out that such instability is known to occur for
the NLSE, despite the fact that line solitons are transversally
stable in the framework of the KP-II (unlike those of the
KP-I) [20]. However, in our simulations of the NLSE (we per-
formed different runs for other values of the parameters), these
transverse instabilities never appear, since they are extremely long
range, especially for shallow solitons. In fact, we found that the
primary mechanism that affects the stability of dark X solitary
waves is the MI of the background. As a result, the onset of
MI causes the distortion of the solitary waves due to the ampli-
fication of spatiotemporal frequencies which are outside the spa-
tiotemporal soliton spectrum. However, typically, this occurs only
after tens of nonlinear lengths, usually beyond the sample lengths
employed in optical experiments. Indeed, the effect of MI be-
comes visible only for distances longer than those shown in
Figs. 1 and 2, i.e., for z > 10 - 20, which correspond to real-
world distances Z > 30 - 60L,.

In summary, we have predicted the existence of optical spa-
tiotemporal dark X solitary waves in media described by the
(24 1)D hyperbolic NLSE, ruling the propagation in self-
focusing and normally dispersive media. In particular, we have
shown, analytically and numerically, the families of optical dark
X solitary waves of the NLSE, derived from families of shallow
water X wave solitons of the KP-II model. This finding opens a
novel path for the excitation and control of X waves in
nonlinear optics and in other areas where such NLSE applies
(Bose-Einstein condensation, acoustics); in fact, the nonlinear
dark X solitary wave solutions of the NLSE are potentially
observable in the regimes investigated experimentally in
[6,8,10] and in [34-306].
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