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Medical errors are a major source of preventable morbidity, mortality
and healthcare costs. Voluntary reporting systems are useful data sources that
collect detailed information on the circumstances of medical errors occurring
in hospitals. Identifying the characteristics of errors that frequently result in
patient harm when they occur would allow investigators to prioritize among
the many sources of potential errors and design targeted prevention strategies.
In this paper, we use data from MEDMARX, a large anonymous and volun-
tary reporting system for medication errors, to identify the combinations of
error characteristics that are more likely to result in harm. To this end, we
consider a Bayesian hierarchical model with crossed random effects and a
flexible specification of the random effects distribution. We then provide a
ranking of the errors using optimal Bayesian ranking based on their proba-
bility of harm. The use of optimal Bayesian ranking accounts for the varying
amount of uncertainty across the random effects estimates. Finally, we exam-
ine the sensitivity of results to different specifications of the random effects
distributions. The utility of flexible random effects assumptions is illustrated
by empirically comparing results under several choices. We found that errors
caused by mistakes in reconciling a patient’s current medication list with the
medications prescribed at hospital discharge have an estimated 10.5% proba-
bility of harm. These errors had the highest rate of harm of errors that occur
during the prescribing stage of medication use. In addition, we found that
the results are sensitive to the random effects distribution used in estimation.
Thus, an approach that explores this sensitivity is important for accurately
comparing the relative harm across errors.
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1. Introduction. Medical errors are a major source of preventable morbid-
ity, mortality and healthcare costs [Brennan et al. (1991), Leape et al. (1991)].
Globally, it is estimated that 142,000 people died in 2013 from adverse effects of
medical treatment up from 94,000 in 1990 [GBD 2013 Mortality and Causes of
Death Collaborators (2015)]. In 2000, the National Academy of Medicine (for-
merly known as the Institute of Medicine) estimated that each year in U.S. hos-
pitals 44,000 to 98,000 deaths and 1,000,000 excess injuries may be attributed
to medical errors [Kohn, Corrigan and Donaldson (2000)]. Past efforts to reduce
medical errors within the hospital have primarily relied on internal investigations
of the causes of errors that have resulted in serious harm, such as death or perma-
nent injury to the patient [Aspden et al. (2003)]. The Joint Commission (JC) has
advised another approach, stating:

The aggregation of data from many health care organizations about their medical/health
care errors and the root causes of these errors is necessary to set priorities for error re-
duction activities; to identify priorities for system/process redesign in health care orga-
nizations; and to assess the effectiveness of the efforts to reduce errors over time [The
Joint Commission (2000)].

Voluntary reporting systems of medical errors collect detailed information on
the root causes and circumstances of errors across many hospitals and provide an
opportunity to approach patient safety as suggested by the JC. In particular, MED-
MARX, a national, anonymous, subscription-based reporting system for medica-
tion errors launched by the United States Pharmacopeia in 1998, is a useful data
source for investigators interested in understanding the processes of error and harm
in hospital medication use. MEDMARX is the world’s largest comparative repos-
itory of medication error data that includes today around two million medication
errors and adverse drug reaction records, with a growth rate of the records number
of more than one percent every month. It provides detailed information on medica-
tion errors occurring in hospitals, includingj (1) the “node,” defined as the step in
the medication use process where the error has occurred (e.g., Prescribing, Docu-
menting, Dispensing); (2) the “type” of error (e.g., Improper dose, Wrong patient,
Wrong time); and (3) one or more “causes” of error (e.g., Communication, Com-
puter software, Decimal points). In addition, reports submitted to MEDMARX
contain a standardized categorization of the degree of harm to the patient that is
associated with the event. Errors that resulted in patient harm, known as adverse
events, and errors that did not result in patient harm, known as near misses, are
both reported to MEDMARX, with near misses comprising the vast majority of
reported events (approximately 98%).

Morlock et al. (2010) used data from MEDMARX to provide evidence that the
odds of reporting a given cause when a near miss has occurred is highly correlated
with the odds of reporting the same cause when an adverse event has occurred. In
other words, they found that near misses and adverse events have similar causes
and contributing factors, and, therefore, they suggest that data on near misses can
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be used to design strategies for preventing harm. However, there may still exist
some combinations of error characteristics in terms of node, type and causes that
can be identified as having a higher risk of harm than expected when they co-
occur. These errors are obviously dangerous, but they are also the most difficult to
identify, since they are rarely reported unless a serious adverse event has occurred.
Therefore, identifying these high-risk errors and their characteristics, regardless of
how often they occur, is imperative for improving patient safety in the hospital and
would significantly contribute to the field of patient safety. In particular, identify-
ing the errors with the highest risk of harm in each node of medication use will
allow investigators to target prevention strategies to each step of the medication
delivery process and to the hospital staff members that put these steps into action.

In this paper, we focus on modeling the risk of harm associated with an er-
ror profile, which we define as the co-occurrence of an error type and two error
causes. For example, a prescribing error (Type) caused by communication prob-
lems (Cause 1) and by workflow disruption (Cause 2) characterizes a unique error
profile. We chose to define an error profile by its type and causes because this
characterization is specific enough to recommend targeted interventions, but gen-
eral enough to include many reported events so that we have sufficient statistical
power to estimate and rank the log odds of harm for each profile, separately by
node.

Our goal in this paper is to identify error profiles in MEDMARX data that have
been reported with harm more often than expected under the assumption of inde-
pendence between error profile and harm. To this end, we first develop a Bayesian
hierarchical model (BHM) for estimating the log odds of harm for each error pro-
file, separately by node of medication use, accounting for the varying amount of
data available on each error profile. Second, to check the robustness of our find-
ings, we adapt to our situation the Gamma Poisson Shrinker (GPS) approach de-
veloped by DuMouchel (1999), an empirical Bayes method currently used by the
Food and Drug Administration (FDA) adverse event reporting system in the U.S.2

While both methods aim at identifying unusually large cell counts, they differ with
respect to the following characteristics: (1) BHM is a logistic regression with ran-
dom effects for the error profiles and the hospital effects, while GPS assumes a
Poisson distribution with unknown means for the observed counts; (2) in BHM we
assume a flexible distribution for the error profile random effects, a skew-t dis-
tribution [Fernández and Steel (1998)], while GPS uses a mixture of two gamma
distributions for the Poisson rates; (3) the BHM approach is embedded in a fully
Bayesian framework, while GPS uses an empirical Bayes approach; this implies
that the BHM provides an estimate of the ranks which also accounts for the poste-
rior uncertainty in the estimates of the log odds of harm, while GPS only provides
an ordering; (4) GPS requires the definition of “baseline” frequencies, while BHM

2http://www.fda.gov/ScienceResearch/DataMiningatFDA/ucm446239.htm.

http://www.fda.gov/ScienceResearch/DataMiningatFDA/ucm446239.htm
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doesn’t require the definition of any baseline; (5) the BHM approach we present
allows for a thorough sensitivity analysis of the random effects distribution by
using importance link function estimation; (6) BHM uses MCMC for computing
the parameter estimates, while GPS requires the maximization of the marginal
likelihood, which provides less numerically stable results when using sparse data;
(7) BHM is a regression model, thus it can be easily extended to include further
hospital and error-dependent covariates as well as time trends or seasonal effects.

MEDMARX data presents several challenges to this objective. First, the data
are nested within hospitals; error reports are submitted from multiple hospitals,
and the types of errors, as well as the frequency of reporting, may vary across hos-
pitals. Second, the data are high dimensional. There are many reports of error (we
consider here a subset of approximately 1.1 million), and for each report, the data
contain indicators of each of 67 possible causes and 14 possible types, in addition
to the categorical variable for node, resulting in 30,954 distinct error profiles pos-
sible in each node. Third, the number of occurrences of each error profile varies
widely across profiles. Some profiles may be cited on thousands of error reports,
while other profiles are very rare. Therefore, comparisons across error profiles
must account for the fact that there are different amounts of information available
for each profile.

The objective and related challenges of this study are similar, but distinct, to
what is faced in analyses of spontaneous reporting systems (SRSs), the most
common form of pharmacovigilance [see, e.g., Ahmed, Bégaud and Tubert-Bitter
(2015), DuMouchel (1999), Gibbons et al. (2008), Madigan et al. (2010)]. SRS
databases collect reports of adverse reactions believed to be associated with med-
ication use, regardless of whether or not error was involved. SRSs are typically
used for early detection of signals of new, rare or serious adverse drug reactions
(ADRs). These reactions may not have been detected by the relatively small num-
bers of patients included in pre-marketing clinical trials or by larger post-marketing
surveillance studies. The analysis of the SRS databases usually lead to further con-
firmatory investigations or sometimes regulatory warnings and changes of product
information leaflets. In Section 2, we describe the MEDMARX data and illustrate
some important data features. In Section 3, we present the BHM and methods
for estimation and inference. In Section 4, we present the empirical Bayes method
adapted from DuMouchel (1999). In Section 5, we apply the methods to the MED-
MARX data to investigate the most harmful error profiles in the prescribing node.
Finally, in Section 6, we discuss the statistical and scientific findings and their
impact on the field of medication safety.

2. The MEDMARX database. MEDMARX is a national, anonymous,
subscription-based reporting system for medication errors launched by United
States Pharmacopeia in 1998, that today has collected more than two million med-
ication errors [Huckels-Baumgart and Manser (2014), Santell et al. (2003), Schiff
et al. (2015)]. In this paper we consider a subset of the MEDMARX database, the



508 VENTURINI, FRANKLIN, MORLOCK AND DOMINICI

TABLE 1
Number and percent of error reports in each harmscore category. The harmscore categories are
defined by The National Coordinating Council for Medication Error Reporting and Prevention

(NCC MERP). We do not include reports in category A because no error has occurred. Near misses
include reports in the categories B, C and D. Adverse events include reports in the categories E, F,

G, H and I

Category Description Number Percent

No Error
A Circumstances or events that have the capacity to cause – –

error.

Error, no harm
B An error occurred but the error did not reach the patient. 490,638 44.56
C An error occurred that reached the patient but did not 506,589 46.01

cause patient harm.
D An error occurred that reached the patient and required 83,771 7.61

monitoring to confirm that it resulted in no harm to the
patient and/or required intervention to preclude harm.

Error, harm
E An error occurred that may have contributed to or 15,908 1.44

resulted in temporary harm to the patient and required
intervention.

F An error occurred that may have contributed to or 3354 0.30
resulted in temporary harm to the patient and required
initial or prolonged hospitalization.

G An error occurred that may have contributed to or 183 0.02
resulted in permanent patient harm.

H An error occurred that required intervention necessary 376 0.03
to sustain life.

Error, death
I An error occurred that may have contributed to or 136 0.01

resulted in the patient’s death.

Total 1,100,955 100.00

reports collected over the period January 1, 1999, to December 31, 2007, corre-
sponding to 1,100,955 reports of medication errors collected from 688 participat-
ing hospitals. Each report is categorized according to the “harmscore” developed
by the National Coordinating Council for Medication Error Reporting and Pre-
vention (NCC MERP) (2001). The harmscore identifies the degree of harm to the
patient caused by the reported error. Table 1 summarizes the number and percent
of errors in each harmscore category for the data we consider. The great majority
of reported errors (98.2%) did not harm the patient. Each error report also contains
information on several variables describing and characterizing the circumstances
of the error. There are 14 predefined types of error that may be selected on a re-
port, and multiple types may be cited simultaneously on a single report of error.
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Reports may also cite multiple causes simultaneously out of the 67 predefined
choices available. Definitions for all potential error types and causes are available
in Venturini et al. (2017a).

We created a new dataset containing the number of times each error profile was
reported by each hospital and the number of times it was reported with patient harm
in each hospital, separately by the node of medication use where the error occurred.
We excluded reports from hospitals that submitted fewer than 100 total reports
because these hospitals have the least experience in reporting, and, therefore, they
are likely to have the poorest quality of error reports. The 578 remaining hospitals
submitted 1,097,259 reports between 1999 and 2007. Although there were 30,954
distinct error profiles possible, only a small subset of these possibilities were ever
reported in each node because not all error profiles can occur in each node. Also
note that a single report may contribute to the counts for more than one profile,
since, for example, a report citing two types would be included in the profiles for
both types.

Table 2 shows separately by node: (1) where the medication error occurred,
(2) the average probability of harm (p) across error profiles weighted by the num-
ber of times each error profile occurred, (3) the number of error profiles that are
reported at least once with harm (y > 0), (4) the number of error profiles that are
reported at least once overall (N > 0), and the number of error profiles that are re-
ported at least twice, both (5) with harm (y > 1) and (6) overall (N > 1). The row
in Table 2 labeled “Not recorded” includes information from error reports where
a node was not marked. These reports make up a very small subset of submitted
reports and do not include any reports of errors resulting in harm.

We restrict the analysis to the error profiles that were reported with harm at
least twice (y > 1) because we are not interested in those error profiles that never
result in harm, and those profiles resulting in harm only once may be due to a

TABLE 2
Separately by the node of medication use where the error occurred, the average probability of harm

(p) across all error profiles, weighted by the number of times each error profile occurred, the
number of error profiles reported at least once both with harm (y) and overall (N ), and the number

of error profiles reported at least twice, both with harm and overall. The row “Not recorded”
contains information from reports where the node was not marked

Node 100 × p y > 0 N > 0 y > 1 N > 1

Administering 3.6045 3679 15,414 1798 11,379
Dispensing 0.8897 2423 18,970 1028 14,010
Documenting 1.3496 2827 16,497 1328 11,914
Monitoring 8.0305 591 3302 232 1376
Prescribing 3.0714 2826 12,444 1115 8435
Procurement 1.3363 50 1967 4 554
Not recorded 0.0000 0 60 0 1
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singular misreporting. In addition, we stratify the ranking of the error profiles by
node to provide targeted recommendations for improving safety in each step of the
medication use process. Indeed, exploratory analyses we performed have shown
that the effects of both hospital and error profile on the log odds of harm varies
widely across nodes. In addition, Table 2 confirms the need for differing mean and
variance parameters for the log odds of harm in each node. We present here results
for the prescribing node only, while the results for the other nodes are provided in
Venturini et al. (2017a).

3. A Bayesian Hierarchical Model (BHM) with flexible random effects. In
this section, we introduce a BHM for identifying the medication error profiles with
the largest log odds of harm.

3.1. Model definition. Let Nij be the number of times that the co-occurrence
of the three events (error type, first cause, second cause) that define the error profile
i is cited on a report from hospital j . Let yij be the corresponding number of times
that profile i in hospital j was reported with harm. To estimate the log odds of
harm for each error profile, we introduce the following BHM with crossed random
effects:

Level I: yij |Nij ,pij ∼ Bin(Nij ,pij ),

logit(pij ) = γ + θi + δj ,

Level II: θi |σ,η, k ∼ St(0, σ, k, η), i = 1, . . . , n,

δj |τ 2 ∼ N
(
0, τ 2)

, j = 1, . . . , J,

Priors: γ ∼ N(g,G),(3.1)

τ 2 ∼ IG(a2, b2),

σ 2 ∼ IG(a1, b1),

k ∼ Unif(0,∞),

η ∼ Unif(0,∞).

In this model, pij is the probability of harm for the errors with profile i in hos-
pital j . We model the logit of pij in terms of a fixed effect γ and two sets of
cross-classified random effects [Gelman and Hill (2007)]: (1) an effect for error
profile, {θi, i = 1, . . . , n}, and (2) an effect for hospital, {δj , j = 1, . . . , J }. Be-
cause our primary interest lies in the estimation of the error profile random effects,
we follow the recommendation in Lee and Thompson (2008) and consider a highly
flexible skew-t distribution on the profile random effects, where σ is the scale pa-
rameter, η parameterizes the amount of skewing and k is the degrees of freedom
for the t distribution. This distribution is based on introducing skewing into the
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symmetric scaled t distribution, as described in Fernández and Steel (1998). The
parameters characterizing the center (in our case, set at 0) and the spread (σ ) refer
to the mean and standard deviation of the underlying symmetric distribution. In the
skew-t distribution, the centrality parameter defines the mode of the distribution,
but it is no longer either the mean or the median. Similarly, in the skew-t distribu-
tion, σ still characterizes the spread, but it can no longer be interpreted directly as
the standard deviation of the distribution. The posterior distributions on σ , k and η

provide evidence on the shape of the random effects distribution that is supported
by the data.

Under the skew-t distribution, we interpret γ as the mode of the distribution
of the log odds of harm across all error profiles and hospitals. The random effect
θi , our main parameter of interest, is the additional log odds of harm with respect
to γ that is associated with error profile i, and σ characterizes the heterogeneity
in the true log odds of harm across error profiles, controlling for the clustering
of data within hospital. The random effect δj is the additional log odds of harm
with respect to γ that is associated with hospital j , and τ characterizes the hetero-
geneity in the true log odds of harm across hospitals, controlling for error profile.
The values for the hyperparameters were chosen to induce noninformative priors,
including g = −4 (corresponding to the logit of the overall probability of harm
among all reports, that is, 1.8%), G = 1000, and a1 = b1 = a2 = b2 = 0.001. Im-
proper uniform priors were used for k and η.

3.2. Model estimation. A full Bayesian estimation of model (3.1) requires the
implementation of a complicated Markov Chain Monte Carlo simulation algorithm
with data augmentation. The data augmentation approach is motivated by the rep-
resentation of a Student t-distribution as a scale mixture of normals [Fernández
and Steel (1998)]. Therefore, to alleviate the computational burden of the algo-
rithm, we approximate the calculation of the marginal posterior distribution of the
θi parameters by adopting a two-step approach. First, we fix k = ∞ and η = 1,
forcing a symmetric, normal distribution on the θi . With k and η fixed, we ob-
tain a sample, π∞,1, from the joint posterior distribution of all other parameters
via MCMC with adaptive Metropolis steps for each set of random effects [Haario,
Saksman and Tamminen (2001)]. More specifically, the model is reparameterized
(hierarchically centered) so that we sample from the posteriors of γ + δj rather
than directly from the posteriors of δj to improve efficiency [Browne (2004)]. We
use adaptive random-walk Metropolis–Hastings steps for the random effects, θ i

and γ + δj , to achieve acceptance rates between 20–50%. The initial proposal dis-
tribution for each random effect is taken to be a normal distribution with a small
standard deviation of 0.25. This standard deviation was updated every 100 itera-
tions of the chain. The chain is checked for convergence every 2500 samples and
then the Monte Carlo error is computed [see Flegal, Haran and Jones (2008)].
After 15,000 iterations, with the first 2500 discarded as burn-in, we achieved the
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desired Monte Carlo error (< 0.05 for all parameters except for the very noisy
hospital-specific random effects for which the error was < 0.2).

In the second step, we consider deviations from the normal random effects dis-
tribution, including k = {3,6,10,30,60,∞} and η = {0.5,0.8,1,1.25,2}, corre-
sponding to an extreme left skew, moderate left skew, no skewing, moderate right
skew and extreme right skew, respectively. For each pair of (k, η) values, we use
importance link function estimation [MacEachern and Peruggia (2000)] based on
the chain π∞,1 to obtain new posterior samples under these values. Then we ap-
proximate the marginal posterior distribution of (k, η) using importance resam-
pling. We briefly review the main idea of importance link function estimation in
Section 2 of Venturini et al. (2017a).

In particular, we first transform the sample π∞,1 by the link function, which
should be chosen to yield a transformed sample, π̃ k,η, that more closely resembles
the desired posterior distribution. In this case, the only parameters that we expect
to have significantly changed posteriors under the new values of (k, η) are the θi .
Therefore, we use the identity transformation for all other parameters (γ , δ, σ ,
τ ), and choose the transformation for each θi as the corresponding unnormalized
(conditional) posterior distribution

(3.2) fi(θi;γ, δ, σ, k, η) =
J∏

j=1

Bin(yij |Nij ,pij )St(θi |0, σ, k, η).

We let θ̃
k,η
i = θ̂

k,η
i + A

k,η
i (θi − θ̂

∞,1
i ), where

θ̂
k,η
i = max

θ
fi(θ; γ̂ , δ̂, σ̂ , k, η),

θ̂
∞,1
i = max

θ
fi(θ; γ̂ , δ̂, σ̂ , k = ∞, η = 1),

A
k,η
i =

√√√√√√
∂2

∂θ2 log{fi(θ; γ̂ , δ̂, σ̂ ,∞,1)}|
θ=θ̂

∞,1
i

∂2

∂θ2 log{fi(θ; γ̂ , δ̂, σ̂ , k, η)}|
θ=θ̂

k,η
i

,

and θi is a sample from π∞,1. The quantities, γ̂ , δ̂ and σ̂ are the posterior mean
estimates of these parameters from π∞,1. Moreover, θ̂

k,η
i and θ̂

∞,1
i are the modes

of the posterior distribution (3.2) under the corresponding two cases. Last, the
quantity A

k,η
i is related to the Jacobian of the transformation defined above [see

Example 2 in MacEachern and Peruggia (2000)].
Finally, we take a 10% resample (without replacement) from the transformed

chain, π̃ k,η, with a sampling probability proportional to the importance ratio

(3.3) IR =
n∏

i=1

fi(θ̃
k,η
i ;γ, δ, σ, k, η)

fi(θi;γ, δ, σ,∞,1)/A
k,η
i

.
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Under uniform priors for k and η, we estimate the unnormalized posterior probabil-
ity of each combination of (k, η) values by summing the corresponding importance
ratios [see, e.g., Gelman et al. (2014), Section 13.5].

Even if it does not take fully into account the uncertainty related to the estima-
tion of k and η, our approach presents two main advantages. The first one regards
the computational speed of the algorithm, which is fairly reasonable even in our
implementation in plain R (see Section 7), that is, without relying on more effi-
cient programming languages such as C/C++ or Julia. The second advantage is the
possibility to perform a thorough sensitivity analysis of the results by choosing
any specific values of k and η. Furthermore, one could easily modify the equations
above and consider a prior specification for the θi’s which differs from the one we
chose.

3.3. Optimal Bayesian ranking. Using the posterior samples of the θi , we es-
timate the ranks of the log odds of harm of the various error profiles. We choose
to rank profiles based on the log odds of harm because a high log odds of harm
could indicate inadequate safeguards for that combination and ample opportunity
for system improvement. We desire estimates that produce high ranks when the
log odds of harm is high, appropriately accounting for the varying amount of un-
certainty across estimates of θi . We use optimal Bayesian ranking as described in
Shen and Louis (1998) and Louis and Shen (1999), which gives estimates of rank
for profile i

(3.4) R̂i =
n∑

k=1

P̂(θk ≤ θi |y,N),

where P̂(θk ≤ θi |y,N) denotes the estimate of the posterior probability that
{θk ≤ θi} based on the sampled values from the MCMC simulation. Typically, the
optimal ranks R̂i are not integers.

3.4. Posterior predictive model checking. In the previous sections, we out-
lined a model and an estimation technique that are focused on ranking error pro-
files with respect to their log odds of harm, accounting for the heterogeneity across
hospitals. We allow the data to provide evidence on the preferred shape of the ran-
dom effects distribution for error profiles (i.e., on the preferred values of σ , k

and η), but restrict the hospital random effects to a normal distribution. Therefore,
investigators may be interested in checking the quality of model fit for the hospital
random effects and determining the improvement in fit from the resampled model
in (3.1) compared to the model with normally distributed random effects for error
profiles.

These questions may be addressed using the posterior predictive checking strat-
egy described in Gelman, Meng and Stern (1996) and Gelman et al. (2000). We
create a sample of replicated data, Y

rep
ij ∼ Bin(Nij ,pij ), where the values of pij
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are taken from the MCMC chain from a fitted model. Let the test statistic, T , be
some function of the data. We compare the values of T in the replicated data, T rep,
to the value of T in the observed data, T obs, via the posterior predictive p-value

(3.5) p-valueT = min
{
P̂

(
T rep ≤ T obs|y,N

)
, P̂

(
T rep ≥ T obs|y,N

)}
.

In order to examine the adequacy of model fit separately for the error profile ran-
dom effects and the hospital random effects, we consider two sets of test statistics:
Yi+ = ∑J

j=1 Yij and Y+j = ∑n
i=1 Yij . Small p-values for the Yi+ test statistics in-

dicate error profiles with observed data that is not predicted well by the model and
possible problems in the error profile random effects distribution. Small p-values
for the Y+j test statistics indicate hospitals with observed data that is not predicted
well by the model and possible problems in the hospital random effects distribu-
tion. We calculate posterior predictive p-values for each error profile (Yi+) and
hospital (Y+j ) before and after the resampling step described in Section 3.2.

4. Empirical Bayes Data Mining (EBDM). As a way to check the robust-
ness of the ranking determined by the method presented in the previous sections,
we now describe how to adapt the approach discussed in DuMouchel (1999) to our
medication error data. This method is one of the most widely used approaches for
signal detection in SRSs, and it is used by the FDA in its adverse event reporting
system. In DuMouchel (1999), investigators sought to determine likely adverse
drug reactions from post-marketing data. Statistically, this objective requires the
identification of “interestingly large” cell counts in a large, sparse frequency ta-
ble of medication-event combinations. As in DuMouchel (1999), our data can also
be represented as a large, multidimensional contingency table, given by (Harm ×
Type × Cause 1 × Cause 2). We would like to identify the “interestingly large”
cell counts, particularly those cells containing information on harmful errors that
have large counts compared to the count that would be expected if error profile and
harm were independent. In addition, we want to stratify the statistical analysis by
hospital to control for potential reporting biases by hospital.

We illustrate how to apply this approach to our data in Venturini et al. (2017a).

5. Identifying the most harmful error profiles in the prescribing node.
There were a total of n = 1115 different profiles of medication error in the pre-
scribing node that were reported as resulting in harm at least twice (y > 1) between
1999 and 2007 from 533 hospitals that reported more than 100 total medication er-
rors. The top panels of Figure 1 show boxplots of the raw probability of harm for
each error profile (on the left) and each hospital (on the right) by binned sample
size (N ), with the raw probability of harm defined as

∑J
j=1 yij /

∑J
j=1 Nij for the

error profiles and
∑n

i=1 yij /
∑n

i=1 Nij for the hospitals. The lower panels of Fig-
ure 1 present the frequencies of error profiles and hospitals in each bin. These plots
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FIG. 1. The top panel contains boxplots of the raw rates of harm for error profiles (left) and hos-
pitals (right), binned according to the total sample size (total number of reports) for each profile or
hospital. The lower panel contains the number of error profiles (left) or hospitals (right) in each bin
of sample size.

show that the error profiles with the highest estimated probabilities of harm are also
those with the smallest sample size, that is, those that occurred less frequently. This
finding indicates that the highest observed rates of harm are due to sampling vari-
ability, rather than strong effects for these error profiles, and estimation will benefit
from a random effects model that shrinks the less precisely estimated log odds of
harm toward the mean. The highest observed rates of harm for error profiles with
moderately large sample sizes (> 30) are in the range of 10–20%. These rates are
still large compared to the overall rate of harm (1.8%), but are much smaller than
the observed rates for the least frequently cited error profiles. On the other hand,
many hospitals with large sample sizes report a high proportion of harmful errors.
For example, one hospital that reported between 501 and 1000 errors cited harm
on nearly 60% of reports. Clearly, much of the variability in the reporting of harm
can be explained by the varying tendency to report harmful events across hospitals,
and this variation must be accounted for when ranking error profiles.
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FIG. 2. The log unnormalized marginal posterior distributions for k and η, calculated at the six
values of k and five values of η considered. The dot indicates the maximum at k = 3 and η = 0.8.

Figure 2 displays the log of the unnormalized marginal posterior densities for
k and η, calculated from the importance ratios (3.3) for the six values of k and
five values of η considered. This figure shows that the data support a moderate
left skew (η = 0.8) in the distribution of random effects across error profiles. Fig-
ure 2 also shows that the data support small values of k (k = 3), corresponding
to distributions with much heavier tails and less shrinkage than the normal distri-
bution. Therefore, we focus the remainder of the paper on results from the model
estimated with a skew-t random effects distribution for error profile with skew
parameter η = 0.8 and degrees of freedom k = 3.

Figures C1 and C2 in Venturini et al. (2017c) provide details about the BHM
estimation, while Figure C3 in the same document compares the posterior predic-
tive p-values under the model with normally distributed error profile random ef-
fects and under the resampled model with skew-t random effects. The latter figure
shows that prediction is substantially improved after resampling for most profiles.

Table 3 summarizes the fifteen error profiles within the prescribing node that
have the highest estimated optimal Bayesian ranks based on the log odds of harm.
Table 3 also summarizes for each of the most harmful profiles: (1) the ordering
based on EBGMhtc1c2 , the estimated geometric mean of the empirical Bayes pos-
terior distribution as defined in Venturini et al. (2017c), (2) the probability of harm
as estimated by the BHM, (3) the number of times the profile resulted in harm,
(4) the number of times that the profile occurred, and (5) the type and causes defin-
ing the error. For example, the top-kranked error profile in the prescribing node is a
“prescribing error” (type) caused by “performance (human) deficit” (cause 1) and
“reconciliation-discharge” (cause 2). It has an estimated 10.48% probability of be-
ing reported with harm, and it was reported 23 times overall with 8 of those reports
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TABLE 3
The fifteen medication error profiles in the prescribing node with the highest estimated optimal

Bayesian ranks. The maximum possible rank is n = 1115. The first column (BHM) summarizes the
estimated optimal Bayesian rank based on the estimated probability of harm from the BHM in the
third column (100p̂); the second column (EBDM) contains the ordering based on the estimated

empirical Bayes grand mean EBGMhtc1c2 from the EBDM model; the fourth column (y) contains
the number of times the event resulted in harm; the fifth column (N ) summarizes the total number of

times the event occurred. The remaining columns describe the error profile definition (type ×
cause 1 × cause 2)

BHM EBDM 100p̂ y N Type Causes

1 1058.5 1073 10.48 8 23 Prescribing
error

Performance (human) deficit
Reconciliation-discharge

2 1049.1 1107 4.93 38 213 Improper
dose/quantity

Knowledge deficit
System safeguard(s)

3 1045.7 1103 5.19 25 262 Improper
dose/quantity

Knowledge deficit
Monitoring inadequate/lacking

4 1044.4 1114 4.48 75 493 Prescribing
error

Knowledge deficit
System safeguard(s)

5 1009.8 1104 4.47 29 422 Improper
dose/quantity

Monitoring inadequate/lacking
Performance (human) deficit

6 1009.4 1110 4.18 49 592 Prescribing
error

Knowledge deficit
Monitoring inadequate/lacking

7 979.6 1091 4.76 16 94 Prescribing
error

Communication
Contraindicated in disease

8 970.5 1093 4.36 19 214 Improper
dose/quantity

Monitoring inadequate/lacking
Procedure/protocol not followed

9 944.2 1112 3.56 76 1193 Prescribing
error

Monitoring inadequate/lacking
Performance (human) deficit

10 942.2 1109 3.58 64 504 Prescribing
error

Communication
System safeguard(s)

11 922.8 1086 4.27 13 90 Prescribing
error

Dispensing device involved
Contraindicated, drug allergy

12 906.8 1101 3.46 36 487 Prescribing
error

Documentation
Contraindicated, drug allergy

13 892.5 1094 3.50 24 226 Prescribing
error

Monitoring inadequate/lacking
System safeguard(s)

14 890.1 1105 3.35 43 534 Prescribing
error

Monitoring inadequate/lacking
Procedure/protocol not followed

15 880.2 1097 3.35 33 295 Improper
dose/quantity

Performance (human) deficit
System safeguard(s)

citing harm. The estimated optimal Bayesian rank for this error profile is 1058.5,
and the ordering from the EBDM method is 1073 out of n = 1115. Therefore, both
the BHM and the EBDM method indicate that preventing occurrences of this error
profile is one of the top priorities for reducing harm due to medication errors in the
hospital.
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The cause “reconciliation-discharge” refers to a process of reviewing a patient’s
medications at the time of discharge and determining if discrepancies between the
current and ordered medication list is due to error. Medication reconciliation has
been shown to reduce prescribing errors in discharges from the ICU [Pronovost
et al. (2003)]. However, the high probability of harm in this top-ranked error profile
indicates that when mistakes are made in reconciliation, the resulting prescribing
errors will often result in harm to the patient. Therefore, double checking the rec-
onciliation review may be a useful intervention for hospitals that do not currently
have a system in place for preventing these errors.

Other error profiles listed in Table 3 vary widely with respect to the specificity
of the error profile definition and the number of occurrences. We find that most
highly ranked error profiles with moderate to small sample sizes are associated
with highly specific causes. For example, the 7th ranked error profile is a “pre-
scribing error” caused by “communication” and “contraindicated in disease.” This
error profile directly indicates the kinds of interventions that might be useful for
preventing it—in this case, interventions to improve communication among health-
care providers about patients’ comorbidities during prescribing. Conversely, the
majority of error profiles with very large sample sizes relate to combinations of
nonspecific error causes and types, resulting in noninformative intervention rec-
ommendations. For example, the error profile with the highest ordering from the
EBDM model is a “prescribing error” caused by “knowledge deficit” and “com-
munication.” It occurred a total of 2808 times and resulted in harm 147 times.
While this error profile clearly represents many harmful events, its definition is
very broad, making the development of a targeted prevention strategy for these er-
rors very challenging. This error profile is given a rank of 836.4 out of 1115 by the
BHM.

In general, the BHM and EBDM method provided qualitatively similar order-
ings of the error profiles. Of the error profiles with a Bayesian rank in the top
fifteen, nine have an EBGMhtc1c2 value in the top 15, and all have an EBGMhtc1c2

in the top 50 out of the 1115 error profiles considered. However, important quanti-
tative differences between the two methods are observed in this analysis. Specifi-
cally, the BHM generally gives higher estimated ranks to error profiles with higher
raw rates of harm and smaller sample sizes and, therefore, highly specific error
profile definitions. The EBDM model gives higher orderings to error profiles with
lower raw rates of harm and larger sample sizes and, therefore, less specific error
profile definitions.

6. Discussion. Databases such as MEDMARX contain information on many
sources of potential harm in the medication-use process. Even hospitals with a
sophisticated safety culture have neither the time nor the resources to understand
and intervene on all of them simultaneously. Moreover, events that are rare but
very harmful may be difficult to detect within a single hospital until they have al-
ready caused significant patient harm. Using data from many hospitals to prioritize
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medication events for intervention allows us to consider the vast array of potential
events in each step of the medication-use process and identify those that are lacking
or have inadequate safeguards. Therefore, a robust approach for prioritization and
characterization of events from these data is very important for improving med-
ication safety. The statistical model and data analysis presented here allow us to
characterize the medication errors that pose the highest risk of harm across many
hospitals. In addition, considering that in recent years many hospitals have im-
plemented systematic programs for medication reconciliation [see, e.g., Boockvar
et al. (2006), Kwan et al. (2013), Mueller et al. (2012), Ramjaun et al. (2015)],
another application of the methodology we present could be to investigate the ef-
fectiveness of such large-scale interventions through a comparison of the results
before and after the introduction of such programs.

The error profiles that have a high log odds of harm in the MEDMARX data and
that will be identified by the methods presented in this paper must result from one
of two possible patterns, both of which indicate a need for interventions: (1) the
error profile results in harm frequently when it occurs, and is generally reported
accurately regardless of the resulting harm, or (2) the error profile is rarely caught
and reported unless harm has occurred, causing the nonharmful occurrences of the
error profile to be underreported. In the first case, these profiles clearly have large
opportunities for improvements in safety and are in need of additional safeguards
to prevent the errors from causing harm. In the second case, the profiles are in need
of interventions to catch the errors before they cause harm. Therefore, the error
profiles identified with the highest log odds of harm will be important for setting
intervention priorities, regardless of error profile-specific biases in reporting. In
this work we focused exclusively on the error profiles, while we disregarded com-
pletely the hospital effects, denoted as δj in (3.1). We did it on purpose because
these parameters strongly depend on each hospital’s reporting practices. Different
hospitals use the system in different ways, and so we adjust for hospital effects to
account for this, but don’t want to interpret those parameters as indicative of hos-
pital quality. A further decision we took is to define an error profile by its type and
causes. This characterization may appear subjective because it may not include
all relevant aspects of an error, or even overemphasize some of them. However,
this definition provides a good comprise for recommending targeted interventions
while including in the analysis many reported events so that we do not lose too
much statistical power.

We considered two methods for ranking the error profiles with respect to their
probability of resulting in harm: a BHM for the log odds of harm and the EBDM
model for the ratio of observed to expected rates of reporting harm that was adapted
from the SRS literature [see Ahmed, Bégaud and Tubert-Bitter (2015), Gibbons
and Amatya (2016)]. Both methods produced qualitatively similar orderings of the
error profiles by shrinking estimates for profiles with extreme observed rates of
harm and small sample sizes. In addition, both methods account for the variation
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in the rates of reporting harm across hospitals. However, there were some impor-
tant differences between the two methods. First, for each error profile, the BHM
provides an estimate of the rank that accounts for the posterior uncertainty in our
estimates of the log odds of harm. The EBDM method provides only an ordering,
based on the posterior means of the error profile parameters. This ordering does
not incorporate the uncertainty in the profile parameters and does not accurately
represent the distance between the estimated parameters across error profiles. Un-
derstanding both the distance between parameter estimates and our uncertainty
about those estimates is important for determining which error profiles are most in
need of intervention.

Second, the EBDM model is computationally more difficult than the BHM be-
cause it involves the maximization of a five-dimensional likelihood function. In
the data presented in this analysis, finding the likelihood maximum required an
expectation-maximization (EM) algorithm using several randomly chosen start-
ing points to ensure that the maximum identified with this algorithm was global.
An unexpected feature we found is that the parameter estimates we obtained are
larger as compared to those typically arising in the pharmacovigilance context
[e.g., DuMouchel (1999)]. As a consequence, this makes the posterior distribution
of the λs rather insensitive to the data themselves except for very large counts. One
solution to these computational problems may be to embed the EBDM approach in
a fully Bayesian framework by specifying hyperprior distributions on the param-
eters in the gamma mixture distribution. Estimating the model in this way would
further allow for optimal Bayesian ranking of the error profile parameters, λ, as
mentioned by DuMouchel (1999), as well as exploration of other random effects
distributions for λ, as done in the BHM. However, we found that, in some datasets,
estimating the EBDM model would be very challenging, regardless of the estima-
tion procedure, because one or more of the expected counts Ehtc1c2 were equal to
zero. In this case, the ratio λhtc1c2 will be fixed at infinity, no matter how much
shrinkage is applied to μhtc1c2 . Therefore, in these data, we prefer to model the
probability of harm directly because it leads to more interpretable results and sim-
pler computations.

The model presented in this paper used the notion of the importance link func-
tion [MacEachern and Peruggia (2000)] to estimate the optimal Bayesian rank for
error profiles under a flexible class of random effects distributions and then to de-
termine which of those distributions is preferred by the data. Although a normal
distribution for the random effects usually provides the simplest MCMC estima-
tion and is often reasonable, it can be restrictive. The use of a skew-t distribution
for the error profile random effects combined with computation via the importance
link function resampling allowed us to fully explore the sensitivity of results, in-
cluding the relative ranks of error profiles, to the specification of a wide range of
random effects distributions without running multiple MCMC chains. In partic-
ular, the identification of error profiles with extremely large (or small) log odds
of harm was facilitated by the t distribution, which produces less shrinkage on
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random effects estimates. Incorporating skewing into the random effects distribu-
tion allowed for different amounts of shrinkage in the two tails of the distribution,
which is desirable since we had no a priori knowledge that the error profile random
effects should be symmetric.

In particular, using the importance link function resampling to estimate a model
under multiple random effects distributions provided greatly improved estimation
compared to regular importance resampling. Although regular importance resam-
pling has been used to reestimate models under varying random effects distribu-
tions [Gelman et al. (2014)], we argue that this method rarely performs well. If the
posterior distributions of the random effects change considerably under the new hi-
erarchical distribution, then the importance weights will be low for most samples,
reflecting poor resampling properties. If the posterior distributions of the random
effects do not change much under the new hierarchical distribution, then resam-
pling is unneeded because results are invariant to the hierarchical distribution. In
this analysis, transforming the random effects parameters prior to resampling pro-
vided a better pool of samples, especially for the random effects distributions that
were best supported by the data.

Another popular Bayesian approach frequently implemented in practice to flex-
ibly specify the random effects distributions in a hierarchical model is through
nonparametric priors, for example, Dirichlet process mixtures [Escobar and West
(1995), Ferguson (1973), Kyung, Gill and Casella (2010), MacEachern and Müller
(1998), Müller et al. (2015)]. In recent years, there has been an explosion of pro-
posals within this framework. The most recent ones also allow for dependence
across random distributions. For example, in De Iorio et al. (2004) the random ef-
fects distributions Fx are indexed by a q-dimensional vector of categorical covari-
ates, x = (x1, . . . , xq). A nonparametric probability model is then defined for Fx

using an ANOVA-type structure [similar to our specification in (3.1) for logit(pij )]
such that marginally for each x the random measure Fx follows a Dirichlet pro-
cess. Although these models are more difficult to implement in practice, they have
proven to provide a more general approach for random effects distribution model-
ing, and we plan to further study their application within our context in the future.

In addition, many other approaches have been proposed for the checking of ran-
dom effects distributions in generalized linear mixed models besides the posterior
predictive checking strategy employed here. Frequentist approaches generally fo-
cus on diagnostic tests for goodness of fit of a null distribution [Abad, Litière and
Molenberghs (2010), Huang (2011), Tchetgen and Coull (2006), Waagepetersen
(2006)]. While these tests can be useful for rejecting a distribution, they do not
provide guidance on alternative distributions or how to improve the model. Most
Bayesian approaches are closely related to the posterior predictive check [Bayarri
and Castellanos (2007), Dey et al. (1998), Sinharay and Stern (2003), Stern and
Cressie (2000)], but are modified to avoid the conservatism usually associated with
posterior predictive checking (in the sense that the p-values calculated from this
method will not generally have a uniform distribution under the null). For example,
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prior predictive checking, partial posterior predictive checking, and other modifi-
cations on posterior predictive checking focus on invalidating false random effects
distributions. We use classic posterior predictive checks because we are not inter-
ested in the true shape of the random effects distributions or in the values of the
hierarchical parameters from the random effects distributions; we are focused only
in accurately characterizing the evidence on the comparative risks of error profiles.

In this example, posterior predictive checking indicated that the resampled
model with skew-t parameters k = 3 and η = 0.8 has improved prediction and,
therefore, improved the accuracy of rankings for many error profiles. However,
there were still several error profiles with small posterior predictive p-values in
the resampled model. Upon closer examination, we noticed that these error pro-
files correspond to the error profiles with the smallest sample sizes in the dataset
(2 ≤ N ≤ 8), and the small p-values result from consistent under-prediction by the
model. Recall that we restricted the dataset to only include error profiles that were
reported with harm at least twice, and so, for all of these error profiles, yobs

i+ ≥ 2.
Therefore, even the resampled model may be shrinking the effects for these pro-
files too much. We could potentially solve this problem by considering additional
values of k and η, for example, k = 1 to achieve a Cauchy distribution, which
would produce even less shrinkage on the random effects. We don’t consider this
solution here, since these error profiles have very small sample sizes and may be
viewed as outliers. For the majority of error profiles, especially error profiles with
moderate sample sizes, we found that flexible random effects models are useful
tools for accurately characterizing the relative risks of harm in a hospital.

As a final note, we would like to focus on one limitation of our analysis. Since
MEDMARX data are collected on a voluntary basis, they share the same weak-
nesses that are typical of the SRSs, and in particular the uncontrolled collection
of self-reported entries riddled with systematic under-reporting, over-reporting
and duplicate reporting. Many methods for analyzing SRS data have been pro-
posed in the literature, all focusing on the development of automatic signal de-
tection strategies [for an overview see Ahmed, Bégaud and Tubert-Bitter (2015),
Gibbons and Amatya (2016)]. More recently, various techniques have emerged
whose primary aim is the minimization of the false discovery rate [Ahmed et al.
(2009, 2010, 2012)] and the identification of drug-drug interactions [Eugéne et al.
(2000)], but no single method can claim absolute superiority. However, to the best
of our knowledge, no method exists to assess the extent and the consequences of
the biases mentioned above in voluntary databases. Our belief, but we don’t have
any proof, is that the anonymity nature of the MEDMARX data may act as a partial
relief from those biases (especially from under-reporting). At any rate, all these
limitations present both challenges and opportunities for further methodological
developments in the future.

7. Software. All the routines developed during the preparation of this man-
uscript are available as an R package called mederrRank freely downloadable
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from the Comprehensive R Archive Network (http://cran.r-project.org). The pack-
age also contains a subset of the MEDMARX data we used, which are provided
for illustrative purposes.
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SUPPLEMENTARY MATERIAL

Supplement A: Error Definitions and Results for the Other Nodes (DOI:
10.1214/16-AOAS974SUPPA; .pdf). This supplement contains the list of defini-
tions for all potential error types and causes for MEDMARX reports and the re-
sults for the Bayesian hierarchical model (BHM) and empirical Bayes data mining
(EBDM) approach applied to the data from each of the four other nodes of medi-
cation use: documenting, dispensing, administering and monitoring.

Supplement B: Empirical Bayes Data Mining Approach (DOI: 10.1214/16-
AOAS974SUPPB; .pdf). Section 1 of this supplement shows how to adapt the
GPS method developed by DuMouchel (1999) and briefly described in Section 4
to the MEDMARX data. Moreover, in Section 2 we provide a brief description of
the importance link function estimation as described in MacEachern and Peruggia
(2000).

Supplement C: Bayesian Hierarchical Model Estimates (DOI: 10.1214/16-
AOAS974SUPPC; .pdf). This supplement reports more details about the estima-
tion of the BHM described in Section 3.
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