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Abstract 

Upon activation, lymphocytes exit quiescence and undergo substantial increases in 

cell size, accompanied by activation of energy-producing and anabolic pathways, 

widespread chromatin decompaction and elevated transcriptional activity. These 

changes depend upon prior induction of the Myc transcription factor, but how Myc 

controls them remains unclear. We addressed this issue in primary mouse B-cells, 

based on conditional deletion of the c-myc gene, followed by LPS stimulation. Myc 

was rapidly induced, became detectable on virtually all active promoters and 

enhancers, but had no direct impact on global transcriptional activity. Instead, Myc 

contributed to the swift up- and down-regulation of several hundred genes, including 

many known regulators of the aforementioned cellular processes. Myc-activated 

promoters were enriched for E-box consensus motifs, bound Myc at the highest levels 

and showed enhanced RNA Polymerase II recruitment, the opposite being true at 

down-regulated loci. Remarkably, the Myc-dependent signature identified in activated 

B-cells was also enriched in Myc-driven B-cell lymphomas: hence, besides 

modulation of new cancer-specific programs, the oncogenic action of Myc may 

largely rely on sustained deregulation of its normal physiological targets. 

Introduction 

Mature splenic B-cells can be activated ex vivo to re-enter the cell cycle and 

differentiate into antibody-producing cells, accompanied by massive increases in cell 

size and RNA content (Kieffer-Kwon, Nimura et al., 2017, Kouzine, Wojtowicz et al., 

2013, Nie, Hu et al., 2012, Pogo, Allfrey et al., 1966, Sabò, Kress et al., 2014). This 

implies a concomitant intensification of the metabolic pathways needed to provide 

energy and building blocks for macromolecular biosynthesis and cell growth and, in 

turn, the necessity for the cells to adapt their transcriptional and translational outputs 

to the augmented cell size and metabolic activity (Marguerat, Schmidt et al., 2012). A 

key regulator in this overall process is the Myc transcription factor, encoded by the c-

myc proto-oncogene: indeed, Myc is directly induced by mitogenic signals and, in 

turn, is thought to orchestrate the plethora of transcriptional changes that foster cell 

growth and proliferation, as exemplified in cultured mouse fibroblasts (Perna, Faga et 

al., 2012, Winkles, 1998). In either B or T lymphocytes, c-myc serves as a direct 
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sensor of activating signals (Caro-Maldonado, Wang et al., 2014, Dominguez-Sola, 

Victora et al., 2012, Kelly, Cochran et al., 1983, Luo, Weisel et al., 2018, Nie et al., 

2012, Wang, Dillon et al., 2011) and is required for multiple facets of cellular 

activation, including metabolic reprogramming, ATP production, ATP-dependent 

chromatin decompaction, RNA and biomass accumulation, cell growth, etc… (Caro-

Maldonado et al., 2014, de Alboran, O'Hagan et al., 2001, De Silva & Klein, 2015, 

Kieffer-Kwon et al., 2017, Link & Hurlin, 2015, Murn, Mlinaric-Rascan et al., 2009, 

Nie et al., 2012, Perez-Olivares, Trento et al., 2018, Sabò et al., 2014, Wang et al., 

2011). However, how Myc activity impacts on those diverse cellular features remains 

largely unclear.  

Myc binds DNA and activates transcription as a dimer with its partner protein 

Max (Amati, Dalton et al., 1992, Blackwood & Eisenman, 1991, Kretzner, 

Blackwood et al., 1992) but its precise contribution to transcriptional programs in 

cells has been subject of an intense debate in the field in recent years: while multiple 

studies indicated that Myc can either activate or repress select target genes (Amati et 

al., 1992, Dang, 2013, Eilers & Eisenman, 2008, Kress, Sabò et al., 2015, Kretzner et 

al., 1992, Perna et al., 2012), others concluded that it acts instead as a general 

activator – or amplifier – of all expressed genes (Lin, Loven et al., 2012, Nie et al., 

2012, Porter, Fisher et al., 2017, Zeid, Lawlor et al., 2018). However, careful scrutiny 

of the available data (Kieffer-Kwon et al., 2017, Kress, Pellanda et al., 2016, Lin et 

al., 2012, Lorenzin, Benary et al., 2016, Muhar, Ebert et al., 2018, Nie et al., 2012, 

Perna et al., 2012, Porter et al., 2017, Sabò et al., 2014, Walz, Lorenzin et al., 2014, 

Zeid et al., 2018) lends no formal support to this model, suggesting instead that RNA 

amplification – when present – is one of the consequences of the metabolic and 

genomic changes that occur during cellular activation and/or transformation (Kress et 

al., 2016, Sabò & Amati, 2018). Hence, understanding the precise contribution of 

Myc to global changes in RNA biology will require a fine mapping of direct, Myc-

dependent transcriptional programs. 

The B-cell system, with its global increase in RNA transcription during cell 

activation (Pogo et al., 1966), offers a valuable tool to assess the order of events that 

lead from the triggering of a signaling event to cell cycle entry, cell growth and RNA 

amplification, and to understand how these events depend upon prior activation of 

Myc. Toward this aim, we profiled gene expression along with the genomic 
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distribution of Myc and RNA polymerase II (RNAPII) during B-cell activation in 

vitro in wild type and c-myc
 
knock-out cells. Our data led to the identification of a 

specific Myc-dependent transcriptional program occurring within the first few hours 

upon cell activation, pre-setting the stage for the subsequent global increase in 

metabolic and biosynthetic activities.  

Results and Discussion 

In order to characterize the contribution of Myc to B-cell activation, we took 

advantage of mice homozygous for a conditional c-myc knockout allele (c-

myc
f/f

)(Trumpp, Refaeli et al., 2001). Freshly purified c-myc
f/f

 and control c-myc
wt/wt

 

B-cells were treated with Cre recombinase, deleting c-myc
f/f

 with 70-80% efficiency 

(henceforth c-myc
∆/∆

) (Fig. EV1a) and preventing the LPS-induced accumulation of 

the c-myc mRNA and protein (Fig. EV1b, c). Chromatin Immunoprecipitation (ChIP) 

analysis confirmed rapid binding of Myc to a known target locus (Ncl) in c-myc
wt/wt

 

cells (Fig. EV1d). Ncl and other Myc-dependent mRNAs previously identified in 

fibroblasts (Perna et al., 2012) responded to LPS in B-cells and required Myc for 

maximal accumulation, from 4h onward (Fig. 1a, Fig. EV1e). While global RNA 

levels also increased in a Myc-dependent manner (Nie et al., 2012, Sabò et al., 2014), 

this occurred later (24h, Fig. EV1f) concomitant with increases in bulk RNA 

synthesis and nuclear size (Fig. 1b), overall cell size (Kieffer-Kwon et al., 2017, 

Kouzine et al., 2013, Sabò et al., 2014), as well as S-phase entry (Fig. EV1g)(Sabò et 

al., 2014). As expected (de Alboran et al., 2001, Kieffer-Kwon et al., 2017, Murn et 

al., 2009, Sabò et al., 2014), all of the above effects were lost in c-myc
∆/∆

 cells, 

accompanied by a reduced proliferative response (Fig. EV1g, h), residual expansion 

at 48-72h resulting from the selection of non-deleted c-myc
f/f

 cells (Fig. EV1i). 

Hence, c-myc
f/f

 B-cells provide a reliable system to address the role of Myc within the 

first cell division cycle after LPS stimulation. 

We used RNA-seq to profile the Myc-dependent transcriptional response 

shortly after LPS stimulation (2, 4 and 8h): based on a ≥1.5 fold-change to call 

differentially expressed genes (DEGs: Log2FC ≥0.58; qval ≤ 0.05), LPS induced the 

rapid up- and down-regulation of several thousand mRNAs (Fig. EV2a). We defined 

Myc-regulated genes as those for which the magnitude of the LPS response was 

reduced by at least 1.5-fold in c-myc
∆/∆

 relative to c-myc
wt/wt

 cells (groups 1-4, Fig. 1c, 

d, Supplementary Table 1, 2): among these, the most abundant were Myc-dependent 
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LPS-induced and repressed genes, both showing dampened responses in c-myc
∆/∆

 

cells (groups 1 and 3), while much fewer mRNAs showed reinforced responses 

(groups 2 and 4). In line with the kinetics of Myc accumulation, Myc-dependent 

responses were rare at 2h but increased at later time-points (Fig. 1d, Fig. EV2b). 

Moreover, leaving aside an intervening “grey zone”, significant fractions of all 

mRNAs showed Myc-independent up- or down-regulation by LPS (altered ≤1.15 fold  

in c-myc
∆/∆

 relative to c-myc
wt/wt

 cells; groups 5, 6; Fig. 1c, d, Supplementary Table 

1, 2). Besides analyzing mature mRNA species, we used intronic reads to quantify 

pre-mRNAs and to computationally model rates of RNA synthesis, processing and 

degradation along the time-course: as observed following MycER
T2

 activation in 

fibroblasts (de Pretis, Kress et al., 2017), the changes in pre-mRNA and mRNA levels 

elicited by either LPS or c-myc deletion correlated with variations in synthesis rate, 

with no significant alterations in either processing or degradation (Fig. 1e). In 

conclusion, Myc was rapidly induced by LPS and modulated the transcriptional 

response of select groups of genes in early G1 (4-8h), preceding general effects on 

biomass accumulation and cell size (Sabò et al., 2014). 

We then used ChIP-seq to profile Myc along the genome: approximately 2000 

binding sites were detected in resting wild-type B-cells, rising to ca. 22000 after LPS 

stimulation (either 2, 4 or 8h), with consistent overlaps along the time-course (Fig. 

2a). Most Myc-binding sites were proximal (-2 to +1 kb) to an annotated transcription 

start site (TSS), albeit the fraction of distal sites increased upon stimulation (from 

12% at 0h to 45% at 8h). Remarkably, the progression of Myc-binding profiles upon 

LPS-stimulation was virtually overlapping with that seen in vivo when comparing 

control c-myc
wt/wt

 (C), pre-tumoral Eµ-myc transgenic B-cells (P) and lymphomas 

(tumor: T) (Fig. 2b, c), consistent with parallel increases in Myc levels (Sabò et al., 

2014). Further comparison with histone mark profiles in c-myc
wt/wt

 B-cells (Sabò et 

al., 2014) showed that Myc-binding sites pre-existed in an active state characterized 

by elevated H3K4me3 and H3K4me1 at proximal and distal sites, respectively, with 

H3K27ac at both (Fig. 2b-e), indicative of active promoters and enhancers. While few 

of these regulatory regions (<20% and <5%, respectively) were bound by Myc in 

naïve B-cells (0h or C), most were targeted upon either LPS stimulation or tumor 

development (Fig. 2f): those bound in resting conditions corresponded to high affinity 

sites that were also the most efficiently bound upon Myc activation (Fig. 2g) and 
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showed the highest enrichments for Myc-binding consensus motifs (Fig. 2h). 

Altogether, in line with previous observations in either B-cells (Guccione, Martinato 

et al., 2006, Lin et al., 2012, Nie et al., 2012, Sabò et al., 2014) or others (Guo, Li et 

al., 2014, Kress et al., 2016, Kress et al., 2015, Lin et al., 2012, Lorenzin et al., 2016, 

Soufi, Donahue et al., 2012, Walz et al., 2014, Zeid et al., 2018), acute accumulation 

of Myc upon LPS treatment led to its widespread association with pre-existing 

promoters and enhancers: this phenomenon, also termed “invasion” (Lin et al., 2012, 

Nie et al., 2012, Sabò et al., 2014), most probably occurs through low affinity, non 

sequence-specific interactions with genomic DNA. Together with the findings that 

Myc deletion only impacts a subset of the genes regulated by either LPS (this work) 

or serum (Perna et al., 2012), we infer that chromatin association cannot be 

systematically equated with productive regulatory engagement of the transcription 

factor onto genomic DNA (de Pretis et al., 2017, Kress et al., 2015, Muhar et al., 

2018).  

One parameter predicting transcriptional responses in other cell types was the 

relative efficiency in Myc binding at promoters (de Pretis et al., 2017, Kress et al., 

2016, Lorenzin et al., 2016, Muhar et al., 2018), or “Myc share”(de Pretis et al., 

2017): indeed, those genes for which the RNA synthesis rate increased upon LPS 

stimulation also showed the highest gains in Myc binding (i.e. increasing share), 

while those with a reduced synthesis showed the lowest gains (decreasing share) (Fig. 

3a, b). This correlation was the strongest for Myc-dependent genes, although still 

present at Myc-independent loci, as also observed in a model of Myc-driven liver 

cancer (de Pretis et al., 2017, Kress et al., 2016): albeit paradoxical at first sight, this 

observation is consistent with the notion that promoter activity and Myc binding are 

mutually dependent, owing to the interaction of Myc with open chromatin, co-factors 

and components of the basal transcription machinery (Guccione et al., 2006, Richart, 

Carrillo-de Santa Pau et al., 2016, Thomas, Wang et al., 2015). In previous work, 

high-affinity E-box-containing loci were deemed to be already saturated by Myc at 

the population level in proliferating U2OS cells, thus showing no – or negligible – 

increases in either Myc binding or transcriptional activity upon Myc overexpression 

(Lorenzin et al., 2016): in our experiments instead, virtually all promoters – regardless 

of initial binding intensities – showed increased Myc binding upon stimulation (Fig. 

3c), implying that these were far from saturation to start with. Accordingly, Myc-
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dependent LPS-induced genes, showed not only the highest increase in Myc binding 

(Fig. 3a) but also the highest frequency of E-boxes (Fig. 3d). Hence, upon B-cell 

stimulation, with a concomitant transition from very low to high Myc levels, Myc 

drove rapid and selective activation of high-affinity promoters, most frequently – but 

not always – associated with the presence of the E-box binding motif.  

In order to address the mechanisms of transcriptional regulation by Myc, we 

profiled RNA polymerase II (RNAPII) by ChIP-seq, computed its quantitative 

changes in the promoter (TSS), gene body (GB) and termination site (TES) of 

regulated genes, and confronted those to the changes in RNA synthesis rates (Fig. 

EV3a, b). As expected, LPS-induced genes showed consistent increases in RNAPII 

densities in all of their domains, the opposite being true for repressed genes: most 

importantly, these effects of LPS on RNAPII were suppressed by c-myc deletion at 

Myc-dependent, but not Myc-independent loci (Fig. EV3 c, d). We then used a 

dedicated algorithm (de Pretis et al., 2017) to model the kinetic rates governing the 

RNAPII cycle at each locus, including its recruitment to the promoter (p1), pause-

release (p2), elongation (p3) and release from the transcription end site (TES, p4) (Fig. 

4a). Remarkably, the four rates were altered at Myc-dependent genes in c-myc
∆/∆ 

cells, indicating that Myc deletion impacted on all steps of the transcription cycle 

(Fig. 4b, c): however, as seen after MycER
T2

 activation in fibroblasts(de Pretis et al., 

2017), RNAPII recruitment was the most significantly affected step upon either LPS 

stimulation or Myc deletion. To increase the resolution of our analysis, we clustered 

LPS-regulated genes on the basis of RNAPII dynamics (Fig. 4d, e; and Fig. EV4, 5, 

Supplementary Table 3): remarkably, the largest sets of LPS-activated genes (CL1: 

Myc-dependent; CL9: Myc-independent), were almost exclusively regulated through 

RNAPII loading (Fig. 4f, h) while others showed significant contributions from other 

regulatory steps (Fig. EV4, 5). Among the Myc-dependent induced genes, those of 

CL1 also showed the highest increases in Myc share (Fig. 4g). Myc-dependent 

repressed genes, instead (CL3, 6, 7, 8), were characterized by a relative loss of Myc 

binding (decreased share) and by decreased RNAPII recruitment (Fig. 4b, Fig. EV4), 

suggesting that Myc-dependent repression could largely be a passive process(de Pretis 

et al., 2017) – albeit not excluding the existence of active repressive mechanisms at 

select loci (Tu, Shiah et al., 2018, Walz et al., 2014).  Altogether, while modulating 

all stages in the RNAPII cycle, Myc primarily drives RNAPII recruitment at activated 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/561464doi: bioRxiv preprint first posted online Feb. 27, 2019; 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/561464doi: bioRxiv preprint first posted online Feb. 27, 2019; 

http://dx.doi.org/10.1101/561464
http://dx.doi.org/10.1101/561464


Tesi et al. 2019  p. 8 

loci (de Pretis et al., 2017): while it was suggested that Myc mainly regulates pause-

release (Rahl, Lin et al., 2010), our work and others (Davari, Lichti et al., 2017, de 

Pretis et al., 2017) indicate that a careful integrative analysis of RNAPII and RNA 

dynamics is needed to unravel the hierarchical contribution of distinct regulatory 

steps. 

To discern the biological pathways directly modulated by Myc, we analyzed the 

gene ontology (GO) terms enriched in the various subgroups of LPS-induced genes: 

Myc-dependent (or Group 1, Fig. 1c, Supplementary Table 2: 647 genes), Myc-

independent (Group 5: 697 genes) and the intervening “grey zone” (GZ: 1129 genes) 

as the latter was likely to comprise genes modulated by Myc with low – albeit 

possibly biologically meaningful – amplitude. We also analysed Cluster 1, 

characterized by the highest increase in Myc share (CL1, Fig. 4d, 184 genes). Group 

1, GZ and CL1 most significantly enriched for common GO terms pertaining to RNA 

and amino acid metabolism, as well as mitochondrial biogenesis (Supplementary 

Table 4), with additional terms enriched only in the GZ, such as translation, ribosome 

biogenesis, RNAPI transcription, or nucleotide biosynthesis. Importantly, Myc-

independent genes showed little overlap with any of the above, enriching for distinct 

functional categories such as lymphocyte activation, cell cycle, apoptosis, DNA 

metabolism (repair, recombination). Thus, biological processes that depend upon Myc 

activity (e.g. cell cycle, DNA replication) are regulated – to a large extent – by genes 

that show Myc-independent expression, suggesting that Myc acts on essential 

upstream events (e.g. protein and nucleic acid biosynthesis). Most importantly in this 

context, other transcription factors such as E2F or NFY may have predominant roles – 

or be redundant with Myc (Liu, Tang et al., 2015) – in regulating Myc-independent 

genes (Fig. EV6).    

It is noteworthy here that several of the Myc-dependent ontological categories 

(e.g. RNA metabolism, ribosome biogenesis, nucleotide biosynthesis, etc...) were also 

enriched among Myc-regulated genes in different cell types (Lorenzin et al., 2016, 

Muhar et al., 2018, Perna et al., 2012), in germinal center B-cells (Dominguez-Sola et 

al., 2012), or in primary B-cells at longer time points of LPS stimulation (72h)(Perez-

Olivares et al., 2018). Yet, the overlaps between these and our gene lists were only 

modest (Fig. EV7a, Supplementary Table 5). Hence, while different genes may 

show Myc-dependent expression in different contexts, the biological processes that 
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rely on Myc activity appear to be generally conserved. Remarkably, larger fractions 

of the Myc-dependent genes identified in this work were induced during 

lymphomagenesis in Eµ-myc transgenic mice (Sabò et al., 2014) (Fig. EV7b), 

emphasizing the need to confront normal and pathological Myc-regulated programs in 

the corresponding cellular contexts.  

Altogether, we have identified approximately 650 genes that were induced in a 

Myc-dependent manner within 4-8h following stimulation, and an additional group of 

ca. 1100 additional genes regulated by Myc with modest quantitative effects: while 

the latter were below threshold for being reliably called as Myc-dependent, both 

groups enriched for highly consistent functional categories. By and large, Myc-

dependent LPS-responsive genes encode proteins involved in RNA biology, energy 

production and anabolic pathways (Caro-Maldonado et al., 2014, Dang, 2013, Wang 

et al., 2011): these, in turn, may provide the building blocks (nucleotides, amino 

acids) and energy required to sustain the large accumulation of biomass – and in 

particular RNA – characteristic of activated B-cells (Kieffer-Kwon et al., 2017, Nie et 

al., 2012, Sabò et al., 2014). In an alternative model, Myc was deemed to act as a 

direct activator – or amplifier – of all expressed genes (Lin et al., 2012, Nie et al., 

2012, Porter et al., 2017, Zeid et al., 2018). However, our results and others (Muhar et 

al., 2018, Perna et al., 2012, Sabò et al., 2014, Walz et al., 2014) provide no formal 

support for this model: instead, when observed, RNA amplification is most 

consistently interpretable as a late, indirect consequence of Myc action, mediated by a 

selective – yet complex – set of target genes (Kress et al., 2015, Sabò & Amati, 2018). 

Most importantly, the Myc-dependent program identified here in activated B-cells 

was constitutively deregulated during lymphomagenesis in Eµ-myc transgenic mice 

(Sabò et al., 2014). Hence, besides aberrant regulation of novel, tumor-specific targets 

(Lorenzin et al., 2016, Sabò et al., 2014, Walz et al., 2014), the oncogenic action of 

Myc may largely rely on the uncontrolled activation of genes regulated during 

mitogenic stimulation in normal cells.  
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Materials & Methods 

Mouse strains and primary B cells 

C57BL/6 c-myc
f/f

 mice were obtained from Andreas Trumpp (Trumpp et al., 

2001).  Naïve mouse B-cells were isolated from the spleen of 7–10 weeks old wild 

type or c-myc
f/f

 mice with the B-cell isolation kit (MACS Miltenyi Biotec Cat. no. 

130-090-862). After purification, naïve B cells were incubated for 1h at 37°C with 

recombinant Tat-Cre protein (50 g/ml) in optimem + 1% fetal bovine serum (Peitz, 

Pfannkuche et al., 2002) in order to induce deletion of the c-myc
f/f

 allele. Cells were 

washed with PBS and then grown in B cell medium composed of DMEM medium 

(Dulbecco’s Modified Eagle Medium) and IMDM medium (Iscove’s Modified 

Dulbecco’s Medium) in a 1:1 ratio and additionated of 10% fetal calf serum (FCS) 

(Globefarm Ltd, Cranleigh, UK), 2 mM L-glutamine (Invitrogen Life Technologies, 

Paisley, UK), 1% non-essential amino acids (NEAA), 1% penicillin/streptomycin and 

25 M β-mercaptoethanol (Gerondakis et al., 2007). 12h after seeding, B cells were 

stimulated with lipopolysaccharide LPS (50 g/ml; SIGMA L6237) to induce cell 

activation. The Tat-Cre protein was produced and purified as previously described 

(Peitz et al., 2002). 

Proliferation, cell cycle analysis and sorting  

For proliferation analysis, cells were counted with Trypan Blue to exclude dead 

cells every 24h. For cell cycle analysis, cells were incubated with 33 M BrdU for a 

pulse labelling of 30 min. Cells were then harvested, washed with PBS and fixed in 

ice-cold ethanol. Upon DNA denaturation using 2N HCl, cells were stained with an 

anti-BrdU primary antibody (BD Biosciences) and anti-mouse FITC conjugated 

secondary antibody (Jackson Immunoresearch). DNA was stained by resuspending 

the cells in 2.5 g/ml Propidium Iodide (Sigma) overnight at 4°C before FACS 

analysis. All samples were acquired on a FACS Canto II (BD Biosciences) flow 

cytometer. At least 15,000 events were acquired and the analysis was performed using 

the FlowJo X software. For cell sorting, cells were resuspended in cold Macs Buffer 

(0.5 % BSA, 2 mM EDTA in PBS) and sorted on the basis of the FSC/SSC 

parameters with a Facs-Aria II machine (BD Biosciences). 

Immunoblot analysis 
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5x10
6
 B-cells were lysed with RIPA Buffer (20 mM HEPES at pH 7.5, 300 mM 

NaCl, 5 mM EDTA, 10% Glycerol, 1% Triton X-100, supplemented with protease 

inhibitors (Roche) and phosphatase inhibitors (0.4 mM Orthovanadate, 10 mM NaF) 

and briefly sonicated. Cleared lysates were electrophoresed and immunoblotted with 

the indicated primary antibodies: c-Myc Y69 (ab32072) from Abcam, Vinculin 

(V9264) from Sigma. Chemioluminescent detection, after incubation of the 

membranes with appropriate secondary antibodies, was done through a CCD camera 

using the ChemiDoc System (Bio-Rad). Quantification of protein levels was done 

using the Image Lab Software (Bio-Rad, version 4.0). 

EU staining and data analysis 

In order to label newly synthesized RNA, B-cells were plated at a cell density of 

8*10^5/ml and incubated with the alkyne-modified nucleoside, 5-ethynyl uridine 

(EU), 1 mM for 1h before fixation in 4% PFA for 10 min at RT. Fixed cells were 

washed in PBS and resuspended in PBS+BSA 3%. Cells were then cytospinned on 

polylysine-coated slides, permeabilized with Triton X-100 0.5% in PBS and treated 

with the Click-iT reaction cocktail for 30 min at RT as indicated by manufacturer’s 

instruction (Click-iT RNA Imaging Kit – Invitrogen, C10329). DNA was than stained 

with DAPI.  

The image analysis was performed using a custom pipeline developed and 

executed in the Acapella software development/run-time environment (Perkin 

Elmer). Nuclei where detected on the basis of DAPI staining using a Perkin Elmer 

proprietary algorithm and each nucleus was associated to a nuclear area and an 

integrated EU signal.  

Isolation of genomic DNA  

Cells pellet (1.5*10^6) were collected at different time points after LPS 

stimulation and DNA was extracted with the Nucleospin tissue kit (Macherey-Nagel, 

740952). The genomic DNA was eluted in 50 l of BE buffer (5 mM Tris/HCl, pH 

8.5).  The analysis of c-myc deletion efficiency was performed by real-time PCR 

using 10 ng of genomic DNA as template and the primers reported in Supplementary 

Table 6 (Trumpp et al., 2001).  

RNA extraction and analysis  
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Total RNA (at least from 2.5* 10^6 cells) was purified onto RNeasy columns 

(Qiagen) and treated on-column with DNase (Qiagen). Complementary DNA  

(cDNA) was prepared   using  ImProm-II
TM

 reverse transcription kit   (Promega, 

A3800) and 10 ng of cDNA were used as template for each real-time PCR reaction. 

cDNA was  detected by fast SyberGreen Master Mix (Applied Biosystems, 4385614) 

on CFX96 Touch™ Real-Time PCR Detection System (Biorad). Sequences of the 

used PCR primers were reported in Supplementary Table 6.  

For RNA-seq experiments, total RNA from 8^10
6
 B-cells was purified as above, 

then 0.5 g were treated with Ribozero rRNA removal kit (Epicentre) and EtOH 

precipitated. RNA quality and removal of rRNA were checked with the Agilent 2100 

Bioanalyser (Agilent Technologies). Libraries for RNA-Seq were then prepared with 

the TruSeq RNA Sample Prep Kits v2 (Illumina) following manufacturer instruction 

(except for skipping the first step of mRNA purification with poly-T oligo-attached 

magnetic beads). RNA-seq libraries were then run on the Agilent 2100 Bioanalyser 

(Agilent Technologies) for quantification and quality control and then sequenced on 

Illumina HiSeq2000. 

Chromatin Immunoprecipitation 

Purified splenic B-cells were resuspended in PBS at room temperature and fixed 

for 10 min by addition of formaldehyde to a final concentration of 1%. Fixation was 

stopped by addition of glycine to a final concentration of 0.125 M. Cells were washed 

in PBS, resuspended in SDS buffer (50 mM Tris at pH 8.1, 0.5% SDS, 100 mM NaCl, 

5 mM EDTA, and protease inhibitors) and stored at -80°C before further processing 

for ChIP as described in (Sabò et al., 2014). For ChIP-Seq analysis, lysates obtained 

from 30-50x10
6
 B-cells were immunoprecipitated with 10 g of Myc (Santa Cruz, sc-

764) or RNAPII (Santa Cruz, sc-899) antibodies. Immunoprecipitated DNA was 

eluted in TE-2% SDS and crosslinks were reversed by incubation overnight at 65 °C. 

DNA was then purified by Qiaquick columns (Qiagen) and quantified using Qubit
TM 

dsDNA HS Assay kits (Invitrogen). 1.5-2 ng of ChIP DNA was end-repaired, A-

tailed, ligated to the sequencing adapters and amplified by 17-cycles of PCR, size 

selected (200-300bp) according with TruSeq ChIP Sample Prep Kit (Illumina). ChIP-

seq libraries were then run on the Agilent 2100 Bioanalyser (Agilent Technologies) 

for quantification and quality control and then sequenced on the Illumina HiSeq2000.  

Sequences of the primers used in qPCR were reported in Supplementary Table 6.  
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Next generation sequencing data filtering and quality assessment 

ChIP-seq and RNA-seq reads were filtered using the fastq_quality_trimmer and 

fastq_masker tools of the FASTX-Toolkit suite 

(http://hannonlab.cshl.edu/fastx_toolkit/). Their quality was evaluated and confirmed 

using the FastQC application: (www.bioinformatics.babraham.ac.uk/projects/fastqc/). 

Pipelines for primary analysis (filtering and alignment to the reference genome of the 

raw reads) and secondary analysis (expression quantification, differential gene 

expression and peak calling) have been integrated in the HTS-flow system (Bianchi, 

Ceol et al., 2016). Bioinformatic and statistical analysis were performed using R with 

Bioconductor and comEpiTools packages (Gentleman, Carey et al., 2004, Kishore, de 

Pretis et al., 2015). 

ChIP-seq data analysis 

ChIP-Seq NGS reads were aligned to the mm9 genome through the BWA 

aligner (Li & Durbin, 2009) using default settings. Peaks were called using the MACS 

software (v2.0.9)(Zhang, Liu et al., 2008)  with the option ‘– mfold = 7,30 -p 

0.00001’, thus outputting only enriched regions with P-value <10-5. Normalized read 

counts within a genomic region were determined as the number of reads per million 

of library reads (total number of aligned reads in the sequencing library). Peak 

enrichment was determined as log2(Peakw/Nc — inputw/Ni), where Peakw is the 

read count on the enriched region in the ChIP sample, inputw the read count on the 

same region in the corresponding input sample, Nc is the total number of aligned 

reads in the ChIP sample, and Ni is the total number of aligned reads in the input 

sample. Promoter peaks were defined as all peaks with at least one base pair 

overlapping with the interval between − 2 kb to +1 kb from the nearest TSS. For Myc 

share calculation promoters were defined as − 2 kb to +2 kb from the nearest TSS. 

For RNAPII ChIP-seq analysis the following genomic regions were considered: 

promoters (-50, +700 from TSS); TES (-1kb,+4kb from TES), gene body (from 

promoter end to TES start). The presence of canonical and variant E-boxes 

(CACGCG, CATGCG, CACGAG, CATGTG)(Blackwell, Kretzner et al., 1990, 

Grandori, Mac et al., 1996, Perna et al., 2012) in the Myc ChIP peaks was scored in a 

region of 200 bp around the peak summit. The Myc share at each promoter was 

determined by normalizing the ChIP-seq signal by the total amount of promoter-

bound Myc in the genome at the same time-point. 
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When comparing Myc ChIP-seq with H3K4me3, H3K4me1 or H3K27ac 

histone marks to define peaks in active promoter or enhancers (Calo & Wysocka, 

2013, Zhou, Goren et al., 2011), we considered two peaks as overlapping when 

sharing at least one base pair (subsetByOverlaps tool of the comEpiTools R package). 

Fold change of Myc binding at promoters was calculated as the log2 ratio of 

the coverage in a 200 bp window around the summit of the peaks identified at 4h of 

LPS in stimulated versus not stimulated conditions. To avoid regions with 0 coverage 

in the unstimulated situation, all those regions were set to the minimum coverage 

identified.  

RNA-seq data analysis 

RNA-Seq NGS reads were aligned to the mm9 mouse reference genome using 

the TopHat aligner (version 2.0.8)(Kim, Pertea et al., 2013) with default parameters. 

In case of duplicated reads, only one read was kept. Read counts were associated to 

each gene (based on UCSC-derived mm9 GTF gene annotations), using the 

featureCounts software (http://bioinf.wehi.edu.au/featureCounts/)(Liao, Smyth et al., 

2014) setting the options -T 2 -p -P. Absolute gene expression was defined 

determining reads per kilobase per million mapped reads defining total library size as 

the number of reads mapping to exons only (eRPKM). After removing very low 

expressed genes (below 1 eRPKM in all samples), we obtained a set of 12690 

expressed genes that were used for further analysis. Differentially expressed genes 

(DEGs) were identified using the Bioconductor Deseq2 package (Love, Huber et al., 

2014) as genes whose q-value is lower than 0.05 and |FoldChange|>1.5. The different 

categories of Myc-dependent LPS response and Myc-independent LPS response, were 

defined at each time point (ti) relative to time zero (t0), as follows: 

px=qval ti vs t0 (c-myc
wt/wt

) 

py=qval ti vs t0 (c-myc
∆/∆

) 

x=log2FC ti vs t0 (c-myc
wt/wt

) 

y=log2FC ti vs t0 (c-myc
∆/∆

) 

 NO DEG:  

(px > 0.05 & py > 0.05) OR ((|x|≤ log2(1.5) & (|y|≤ log2(1.5))) 

 Class 5 (Myc-independent UP):  

(px ≤ 0.05 & py ≤ 0.05) & (x > log2(1.5) & y > log2(1.5)) & (|y-x|≤ log2(1.15)) 

 Class 6 (Myc-independent DOWN):  
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(px ≤  0.05 & py ≤  0.05) & (x < -log2(1.5) & y < -log2(1.5)) & (|y-x|≤ log2(1.15)) 

 Class 1 (Myc-dependent UP):  

(px ≤  0.05) & (x > log2(1.5)) & (y-x<-log2(1.5)) 

 Class 3 (Myc-dependent DOWN):  

(px ≤ 0.05) & (x < -log2(1.5)) & (y-x>log2(1.5)) 

 Class 2 (Myc-suppressed UP):  

(px ≤  0.05 & py ≤  0.05) & (x > log2(1.5)) & (y-x>log2(1.5)) 

 Class 4 (Myc-suppressed DOWN):  

(px ≤  0.05 & py ≤  0.05) & (x < -log2(1.5)) & (y-x<-log2(1.5)) 

Functional annotation analysis to determine enriched Gene Ontology was 

performed using the ClueGo v2.5.3 Application of CytoScape v3.7.1 with the 

following parameters: 

 Statistical Test Used = Enrichment/Depletion (Two-sided hypergeometric test) 

 Correction Method Used = Bonferroni step down 

 Min GO Level = 6 

 Max GO Level = 8 

 GO Fusion = true 

 Show only pathways with p-value≤ 0.05 

 GO Group = true 

 Kappa Score Threshold = 0.4 

 Group By Kappa Statistics = true 

 Initial Group Size = 1 

 Sharing Group Percentage = 50.0 

 Merge redundant groups with >50.0% overlap 

GO categories enriched in at least one gene list were reported in 

Supplementary Table 4 and manually grouped on the basis of the ClueGo 

assignation to different groups. 

Analysis of cis-regulatory motif enrichment in the promoter of the different 

classes of genes has been performed with the online tool available at  

http://software.broadinstitute.org/gsea/msigdb/index.jsp. 

For the calculation of a significant overlap between Myc-dependent LPS-

induced genes and the datasets of interest a hypergeometric distribution was assumed. 
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The external data were converted in the mouse orthologous when required and filtered 

keeping only the genes expressed in the reference dataset (B-cells, this study). Gene 

lists are reported in Supplementary Table 5 and obtained from the following 

sources: 

Column D: MYC/MAX KO B-cells (Perez-Olivares et al., 2018)  

Column E: GFP-MYC+ GC B-cells (Dominguez-Sola et al., 2012) 

Column F: Myc-dependent serum responsive (Perna et al., 2012) 

Column G: Myc-dependent in U2OS cells (Lorenzin et al., 2016) (qval<0.01; 

log2FC<-1) 

Column H: Myc-dependent in K562 cells (Muhar et al., 2018) (qval<0.05; 

log2FC<-1) 

Column I: Myc-dependent in HCT116 cells (Muhar et al., 2018) (qval<0.05; 

log2FC<-0.5) 

Column J: Induced in Pre-tumoral Eµ-myc B-cells (Sabò et al., 2014) 

(qval<0.05; log2FC>0.585) 

Column K: Induced in Eµ-myc tumors (Sabò et al., 2014) (qval<0.05; 

log2FC>0.585) 

Estimation of synthesis, processing and degradation rates 

Our previous R/Bioconductor package INSPEcT (de Pretis, Kress et al., 2015) 

was designed to estimate the rates of RNA synthesis, processing and degradation 

following metabolic labeling and quantification of total and newly synthesized RNA: 

we recently extended this package to pursue the same goal in the absence of 

experimental data on newly synthesized RNA, taking advantage of intronic reads in 

total RNA-seq experiments (INSPEcT2: Furlan et al., in preparation). Myc-dependent 

and independent genes at either 4 of 8h following LPS stimulation (Supplementary 

Table 2) were used for the modeling after removal of genes without introns or with 

scarce intronic signal. Out of the 925 Myc-dependent genes modeled, 674 were 

identified as modulated in their synthesis rate in the c-myc
wt/wt

 condition and kept for 

subsequent analysis. Similarly, 1005 Myc-independent genes out of the 1660 modeled 

were identified as modulated in their synthesis rates both in the c-myc
wt/wt

 and c-

myc
∆/∆

 conditions and kept for subsequent analysis.  
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Estimation of RNAPII recruitment, pause-release, elongation and termination 

rates 

Similarly to what done in previous work(de Pretis et al., 2017), we modeled 

RNAPII progression on each gene as a dynamic system composed by 4 steps: 

recruitment ( 𝑝1 ), pause-release ( 𝑝2 ), elongation ( 𝑝3 ), and the release from 

termination-end-sites (release, 𝑝4). This system relates to RNAPII quantification at 

promoters (𝑅𝑡𝑠𝑠), gene-body (𝑅𝑔𝑏) and termination end sites (𝑅𝑡𝑒𝑠) as follows: 

𝑑𝑅𝑡𝑠𝑠(𝑡)
𝑑𝑡
⁄ = 𝑝1(𝑡) − 𝑅𝑡𝑠𝑠(𝑡) ∙ 𝑝2(𝑡) 

𝑑𝑅𝑔𝑏(𝑡)
𝑑𝑡
⁄ = 𝑅𝑡𝑠𝑠(𝑡) ∙ 𝑝2(𝑡) − 𝑅𝑔𝑏(𝑡) ∙ 𝑝3(𝑡) 

𝑑𝑅𝑡𝑒𝑠(𝑡)
𝑑𝑡
⁄ = 𝑅𝑔𝑏(𝑡) ∙ 𝑝3(𝑡) − 𝑅𝑡𝑒𝑠(𝑡) ∙ 𝑝4(𝑡) 

In practical terms, this model assumes that: 

- RNAPII at transcriptional start site (𝑅𝑡𝑠𝑠) is the balance between the amount 

of recruited RNAPII (𝑝1(𝑡)) and the amount of RNAPII that enters the gene-

body due to pause-release (𝑅𝑡𝑠𝑠(𝑡) ∙ 𝑝2(𝑡)); 

- RNAPII at the gene-body (𝑅𝑔𝑏) is the balance between the amount of RNAPII 

that enters the gene-body due to pause-release and the amount that enters into 

the termination-sites due to elongation (𝑅𝑔𝑏(𝑡) ∙ 𝑝3(𝑡)); 

- RNAPII at the termination-sites (𝑅𝑡𝑒𝑠) is the balance between the amount  of 

RNAPII that enters into the termination sites due to elongation and the amount 

that is released to nucleoplasm (𝑅𝑡𝑒𝑠(𝑡) ∙ 𝑝4(𝑡)). 

Additionally, we assumed that the RNAPII that enters in termination-sites after 

elongation has synthesized an RNA molecule: 

𝑘1(𝑡) = 𝑅𝑔𝑏(𝑡) ∙ 𝑝3(𝑡)  

Estimated values of 𝑝1(𝑡) , 𝑝2(𝑡) , 𝑝3(𝑡)  and 𝑝4(𝑡)  are obtained at each 

experimental time point (0h, 2h, 4h, 8h) directly by the solution of the system of the 

four equations above, where 
𝑑𝑅𝑡𝑠𝑠(𝑡)

𝑑𝑡
⁄  , 

𝑑𝑅𝑔𝑏(𝑡)
𝑑𝑡
⁄  and 

𝑑𝑅𝑡𝑒𝑠(𝑡)
𝑑𝑡
⁄  are estimated 
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from the time course of 𝑅𝑡𝑠𝑠, 𝑅𝑔𝑏 and 𝑅𝑡𝑒𝑠, respectively, and 𝑘1(𝑡) is the synthesis 

rate calculated by INSPEcT at the time t. 

The relative error of each modeled gene is calculated as: 

𝐸 = ∑
(𝑅𝑡𝑠𝑠(𝑡) − 𝑅𝑡𝑠𝑠(𝑡)̂ )

2

𝑅𝑡𝑠𝑠(𝑡)
+
(𝑅𝑔𝑏(𝑡) − 𝑅𝑔𝑏(𝑡)̂ )

2

𝑅𝑔𝑏(𝑡)
𝑡∈{0ℎ,2ℎ,4ℎ,8ℎ}

+
(𝑅𝑡𝑒𝑠(𝑡) − 𝑅𝑡𝑒𝑠(𝑡)̂ )

2

𝑅𝑡𝑒𝑠(𝑡)
+
(𝑘1(𝑡) − 𝑘1(𝑡)̂)

2

𝑘1(𝑡)
 

where 𝑅𝑡𝑠𝑠(𝑡)̂ , 𝑅𝑔𝑏(𝑡)̂ , 𝑅𝑡𝑒𝑠(𝑡)̂ , and 𝑘1(𝑡)̂ are the modeled values of 𝑅𝑡𝑠𝑠(𝑡), 𝑅𝑔𝑏(𝑡), 

𝑅𝑡𝑒𝑠(𝑡), and 𝑘1(𝑡) obtained by integrating the estimated rates 𝑝1(𝑡), 𝑝2(𝑡), 𝑝3(𝑡) and 

𝑝4(𝑡)  into the system of differential equations, assuming linear behavior of the 

estimated rates between the experimental time points. We considered valid only those 

models with relative error lower than 1 and no missing-values in any of the rates at 

any time point (618/674 Myc-dependent genes and 891/1005 Myc-independent 

genes). 

Statistical analysis 

All the experiments, except for ChIP, were performed at least in biological 

triplicates. Two tailed-Student t-test was used to compare between two groups and 

expressed as p-values. In the figures: *P < 0.05, **P < 0.01, ***P < 0.001. 

Code availability. All R scripts used in data analysis and generation of figures are 

available upon request. 

Data availability. RNA-seq and ChIP-seq data have been deposited in NCBI’s Gene 

Expression Omnibus (GEO) and are accessible through GEO series accession number 

GSE126340.  

Materials  & Correspondence. Correspondence and requests for materials should be 

addressed to A.S. (email: arianna.sabo@ieo.it) or B.A. (email: bruno.amati@ieo.it ) 
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Figure Legends  

Fig. 1| Myc is required for the regulation of a subset of LPS-responsive genes 

during B-cells activation. A. Ncl mRNA expression (normalized to TBP) at different 

time points after LPS stimulation in c-myc
wt/wt

 (in black) and c-myc
∆/∆

 cells (in gray). 

Data are presented as mean ± SD; n = 3. B. To quantify RNA synthesis at the single-

cell level, we exposed our cultures to brief pulses of ethyl-uridine (EU) and measured 

its incorporation into RNA by light microscopy. The scatter plots show the nuclear 

Area (x axis) versus the EU signal (y axis) in c-myc
wt/wt

 and c-myc
∆/∆

 cells at different 

time points after LPS treatment, as indicated. One representative experiment out of 5 

is shown. C. Scatter plot showing the log2 fold change (log2FC) of each expressed 

mRNA at 4h of LPS treatment relative to untreated cells, for c-myc
wt/wt

 (x-axis) and c-

myc
∆/∆

 cells (y-axis). Regulatory groups 1-6 are as defined in the text. D. Numbers of 

genes classified in the different regulatory categories on the basis of the RNA-seq 

data at the different time points upon LPS stimulation. E. Heatmaps showing the 

variations in mature and precursor RNAs, synthesis, processing and degradation rates 

(log2FC) for Myc dependent (left) and independent genes (right), as defined at either 

4 or 8h after LPS treatment; the grey scale represents the starting level for each 

parameter in unstimulated cells.  

Fig. 2| Myc widely associates with open chromatin upon LPS stimulation. A. 

Overlap between Myc ChIP-seq peaks. For each column, the percentage of peaks 

overlapping (over ≥1 bp) with the reference samples is reported. Peaks showed 

consistent distributions along the time-course, almost all those called in untreated 

cells being included in LPS-stimulated samples B. Heatmap showing the distribution 

of Myc at annotated promoters either in vitro in LPS-treasted B-cells (0, 2, 4 8h), or in 

vivo in control c-myc
wt/wt

 B-cells (C), pre-tumoral Eµ-myc B-cells (P) and tumors 

(T)(Sabò et al., 2014). Each row represents a different genomic interval (6 kb width, 

centered on Myc peaks). The panel includes every annotated promoter in 

chromosome 1 that was called as Myc-associated by ChIP-seq in at least one of the 

samples. For the same intervals, the distributions of H3K4me1, H3K4me3, and 

H3K27ac in the in vivo control sample, CpG Islands (CGIs) and annotated genes 

(exons in red, introns in pink; + sense, - antisense strand) are also shown. C. As in B., 

for distal Myc-binding sites. D. Bar plot representing the number of Myc peaks 

annotated at promoters (-2kb, +1kb) at different time points after LPS stimulation. 
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The grey shadings mark the subsets of peaks associated with H3K4me3, with or 

without H3K27ac, as indicated. E. As in D, for distal Myc-binding sites, with 

H3K4me1 instead of H3K4me3. F. Bar plot representing the percentage of active 

promoters (positive for H3K4me3 and H3K27ac) or distal sites (H3K4me1 and 

H3K27ac) that overlap with at least a Myc peak at the different time points after LPS 

stimulation (0, 2, 4, 8h) or in vivo (C, P, T1, T2, T3), as indicated. G. Quantitative 

heatmap showing Myc signal intensities (read counts normalized by library size), 

ranked based on the control sample. H. Bar plot representing the percentage of Myc 

peaks at promoters (top) or distal sites (bottom) that contain canonical (CACGTG) or 

variant (CACGCG, CATGCG, CACGAG, CATGTG) E-boxes in a 200 bp window 

centered on the peak summit. 

Fig. 3| Changes in Myc share are predictive of gene regulation. A. Scatter plots 

correlating the variations in Myc share at promoters (averaged between the 2, 4 and 

8h time points) and in RNA synthesis (at 8h), relative to untreated cells, for Myc-

dependent (left) and independent genes (right). The Spearman correlation between the 

two parameters is reported. B. Receiver operating characteristic (ROC) curves for the 

ability of discriminating induced and repressed genes at increasing thresholds of 

changes in Myc binding. AUC= Area under the curve. For each system, the dot 

corresponds to the variation of Myc at which promoters begin increasing their share 

of Myc binding. C. Scatter plot representing the fold-change in Myc binding at 4h 

LPS (relative to time zero) as a function of the initial binding intensity at time zero 

(expressed as log2 of the coverage in a 200 bp window around the summit of the 

peak) for each promoter bound by Myc at 4h. Peaks containing a canonical E-box are 

highlighted in black. D. Bar plot showing the percentage of Myc-bound promoters 

within the indicated transcriptionally regulatory categories that contains a canonical 

or variant E-box. The overall chi-square is 207.7 with a p-value <0.00001. The 

contribution to the chi-square of each category is reported above the corresponding 

bar in the plot. 

Fig. 4| Myc regulates all steps of the RNAPII transcriptional cycle. A. Scheme 

depicting the different steps of RNAPII regulation for which the corresponding rates 

were modelled. Changes in density of RNAPII in each region of the transcriptional 

unit are considered as the net result of the RNAPII coming from the upstream region, 

and that exiting toward the downstream region, both governed by the corresponding 
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kinetic rate (de Pretis et al., 2017). B. Boxplots reporting LPS-induced changes 

(Log2FC) for each of the four RNAPII kinetic rates in c-myc
wt/wt

 (wt) and c-myc
∆/∆

 

cells for Myc-dependent induced and repressed genes, as indicated. p-values obtained 

with two-sample Wilcoxon tests for the comparison between c-myc
wt/wt

 and c-myc
∆/∆

 

cells are reported C. As in B, for Myc-independent genes. D. Heatmap showing the 

variations in RNAPII kinetic rates (log2FC) on Myc-dependent genes during the LPS 

time course. The grey scale represents the starting level for each parameter in 

unstimulated cells. The first column on the left reports the changes in Myc share for 

the same genes. Genes were clustered using hierarchical clustering. E. As in D, for 

Myc-independent genes. F. As in B, for the genes of cluster 1. G. Boxplots reporting 

the changes in Myc share in LPS treated versus untreated cells for the different 

clusters of panel d. H. As in C, for the genes of cluster 9.  

 

Extended Data  

Fig. EV1| A. c-myc copy number relative to a reference amplicon on the Ncl gene at 

different time points after LPS stimulation in c-myc
wt/wt

 and c-myc
∆/∆

 cells, as 

indicated. Data are presented as mean ± SD; n = 6 for the t0 and 24h samples, n=4 for 

the 48h and 72h samples. B. c-myc mRNA expression (normalized to TBP) at 

different time points after LPS stimulation in c-myc
wt/wt

 and c-myc
∆/∆

 cells. n = 3.  C. 

as in B, for Myc protein levels, based on quantification of independent immunoblots 

(n = 4): a representative blot is shown above the plot. Note that in wild-type cells, c-

myc mRNA levels peaked 2 hours after LPS stimulation(Kelly et al., 1983) while the 

protein steadily accumulated over time, consistent with post-transcriptional regulation 

of its synthesis and/or stability (Ehninger, Boch et al., 2014, Farrell & Sears, 2014): as 

expected, both mRNA and protein accumulation were blunted in c-myc
∆/∆

 cells. D. 

Myc and IgG ChIP, as indicated, in non-treated (NT) or LPS-treated (2h) c-myc
wt/wt

 

and c-myc
∆/∆

 B-cells. PCR primers in the AchR promoter (as a non-bound control) and 

in Ncl intron 1 (as a known Myc target) were used for quantification (% if input) as 

previously described (Frank, Schroeder et al., 2001, Guccione et al., 2006). n = 3. E. 

pus7 and smyd2 mRNA expression relative to TBP at different time points after LPS 

stimulation in c-myc
wt/wt

 and c-myc
∆/∆

 cells. n = 3. F. Quantification of total RNA 

levels per cell along the LPS time-course in c-myc
wt/wt

 and c-myc
∆/∆

 cells. n = 3.  G. 

Percentages of BrdU positive cells at 0, 12 and 24h, as indicated. n = 3. H. Growth 
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curve of c-myc
wt/wt

 and c-myc
∆/∆

 cells, as indicated. n = 3.  I. c-myc
wt/wt

 and c-myc
∆/∆

 

cells were sorted according to their size and shape (FSC and SSC, respectively) after 

24 or 48h of LPS stimulation: cells with low and high FSC+SSC were defined as 

resting and activated, respectively, and were purified by FACS sorting prior to qPCR 

quantification of c-myc copy number, alongside unsorted c-myc
∆/∆

 and c-myc
wt/wt

 

control samples. The experiment was repeated twice with similar results. In all the bar 

plots (except panel I), data are presented as mean ± SD. 

Fig. EV2| A. Numbers of genes classified in the different regulatory categories on the 

basis of the RNA-seq data at each time point after LPS stimulation. B. Venn diagrams 

representing the overlap between genes identified as Myc-dependent induced (left) or 

repressed (right) at the different time points after LPS treatment. C. As in B, for Myc-

independent LPS-regulated genes. 

Fig. EV3| A. Heatmap showing the variations in RNAPII ChIP-seq read density 

(log2FC) in different regions (TSS, gene body, TES) for Myc-dependent genes along 

the LPS time course, as indicated. The grey scale represents the starting level for each 

parameter in unstimulated cells. Columns on the left show the changes in Myc share 

and RNA synthesis, as indicated, rates for the same genes. B. As in A, for Myc-

independent genes. C. Boxplots reporting LPS-induced changes (Log2FC) for each of 

the four RNAPII kinetic rates in c-myc
wt/wt

 (wt) and c-myc
∆/∆

 cells for Myc-dependent 

induced and repressed genes, as indicated. D. As in C, for Myc-independent genes. 

Fig. EV4| Zoom-in heatmaps and boxplot representations for the clusters represented 

in Fig. 4D. 

Fig. EV5| Zoom-in heatmaps and boxplot representations for the clusters represented 

in Fig. 4E. 

Fig. EV6| Bar-plots showing the –log10 (FDR) of the top 12 cis-regulatory motifs 

enriched in the promoters of the genes belonging to the indicated regulatory groups. 

Fig. EV7| A. Venn diagrams representing the overlap between Myc-dependent LPS-

induced genes defined in this study (either all genes, or only those in CL1) with other 

lists of Myc-regulated genes. From left to right, and top to bottom: genes less 

expressed in Myc/Max KO B-cells activated with LPS for 72h, compared to wt cells 

(Perez-Olivares et al., 2018); genes more expressed in Myc-positive versus negative 

germinal center B-cells (Dominguez-Sola et al., 2012) Myc-dependent serum-
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responsive (MDSR) genes in fibroblasts (Perna et al., 2012); genes down-regulated in 

Myc-depleted U2OS (Lorenzin et al., 2016), K562 and HCT116 cells (Muhar et al., 

2018). B. Venn diagrams representing the overlap between Myc-dependent LPS-

induced genes defined in this study with genes induced in Eµ-myc B-cells at the pre-

tumoral (left) or tumoral stage (right). The p-value of the overlap between Myc-

dependent LPS-induced genes and the dataset of interest is shown below each 

diagram  
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