
10 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Parameter-Less Tensor Co-clustering

Publisher:

Published version:

DOI:10.1007/978-3-030-33778-0_17

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1714020 since 2020-04-26T14:23:12Z

Parameter-less Tensor Co-clustering

Elena Battaglia and Ruggero G. Pensa

University of Turin, Dept. of Computer Science, Turin, Italy
{elena.battaglia,ruggero.pensa}@unito.it

Abstract. Tensors co-clustering has been proven useful in many ap-
plications, due to its ability of coping with high-dimensional data and
sparsity. However, setting up a co-clustering algorithm properly requires
the specification of the desired number of clusters for each mode as input
parameters. This choice is already difficult in relatively easy settings, like
flat clustering on data matrices, but on tensors it could be even more
frustrating. To face this issue, we propose a tensor co-clustering algo-
rithm that does not require the number of desired co-clusters as input,
as it optimizes an objective function based on a measure of association
across discrete random variables (called Goodman and Kruskal’s τ) that
is not affected by their cardinality. The effectiveness of our algorithm is
shown on both synthetic and real-world datasets, also in comparison with
state-of-the-art co-clustering methods based on tensor factorization.

Keywords: Clustering · Higher-order data · Unsupervised learning.

1 Introduction

Tensors are widely used mathematical objects that well represent complex in-
formation such as social networks [12], heterogenous information networks [8,
25], time-evolving data [1], behavioral patterns [11], and multi-lingual text cor-
pora [17]. From the algebraic point of view, they can be seen as multidimensional
generalizations of matrices and, as such, they can be processed with mathe-
matical and computational methods that generalize those usually employed to
analyze data matrices (e.g., non-negative factorization [21], singular value de-
composition [26], clustering and co-clustering [2, 24]). Clustering, in particular,
is by far one of the most popular unsupervised machine learning techniques since
it allows analysts to obtain an overview of the intrinsic similarity structures of
the data with relatively little background knowledge about them. However, with
the availability of high-dimensional heterogenous data, co-clustering has gained
popularity, since it provides a simultaneous partitioning of each mode (rows and
columns of the matrix, in the two-dimensional case). In practice, it copes with
the curse of dimensionality problem by performing clustering on the main dimen-
sion (data objects or instances) while applying dimensionality reduction on the
other dimension (features). Despite its proven usefulness, the correct application
of tensor co-clustering is limited by the fact that it requires the specification of a
congruent number of clusters for each mode, while, in realistic analysis scenarios,

2 E. Battaglia, R.G. Pensa

the actual number of clusters is unknown. Furthermore, matrix/tensor cluster-
ing is often based on a preliminary tensor factorization step that, in its turn,
requires further input parameters (e.g., the number of latent factors within each
mode). As a consequence, it is merely impossible to explore all combinations of
parameter values in order to identify the best clustering results.

The main reason for this problem is that most clustering algorithms (and
tensor factorization approaches) optimize objective functions that strongly de-
pend on the number of clusters. Hence, two solutions with two different numbers
of clusters can not be compared directly. Although this reduces considerably the
size of the search space, it prevents the discovery of a better partitioning once a
wrong number of clusters is selected. In this paper, we address this limitation by
proposing a tensor co-clustering algorithm that optimizes an objective function
(a n-mode extension of an association measure called Goodman-Kruskal’s τ [9])
whose local optima do not depend on the number of clusters. Additionally, we
use an optimization schema that improves such objective function after each
iteration. Consequently, our co-clustering approach can be also considered as
an example of anytime algorithm, i.e., it can return a valid co-clustering even
if it is interrupted before convergence is reached. We show experimentally that
our algorithm provides accurate clustering results in each mode of the tensor.
Compared with state-of-the-art techniques that require the desired number of
clusters in each mode as input parameters, it achieves similar or better results.
Additionally, it is also effective in clustering real-world datasets.
In summary, the main contributions of this paper are as follows: i) we define an
objective function for n-mode tensor co-clustering, based on Goodman-Kruskal’s
τ association measure, which does not require the number of clusters as input
parameter (Section 3); ii) we propose a stochastic optimization algorithm that
improves the objective function after each iteration and supports the rapid con-
vergence towards a local optimum (Section 4); iii) we show the effectiveness
of our metohd experimentally on both synthetic and real-world data, also in
comparison with state-of-the-art competitors (Section 5).

2 Related work

Analyzing multi-way data (or n-way tensors) has attracted a lot of attention due
to their intrinsic complexity and richness. Hence, to deal with this complexity,
in the last decade, many ad-hoc methods and extension of 2-way matrix meth-
ods have been proposed, many of which are tensor decomposition models and
algorithms [16].

The problem of clustering and co-clustering of higher-order data has also been
extensively addressed. Co-clustering has been developed as a matrix method and
studied in many different application contexts including text mining [6, 19], gene
expression analysis [5] and graph mining [4] and has been naturally extended to
tensors for its ability of handling high-dimensional data well. In [2], the authors
perform clustering using a relation graph model that describes all the known
relations between the modes of a tensor. Their tensor clustering formulation

Parameter-less Tensor Co-clustering 3

captures the maximal information in the relation graph by exploiting a family
of loss function known as Bregman divergences. Instead, the authors of [28],
use tensor-based latent factor analysis to address co-clustering in the context of
web usage mining. Their algorithm is executed via the well-known multi-way de-
composition algorithm called CANDECOMP/PARAFAC [10]. Papalexakis et al.
formulate co-clustering as a constrained multi-linear decomposition with sparse
latent factors [18]. They propose a basic multi-way co-clustering algorithm ex-
ploiting multi-linearity using Lasso-type coordinate updates. Zhang et al. pro-
pose an extension of the tri-factor non-negative matrix factorization model [7]
to a tensor decomposition model performing adaptive dimensionality reduction
by integrating the subspace identification and the clustering process into a sin-
gle process [27]. Finally, in [24], the authors introduce a spectral co-clustering
method based on a new random walk model for nonnegative square tensors.

Differently from all these approaches, our tensor co-clustering algorithm is
not based on any factorization model. Instead, it optimizes an extension of a
measure of association whose effectiveness has been proven in matrix (2-way) co-
clustering [15], and that naturally helps discover the correct number of clusters
in tensor with arbitrary shape and density.

3 An association measure for tensor co-clustering

In this section, we introduce the objective function we optimize in our tensor co-
clustering algorithm (presented in the next section). It consists in an association
measure, called Goodman and Kruskal’s τ [9], that evaluates the dependence
between two discrete variables and has been used to evaluate the quality of
2-way co-clustering [20]. We generalize its definition to a n-mode tensor setting.

3.1 Goodman and Kruskal τ and its generalization

Goodman and Kruskal’s τ [9] is an association measure that estimates the
strength of the link between two discrete variables X and Y according to the
proportional reduction of the error in predicting one of them knowing the other.
In more details, let x1, . . . , xm be the values that variable X can assume, with
probability pX(1), . . . , pX(m) and let y1, . . . , yn be the possible values Y can
assume, with probability pY (1), . . . , pY (n). The error in predicting X can be
evaluated as the probability that two different observations from the marginal
distribution of X fall in different categories:

eX =

m∑
i=1

pX(i)(1− pX(i)) = 1−
m∑
i=1

pX(i)2.

Similarly, the error in predicting X knowing that Y has value yj is

eX|Y=yj =

m∑
i=1

pX|Y=yj (i|j)(1− pX|Y=yj (i|j)) = 1−
m∑
i=1

pX|Y=yj (i|j)2

4 E. Battaglia, R.G. Pensa

and the expected value of the error in predicting X knowing Y is

E[eX|Y] =

n∑
j=1

eX|Y=yjpY (j) =

=

n∑
j=1

(1−
m∑
i=1

pX|Y=yj (i|j)2)pY (j) = 1−
m∑
i=1

n∑
j=1

pX,Y (i, j)2

pY (j)
.

Then the Goodman and Kruskall τX|Y measure of association is defined as

τX|Y =
eX − E[eX|Y]

eX
=

∑m
i=1

∑n
j=1

pX,Y (i,j)2

pY (j) −
∑m
i=1 pX(i)2

1−
∑m
i=1 pX(i)2

.

Conversely, the proportional reduction of the error in predicting Y while X is
known is

τY |X =
eY − E[eY |X]

eY
=

∑n
i=1

∑m
j=1

pX,Y (i,j)2

pX(i) −
∑n
j=1 pY (j)2

1−
∑n
j=1 pY (j)2

.

In order to use this measure for the evaluation of a tensor co-clustering, we need
to extend it so that τ can evaluate the association of n distinct discrete variables.
Let X1, . . . , Xn be discrete variables such that Xi can assume mi distinct values
(for simplicity, we will denote the possible values as 1, . . . ,mi), for i = 1, . . . , n.
Let pXi

(k) be the probability that Xi = k, for k = 1, . . . ,mi, for i = 1, . . . , n.
Reasoning as in the two-dimensional case, we can define the reduction in the
error in predicting Xi while (Xj)j 6=i are all known as

τXi
= τXi|(Xj)j 6=i

=
eXi
− E[eXi|(Xj)j 6=i

]

eXi

=

=

∑m1

k1=1 · · ·
∑mn

kn=1
pX1,...,Xn (k1,...kn)

2

p(Xj)j 6=i((kj)j 6=i)
−
∑mi

ki=1 pXi
(ki)

2

1−
∑mi

ki=1 pXi
(ki)2

,

(1)

for all i ≤ n. When n = 2, the measure coincides with Goodman-Kruskal’s τ .
Notice that, in the n-dimensional case as well as in the 2-dimensional case, the

error in predicting Xi knowing the value of the other variables is always positive
and smaller or equal to the error in predicting Xi without any knowledge about
the other variables. It follows that τXi

takes values between [0, 1]. It will be
0 if knowledge of prediction of the other variables is of no help in predicting
Xi, while it will be 1 if knowledge of the values assumed by variables (Xj)j 6=i
completely specifies Xi.

3.2 Tensor co-clustering with Goodman-Kruskal’s τ

Let X ∈ Rm1×···×mn
+ be a tensor with n modes and non-negative values. Let us

denote with xk1...kn the generic element of X , where ki = 1, . . . ,mi for each mode

Parameter-less Tensor Co-clustering 5

i = 1, . . . , n. A co-clustering P of X is a collection of n partitions {Pi}i=1,...,n,
where Pi = ∪cij=1C

i
j is a partition of the elements on the i-th mode of X in

ci groups, with ci ≤ mi for each i = 1, . . . , n. Each co-clustering P can be
associated to a tensor T P ∈ Rc1×···×cn+ , whose generic element is

ti1...in =
∑

k1∈C1
i1

∑
k2∈C2

i2

· · ·
∑

kn∈Cn
in

xk1...kn . (2)

Consider now n discrete variables X1, . . . , Xn, where each Xi takes values
in {Ci1, . . . Cici}. We can look at T P as the contingency n-modal table that
empirically estimates the joint distribution of X1, . . . , Xn: the entry tk1...kn is
the frequency of the event ({X1 = C1

k1
} ∩ · · · ∩ {Xn = Cnkn}) and the fre-

quency of Xi = Cik is the marginal frequency obtained by summing all entries
tk1...ki−1kki+1...kn , with k1, . . . , ki−1, ki+1, . . . , kn varying trough all possible val-
ues and the i-th index ki fixed to k. In the same way, we can compute the
frequency of the event ({Xi = Cik} ∩ {Xj = Cjh}) as the sum of all elements
tk1...kn of T P having ki = k and kj = h. More in general, we can compute the
marginal joint frequency of d < n variables as the sum of all the entries of T P
having the indices corresponding to the d variables fixed to the values we are
considering. For instance, given T P ∈ R4×3×5×2

+ , the empirical frequency of the
event ({X1 = 3} ∩ {X3 = 4}) is

t
(1,3)
(3,4) =

3∑
k2=1

2∑
k4=1

t3,k2,4,k4
.

From now on, we will use the newly introduced notation tvw to denote the sum of
all elements of a tensor having the modes in the upper vector v (in the example
(1, 3)) fixed to the values of the lower vector w (in the example (3,4)). A formal
definition of the scalar tvw can result clunky: given a tensor T ∈ Rm1×···×mn

+ and

two vectors v,w ∈ R+
d, with dimension d ≤ n, such that vj ≤ n , vi < vj if

i < j and wi ≤ mvi for each i, j = 1, . . . , d, we will use the following notation

tvw =

mv̄1∑
kv̄1

=1

· · ·
mv̄r∑
kv̄r=1

te1...en

where v̄ is the vector of dimension r = n − d containing all the integers i ≤ n
that are not in v and ei = wi if i ∈ v while ei = ki otherwise.

Summarizing, given a tensor X with n modes and a co-clustering P over
X , we obtain a tensor T P that represents the empirical frequency of n discrete
variables X1, . . . , Xn each of them with ci possible values (where ci is the number
of clusters in the partition on the i-th mode of X). Therefore, we can derive from
T P the probability distributions of variables X1, . . . , Xn and substitute them in
Equation 1: in this way we associate to each co-clustering P over X a vector
τP = (τPX1

, . . . , τPXn
) that can be used to evaluate the quality of the co-clustering.

6 E. Battaglia, R.G. Pensa

In particular, for any i, j ≤ n and any ki = 1, . . . , ci:

pX1...Xn(k1, . . . , kn) =
tk1...kn

T
, pXi(k1) =

t
(i)
(ki)

T
, p(Xj)j 6=i

((kj)j 6=i) =
t
(j)j 6=i

(kj)j 6=i

T
,

where T is the sum of all entries of T P . It follows that

τPXi
=

∑c1
k1=1 · · ·

∑cn
kn=1

t2k1...kn

t
(j)j 6=i
(kj)j 6=i

·T
−
∑ci
ki=1

(
t
(i)

(ki)

)2

T 2

1−
∑ci
ki=1

(
t
(i)

(ki)

)2

T 2

(3)

for each i = 1, . . . , n.
Suppose now we have two different partitions P and Q on the same tensor X ,

corresponding to two different vectors τP , τQ ∈ [0, 1]n. There is no obvious order
relation in [0, 1]n, so it is not immediately clear which one between τP and τQ is
“better” than the other. In [15], the authors introduce a partial-order over Rn and
exploit the notion of Pareto-dominance relation. Hence, their algorithm solves a
multi-objective optimization problem. Instead, we propose another approach to
compare partitions, based on a scalarization function, that maps the set of the
partitions into R and then uses the natural order in R to compare partitions. In
particular, we opt for the function f that maps each partition P into a weighted
sum f(P) =

∑n
i=1 wiτ

P
Xi

, with fixed wi > 0 such that
∑n
i=1 wi = 1.

In this paper we will fix the weights wi = 1
n , for all i = 1, . . . , n. We choose

those values because we consider all modes equally important. Anyway, if other
configurations of {wi} are used, the substance of the algorithm we will present
in the following section does not change.

4 A stochastic local search approach to tensor
co-clustering

Our co-clustering approach can be formulated as a maximization problem: given
a tensor X with n modes and dimension mi on mode i, an optimal co-clustering
P for X is one that maximizes f(P) =

∑n
i=1 τ

P
Xi
. Since we do not fix the number

of clusters, the space of possible solutions is huge (for example, given a very small
tensor of dimension 10×10×10, the number of possible partitions is 1.56×1016):
it is clear that a systematic exploration of all possible solutions is not feasible for
a generic tensor X . For this reason we propose a stochastic local search approach
to solve the maximization problem.

4.1 Tensor co-clustering algorithm

Algorithm 1 provides a sketch of our tensor co-clustering algorithm, called τTCC.
At each iteration i, it considers one mode by one, sequentially, and tries to
improve the partition on that mode: fixed the k-th mode, the algorithm randomly

Parameter-less Tensor Co-clustering 7

Algorithm 1: τTCC(X , Niter)
Input: X tensor with n modes, Niter
Result: P1, . . . ,Pn

1 Initialize P1, . . . ,Pn with discrete partitions;
2 i← 0;
3 T ← X ;
4 maxτ ←

∑n
j=1 τXi(T);

5 while i ≤ Niter do
6 for k = 1 to n do

7 Randomly choose Ckb in Pk;

8 Randomly choose o in Ckb ;
9 ck ← |Pk ∪ ∅|;

10 maxeτ ← maxe∈{1,...,ck},e 6=b
∑n
j=1 τXj (T e) // see section 4.2;

11 e← argmaxe∈{1,...,ck},e 6=b
∑n
j=1 τXj (T e);

12 if maxeτ > maxτ then
13 T ← T e;
14 maxτ ← maxeτ ;

15 end

16 end
17 i← i+ 1;

18 end

selects one cluster Ckb and one element o ∈ Ckb . Then it tries to move o in every
other cluster Cke , with e 6= b, and in the empty cluster Cke = ∅: among them,
it selects the one that optimizes the objective function. When all the n modes
have been considered, the i-th iteration of the algorithm is concluded. These
operations are repeated until a stopping condition is met; although this condition
can be a convergence criterion of τ , for simplicity, we fix the maximum number
of iterations by Niter in our algorithm. At the end of each iteration, one of the
following possible moves has been done on mode k:

– an object o has been moved from cluster Ckb to a pre-existing cluster Cke : in
this case the final number of clusters on mode k remains ck if Ckb is non-
empty after the move. If Ckb is empty after the move, it will be deleted and
the final number of clusters will be ck − 1;

– an object o has been moved from cluster Ckb to a new cluster Cke = ∅: the
final number of clusters on mode k will be ck + 1 (the useless case when o is
moved from Ckb = {o} to Cke = ∅ is not considered);

– no move has been performed, thus the number of clusters remains ck.

Thus, during the iterative process, the updating procedure is able to increase or
decrease the number of clusters at any time. This is due to the fact that, contrary
to other measures, such as the loss in mutual information [6], τ measure has an
upper limit which does not depend on the numbers of co-clusters and thus enables
comparison of co-clustering solutions of different cardinalities.

8 E. Battaglia, R.G. Pensa

The proposed algorithm has the desirable property of increasing (or at least
not worsening) the objective function after each iteration, i.e.

∑n
i=1 τXi

gets
closer to the optimal value of the objective function. Notice, however, that it is
not guaranteed that the global optimum will be reached. In fact, at each step
i, the algorithm only allows to move from a partition P(i) to a neighboring
one, i.e., a partition obtainable by moving a single element from a cluster to
another. It is not guaranteed that there is a path of neighboring partitions that
connects P(i) with an optimal partition P ′ ∈ OfX . It is possible, conversely, that
the algorithm comes to a partition with no neighboring solutions improving the
objective function. In this case the algorithm ends in a local optimum.

Algorithm 1 modifies, at each iteration, every partition Pi by evaluating func-
tion τPXi

. The computational complexity of this function is in O(m1 ·m2 ·. . .·mn).
Moreover, during each iteration, for each mode these operations are performed
for each cluster (including the empty cluster). Thus, in the worst case, the over-
all complexity of each iteration is in O ((maximi) · (m1 ·m2 · . . . ·mn)) for each
mode. In the next section, we present an optimized version of the algorithm that
reduces the overall time complexity.

4.2 Optimized computation of τ

In steps 10-11 of Algorithm 1, fixed a mode k, the following quantities are com-
puted:

max
e∈{1,...,ck},e6=b

n∑
j=1

τXj
(T e) and argmax

e∈{1,...,ck},e6=b

n∑
j=1

τXj
(T e)

where ck is the number of clusters on mode k (including the empty set) and T e is
the contingency tensor associated to co-clustering Pe obtained by moving an ob-
ject o from cluster Ckb to cluster Cke in partition Pk, for each e ∈ {1, . . . , ck}, e 6=
b.

A way to compute these quantities is to fix an arrival cluster Cke , move o in Cke
obtaining a new partition Pek , compute the contingency tensor associated to that
partition (using Equation 2), compute vector τe associated to tensor T e (using
equation 3) and finally compute

∑n
j=1 τXj

(T e). By repeating these steps for

every e ∈ {1, . . . , ck}, e 6= b, we obtain a vector v = (
∑n
j=1 τXj (T e))e∈{1,...,ck},e6=b

of dimension ck and we can compute maxv and argmaxv. In order to obtain
v in a more efficient way, we can reduce the amount of calculations by only
computing the variation of τe from one step to another. We take advantage of
the fact that a large part in the τ formula remains the same when moving a single
element from a cluster to another. Hence, an important part of the computation
of τ can be saved.

Imagine that o has been selected in cluster C1
b and that we want to move

it in cluster C1
e (for simplicity we consider o on the first mode, but all the

computations below are analogous on any other mode k). Object o is a row on
the first mode (let’s say the j-th row) of tensor X and so o can be expressed as
a tensor M ∈ Rm2×···×mn

+ with n − 1 modes, which generic entry is µk2...kn =

Parameter-less Tensor Co-clustering 9

xjk2...kn . We will denote with M the sum of all elements ofM. Let T and τ(T) be
the tensor and the measure associated to the initial co-clustering and S and τ(S)
the tensor and the measure associated to the final co-clustering obtained after
the move. Tensor S differs from T only in those entries having index k1 ∈ {b, e}.
In particular, for each ki = 1, . . . , ci and i = 2, . . . , n:

sbk2...kn = tbk2...kn − µk2...kn

sek2...kn = tek2...kn + µk2...kn

sk1k2...kn = tk1k2...kn , if k1 /∈ {b, e}.

Replacing these values in equation 1, we can compute the variation of τX1

moving object o from cluster C1
b to cluster C1

e as:

∆τX1
(T , o, b, e, k = 1) = τX1

(T)− τX1
(S) =

=

Γ1

[
2M
T 2 (M + t

(1)
(b) − t

(1)
(e))

]
−Ω1

[
2
T

∑
k2,...,kn

µk2...kn (µk2...kn+tek2...kn−tbk2...kn)

t
(2...n)

(k2...kn)

]
Ω2

1 −Ω1

[
2M
T 2 (M + t

(1)
(b) − t

(1)
(e))

] .

where Ω1 = 1 −
∑
k1

(
t
(1)

(k1)

)2

T 2 and Γ1 = 1 −
∑
k1,...,kn

t2k1...kn

T ·t(2...n)

(k2...kn)

only depend

on T and then can be computed once (before choosing b and e).Thanks to this
approach, instead of computing mi times τXi with complexity O(m1·m2·. . .·mn),
we compute ∆τXi

(T , o, b, e, k = i) with a complexity in O(m1 ·m2 · . . . ·mi−1 ·
mi+1 · . . . ·mn) in the worst case with the discrete partition. Computing Γi is in
O(m1 ·m2 · . . . ·mn) and Ωi in O(mi) and is done only once for each mode in
each iteration.

In a similar way, we can compute the variation of τXj for any j 6= 1:

∆τXj
(T , o, b, e, k = 1) = τXj

(T)− τXj
(S) =

=
1

ΩjT

∑
k2...kn

(
t2ek2...kn

t
(i)i6=j

(ki)i6=j,k1=e

− (tek2...kn + µk2...kn)2

t
(i)i6=j

(ki)i6=j,k1=e
+ µ

(i)i6=j−1

(ki)i6=j

+

+
t2bk2...kn

t
(i)i6=j

(ki)i6=j,k1=b

− (tbk2...kn − µk2...kn)2

t
(i)i6=j

(ki)i6=j,k1=b
− µ(i)i6=j−1

(ki)i6=j

)

where Ωj = 1−
∑
kj

(
t
(j)

(kj)

)2

T 2 only depends on T and can be computed once for
all e. Consequently, instead of computing mj times τXj

in Algorithm 1 with a
complexity in O(m1 · m2 · . . . · mn), we compute ∆τXj (T , o, b, e, k = i) with a
complexity in O(m1 ·m2 · . . . ·mi−1 ·mi+1 · . . . ·mn) in the worst case with the
discrete partition. Computing Ωj is in O(mj) and is done only once for each
mode in each iteration.

Hence, when we have to decide in which cluster Cke it is better to move object
o, instead of computing vector (

∑n
j=1 τXj

(T e))e∈{1,...,ck},e6=b and its maximum,

10 E. Battaglia, R.G. Pensa

we can equivalently compute vector ∆τ = (
∑n
j=1∆τXj

(T , o, e, k))e∈{1,...,ck},e6=b
and its minimum. In this way we reduce the amount of computations to be
executed for each mode at each iteration of the algorithm from a complexity in
O((maximi) ·m1 ·m2 · . . . ·mn) to O(m1 ·m2 · . . . ·mn).

Based on the above considerations, for a generic square tensor with n modes,
each consisting of m dimensions, the overall complexity is in O(In ·mn), where
I is the number of iterations (instead of O(In ·mn+1)).

5 Experiments

In this section, we evaluate the performance of our tensor co-clustering algo-
rithm through experiments. We first apply the algorithm to synthetic data and
then we show the results on a real-world dataset. To assess the quality of the
clustering performances, we consider two measures commonly used in the clus-
tering literature: normalized mutual information (NMI) [22] and adjusted rand
index (ARI) [14]. We compare our results with those of other state-of-the-art
co-clustering algorithms, based on CP [10] and Tucker [23] decomposition. nnCP
is the non-negative CP decomposition. It can be used to co-cluster a tensor, as
done in [28], by assigning each element in each mode to the cluster correspond-
ing to the latent factor with highest value. The algorithm requires as input the
number r of latent factors of the decomposition: we set r = max(c1, c2, c3),
where c1, c2 and c3 are the true numbers of classes on the three modes of the
tensor. nnCP+kmeans combines CP with a post-processing phase in which k-
means is applied on each of the latent factor matrices. Here, we set the rank
r to max(c1, c2, c3) + 1 and the number ki of clusters in each dimension equal
to the real number of classes (according to our experiments, this is the choice
that maximizes the performances of the algorithm). Similarly, nnTucker is the
non-negative Tucker decomposition (here we set the ranks of the core tensor
equal to (c1, c2, c3)), while nnT+kmeans combines Tucker decomposition with
k-means on the latent factor matrices [13, 3]. Finally, SparseCP is a CP decom-
position with non-negative sparse latent factors [18]. We set the rank r of the
decomposition equal to the maximum number of classes on the three modes of
the tensor. It also requires one parameter λi for each mode of the tensor: for the
choice of their values we follow the instructions suggested in the original paper.
All experiments are performed on a server equipped with 2 Intel Xeon E5-2643
quad-core CPU’s, 128GB RAM, running Arch Linux (kernel release: 4.19.14)1.

5.1 Experiments on synthetic data

The synthetic data we use to assess the quality of the clustering performance
are boolean tensors with three modes, created as follows. We fix the dimensions
m1,m2,m3 of the tensor and the number of embedded clusters c1, c2, c3 on each

1 The source code of our algorithm and all data used in this paper are available at:
https://github.com/elenabattaglia/tensor_cc

Parameter-less Tensor Co-clustering 11

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
NM

I

2 3 3 3 5 5 5 5 10 10 10
clusters x

2 2 3 3 3 3 5 5 5 5 10
clusters y

2 2 2 3 2 3 3 5 3 5 5
clusters z

nnCP+kmeans
nnT+kmeans

τTCC
nnTUCKER

nnCP
SparseCP

(a) 100×100×20 (noise 0.10)

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
NM

I

2 3 3 3 5 5 5 5 10 10 10
clusters x

2 2 3 3 3 3 5 5 5 5 10
clusters y

2 2 2 3 2 3 3 5 3 5 5
clusters z

nnCP+kmeans
nnT+kmeans

τTCC
nnTUCKER

nnCP
SparseCP

(b) 1000×500×20 (noise 0.10)

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
NM

I

2 3 3 3 5 5 5 5 10 10 10
clusters x

2 2 3 3 3 3 5 5 5 5 10
clusters y

2 2 2 3 2 3 3 5 3 5 5
clusters z

nnCP+kmeans
nnT+kmeans

τTCC
nnTUCKER

nnCP
SparseCP

(c) 100×100×20 (noise 0.20)

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
NM

I

2 3 3 3 5 5 5 5 10 10 10
clusters x

2 2 3 3 3 3 5 5 5 5 10
clusters y

2 2 2 3 2 3 3 5 3 5 5
clusters z

nnCP+kmeans
nnT+kmeans

τTCC
nnTUCKER

nnCP
SparseCP

(d) 1000×500×20 (noise 0.20)

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
NM

I

2 3 3 3 5 5 5 5 10 10 10
clusters x

2 2 3 3 3 3 5 5 5 5 10
clusters y

2 2 2 3 2 3 3 5 3 5 5
clusters z

nnCP+kmeans
nnT+kmeans

τTCC
nnTUCKER

nnCP
SparseCP

(e) 100×100×20 (noise 0.30)

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n
NM

I

2 3 3 3 5 5 5 5 10 10 10
clusters x

2 2 3 3 3 3 5 5 5 5 10
clusters y

2 2 2 3 2 3 3 5 3 5 5
clusters z

nnCP+kmeans
nnT+kmeans

τTCC
nnTUCKER

nnCP
SparseCP

(f) 1000×500×20 (noise 0.30)

Fig. 1. Mean NMI on the three modes varying the number of embedded clusters on
synthetic tensors with different sizes and levels of noise.

of the three modes. Then, we first construct a block tensor of dimensions m1 ×
m2 × m3 with c1 × c2 × c3 blocks. The blocks are created so that there are
“perfect” clusters in each mode , i.e., all rows on each mode belonging to the

12 E. Battaglia, R.G. Pensa

same cluster are identical, while rows in different clusters are different. Then we
add noise to the “perfect” tensor, by randomly selecting some element tk1k2k3

,
with ki ∈ {1, . . . ,mi}, for each i ∈ {1, 2, 3}, and changing its value (from 0 to
1 or vice versa). The amount of noise is controlled by a parameter ε ∈ [0, 1],
indicating the fraction of elements of the original tensor we change. We generate
tensors of different size (100×100×20, 1000×100×20, 1000×500×20), number
of clusters (different combinations of 2, 3, 5, 10) and values of noise (ε = 0.05
to 0.3 with a step of 0.05), for a total of 198 tensors2. On each tensor, we apply
the algorithm and its competitors five times and report the mean of the results
in Figure 1.

NMI and ARI of the resulting clusters of τTCC remain stably over 0.9 in
almost all experiments and in the vast majority of cases the resulting clusters
exactly match the correct classes (we omit the results in terms of ARI here for the
sake of brevity, but they are similar to NMI ones). In particular, τTCC always
outperforms nnCP, nnTucker and SparseCP (the latter exhibits very low values
of ARI and NMI for asymmetric tensors); furthermore, the results achieved by
τTCC are similar to those of nnCP+kmeans and nnT+kmeans. Generally the
latter get “better” clusters in cases where the number of clusters is large. In fact,
in these cases it can happen that τTCC does not identifies the correct number of
clusters in all modes (we don’t have the same issue with k-means, for which the
correct number of clusters is given as input). To better investigate this behavior,
we compute the average NMI according to all level of noise and for increasing
number of embedded co-clusters (obtained as c1 · c2 · c3). The results are shown
in Figure 2. In general, the noise and the number of embedded co-clusters do
not affect the quality of the results to a great extent, although we observe a
combined effect of a high number of co-cluster and level of noise. In this case,
identifying the embedded co-clusters is challenging, unless one knows exactly
their number, which, as explained beforehand, is rather unrealistic in the vast
majority of unsupervised application scenarios.

5.2 Experiments on real-world data

As last experiment, we apply our algorithm and its competitors to the “four-
area” DBLP dataset3. It is a bibliographic information network dataset extracted
from DBLP data, downloaded in the year 2008. The dataset includes all pa-
pers published in twenty representative conferences of four research areas. Each
element of the data set corresponds to a paper and contains the following in-
formation: authors, venue and terms in the title. The original dataset contains
14376 papers, 14475 authors and 13571 terms. Part of the authors (4057) are
labelled in four classes, roughly corresponding to the four research areas. We
select only these authors and their papers and perform some pre-processing step
on the terms (stemming, stop-words removal). We obtain a dataset with 14328
papers, from which we create a (6044 × 4057 × 20)-dimensional tensor, highly

2 Here we report only the results of two representative tensors and three noise level.
3 http://web.cs.ucla.edu/~yzsun/data/DBLP_four_area.zip

Parameter-less Tensor Co-clustering 13

0.05 0.1 0.15 0.2 0.25 0.3
noise

8
12

18
27

30
45

75
12

5
15

0
25

0
50

0

co
-c
lu
st
er
s

100 X 100 X 20

0.0

0.2

0.4

0.6

0.8

1.0

(a) 100×100×20

0.05 0.1 0.15 0.2 0.25 0.3
noise

8
12

18
27

30
45

75
12

5
15

0
25

0
50

0

co
-c
lu
st
er
s

1000 X 100 X 20

0.0

0.2

0.4

0.6

0.8

1.0

(b) 1000×100×20

0.05 0.1 0.15 0.2 0.25 0.3
noise

8
12

18
27

30
45

75
12

5
15

0
25

0
50

0

co
-c
lu
st
er
s

1000 X 500 X 20

0.0

0.2

0.4

0.6

0.8

1.0

(c) 1000×500×20

Fig. 2. Average NMI on the three modes varying the overall number of embedded
co-clusters and the level of noise.

Table 1. Results of the co-clustering algorithms on “four-area” DBLP dataset. NMI,
ARI and number of clusters identified are computed for the authors mode.

Algorithm NMI ARI # clusters

τTCC 0.75 ± 0.01 0.80 ± 0.02 9

nnTucker 0.78 ± 0.00 0.84 ± 0.00 4

nnCP 0.74 ± 0.00 0.80 ± 0.00 4

SparseCP 0.00 ± 0.00 0.00 ± 0.00 1

nnCP+kmeans 0.24 ± 0.01 0.08 ± 0.00 4

nnT+kmeans 0.25 ± 0.01 0.06 ± 0.00 4

sparse (99.98% of entries are equal to zero); the generic entry tijk of the tensor
counts the number of times term i was used by author j in conference k.

Table 1 shows that the best results are those of the non-negative Tucker
decomposition where the number of latent factors is set to 4 (the correct num-
ber of embedded clusters). Observe, however, that in standard unsupervised
settings, the number of “naturally” embedded clusters is unknown. Hence, by
fixing the number of latent factors equal to the real number of natural clusters
we are facilitating our competitors; if we modify the number of latent factors
(see Figure3(a)), the results get worse: this means that, if we don’t specify the
correct number of clusters on the author mode but we set an upper bound, the
results of the Tucker based co-clustering algorithm become lower than those of
τTCC. Also nnCP shows a similar behavior, but with slightly worse results (see
Figure3(b)). Note that τTCC achieves the second best performance, even if the
number of clusters identified is higher than the correct number of classes (9
instead of 4): indeed, 4042 objects are correctly divided into four large groups
and only 15 elements are assigned to 5 very small clusters, since they proba-
bly are candidate outliers. The ability of our algorithm to also identify outliers
automatically will be investigated as future work.

14 E. Battaglia, R.G. Pensa

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
ea

n
NM

I

2 3 4 4 4 4 5 6 7 8 9 10 10 10 10 20 20 20 40
authors rank

2 3 3 4 4 5 5 6 7 8 9 3 4 5 10 3 4 5 10
conferences rank

2 3 9 4 9 9 5 6 7 8 9 15 15 15 10 30 30 30 60
terms rank

nnTucker nnT+kmeans τTCC

(a) nnTucker

0.2

0.3

0.4

0.5

0.6

0.7

m
ea

n
NM

I

2 3 4 5 6 7 8 9 10 15 20
authors rank

2 3 4 5 6 7 8 9 10 15 20
conferences rank

2 3 4 5 6 7 8 9 10 15 20
terms rank

nnCP nnCP+kmeans τTCC

(b) nnCP

Fig. 3. Variation of nnTucker/nnCP results w.r.t. the rank of the decomposition.

6 Conclusions

The majority of tensor co-clustering algorithms optimizes objective functions
that strongly depend on the number of co-clusters. This limits the correct ap-
plication of such algorithms in realistic unsupervised scenarios. To address this
limitation, we have introduced a new co-clustering algorithm specifically de-
signed for tensors that does not require the desired number of clusters as input.
Our experimental validation has shown that our approach is competitive with
state-of-the-art methods that, however, can not work properly without specify-
ing a correct number of clusters for each mode of the tensor. As future work, we
will further investigate the ability of our method to identify candidate outliers
as small clusters in the data.

References

1. Araujo, M., Ribeiro, P.M.P., Faloutsos, C.: Tensorcast: Forecasting time-evolving
networks with contextual information. In: Proceedings of IJCAI 2018. pp. 5199–
5203 (2018)

2. Banerjee, A., Basu, S., Merugu, S.: Multi-way clustering on relation graphs. In:
Proceedings of SIAM SDM 2007. pp. 145–156 (2007)

3. Cao, X., Wei, X., Han, Y., Lin, D.: Robust face clustering via tensor decomposition.
IEEE Trans. Cybernetics 45(11), 2546–2557 (2015)

4. Chakrabarti, D., Papadimitriou, S., Modha, D.S., Faloutsos, C.: Fully automatic
cross-associations. In: Proceedings of ACM SIGKDD 2004. pp. 79–88 (2004)

5. Cho, H., Dhillon, I.S., Guan, Y., Sra, S.: Minimum sum-squared residue co-
clustering of gene expression data. In: Proceedings of SIAM SDM 2004. pp. 114–125
(2004)

6. Dhillon, I.S., Mallela, S., Modha, D.S.: Information-theoretic co-clustering. In: Pro-
ceedings of ACM SIGKDD 2003. pp. 89–98 (2003)

7. Ding, C.H.Q., Li, T., Peng, W., Park, H.: Orthogonal nonnegative matrix t-
factorizations for clustering. In: Proceedings of ACM SIGKDD 2006. pp. 126–135
(2006)

Parameter-less Tensor Co-clustering 15

8. Ermis, B., Acar, E., Cemgil, A.T.: Link prediction in heterogeneous data via gen-
eralized coupled tensor factorization. Data Min. Knowl. Discov. 29(1), 203–236
(2015)

9. Goodman, L.A., Kruskal, W.H.: Measures of association for cross classification.
Journal of the American Statistical Association 49, 732–764 (1954)

10. Harshman, R.A.: Foundation of the parafac procedure: models and conditions for
an“ explanatory” multimodal factor analysis. UCLA Working Papers in Phonetics
16, 1–84 (1970)

11. He, J., Li, X., Liao, L., Wang, M.: Inferring continuous latent preference on transi-
tion intervals for next point-of-interest recommendation. In: Proceesings of ECML
PKDD 2018. pp. 741–756 (2018)

12. Hong, M., Jung, J.J.: Multi-sided recommendation based on social tensor factor-
ization. Inf. Sci. 447, 140–156 (2018)

13. Huang, H., Ding, C.H.Q., Luo, D., Li, T.: Simultaneous tensor subspace selec-
tion and clustering: the equivalence of high order svd and k-means clustering. In:
Proceedings of the 14th ACM SIGKDD. pp. 327–335 (2008)

14. Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification 2(1), 193–
218 (1985)

15. Ienco, D., Robardet, C., Pensa, R.G., Meo, R.: Parameter-less co-clustering for star-
structured heterogeneous data. Data Min. Knowl. Discov. 26(2), 217–254 (2013)

16. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Review
51(3), 455–500 (2009)

17. Papalexakis, E.E., Dogruöz, A.S.: Understanding multilingual social networks in
online immigrant communities. In: Proceedings of MWA 2015 (co-located with
WWW 2015). pp. 865–870 (2015)

18. Papalexakis, E.E., Sidiropoulos, N.D., Bro, R.: From K-means to higher-way co-
clustering: Multilinear decomposition with sparse latent factors. IEEE Trans. Sig-
nal Processing 61(2), 493–506 (2013)

19. Pensa, R.G., Ienco, D., Meo, R.: Hierarchical co-clustering: off-line and incremental
approaches. Data Min. Knowl. Discov. 28(1), 31–64 (2014)

20. Robardet, C., Feschet, F.: Efficient local search in conceptual clustering. In: Pro-
ceedings of DS 2001. pp. 323–335 (2001)

21. Shashua, A., Hazan, T.: Non-negative tensor factorization with applications to
statistics and computer vision. In: Proceedings of (ICML 2005. pp. 792–799 (2005)

22. Strehl, A., Ghosh, J.: Cluster ensembles – A knowledge reuse framework for com-
bining multiple partitions. Journal of Machine Learning Research 3, 583–617 (2002)

23. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychome-
trika 31, 279–311 (1966)

24. Wu, T., Benson, A.R., Gleich, D.F.: General tensor spectral co-clustering for
higher-order data. In: Proceedings of NIPS 2016. pp. 2559–2567 (2016)

25. Yu, K., He, L., Yu, P.S., Zhang, W., Liu, Y.: Coupled tensor decomposition for
user clustering in mobile internet traffic interaction pattern. IEEE Access 7, 18113–
18124 (2019)

26. Zhang, T., Golub, G.H.: Rank-one approximation to high order tensors. SIAM J.
Matrix Analysis Applications 23(2), 534–550 (2001)

27. Zhang, Z., Li, T., Ding, C.H.Q.: Non-negative tri-factor tensor decomposition with
applications. Knowl. Inf. Syst. 34(2), 243–265 (2013)

28. Zhou, Q., Xu, G., Zong, Y.: Web co-clustering of usage network using tensor de-
composition. In: Proceedings of ECBS 2009. pp. 311–314 (2009)

