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In the last years, several studies have been focused on understanding how the central nervous system controls muscles to perform a
specific motor task. Although it still remains an open question, muscle synergies have come to be an appealing theory to explain the
modular organization of the central nervous system. Even though the neural encoding of muscle synergies remains controversial, a
large number of papers demonstrated that muscle synergies are robust across different tested conditions, which are within a day,
between days, within a single subject, and between subjects that have similar demographic characteristics. Thus, muscle synergy
theory has been largely used in several research fields, such as clinics, robotics, and sports. The present systematical review aims
at providing an overview on the applications of muscle synergy theory in clinics, robotics, and sports; in particular, the review is
focused on the papers that provide tangible information for (i) diagnosis or pathology assessment in clinics, (ii) robot-control
design in robotics, and (iii) athletes’ performance assessment or training guidelines in sports.

1. Introduction

Motor tasks are achieved by activating an appropriate set of
muscles [1]. The number of recruited muscles depends on
the task constraints of a specific movement [1]. The central
nervous system (CNS) plays the main role in the motor con-
trol since it activates the specific muscle choosing both the
magnitude and the timing of the activation [2].

The organization of the CNS in controlling and coordi-
nating a large number of muscles still represents unclearly
in the field of motor control [3]. The CNS may decrease the
complexity of motor control by reducing the dimensionality
of the controlled variables, which is the number of muscles
[4]. Since Bernstein proposed the topic of many degrees of
freedom in motor control (1967), several researchers focused
on understanding how the CNS can limit the control signals

to activate a large number of muscles [5]. The activation of
muscle synergies, rather than each muscle individually, rep-
resents the most appealing idea to explain how the CNS
bypasses the difficulty in controlling a large variety of mus-
cles [6–9]. These modules are commonly named muscle syn-
ergies, which are defined as the coherent activation, in space
and time, of a group of muscles. Muscle synergies can be
extracted by factorizing data acquired by means of surface
electromyography (EMG). Nonnegative matrix factorization
[10] is the most widespread algorithm used for factorization,
even though it was demonstrated that similar results can be
obtained by applying other methods, such as principal or
independent component analysis and inverse Gaussian
[11, 12]. Factorization leads to the computation of muscle
synergy vectors (W) and temporal activation patterns (C);
the first one is a time-invariant matrix that contains the
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weights corresponding to the contribution of each muscle
to the specific synergy, while the second one is a time-
variant waveform that represents the neural signal modu-
lating the excitation of the specific synergy. EMG data
can be obtained as a linear combination of muscle synergy
vectors and temporal activation patterns, whose dimen-
sions depend on the number of muscle synergies needed
to perform a specific motor task [13].

In order to demonstrate that muscle synergies can objec-
tively represent an effective tool to understand the organiza-
tion of the CNS in motor control and they are not a mere
output of a mathematical approach, several studies have been
conducted on all the methodological issues related to EMG
factorization by means of muscle synergies. In particular,
the studies have been focused on the effects of the number
and the selected muscles [14], the factorization algorithms
[12], the averaging or concatenating repetitions of the same
task [15], and the repeatability of the methods [11, 16] on
the output of a muscle synergy model. All the mentioned
papers demonstrated the good reliability and repeatability
of the muscle synergy theory regardless of the selected mus-
cles, the applied factorization algorithms, and the used post-
processing procedures.

Due to the promising results, muscle synergies were used
to describe the muscle activity in several applications, such as
clinics [6, 17–51], robotics [52–67], and sports [68–87].

The present systematic review aims at providing an over-
view on the possible applications of themuscle synergy theory
in the three above-mentioned research fields. In particular,
literature was reviewed focusing on the aims, enrolled sub-
jects, recordedmuscles, data processing, data analysis, results,
and related tangible conclusions of each study.

2. Materials and Methods

2.1. Search Strategy. A literature review was performed on
Scopus and PubMed databases in order to find a paper
focused on the applications of the muscle synergy theory in
clinics, robotics, and sports. The electronic search started on
August 2017, and it finished on October 2017. The included
keywords were muscle synergies; electromyography; muscle
activity; muscle coordination; EMG, muscle synergy vectors;
muscle synergy activation patterns; EMG factorization; motor
control; locomotion; clinical gait analysis; balance; postural
control; rehabilitation; EMG-based robot control; robotics;
sports; sports performance. In addition, wildcard symbols,
such as hyphens or inverted commas, were used to consider
all possible variations of root words. Moreover, references of
each found article were carefully checked not to miss impor-
tant papers that have not been highlighted in the electronic
search [88]. All authors conducted the literature search.

2.2. Inclusion Criteria. The initial inclusion criteria were
based on the contents of the title and abstract. Then, the arti-
cles were screened to check whether they met the following
criteria. Firstly, they were written in English; secondly, they
were published from January 2006 to October 2017. Finally,
we included only one paper published by the same authors

if other papers and/or conference proceedings presented
the same contents.

2.3. Data Extraction. Publications that met the initial inclu-
sion criteria were downloaded into Mendeley Desktop
1.17.11 for further screening. In order to make the review
readable and focused on the authors’ intention, as claimed
in the Introduction section, the included papers were firstly
divided into one of the three categories: clinics, robotics,
and sports. Then, the following information was collected
from each paper: (i) what the aims were, (ii) what the actual
application was, (iii) which subjects were enrolled, (iv) which
muscles were recorded, (v) how data were processed and ana-
lyzed, and (vi) which results and conclusions were obtained.

2.4. Quality Assessment. To make an initial selection of the
large number of papers that are available for the present
review, a quality assessment was performed. The quality of
each paper was assessed in terms of internal, statistical, and
external validity [89]. In particular, the internal validity
allows assessing the validity on bias of the research design
and the operational study, the statistical validity permits
quantifying statistical significance of the results, and the
external validity is useful for examining the generalization
of the study [90]. All the authors were asked to answer an
18-item checklist. In particular, the used checklist (Table 1)
provided information on (i) internal validity (question num-
bers 1, 3, 4, 6, 7, 9, 12, 13, and 14), (ii) statistical validity
(question numbers 15, 16, 17, and 18), and (iii) external
validity (question numbers 2, 3, 5, 6, 8, 10, and 11). Each item
of the checklist had to be answered with “+” or “−” corre-
sponding to a score of 1 and 0, respectively. It is worth notic-
ing that the 18-item checklist is similar to the ones commonly
used in literature for systematical and/or meta-analysis
reviews [91–95], and it was adjusted based on the specific
review topic.

Papers that reached a score equal or more than 11, that is,
at least 60% of “+” among the answers, in the majority of the
authors can be defined as “high quality” [92, 94].

In the clinics section, a further selection of the available
papers was performed taking into consideration only publi-
cations that provided tangible results useful for improving
neuromuscular diagnosis and rehabilitation assessment for
locomotion, balance, and upper limb functions.

Taking into account the robotics section, only papers that
proposed the synergy-based control as a viable alternative to
the traditional myoelectric control and that tested the
synergy-based control on robotic devices with subjects were
deeply discussed.

Focusing on sports, we further skimmed the paper by
selecting only ones that proposed tangible outcomes useful
for improving the athlete performance assessment and/or
to plan an athlete-specific training session.

A flowchart of the systematic review process is reported
in Figure 1.

Since the acronyms used for the muscles were not consis-
tent in the examined papers, we decided to standardize the
name of muscles as reported in Table 2.
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3. Results and Discussions

3.1. Clinics. Due to the large amount of papers focused on
muscle synergies in clinical applications, this paragraph is
divided into two main sections. The former takes into
account the muscle synergy extraction in locomotion and
balance, and the latter concerns the functionalities of the
upper limb.

3.1.1. Locomotion and Balance. The electronic search in the
cited databases and the cross-referencing evaluation
returned as a result 60 publications dealing with muscle
synergies in the context of neuromuscular pathologies
and rehabilitation. The application of the above-
mentioned inclusion criteria allowed the selection of 17
papers that provide tangible results and a better under-
standing of the disabilities that result from an impaired
nervous system. Table 3 describes the distribution of the
selected papers considering different pathologies that could
affect locomotion and balance.

Details of all cited papers are reported in Table 4.
In the following subparagraphs, one paper on poststroke

patients, one on spinal cord injury, one on Parkinson’s dis-
ease, and one on cerebral palsy will be further discussed since
they provided tangible results useful for improving neuro-
muscular diagnosis and rehabilitation assessment.

(1) Stroke. In this section, we report the work of Clark
et al. [17], since it deeply investigated muscle synergies
in poststroke subjects during walking at different speeds.
The authors compared 55 subjects with poststroke hemi-
paresis and 20 healthy adults in terms of motor coordina-
tion during treadmill walking at different speeds.
Volunteers with hemiparesis performed walking trials of
30 s duration at self-selected comfortable speed (SS) and
at fastest comfortable speed (FS), while healthy partici-
pants walked at SS, FS, and six additional speeds ranging
from 0.3 to 1.8m/s. Bipolar electrodes were used to record
EMGs from 8 lower limb muscles (TA, SOL, GM, VM, RF,
SEMT-SM, BFlh, and GLUmed) of each side. The authors
found a preservation of the low-dimensional modular orga-
nization of muscle coordination in both healthy and post-
stroke subjects with hemiparesis, but the ability to activate
independently the motor synergies was compromised in the
paretic side of poststroke patients. The number of muscle
synergies in poststroke individuals was reduced in the paretic
side due to a merging of motor synergies, revealing impair-
ments in lower-limb muscle coordination and an overall
reduction in the complexity of locomotor control. This
decrease in the number of independent synergies was also
correlated with poorer walking performance, such as self-
selected walking speed, speed modulation, and step length
asymmetry. Thus, authors suggested that motor synergies

Table 1: Criteria for quality assessment of internal validity (IV), statistical validity (SV), and external validity (EV).

Criteria Possible outcomes

Aim of the work

(1) Description of a specific, clearly stated purpose (IV) +/−
(2) The research question is scientifically relevant (EV) +/−
Inclusion criteria (selection bias)

(3) Description of inclusion and exclusion criteria (IV-EV) +/−
(4) Inclusion and exclusion criteria are the same for all tested groups (IV) +/−
(5) Inclusion and exclusion criteria reflect the general population (EV) +/−
Data collection (performance bias)

(6) Data collection is clearly described and reliable (IV-EV) +/−
(7) Same data collection method used for all the subjects (IV) +/−
(8) Data collection reflects the usual methodology in the field (EV) +/−
Data loss (attrition bias)

(9) Different data loss between groups (IV) +/−
(10) Data loss < 20% (EV) +/−
Outcome (detection bias)

(11) Outcomes are topic-relevant (EV) +/−
(12) Outcomes are the same for all the subjects (IV) +/−
Data presentation

(13) Frequencies of most important outcome measures (IV) +/−
(14) Presentation of the data is sufficient to assess the adequacy of the analysis (IV) +/−
Statistical approach

(15) Appropriate statistical analysis techniques (SV) +/−
(16) Clearly state the statistical test used (SV) +/−
(17) State and reference the analytical software used (SV) +/−
(18) Sufficient number of subjects (SV) +/−

3Applied Bionics and Biomechanics



could provide a quantitative description of the motor control
deficits following stroke.

(2) Cerebral Palsy. In this section, we reported the work of
Steele et al. [25] which examined motor synergy modifica-
tions in individuals with CP during gait. The aim of the study
was to evaluate if participants with CP demonstrate lower
complexity of motor coordination during locomotion com-
pared to healthy subjects. Muscle synergies during gait were
analyzed for 549 participants with CP and 84 unimpaired
individuals, selected from a database of over 6600 subjects.
Surface EMG signals from 5 lower limb muscles (RF,
SEMT-SM, BFlh, TA, and GM) were acquired from the most
affected side during one randomly selected barefoot cycle.
Results demonstrated that fewer synergies were required to
describe muscle coordination during locomotion in subjects
with CP. Patients’ motor control was characterized by one
or two muscle synergies, while three or four synergies were

required in healthy subjects. In conclusion, the outcomes
allow considering the synergy number as an index for the
assessment of CP.

(3) Spinal Cord Injury. The article reviewed in this section
provides a detailed description of the effects of the incom-
plete spinal cord injury (iSCI) on the locomotor control of
children during different locomotion tasks. Fox et al. [28]
focused their work on neuromuscular control of locomotor
tasks in children with iSCI and in uninjured children.
Authors enrolled five children with iSCI and five age-
matched controls who were asked to perform different loco-
motor tasks, such as treadmill walking, overground walking,
pedalling, supine lower extremity flexion/extension, stair
climbing, and crawling. For each task, EMGs related to both
lower limbs were recorded from 6muscles: TA, GM, VM, RF,
SM-SEMT, and GLUmed. In the assessment of altered muscle
coordination, fewer motor synergies were required to explain
muscle activations in the lower limbs of injured children
compared to healthy ones. However, in both groups, a similar
modular organization across different locomotor tasks sug-
gested that the nervous system could coordinate complex
lower limb movements starting from a small set of elemen-
tary synergies. Thus, these findings suggest that the rehabili-
tation of the locomotion might have benefits for a large
variety of locomotor tasks.

(4) Parkinson’s Disease. In the following, we discuss the work
of Allen et al. [30], since it provides useful information about
changes in muscle coordination after rehabilitation in sub-
jects with (PD). The aim of the study was to use muscle syner-
gies to assess changes in neuromuscular control of gait and
balance in subjects with PD after a partnered, dance-based
rehabilitation session. Nine volunteers affected by PD were
enrolled in the study. Each subject performed an intensive
rehabilitation during 15 Adapted Tango (AT) lessons with a
dance instructor. The EMG signals from 13 muscles of the
right leg and lower back (RA, EO, ESL, GLUmed, TFL, BFlh,
RF, VM, GM, GL, SOL, PL, and TA) were acquired during
overground walking at self-selected speed (gait control) and
during ramp-and-hold translations of the support surface
(balance control). The results revealed no increase in the
number of motor synergies despite improvements in gait
and postural control immediately after rehabilitation. After
AT, the great majority of participants showed decreased
motor synergy variability and increased motor synergy con-
sistency in both walking and balance tasks. Furthermore, this
study demonstrated that the metrics of consistency, distinct-
ness, and generalizability of motor synergies are more sensi-
tive to improvements in gait and balance function than the
number of muscle synergies.

3.1.2. Upper Extremity Functions. Using the search criteria
of Section 2.1, we found 60 publications referencing mus-
cle synergies in the result of upper-limb pathology and
rehabilitation training. Applying the inclusion criteria, we
selected 16 papers for inclusion in this section. The most
common exclusion applied to the selected papers was the
lack of a clinical subject population. We made an

Literature search on Scopus and PubMed
and cross-referencing
NC = 150 NR = 42 NS = 93

Language and author check
NC = 130 NR = 42 NS = 90

Title and abstract screening
NC = 120 NR = 40 NS = 70

Full-text reading

Internal, statitical, and external validity
NC = 33 NR = 11 NS = 19

Further selection on tangible outcomes

Search
strategy

Data
extraction

Quality
assessment

NC = 16 NR = 8 NS = 8

Figure 1: Flowchart of the systematic review process. NC, NR, and
NS stand for number of papers in the clinics, robotics, and sports
sections, respectively.
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exception by including an experimentally induced pain
along with chronic pain. Table 5 describes the distribution
of the selected papers considering different pathologies
that could affect the upper limb.

Details of all cited papers are reported in Table 6.

(1) Stroke. We found 9 papers that quantified the abnormal-
ities in muscle coordination, evaluated the effects of thera-
peutic methods on the modularity of muscle coordination,
and examined the neuroanatomical correlates of muscle syn-
ergies identified in the upper extremity poststroke. Among
them, we reviewed the two following articles, Cheung et al.
[36] and Roh et al. [38], considering that both works rigor-
ously characterized abnormal muscle coordination in stroke
using different behavioural paradigms. In addition, we
reviewed Hesam-Sariati et al. [42] which examined the effects
of therapeutic activities on the organization of muscle syn-
ergy as well as Godlove et al. [43] which addressed the neural
correlates of normal and abnormal muscle synergies identi-
fied from a unique stroke case.

(2) Stroke: Quantification of Abnormalities in Modular Mus-
cle Coordination. Cheung et al. [36] addressed how stroke
affects muscle synergies for human upper limb movements.
A group of stroke patients (31) with a wide range of unilateral
motor impairment performed multiple upper-limb tasks
using both unaffected (control) and affected arms, including

Table 2: Acronyms of human full-body muscles.

Acronym Muscle

ADD Adductor magnus

AL Adductor longus

ANC Anconeus

BB Biceps brachii

BBm Biceps brachii (medius)

BBl Biceps brachii (long head)

BFlh Biceps femoris (long head)

BR Brachialis

BRD Brachioradialis

DELTa Deltoideus (anterior)

DELTm Deltoideus (medius)

DELTp Deltoideus (posterior)

ECR Extensor carpi radialis

EDC Extensor digitorum communis

ECU Extensor carpi ulnaris

EDL Extensor digitorum longus

EO External oblique

ES Erector spinae

ESC Erector spinae cervical region

ESL Erector spinae lumbar region

EST Erector spinae thoracic region

FCR Flexor carpi radialis

FCU Flexor carpi ulnaris

FD Flexor digitorum

FDI First dorsal interosseous

FDS Flexor digitorum superficialis

GL Gastrocnemius lateralis

GLUmax Gluteus maximus

GLUmed Gluteus medius

GM Gastrocnemius medialis

I Iliocostalis

IS Infraspinatus

L Longissimus

LD Latissimus dorsi

PL Peroneus longus

PM Pectoralis major

PMc Pectoralis major (clavicular)

PRO Pronator teres

RA Rectus abdominis

RF Rectus femoris

RMaj Rhomboid major

SCM Sternocleidomastoid

SEMT Semitendinosus

SM Semimembranosus

SOL Soleus

SS Supraspinatus

SUP Supinator

T Trapezius

Table 2: Continued.

Acronym Muscle

TA Tibialis anterior

TB Triceps brachii

TBl Triceps brachii (long head)

TBlat Triceps (lateral head)

TFL Tensor fasciae latae

TI Trapezius inferior

TM Trapezius medius

TMaj Teres major

TU Trapezius upper

VL Vastus lateralis

VM Vastus medialis

Table 3: Papers using muscle synergies in clinical practice/
rehabilitation for locomotion and balance task.

N % References

Stroke 7 44.43% [17–20, 22–24]

Cerebral palsy (CP) 3 16.67% [25, 27, 51]

Spinal cord injury (SCI) 2 11.11% [28, 29]

Parkinson’s disease (PD) 2 11.11% [30, 31]

Multiple sclerosis 1 5.56% [32]

ACL1 injury 1 5.56% [33]

Aging 1 5.56% [34]
1Anterior cruciate ligament.
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seven virtual-reality tasks or a point-to-point reaching task in
3D space. During the task performance, EMG activities were
collected from 17 shoulder, upper-arm, and forearmmuscles:
IS, TMaj, LD, RMaj, TU, PM, DELTa, DELTm, DELTp, TB,
TBl, BBl, BBm, BR, BRD, SUP, and PRO. Nonnegative matrix
factorization (NMF) identified muscle synergies necessary
for an 80% R2 EMG reconstruction. Three distinct patterns
of muscle synergies were identified, reflecting preservation,
merging, and fractionation of the unaffected-arm muscle
synergies in the stroke-affected arm, respectively. Further-
more, authors identified two or more synergies for the
impaired arm as fractionations of one or multiple
unaffected-arm synergies. Both merging and fractionation
of synergies varied as a function of the severity of motor
impairment. The findings were congruent with the idea that
muscle synergies are structured in the spinal cord, and after
cortical stroke, altered descending commands from suprasp-
inal areas generate abnormal motor behaviours through
faulty activations of the spinal modules. Overall, these results
suggest that muscle synergies may be used as markers of the
physiological status of stroke survivors.

In contrast to the rest of the existing literature on the
topic of stroke upper-extremity muscle synergies that
adopted motion or posture-oriented tasks, Roh et al. [38]
examined the effects of stroke on the composition and
recruitment of muscle synergies underlying the generation
of isometric forces at the hand. Ten stroke survivors with
severe impairment (FM score < 25/66; data collected from
only impaired arm) and six age-matched control subjects
(data collected from both arms) participated in the study.
EMGs were recorded from shoulder and elbow muscles that
include BRD, BB, TBl, TBlat, DELTa, DELTm, DELTp, and
PM. By using the NMF algorithm, four synergies were iden-
tified. Of the four synergies, synergies with relatively isolated
activation of the elbow flexors and extensors were conserved
following stroke, respectively. However, the two synergies
dominated by the activation of the shoulder muscles were
altered. Structural changes in the synergies were consistent
with an impaired ability to differentially activate the heads
of deltoid. Recruitment of the altered shoulder muscle syner-
gies was strongly associated with abnormal task perfor-
mance, namely, a requisite rotation of the arm for lateral
and upward force directions. The major findings suggest that
stroke induces abnormal coordination of muscle activation
in stroke survivors with severe impairment by altering the
structure of muscle synergies that may contribute to post-
stroke deficits in the arm function.

(3) Stroke: The Effects of Therapy on Muscle Synergies.
Hesam-Sariati et al. [42] investigated longitudinal changes
in muscle synergies in stroke patients to determine if muscle
synergy analysis could distinguish the level of impairment
and the effect of therapy. The study cohort consisted of 24
stroke patients in a two-week intensive therapy, 13 of whom
were available at the 6-month follow-up session. Each day,
patients had 1 hour of formal therapy with an accredited
exercise physiologist which was augmented by home practice
using the Nintendo Wii-Sports game (Nintendo, Japan). To
assess the motor coordination of the subjects, subjects played
Wii-Baseball on the game system. Unlike previous studies in
coordination, the studied task (simulated baseball swing) was
primarily unconstrained. Surface EMG data were collected
from 6 muscles on the affected side of the upper body: TM,
DELTm, BB, ECR, FCR, and FID. The major results of the
study were the following: (i) patients with low motor func-
tion had significantly fewer muscle synergies and signifi-
cantly different distributions of synergy weightings and
timings than patients with high motor function had, and
(ii) the number of muscle synergies required to recreate the
data did not change with time. The lowmotor function group
had roughly three synergies compared to four for the high
motor function group, suggesting that there was more com-
plexity in the movements generated by the high motor func-
tion group. After training, all of the stroke subjects were able
to make significant increases in the clinical motor-function
assessments and the game performance inWii-Baseball with-
out increasing the number of required synergies. The
reported findings allow affirming that the assessment of an
increase in motor function has to be conducted by means
of game performance rather than the use of muscle synergies
since they remained unaltered after training.

(4) Stroke: Neural Mechanism of Poststroke Muscle Coordi-
nation. Godlove et al. [43] addressed how muscle synergies
observed after stroke can be related to perilesional cortical
activity. Subdural microelectrocorticography (ECoG) signals,
recorded from the perilesional cortical area, and EMGs were
simultaneously recorded in a stroke subject who suffered
from refractory epilepsy and muscle weakness in the affected
distal and proximal arm during horizontal reaching move-
ments. Muscle activities were recorded from BRD, BB, TBl,
TBlat, DELTa, DELTm, DELTp, and PM. To test the hypothe-
sis that perilesional cortical activity is correlated with the
activations of poststroke muscle synergies, NMF was applied
to the EMG signal. A mix of both normal and abnormal
resultant muscle synergies was surprisingly similar to the
set of muscle synergies identified in a previous stroke study
[38]. To quantify the cortical correlates of muscle synergy
activation, they transformed each ECoG electrode’s recorded
signal into their component frequencies and power across
time. Perilesional high-gamma oscillations, but no other fre-
quency band, were significantly correlated with the activation
of both normal and abnormal synergies. Considering the link
between ECoG high-gamma activity and synchronized local
neural spiking activity at the cortical surface [96, 97], the
findings suggest that perilesional spiking may organize syn-
ergies after stroke.

Table 5: Papers using muscle synergies in clinical practice/
rehabilitation specific to the upper body.

N % References

Stroke 9 61.10% [36–44]

Cerebral palsy 1 5.56% [26]

Spinal cord injury (SCI) 1 5.56% [45]

Dystonia 1 5.56% [46]

Pain 4 22.22% [47–50]
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(5) Pain. Research in both experimentally induced pain
(Gizzi et al. [47] and Muceli et al. [48]) and chronic muscu-
loskeletal pain (Heales et al. [49] and Manickaraj et al. [50])
shows that the presence of pain affects muscle recruitment
in both the affected muscle and synergistic muscles during
a task. In this section, we summarized the findings of Muceli
et al. [48], who investigated muscle synergies in reaching a
task in an induced pain paradigm, and Manickaraj et al.
[50], who investigated muscle synergies in an isometric grip
task in patients with chronic lateral epicondylalgia.

(6) Pain: Reorganization of Muscle Synergies in Reaching due
to Experimentally Induced Pain. Muceli et al. [48] studied
the changes in muscle synergies during a planar reaching task
to determine if muscle activity remains modular in the pres-
ence of pain and if there are similarities between synergies
in the pain and no-pain conditions. Eight healthy subjects
had experimental muscle pain induced in the anterior deltoid
muscle. In each of the four conditions (baseline, control injec-
tion, pain injection, and posttest), the subjects performed cen-
ter-out- and out-center-reaching motions toward 12 evenly
spaced targets. During the task, surface EMG data were col-
lected from 12muscles in the right arm: BRD, ANC, BBl, BBlh,
BR, TBl, TBlat, PM, DELTa, DELTm, DELTp, and LD. The
major results of the study were as follows: (i) muscle activity
in the pain condition was modular; (ii) there was substantial
shared information between the examined conditions; and
(iii) the dynamic reorganization of the motor signals was
subject-specific. In all four conditions, three synergies were
required for adequate reconstruction of all subjects. In the
pain condition, subjects showed at least two similar synergies
from the baseline condition, but the shared synergies varied
by subject. The study suggests that subjects recruited a new
synergy as opposed to tuning the activation of a previous syn-
ergy in the presence of pain.

(7) Pain: Quantification of Deficit in Grip Force for Patients
with Lateral Epicondylalgia. Manickaraj et al. [50] investi-
gated forearm muscle synergies during a gripping task to
determine whether the muscle coordination differed between
chronic elbow pain patients and healthy subjects. The study
cohort consisted of 11 chronic lateral epicondylalgia patients
and a control group of age-, sex-, and limb-matched subjects.
Each subject performed an isometric grip at 15% and 30%
maximum voluntary contraction (MVC) in three different
positions (neutral and 20° wrist flexion/extension). During
each task, surface EMG data were collected from six muscles
in the wrist and fingers: ECR, ECU, EDC, FCR, FCU, and
FDS. The major result of the study was that there was a differ-
ence in the dimensionality of the synergies between lateral
epicondylalgia patients and controls depending upon the
magnitude of the grip force but not upon the position of
the wrist. At lower levels of grip force, chronic elbow pain
patients used only two synergies compared to the three syn-
ergies in the control group. The muscle synergies of the
chronic elbow pain group had a greater similarity than those
of the control group indicating less variability in the coordi-
nation. In most cases, the authors found no association
between clinical measures and activation level of the muscle

synergy. However, at the higher grip force, the pressure pain
threshold was correlated with the activation level of the sec-
ond (less dominant) synergy. The results open the possibility
to use the number of synergy as an index to monitor the
chronic elbow pain patients considering the difference of
the number of synergies between healthy subjects and
patients.

3.2. Robotics. We found 40 publications referencing muscle
synergies for controlling robotic devices. Taking into account
the inclusion criteria, we identified 11 papers for inclusion in
this section. Table 7 describes the distribution of the selected
papers considering the specific robotic body segment.

8 papers, seven related to the robotic arm and one to the
robotic hand, are deeply described in the following since they
are the only papers that proposed a synergy-based control
and that tested it by means of an experimental setup with
robotic devices and subjects.

Details of all cited papers are reported in Table 8.

3.2.1. Robotic Arm. Artemiadis et al. [52–56] have investi-
gated how low-dimensional representations of sEMG signals
of the upper limb can be used for the teleoperation of a robot
arm in 3D space. Most of the studies were focused on the
principal joints of the upper limb, that is, the shoulder and
the elbow. A group of nine muscles that are mainly responsi-
ble for the studied motion was recorded: DELTa, DELTp,
DELTm, PM, PMc, T, BB, BRD, and TB. Three able-bodied
subjects were used (three males 27± 3 years old); during the
experiment, the subjects were standing close to the robot
arm, with their neck positioned looking at the front. The
results of this study centered around two main issues. Firstly,
the dimensionality reduction on the EMG signal was quite
significant, since it not only revealed some interesting aspects
regarding the 3D movements studied but also aided the
matching between the EMG signals and motion since signal
correlations were extracted, and the number of variables
was drastically reduced. The latter led to the fact that a simple
linear model with hidden states proved quite successful in
mapping EMG signals to arm motion. The second important
result of the study was that it was the first time a continuous
profile of the 3D arm motion was extracted using only EMG
signals. Most previous works extract only discrete informa-
tion about motion, while there are some works that estimate
continuous arm motion; however, they are constrained to
isometric movements, single degrees of freedom (DOF), or
very smooth motions. In conclusion, the findings of the stud-
ies raised the possibility to control a robot arm by reducing
the dimensionality of the EMG signals, which is obtainable
via muscle synergies.

Table 7: Papers using muscle synergies in robotics.

N % References

Arm 8 62.50% [52–56, 62, 64, 67]

Hand 1 18.75% [61]

Leg 2 18.75% [65, 66]
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Lunardini et al. [67] tested a method for controlling a
robotic arm with 2 DOF; the control can reproduce the user’s
motion intention of the extension/flexion elbow and shoulder
by using muscle synergies. The main novelty of the paper is
the use of a higher number of involved muscles than in previ-
ous works, which used only one flexor muscle and one exten-
sor muscle to control robotic arms. More specifically,
recorded muscles were BRD, ANC, BB, TB, DELTa, DELTm,
DELTp, and SS. Eight healthy subjects (age ranging from 24
to 33 years) were involved in the experimental protocol,
which consisted in dynamic unconstrained flexion-
extension movements of the elbow and the shoulder in the
horizontal plane at different angles during isometric contrac-
tions. The entire protocol was repeated two times in two dif-
ferent days. Results showed that the proposed control is
efficient in dynamic and isometric tasks and it is also repeat-
able over days. This study can represent a significant starting
point toward the implementation of synergy-based myo-
control for assistive robot devices.

3.2.2. Robotic Hand.Ajoudani et al. [61] proposed an innova-
tive synergy-based teleimpedance controller for a robotic
hand, that is, the PISA-IIT SoftHand. The complexity of
the hand movements was simplified by using motor patterns
related to the first synergy, which is associated to the hand
opening and closing. This synergy allows the activation of
the FDS and the EDC that are the muscles used for grasp.
The implemented teleimpedance controller permitted to
grasp the hand taking into account the user’s postural and
synergy profiles in real time. The effectiveness of the novel
control method was tested by enrolling two healthy subjects,
who were asked to perform 20 grasping tasks at a varying
cocontraction level. As reported by the authors, though the
results need to be validated with amputees, the findings of
this study allow affirming that synergy allows to grasp objects
regardless of their elastic properties and to modify the com-
pliance of the grasp via cocontraction.

3.3. Sports. 70 papers were found by means of the electronic
search in the above-mentioned databases. In addition, 23 fur-
ther publications were identified using the cross-referencing
evaluation. Applying the inclusion criteria, only 19 papers
were reported in the present systematic review; in particular,
Table 9 shows the distribution of these papers considering
the sports involving the application of muscle synergy theory.

Details of all cited papers are reported in Table 10.
The following subparagraphs are organized based on the

specific examined sport. In particular, three studies on
cycling, two on rowing, and one on swimming, ice hockey,
and fitness will be discussed since they are the only ones that
proposed tangible outcomes useful for improving athlete
performance assessment and/or planning athlete-specific
training sessions.

3.3.1. Cycling. In this section, three papers are deeply
explained and discussed. The rationale of these papers is
to provide useful information on muscle activity by means
of muscle synergy theory to improve athlete performance
and training.

Hug et al. [68] focused on understanding whether trained
cyclists recruited the same muscle synergies regardless of the
intersubject variability of EMG patterns. Through this scope,
they enrolled nine male cyclists who were asked to pedal as
long as possible at constant power equal to 80% of the max-
imum power output, specific for each subject. During the
task, EMG signals were recorded from BFlh, GLUmax, SM,
VM, RF, VL, GM, GL, SOL, and TA. The authors found that
three muscle synergies were sufficient to reconstruct EMG
signals for all participants. Muscle synergy vectors and tem-
poral activation patterns showed high mean correlation coef-
ficients and low variance ratio values between subjects. These
results can lead to the identification of a locomotor strategy
common to the experienced cyclists; thus, recreational
cyclists can train themselves to obtain similar muscle recruit-
ment in order to increase their performance.

Turpin et al. [86, 87] investigated the advantage of using
the standing position during intense cycling with respect to
the seated position; in particular, they published two articles
focusing on lower and upper limb muscles, respectively. Sev-
enteen male untrained participants were involved in the
studies to perform 10–12 s of pedalling in two positions, that
is, seated and standing, and six power outputs, that is, 20%,
40%, 60%, 80%, 100%, and 120% of the power, correspond-
ing to the spontaneous transition between the two positions
computed in a preliminary test. Activity of 16 muscles was
recorded; 9 lower limb muscles (TA, SOL, GM, VL, VM,
RF, BFlh, GLUmax, and SEMT) and 7 upper limb muscles
(ES, LD, DELTa, TB, BB, BRD, and FD). Four and three mus-
cle synergies were selected for lower and upper limb muscles,
respectively. As regards lower limb muscles, the structure of
muscle synergies was similar in the two positions, while dif-
ferences were observed in the timing of extensor activation
when the power output reached 600W. Thus, authors sug-
gested taking advantage of the standing position only when
the power output is greater than 600W. As concern upper
limb muscles, a greater activation was observed in standing
position; consequently, even though the upper limbs do not
produce the power output, coaches and athletes should train
interlimb coordination to improve athlete performance.

3.3.2. Rowing. Two articles are resumed in the following to
provide important suggestions about the training sessions
of rowing.

Table 9: Papers using muscle synergies in sports.

N % References

Cycling 5 30.00% [68, 69, 74, 86, 87]

Rowing 3 15.00% [70, 71, 81]

Swimming 1 5.00% [82]

Ice hockey 1 5.00% [84]

Fitness 5 25.00% [77–80, 83]

Athletics 2 10.00% [73, 85]

Football 1 5.00% [76]

Artistic gymnastics 1 5.00% [72]
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Turpin et al. [70] designed an experimental study to ver-
ify if power outputs have effects on muscle synergies during
rowing considering both untrained subjects and experienced
rowers. Eight untrained male subjects and seven national-
level male rowers were involved in the protocol that consisted
in 2000m rowing as fast as possible to individuate the mean
power output and 2min rowing at constant load correspond-
ing to 60%, 90%, and 120% of the mean power output. The
following muscles were recorded: TA, SOL, GL, GM, VL,
VM, RF, BF, SEMT, GLUmax, LD, ES, TM, BB, L, I, DELTp,
TU, TL, TB, and FD. Three muscle synergies were selected
for all participants in all power output conditions. Muscle
synergy compositions, considering both the muscle synergy
vectors and temporal activation patterns, were consistent
across the three power outputs; however, a significant
increase in the activation of TL and GLUmax was observed
increasing the power output. In conclusion, the findings of
this study suggest performing training sessions at lower
power output with respect to the one used during an official
event. Moreover, it should be efficient to further train the
TL and GLUmax in terms of endurance force due to the
greater activation with the increase of the power output.

Shaharudin and Agrawal [81] studied the robustness of
themuscle synergies during incremental rowing VO2max, that
is, themaximal oxygen consumption, since the aerobic capac-
ity is one of the factors influencing rowing performance. Ten
untrained male and ten collegiate male rowers were recruited.
All participants performed an incremental ramp test starting
at 25Wwith increment of 25W every 30 s. The task was inter-
rupted for volitional exhaustion or if the power output was
10% below the set value for five consecutive rowing cycles.
The right side of the body was sensorized applying surface
EMG electrodes on SOL, GL, TA, BFlh, SEMT, RF, VL, ES,
LD, TM, DELTm, TB, RA, PM, BB, and BRD. Three muscle
synergies were sufficient to reconstruct EMG signals for both
groups. Although similar temporal activation patterns were
observed between the two groups, the strategy of the rower
was completely different; in fact, they preferred to row slower
with longer cycles. Significant differences on muscle coordi-
nation were found based on a different rowing economy.
The results of the paper suggest optimizing the muscle coor-
dination during the training stage in order to improve the per-
formance in terms of rowing economy.

3.3.3. Swimming. In this section, we reported the paper of
Vaz et al. [82], since it provides useful guidelines for the
training of beginner swimmers. Authors compared beginners
and elite swimmers in terms of muscle coordination during
breaststroke. Eight beginners and eight elites performed
25m breaststroke at 100% of maximal effort without diving.
Muscle patterns were acquired from 8 muscles (TB, BB, TI,
PM. GM, TA, BFlh, and RF) on the right side of the body.
Three muscle synergies were selected for thirteen out of six-
teen participants, while four synergies were recruited for
the remaining. No statistical differences were observed by
comparing the Variability Account For computed with the
subject-specific muscle synergy extraction and the one
obtained after the cross-validation procedure; thus, it
emerged that synergistic organization of muscle coordination

during breaststroke does not depend on expertise. Con-
versely, four muscles of beginners were characterized by a
negative shift in the activation time. From this last outcome,
beginners could focus their training especially on the right
timing of muscle activation to reach better performance.

3.3.4. Ice Hockey. The paper reported in this section provides
useful tools for the training of balance in ice hockey players.
Kim et al. [84] studied the differences between elite athletes
and nonathletes in terms of muscle activity in response to
balance perturbations. Seven female elite athletes and seven
female nonathletes were recruited; all participants were asked
to stand on a moving platform and to maintain balance dur-
ing ten trials of unexpected backward perturbation. Muscle
activity was gathered from sixteen muscles, more specifically,
SCM, EO, ESC, EST, ESL, ADD, RF, VM, TA, TFL, GLUmax,
GLUmed, BFlh, PL, GM, and SOL. No significant differences
in the number of muscle synergies were observed in both ini-
tial and reversal phases between the two examined groups; in
the initial phase, muscle synergies ranged from four to eight
and from five to six for elite players and nonathletes, respec-
tively, while in the reversal phase, they ranged from six to
eight in both groups. During the initial phase, two elite ath-
letes’ specific synergies, which were especially related to the
control of the head, were found. This outcome could under-
line a specific ability to control balance when the head posi-
tion is suddenly changed, as for example in brisk
acceleration and deceleration skating. The specific synergies
for the control of the head would be considered as a training
strategy for female athletes to avoid potential risk of injury
caused by external perturbation of the balance.

3.3.5. Fitness. An article reported in this subparagraph pro-
vides an index suitable for the evaluation of the athlete per-
formance in bench press exercise. Kristiansen et al. [77]
focused their research on the comparison between power
lifters and untrained subjects during bench press to under-
stand if the training could influence the muscle synergy var-
iability. They planned an experimental protocol with nine
untrained and ten expert power lifters, who were asked to
complete three sets of eight repetitions at 60% of the load that
was previously computed during three repetitions at the
maximum effort. Surface EMG were collected from nine
muscles (PM, DELTa, BB, TB, LD, TI, ES, VL, and SOL) of
the right side. Two muscle synergies were found for all the
participants. However, the expert power lifters demonstrated
less variability with respect to the untrained subjects in terms
of both muscle synergy vectors and temporal activation pat-
terns, especially during the concentric phase. Due to the
obtained outcomes, the inner composition of the muscle syn-
ergies can be used as an index for the evaluation of the perfor-
mance during bench press exercise. Moreover, such results
could be interesting for personal trainers in order to custom-
ize training based on subjects’ level of experience.

4. Conclusion

Understanding how the human brain generates neural com-
mands to control muscles during motor tasks still arouses
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great interest; in the last decades, the factorization of the
EMG signals by means of muscle synergies has been pro-
posed in order to understand the neurophysiological mecha-
nisms related to the central nervous system ability in
reducing the dimensionality of the muscle control.

This review gives to research groups involved in muscle
synergies an overview on tangible applications of this theory
in clinics, robotics, and sports. This offers the possibility to
inspire new ideas for future works in muscle synergy fields.
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