

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Characterization and Modeling of Reversible CO2 Capture from Wet Streams by a MgO/Zeolite Y Nanocomposite

This is the author's manuscript			
Original Citation:			
Availability:			
This version is available http://hdl.handle.net/2318/1707409since 2020-02-28T14:20:32Z			
Published version:			
Terms of use:			
Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.			

(Article begins on next page)

Supporting Information

Characterization and modelling of reversible CO₂ capture from wet streams by a

MgO/zeolite Y nanocomposite

Matteo Signorile¹, Jenny G. Vitillo^{2,}, Maddalena D'Amore¹, Valentina Crocellà¹, Gabriele Ricchiardi^{1,*}and Silvia Bordiga¹*

¹Università di Torino, Dipartimento di Chimica and NIS Interdepartment Centre, Via Giuria 7, 10125 Torino (ITALY).

²Department of Science and High Technology and INSTM, Università degli Studi dell'Insubria, Via Valleggio 9, I-22100 Como, Italy.

1) IR spectra of the activated materials

A prolonged activation in vacuo at 400 °C was preventively adopted to remove any possibly adsorbed species, and in particular water. Once activated, H-Y and MgOHY (dotted lines in Figure S1) are characterized by a complex spectrum in the OH stretching region (part a) due to the presence of a variety of acidic Bronsted sites. The spectrum of H-Y (blue dotted line) shows a broad band centered at 3740 cm⁻¹, due to isolated silanols and a complex envelope of bands (at least 5 different components) in the 3670-3500 cm⁻¹ spectral range associated to the presence of Al. In the case of MgOHY sample (red dotted line), apart from the component due to the isolated SiOH groups at 3740 cm⁻¹ (mostly unaffected), the overall spectrum in the v(OH) spectral region is less intense, simplified (the most reduced component at 3690 cm⁻¹. The persistence of hydroxyls groups in the Mg exchanged sample confirms that the ion exchange with Mg²⁺ takes place only on a fraction

of the available protonic sites, whereas the appearance of the component at 3690 cm⁻¹ has been ascribed to the presence of some hydroxyl species on MgO clusters hosted in the zeolite supercages.^{33,34} In the presence of water, all the components disappear (full line spectra in Figure S1 a), being substituted by a very broad and intense absorption extending in the all v(OH) region.

At lower frequencies (parts b of figure S1) the spectrum of activated H-Y only shows weak bands associated to the overtones of framework modes. Conversely, MgOHY spectrum is characterized by an additional doublet at 1448 and 1417 cm⁻¹, for which we cannot exclude the contribution of some residual NO₃⁻ species, not totally decomposed during the calcination/activation procedure, and probably entrapped in not accessible cavities.³⁵ In both cases, upon dosage of water vapour pressure, the bands due to δ (HOH) modes become predominant. In particular, in the case of H-Y sample (blue line), a very broad and intense band, extending from 1750-1550 (characterized by two main components with apparent maxima at 1690 and 1640 cm⁻¹) rises. In contrast for MgOHY sample (red line), the δ (HOH) bands grow in a narrower interval: 1720-1590 cm⁻¹ and with a clear predominance of the component at lower frequency (with apparent maximum now at 1633 cm⁻¹). No changes are observed for the doublet at 1448 and 1417 cm⁻¹.

Figure S1. Spectral set (a): activation of the samples. IR spectra of HY (blue) and MgOHY (red) in the spectral regions of OH stretching vibrations ($3800-3400 \text{ cm}^{-1}$) after activation at 400° C (dotted curves) and upon contact with H₂O vapor pressure (solid curves). Spectral set (b): IR spectra of HY (blue) and MgOHY (red), in the 1800-1250 cm⁻¹ range, after activation at 400° C (dotted curves) and upon contact with H₂O vapor pressure (solid curves).

2) Detail of the CO₂ molecular adducts region for the static IR experiments (complement to Figure 2)

Figure S2. Detail of the IR spectra in the spectral regions relative to Mg^{2+} -CO₂ linear complexes (2450-2250 cm⁻¹) of: (a) samples after contact with 5 mbar of CO₂ at BT: HY (light blue curve), MgO (light grey curve), and MgOHY (orange curve); (b) samples contacted with a mixture of CO₂ (5 mbar) and H₂O (~20 mbar) at BT: HY (blue curve), MgO (dark grey curve), and MgOHY (red curve).

3) Detail of the CO₂ molecular adducts region for the *in situ* IR experiment (complement to Figure 4)

During the experiment reported in Figure 4 (flow of CO_2 and H_2O) the spectrum in the molecular CO_2 stretching range (2250-2350 cm⁻¹) was also recorded. The spectra show that beside carbonate formation, a significant fraction of CO_2 is molecularly adsorbed.

Figure S3. *In situ* IR spectra in the spectral region relative to molecular CO₂ adducts (2250-2450 cm⁻¹) of MgOHY after activation at 400 °C (dotted red cuve) and upon contact of 15 h with a CO₂/H₂O flow at 30 °C (red solid curve). Light grey spectra show the spectra evolution during the contact with the CO₂/H₂O flow. (b): In situ IR spectra in the spectral regions relative to molecular CO₂ (2250-2450 cm⁻¹) of MgOHY after 15 h of contact with a CO₂/H₂O flow at 30°C (red curve), after desorption in a dry He flow at 200 °C (orange curve) and at 500 °C (red dotted curve).

4) Basis sets adopted for calculations

The basis sets are reported in the CRYSTAL format.

HYDROGEN		OXYGEN (MgO clusters and CO ₂)		
14			8 11	
0 0 5 1.0 1.0			0 0 5 2.0 1.0	
120.0	0.000267		15902.6475	0.514998037E-03
40.0	0.002249		2384.95378	0.398197644E-02
12.8	0.006389		542.719572	0.204769719E-01
4.0	0.032906		153.404079	0.802623679E-01
1.2	0.095512		49.5457161	0.237668399
0 0 1 0.0 1.0			0 0 1 2.0 1.0	
0.5	1.0		17.3396499	1.0
0 0 1 0.0 1.0			0 0 1 0.0 1.0	
0.13	1.0		6.33033553	1.0
0 2 1 0.0 1.0			0 0 1 0.0 1.0	
0.3	1.0		1.69958822	1.0
			0 0 1 0.0 1.0	
CARBON			0.689544913	1.0
6 11			0 0 1 0.0 1.0	
0 0 5 2.0 1.0			0.239360282	1.0
8506.03840	0.533736640E-03		0244.01.0	
1275.73290	0.412502320E-02		63.2705240	0.607092060E-02
290.311870	0.211713370E-01		14.6233123	0.419476887E-01
82.0562000	0.824178600E-01		4.44895180	0.161568840
26.4796410	0.240128580		1.52815132	0.356827793
0 0 1 2.0 1.0			0 2 1 0.0 1.0	
9.24145850	1.0		0.529973159	1.0
0 0 1 0.0 1.0			0 2 1 0.0 1.0	
3.36435300	1.0		0.175094460	1.0
0 0 1 0.0 1.0			0310.01.0	
0.871741640	1.0		2.4 1.0	
0 0 1 0.0 1.0			0310.01.0	
0.363523520	1.0		0.6 1.0	
0 0 1 0.0 1.0				
0.128731350	1.0			
0 2 4 2.0 1.0				
34.7094960	0.533009740E-02			
7.95908830	0.358658140E-01			
2.37869720	0.142002990			
0.815400650	0.342031050			
0 2 1 0.0 1.0				
0.289537850	1.0			
0 2 1 0.0 1.0				
0.100847540	1.0			
0310.01.0				
1.6 1.0				
0310010				

 $\begin{array}{ccc} 0 \ 3 \ 1 \ 0.0 \ 1.0 \\ 0.4 \ 1.0 \end{array}$

OXYGEN (ze	eolite fi	ramew	ork)
8 5			ŕ
0 0 8 2.0 1.0			
8020.0	0.0010	08	
1338.0	0.00804		
255.4	0.0532	24	
69.22	0.168	1	
23.90	0.3581		
9.264	0.3855		
3.85	0.1468	8	
1.212	0.0728		
0 1 4 6.0 1.0			
49.43	-0.00883		0.00958
10.47	-0.0915		0.0696
3.235	-0.0402		0.2065
1.217	0.379		0.347
0 1 1 0.0 1.0			
0.4520495	1.0	1.0	
0 1 1 0.0 1.0			
0.1678880	1.0	1.0	
0310.01.0			
0.4509895	1.0		
ALUMINUM	[
13 5			
0 0 8 2.0 1.0			
70510.0	0.000226		
10080.0	0.0019		
2131.0	0.0110		
547.5	0.0509		
163.1	0.1697		
54.48	0.3688		
19.05	0.3546		
5.402	0.0443		
0 1 5 8.0 1.0			
139.6	-0.011	20	0.0089
32.53	-0.1136		0.0606
10.23	-0.0711		0.1974
3.810	0.5269		0.3186
1.517	0.7675		0.2995
0 1 1 3.0 1.0			
0.59	1.0		1.0
0 1 1 0.0 1.0			
0.35	1.0		1.0
0310.01.0			

MAGNESIUM

/	
0 0 7 2.0 1.0	
31438.3496	0.609123113E-03
4715.51534	0.470661965E-02
1073.16292	0.241358207E-01
303.572388	0.936289598E-01
98.6262510	0.266467421
34.9438084	0.478909299
12.8597852	0.336984903
0 0 3 2.0 1.0	
64.8769130	0.191808893E-01
19.7255208	0.909137044E-01
2.89518043	-0.395637561
0 0 2 0.0 1.0	
1.19604547	1.68276034
0.543294512	0.521410920
0 0 1 0.0 1.0	
0.100991041	1.0
0 2 5 6.0 1.0	
179.871896	0.537995490E-02
42.1200694	0.393180141E-01
13.1205030	0.157401295
4.62575036	0.359190941
1.66952110	0.455333793
0 2 1 2.0 1.0	
0.585510121	1.0
0 2 1 0.0 1.0	
0.189 1.0	

SILICON

14 5		
0 0 8 2.0 1.0		
149866.0	0.0001215	
22080.6	0.0009770	
4817.5	0.0055181	
1273.5	0.0252000	
385.11	0.0926563	
128.429	0.2608729	
45.4475	0.4637538	
16.2589	0.2952000	
0 1 8 8.0 1.0		
881.111	-0.0003	0.0006809
205.84	-0.0050	0.0059446
64.8552	-0.0368	0.0312000
23.9	-0.1079	0.1084000
10.001	0.0134	0.2378000
4.4722	0.3675	0.3560066
2.034	0.5685	0.3410000
0.9079	0.2065	0.1326000
0 1 3 4.0 1.0		
2.6668	-0.0491	0.0465000
1.0780	-0.1167	-0.1005000
0.3682	0.2300 ì	-1.0329000
0 1 1 0.0 1.0		
0.193	1.0	1.0
0310.01.0		
0.610 1.0		