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ABSTRACT 

Aims 

In deglaciated surfaces, lithology influences habitat development. In particular, serpentinite inhibits 

soil evolution and plant colonization because of insufficient phosphorus (P) content, among other 

stressful properties. In nutrient-poor environments, ectomycorrhizal fungi (EMF) play a key role 

exploring the soil for P beyond the rhizosphere. In this study, we followed the role of EMF in 

accessing inorganic and organic P along two proglacial soil chronosequences in the Alps (NW 

Italy), respectively characterized by pure serpentinite till and serpentinite mixed with 10% of 

gneiss, and colonized by European Larch. 

Methods 

The access to inorganic and organic P forms by EMF was studied using specific mesh-bags for 

fungal hyphae entry, filled with quartz sand and inorganic phosphate (Pi) or myo-

inositolhexaphosphate (InsP6) adsorbed onto goethite. They were incubated over 13 months at the 

organic/mineral horizon interface. After harvesting, EMF colonization via ergosterol analysis and 

the amount of P and Fe removed from mesh bags were measured. 

Results 

Ergosterol increased along the two chronosequences with slightly greater values on serpentinite and 

in Pi-containing bags. Up to 65% of Pi was removed from mesh-bags, only partly accompanied by a 

parallel release of Fe. The amount of InsP6 released was instead less than 45% and mostly removed 

with goethite.  

Conclusions 

mailto:ecomike77@gmail.com
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The results suggest that, in extremely P-poor environments, EMF are able to release both inorganic 

and organic P forms from highly stabilized associations. 

Keywords 

Ectomycorrhizae; Mesh bags experiment; Phosphorus uptake; Primary succession; Serpentinite 

soils; Soil chronosequence 

 

Abbreviations 

ectomycorrhizal fungi: EMF; myoinositol hexaphosphate: InsP6; serpentinite sites: S sites; 

serpentinite sites with 10% gneiss: SG sites 

Introduction 

 

Glacier retreat induced by climate change in Alpine habitats, occurring with few interruptions since 

the end of the Little Ice Age around 1860, creates habitats characterized by different ages, which 

coexist over short distances (Burga et al. 2010). Within this environment, igneous, metamorphic or 

sedimentary rocks can be exposed, leading to the development of soils differing in chemical and 

physical characteristics (Rajakaruna and Boyd 2008). Thus, lithology is the first factor that drives 

soil formation and controls its evolution. In particular, serpentinite slows down pedogenic processes 

because of various limiting factors for plant colonization. In fact, serpentinite soils are characterized 

by low calcium to magnesium (Ca/Mg) ratios and frequently contain high levels of heavy metals, 

which are toxic to most plants. In addition, these soils are often very poor in nutrients, especially 

phosphorus (Brooks 1987).  

Many plant species have evolved in P-poor environments and, as a consequence, are known to 

possess a number of adaptive features to respond to P starvation by increasing the ability of their 

root systems to acquire P from the soil (White et al. 2005; Hammond and White 2008; Lynch and 

Brown 2008; White and Hammond 2008; Fang et al. 2009). For instance, many plants, such as 

Larix decidua Mill. in the European Alps, form symbiotic relationships with ectomycorrhizal fungi 

(EMF) to increase their ability to explore the soil volume and mobilize nutrients from remote 

inorganic and organic sources (Bucher 2007; Smith and Read 2008; Jansa et al. 2011). Basically, 

the host plant receives mineral nutrients via the fungal mycelium, while the symbiotic fungus 
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obtains carbon photosynthetates from the host plant (Harley and Smith 1983). The benefits these 

symbiotic associations impart to plants include enhanced enzyme activity (Read and Perez-Moreno 

2003; Plassard et al 2011; Cairney 2011), production of secondary metabolites (Shah et al 2015) 

and improved water uptake under drought stress (Courty et al 2010), which can further enhance P 

uptake and its availability for the host plant. It has been indeed reported that EMF growth in P-

limited soils is enhanced due to a higher carbon investment from the plant to the fugal symbionts to 

enhance P foraging (Rosenstock et al. 2016; Almeida 2019). These strategies should overcome the 

constraints due to the low P content or to the low availability of P in soils with high retention 

capacity. 

In general, P retention, involving both adsorption and/or surface precipitation, is related to the 

different affinity of inorganic and organic P compounds for iron (Fe) and aluminium (Al) 

(hydr)oxides (Celi et al. 1999, 2001, 2003; Yan et al. 2014). Because of their high affinity, inositol 

phosphates undergo a selective enrichment in the soil with respect to other organic and inorganic P 

forms (Darch et al. 2014; George et al. 2018; Magid et al. 1996). Interaction of inositol phosphates 

with mineral phases has been reported to limit enzymatic hydrolysis and hamper their 

biodegradation in both controlled (Giaveno et al., 2010) and natural systems (George et al. 2007).  

The presence of EMF significantly modifies soil conditions in the rooting zone by producing 

various compounds that can favour the release of P from the adsorbed surfaces (Landerweert et al 

2001; Richardson et al. 2011). 

This may occur through three main mechanisms: i) competition of organic acid anions by ligand 

exchange for the same adsorption sites (Rosling 2009); ii) dissolution of minerals by organic acids 

via ligand exchange and metal complexation; and iii) reductive iron oxide dissolution by electron 

donor compounds such as polyphenolic compounds (Shah et al. 2015). These mechanisms have 

been studied mainly for P desorption from mineral surfaces. Several forms of organic P are 

accessible to EMF through excretion of phosphatases (Cairney 2011, Louche et al 2010, Smith et al 

2018), but to what extent these P sources is available to EMF when they are adsorbed on mineral 

surfaces have never been explored. 

Thus, the aim of this study is to evaluate the role of mycorrhizal fungi in accessing P adsorbed on 

goethite in two soil chronosequences characterized by different levels of P limitation in the 

proglacial area of Verra Grande Glacier (Aosta Valley, Italy). Both chronosequences are 

characterized by serpentinitic parent materials. In previous works (D’Amico et al. 2015, 2017) we 

observed a slow soil evolution and plant primary succession due to serpentinite lithology. Small 

quantities of gneiss in one of the chronosequences can partly compensate the harsh conditions for 

biota and enhance plant colonization and pedogenesis. 
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In these environments we hypothesized that: i) soil P forms and cycling were strongly affected by 

the little differences of the parent material; ii) EMF development was more expressed in the most-

limited soils; iii) EMF were able to access different P sources. In order to test these hypotheses i) 

we evaluated soil P dynamics along the two chronosequences, and ii) we followed the development 

of EMF and iii) their capacity to access P by using mesh bags filled with inorganic and organic P 

forms retained by a Fe oxide-sand system and incubated in the two soil chronosequences for 

thirteen months. 

 

Materials and methods 

Study area 

The study area is located in the upper Ayas Valley (Aosta Valley, north-western Italian Alps), in the 

Verra Grande Glacier forefield (Fig. 1). There is not a precise dating of the Verra Grande moraine 

system. However, the presence of morainic arches not affected by the erosive action of the Evançon 

creek allowed an approximate deposition dating, based on similarities with nearby and better 

studied glacier forefields (e.g. D’Amico et al. 2015). 

The study area is characterized by two different lithologies: pure serpentinite in the western part (S 

chronosequence) and serpentinite enriched with a small amount of gneiss (10%) in the eastern one 

(SG chronosequence). This difference in the parent material composition, although small, brought 

to a different soil evolution and plant primary succession. The S chronosequence is characterized by 

an extremely slow pedogenesis with low acidification rates, organic matter (SOM) accumulation 

and mineral weathering. These characteristics make it difficult for plants to colonize the substrate, 

forming sparse stands even 190 years after the deposition of the moraine. In the SG 

chronosequence, small amounts of gneiss in the parent material led to an increase in plant 

colonization rate, together with higher SOM content, mineral weathering and nutrient biocycling 

(D’Amico et al., 2015). 

The climate of the Ayas Valley is continental, typical of inner-alpine zones, characterized by a quite 

low mean annual precipitation (around 730 mm yr
-1

, including snow-water equivalent) 

homogeneously distributed throughout the year. The mean annual temperature is between 0 °C and 

+2 °C (Mercalli, 2003).  

The vegetation growing in the proglacial area is rich in pioneer species dominated by Salix ssp. and 

Dryas octopetala L., with a large number of serpentine endemic and Ni-hyperaccumulator species 

(Vergnano Gambi and Gabrielli, 1981; Vergnano Gambi et al., 1987). Large bare soil areas 
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characterized the western lateral moraines, and well-developed grasslands on the eastern ones. 

Scattered portions of the oldest moraines are colonized by Larix decidua Mill. forests, while a few 

Ericaceae (Rhododendron ferrugineum L. and Vaccinium ssp.) and Juniperus nana Willd. are 

widely scattered in the understory. A full ericaceous cover is reached in Late Glacial moraines, not 

considered in this study.  

Most of the soils in the proglacial area have been classified as Eutric Skeletic Regosols (IUSS 

Working Group WRB, 2015). In the oldest moraine area, poorly developed podzols (Entic Podzols) 

have also been observed, while outside the proglacial area soils were well-developed podzols 

(Haplic Podzols) on the eastern side of the valley, and Dystric Cambisols on the opposite western 

slope (D’Amico et al. 2015). 

Site selection, soil sampling and analysis 

Soil development and the role of mycorrhizae in accessing P along the two chronosequences were 

investigated by selecting three sites within moraines deposited ca. 70, 190 and 3000 years ago 

(identified as S70, S190 and S3000 respectively) in the S chronosequence and coeval sites in the SG 

chronosequence (SG70, SG190 and SG3000). The two series of sites were compared to an area 

closer to the glacier only recently stabilized after intense paraglacial activity and without vegetation 

cover, namely S5 and SG5 (Fig. 1). Beyond soil age and parent material, other factors, such as slope 

steepness, aspect and tree cover were alike.  

At each site, five larch trees were selected (except in S5 and SG5, where trees were not present) to 

cover spatial heterogeneity and soils collected in June 2016, sampling the organic and the first 

mineral horizons. Each replicate was in turn obtained by three subsamples collected around the tree 

and pooled together. The samples were air dried and sieved at 2 mm.  

Soil pH was measured potentiometrically on a soil/water suspension (soil/water ratio 1:2.5 and 1:20 

for mineral and organic samples, respectively). Total C and N were determined by elemental 

analysis (CE Instruments, NA2100 Protein, Milan, Italy). Carbonates were not present in any 

samples. Cation exchange capacity (CEC) was determined by the method described by Sumner et 

al. (1996) and the exchangeable cations (K
+
, Ca

2+
, Mg

2+
 and Ni

2+
) were measured by atomic 

absorption spectrometry (AAS, Perkin Elmer 3030, Waltham, Massachusetts, USA). The 

determination of pseudo-total elements (Fe, Mg, Ni, Cr and Co) was carried out by acid digestion 

with aqua regia (65% HNO3 and 37% HCl, 1:3) and AAS. 

Soil total P content was determined by acid digestion with concentrated H2SO4 and HClO4, 

followed by colorimetric analysis with malachite green (Ohno and Zibiliske, 1991; Martin et al., 

1999). Soil available P content was determined using the Olsen method (1954).  
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Mesh bags preparation and incubation  

Production and capacity of EMF to access P forms were determined by incubating rectangular 

nylon mesh bags (5x9 cm; 50 µm mesh size; Sintab product AB, Malmö, Sweden), allowing fungal 

hyphae but not roots to penetrate inside, as described by Wallander et al. (2001). Mesh bags were 

sealed with a manual impulse heat sealer and filled with 15 g of different P-goethitesand systems 

prepared as follows. 10.8 kg of quartz sand was used as the main substrate of the bags. The sand 

was previously sieved at 70 µm and washed with 1M HCl and then with deionized water to remove 

any P trace and to adjust the pH at 6, respectively. The sand was then dried. 

Pure goethite was synthesized as described by Schwertmann and Cornell (1964) using 100 ml of 

Fe(NO3)3 and 180 ml of 5M NaOH. Then, 2 l of deionized water was added and the suspension 

heated at 70 °C for 60 hours. The precipitate was centrifuged, washed and dried. 108 g of goethite 

were produced and divided into three aliquots. Two aliquots were treated with KH2PO4 (Pi-Gt) or 

myoinositol hexaphosphate (InsP6) (InsP6-Gt) respectively, whereas the third one was kept as such 

(Gt) as control for measuring potential input/output of external elements. To allow a 75% saturation 

of the goethite surface, 367 mg of KH2PO4 and 445 mg of InsP6 were added to 36 g of goethite, 

respectively. The systems were allowed to react for 24 h, washed with deionized water to remove 

possible P that did not react with Gt and then each treated Gt system was mixed with 3600 g of the 

acid-washed sand. The obtained three systems were thereafter named Gtsand; Pi-Gtsand; InsP6-

Gtsand; 15g of each system was placed in a mesh bag, thus obtaining 360 mesh bags. 

In each site, the three systems were positioned around the five selected trees, except in S5 and SG5, 

where the mesh bags were placed in the barren area. For each system, three mesh bags were located 

as subreplicates. In summary, five replicates of each of the three treatments were placed around 

each tree, and five trees were selected at each of the four age-sites along the chronosequences 

(3x3x5x4x2). The bags were installed horizontally at the interface between the organic horizon and 

the mineral soil, as in this portion of soil most of the microbial activity takes place. In S5 and SG5, 

the bags were installed below the first 2 cm of unweathered till material. 

They were incubated in June 2016 and harvested after 13 months. After collection, the 360 mesh 

bags were stored at 4°C until analysis. The three subreplicates were pooled together and divided 

into two aliquots: one was stored as such for ergosterol analysis, while the second portion was dried 

for P and Fe analyses.  
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Ergosterol determination.  

In order to quantify the fungal biomass in the pooled samples, ergosterol was used as biological 

marker and quantified following the method described by Berner et al. (2012). Ergosterol was 

extracted using 10% KOH in methanol, separated with cyclohexane and quantified by high-

performance liquid chromatography (HPLC) (L2400, Hitachi, Japan). Methanol was used as the 

mobile phase and quantification was determined by UV detection at 282 nm. 

 

Phosphorus and iron determination.  

Total P that remained in the Gtsand and Pi-Gtsand mesh bags after incubation for 13 months 

(t13m) was determined by acid digestion with HCl whereas total P in the InsP6-Gtsand systems was 

carried out by treating the samples with concentrated H2SO4 and HClO4. Phosphorus determination 

was performed by following Ohno and Zibilske method (1991). Iron content was determined on the 

previously dissolved or digested samples by AAS. Total P and Fe determination was performed also 

on Gtsand, Pi-Gtsand and InsP6-Gtsand systems before incubation (t0). The difference between 

the P and Fe findings measured at t0 and t13m was calculated. The negative values obtained in the 

Gt-sand sets were considered as a gross input of P (Pinput), whereas the positive values were 

considered as a gross output from the mesh bags. Net P release was then calculated as follows:  

𝑛𝑒𝑡 𝑃 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 = − (P0 − P𝑡)𝐺𝑡 + (P0 − P𝑡)𝑃−𝐺𝑡                                (Eq.1) 

where P0 is P concentration before incubation, P𝑡 is P concentration after the 13 months incubation 

in the soil, Gt is the Gt-sand system, P-Gt is the Pi-Gt-sand system, (P0 − P𝑡)𝐺𝑡 refers to the amount 

of P that entered the bags from outside and (P0 − P𝑡)𝑃−𝐺𝑡  refers to the amount of P removed from 

the Pi-Gt-sand complex inside the mesh bags. 

We then distinguished between the fraction of P that has been released associated to goethite 

dissolution (P release)diss and the fraction released by other mechanisms (i.e., competition of organic 

acid anions with P for the same adsorption sites), using the following equation: 

(𝑃 𝑟𝑒𝑙𝑒𝑎𝑠𝑒)𝑑𝑖𝑠𝑠 =  (P0 − P0
Fe𝑡

Fe0
)                                           (Eq.2) 

where P0
Fe𝑡

Fe0
 is the amount of P still associated to goethite at time t. In this equation we assumed that 

P saturation of goethite remained constant, thus a change of Fe content after incubation in the soil is 

associated with a P loss associated to goethite dissolution. 

The difference between net P release and (P release)diss was considered the fraction of P released by 

other mechanisms. 
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Statistical analysis 

One-way ANOVA and regressions, to test the effects of age and substrate on the measured 

properties, were performed using the R 3.3.3 software (R Core Team, 2014). Tukey HSD was used 

to test differences at a significance level of p < 0.05, and the results were showed as boxplots using 

the multcomp R package (Hothorn et al., 2008). 

Results 

Soil properties along the two chronosequences 

Soil properties changed along the two chronosequences with different intensity. pH decreased from 

7.6 to 5.7 in mineral horizons along the S chronosequence, while it varied from 7.5 to 6.1 in the SG 

sites (Table 1). pH was lower in the organic horizons, from 5.8 to 5.0 in S sites and almost constant, 

around 5.8 in the SG sites. 

In both chronosequences, total organic carbon (TOC) and total nitrogen (TN) contents were around 

zero in the barren sites and increased with age, with lower values in the S than in the SG 

chronosequence, especially in S190. Surprisingly, the highest TOC and TN contents were reached 

in S3000. Soil TOC/TN ratios were, as expected, higher under larch trees than in the barren S5 and 

SG5 sites, and they did not change significantly with soil age nor with parent material lithology, 

except in SG190 (much higher values on pure serpentinite). In the organic horizons under the larch 

trees, the TOC increased along the S chronosequence and decreased along the SG one, leading to 

greater TOC/TN values in S than in SG sites (p<0.05). 

Cation exchange capacity (CEC), negligible at the beginning of soil formation, slightly increased 

with age reaching 11.9 cmol(+) kg
-1

 in the S3000 site, mainly due to accumulation of soil organic 

matter (Table 1). As expected, Mg was found to be the most abundant element in the exchange 

complex (35.7 ÷ 71.0%) in all sites, followed by Ca (23.1 ÷ 37.1%). The Ca/Mg ratio was <1 in 

most sites, with the highest value in the TOC-rich S3000 site (Ca/Mg=1.3). The low K values fell 

within the average range of exchangeable K in alpine soils, below 0.20 cmol(+) kg
-1

. Exchangeable 

Ni was quite high in all sites, with slightly greater values in the S sites than in the SG ones, reaching 

20.7 mg kg
-1

 in S190.  

The total phosphorus (TP) content of the mineral horizons ranged between 48.4 and 399 mg kg
-1

,
 

with the lowest values in the S chronosequence, especially in the 5- and 190-year-old sites. In the 

latter, TP was as low as 54.6 mg kg
-1

. In the SG chronosequence, the inclusion of 10% gneiss 

resulted in a higher TP content, which ranged from 122 to 342 mg kg
-1

 (Table 1 and Figure 2a). 
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This led to increasing TOC/TP ratios with age, from 18.6 to 232 in the S sites whereas in the other 

chronosequence the highest TOC/TP ratio was reached in SG70 (75.6).  

The changes observed in the mineral layers were reflected in the organic horizons where TP ranged 

only from 412 to 445 mg kg
-1

 in the S sites, compared to the much greater values reached in the SG 

sites (up to 1166 mg kg
-1

). In organic horizons, TP was significantly higher in SG sites (ca. 20% of 

difference, p<0.05). In the few sites where it was possible to sample OL (fresh litter) and OH 

(completely altered organic material) horizons separately, much higher TP values were measured in 

OL (ca. 1500 mg kg
-1

) than in OH ones (ca. 450 mg kg
-1

). 

Parallel to TP, the available P fraction (Pav) was extremely low, slightly increasing with age up to 

12.0 mg kg
-1

 in S3000 (Figure 2b). The Pav/TP ratio increased linearly with age along the S 

chronosequence, while this trend was less visible on the SG one (Figure 2c). 

Total iron (Fet) content in soil was rather constant in both chronosequences and ranged between 

49.2 and 68.7 g kg
-1

. Total magnesium was quite high (147-149 g kg
-1

) in the youngest sites and 

decreased with age, more markedly in the SG than in the S sites. The same trend was observed for 

total nickel and chromium, although for these elements important differences were noticed between 

S5 and SG5. 

 

Role of mycorrhizae on accessing P forms from Gtsand systems  

Ergosterol content 

After 13 months of incubation in soil, in both chronosequences, similarly low values of ergosterol 

in all mesh bags systems were found in the 5-year-old sites. The values drastically increased with 

age, and in both S and SG sites; the colonization trend was in the order Pi-Gtsand > Gtsand  

InsP6-Gtsand (p <0.05, Figure 3). Though not significantly different, the highest average value of 

ergosterol in Gtsand mesh bags was measured in S70 and SG70 (Figure 3a). Soil TP was 

marginally significantly negatively correlated with ergosterol in Gtsand bags (p=0.06, r=0.35) in 

both chronosequences. 

The ergosterol content in the Pi-Gtsand systems showed a more significant trend with site age 

(Figure 3b). Despite the large variability, this was well visible in S sites (values decreasing from 

0.59 in S190 to 0.29 mg kg
-1

in S3000), and less marked in SG sites (from 0.35 to 0.24 mg kg
-1

). 

The ergosterol content in these systems was significantly higher in S than in SG (p<0.05) and 

inversely correlated to soil TP (r=0.41, p<0.05). 
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In the InsP6-Gtsand systems, the overall fungal colonization was lower compared to inorganic P. 

No significant differences were observed between S and SG sites. The decreasing trend with age 

was visible, though not significant, in SG sites. The values were between 0.40 and 0.11 mg kg
-1

 in 

all sites (Figure 3c).  

 

Phosphorus content 

After 13 months of incubation in soil, gross P inputs were observed in the Gt-sand systems, where 

the absence of P on the goethite surface allowed the evidence of P fluxes from the surrounding soil 

into the bags, with values ranging between 3.8 and 6.4 mg P kg
-1 

of Gt-sand in both 

chronosequences (data not shown). Even if quartz sand was acid-washed before preparation of the 

mesh bags, a residual P content of 1.5 mg kg
-1

 was found in the initial Gtsand systems before soil 

incubation. The net P input was thus between 2.3 and 4.9 mg kg
-1

. No clear increasing trends with 

soil age, nor a difference related to parent material lithological composition were detected (Figure 

4a). 

Net P outputs were instead observed in the P-containing systems. In particular, the highest P release 

occurred in the Pi-Gtsand systems (Figure 4b). The net release of P was calculated as reported in 

Eq. 1, i.e. the difference between the sum of total P initially present in the mesh bags (Pi =18.19 mg 

kg
-1

) and the input of P from surrounding environment measured in Gtsand systems. Net P output 

increased from 6.2 to 13.9 mg P kg
-1

 of Pi-Gtsand in S190 and then decreased to 11.5 mg P kg
-1

 
 

in S3000. In the SG sites, the values in SG70, SG190 and SG 3000 were similar (between 8.7 and 

10.7 mg P kg
-1

). The net P output corresponded to 27-75% of total P in S sites, and to 16 to 58% in 

SG sites. 

In InsP6-Gtsand systems, the P release in S5 and SG5 was negligible and increased to 8.8 mg P 

kg
-1 

in S190, significantly correlated with site age on pure serpentinite (p<0.05, Figure 4c). In SG 

sites, the P release was slightly lower but not significantly correlated with site age. 

 

Iron content  

Before incubation in soil, the average iron (Fe) content in the Gtsand systems was 5.05 g Fe kg
-1

. 

After incubation, no Fe release was observed in the youngest sites, whereas in the 70-, 190- and 

3000-year-old sites of both chronosequences, an output of Fe occurred, which slowly increased 

from younger to older sites (Figure 5a). The increase of Fe release with age was marginally 

significant in S sites (p<0.1), ranging from 2.76 to 2.98 g Fe kg
-1

 from S70 to S3000, and not 
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significantly influenced by soil age in SG sites, where we observed a release of 2.36-3.16 g Fe kg
-1

. 

These values corresponded to 53-58% and 50-61% of total Fe contained in the mesh bags incubated 

in S and SG sites, respectively.  

The Fe release from Pi-Gtsand mesh bags was negligible in S5 and SG5 and did not vary 

consistently with site age, the highest value being measured in S190 and the lowest in SG190 

(Figure 5b). A greater release (38-54% of initial Fe) was observed in S sites compared to SG sites 

(37-47% of initial Fe). 

In the InsP6-Gtsand systems, a significant increase in Fe release was measured in S and SG sites 

older than 5 years, with values increasing from 29 to 46% of initial Fe from S70 to S3000, and from 

37 to 46% from SG70 to SG3000 (Figure 5c). 

 

Release of P associated to goethite dissolution and by competition 

Based on the previous data, we calculated the fraction of released P associated to goethite 

dissolution using Eq. 2. The P released from Pi-Gtsand systems positioned in S sites was between 

0.67 mg kg
-1

 and 9.69 mg kg
-1

(Table 2), corresponding to 3.7-53% of initial P. The amount released 

from the systems in SG sites was lower ranging between 2.8 and 45% (Table 2). 

In the InsP6-Gtsand systems, the age trend was strongly visible (p<0.05) in the P fraction released 

with goethite in both S and SG sites, increasing from 0 to 45% of initial P (Table 2).  

The remaining fraction of P was assumed to be removed from Gt-sand systems by competition with 

organic acid anions produced by ECM. This fraction was greater from Pi systems in S sites than in 

SG sites, representing 16 - 23% and 13 -16% of initial P, respectively. The fraction of InsP6 was 

quite lower, being 5-12 % in the S sites, and completely negligible in the SG sites, except SG5.  

 

Discussion 

Soil P dynamics in the two chronosequences 

One of the most limiting factors on serpentinite ecosystems is the low P content, which is generally 

insufficient for guaranteeing vegetation development. The soils developed on pure serpentinite in 

the studied area (particularly where trees were absent) were characterized by TP levels <50 mg kg
-1

, 

which represent the lowest values globally registered (Yang et al., 2013). As the pedogenesis and 

vegetation succession advance, plants, especially coniferous species, may overcome these hostile 

conditions by reducing the effect of the serpentine syndrome (Barton and Wallenstein, 1997; 
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Bonifacio et al., 2013; D’Amico et al., 2014; D’Amico et al., 2017). Carbon and nitrogen contents 

increased with soil age accumulating in the organic layers and becoming incorporated in the mineral 

horizon already after 70 years. Parallel to TOC and TN, TP increased in the organic layers and in 

the upper mineral horizon, as observed in different chronosequences (Crews et al., 1995; 

Bernasconi et al., 2011; Celi et al., 2013). The net increase of TP in the surface soil can be a 

consequence of P translocation from deeper to upper layers by plant uplift (Jobbágy and Jackson, 

2001), providing evidence that the process is highly active even under hostile conditions. However, 

the extreme P scarcity in S sites limited the accumulation in the upper mineral horizons, which 

never reached 200 mg kg
-1

 even in the oldest site. The low values indicate that, though present for 

sure, dust inputs are not able to modify P contents significantly. Similarly, the TP content in the 

organic horizons of S sites remained on average 20% less than the amount accumulated in the SG 

sites. As a consequence, the TOC/TP ratios were always greater in the S with respect to the SG 

sites. This may be related not only to a lower incorporation of P in the organic material, but also to a 

slower decomposition of organic matter, as deduced also by the TOC/TN ratios. The low 

accumulation of TP in the surface mineral horizons may be due also to the subalkaline pH, which 

only slightly favoured the dissolution of P-bearing minerals. The strong acidifying effect of conifer 

litter observed commonly in vegetation chronosequences (i.e. Ritter et al. 2003; Cerli et al. 2006; 

Celi et al., 2013) could be here counteracted by the buffering effect of serpentine dissolution, 

releasing magnesium in the soil solution.  

In the SG chronosequence, the small gneiss inclusions in the glacial till were sufficient to increase P 

levels from 200 to 400 mg kg
-1

 in the mineral horizon. Gneiss can be indeed six times richer in P 

than ultramafic rocks (Porder and Ramachandran, 2013). The initial greater content of TP in the 

substrate, together with a smaller Ni concentration, contributed to a faster vegetation colonization 

and to the relative accumulation of TP in the upper horizons, magnifying the plant uplift process. 

Despite the lower TP accumulation, P biocycling was very active in the P-poorest soils, as 

evidenced by the Pav/TP ratio, which can be used as a marker of P biocycling. While this ratio was 

rather low and stable in the SG chronosequence, indicating that the slightly higher TP content was 

sufficient to feed the available P pool, it drastically increased along the S chronosequence. In this 

severely P-limited ecosystem, plants rely more on P biocycling rather than using P directly from P-

bearing minerals (Richardson et al., 2011), creating a self-improving mechanism for P 

bioaccumulation and recycling with soil development. The positive correlation between Pav and 

TOC confirms the control of bioaccumulation to increase P efficiency (Stutter et al. 2015) of this 

ecosystem.  
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Role of mycorrhizae on accessing P forms from Gt-sand systems  

Based on the above considerations, we investigated the capacity of mycorrhizae to explore soil for P 

acquisition by incubating mesh bags filled with inorganic and organic P forms adsorbed on 

goethite-sand systems. 

Fungal colonization increased from about negligible to relatively high values along the two 

chronosequences, with greater amounts in the pure serpentinite chronosequence (p<0.05 in Gt-sand 

and P-Gt-sand systems). The mesh bags incubated in the youngest site of both chronosequences had 

minute amounts of fungal biomass, regardless of the P source. Conversely, the highest amount of 

ergosterol was observed in the 70-year-old site of both chronosequences, where sparse larch trees 

were present but available P was still low. Fungal biomass in the mesh bags in the older sites was 

probably dominated by ectomycorrizal fungi associated with larch trees since meshbags did not 

contain any substrate to grow on for saprotrophic fungi. Previous studies have shown that EMF are 

generally more abundant in the meshbags than other soil borne fungi (Hedh et al. 2008, Rosenstock 

et al. 2018, Wallander et al. 2010, Hagenbo et al. 2018) and mostly contribute to the fungal biomass 

in the meshbags (Hagenbo et al. 2018). According to Kałucka and Jagodziński (2017), mycorrhizal 

symbiosis seems to play an important role during the early stages of soil formation, when the 

weathering degree is still incipient and the nutrient status low. The higher fungal colonization 

generally observed in mesh bags incubated along the S chronosequence, in concomitance with the 

lower soil TP contents, confirmed that, in P-limited environments, EMF growth is enhanced due to 

the need of trees to allocate more carbon resources to increase P acquisition. Rosenstock et al. 

(2016) found out that P limitations in spruce forest soils, and, thus, host plant P demand, stimulate 

EMF growth: in their study, mesh bags incubated in serpentinite sites had a much higher ergosterol 

content, compared to mesh bags from less P-limiting amphibolite and granite soils. We found 

indeed a significant inverse correlation between soil TP and ergosterol content in both Gtsand (r=-

0.38, p<0.05) and Pi-Gtsand (r=-0.411, p<0.05) mesh bags. The same inverse correlation with TP 

was found on different substrata in a spruce forest in south-western Sweden (Hedh et al. 2008), in a 

peatland in western Finland (Potila et al. 2009), and in a coniferous forest in New Zealand (Koele et 

al. 2014).  

 

Parallel to EMF colonization, we observed a significant P release from the mesh bags, generally 

increasing with soil age, except from S5 and SG5 sites, where only a slight release was measured. 

In these barren sites with no potential EMF hosts, P was probably lost by the action of weak rainfall 

acidity. The low P release measured here highlights also that the removal of P from mesh bags by 

physical and chemical processes could be considered negligible throughout all sites, since these 
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processes, if occurring, should have been particularly expressed in S5 and SG5, characterized by a 

coarse material and absence of vegetation cover (Celi et al., 2013). The contemporary negligible 

release of Fe from Gtsand, Pi-Gtsand, and InsP6-Gtsand systems in S5 and SG5 not only ruled 

out leaching, but also particle dispersion and migration of goethite nanoparticles out of the mesh 

bags. 

Where larch trees were growing, P was released in greater amounts from mesh bags incubated in 

the S sites compared to SG sites and, between P forms, inorganic P was released more than InsP6. 

The generally greater release of Pi from mesh bags incubated in the pure serpentinite sites, together 

with the ergosterol trend, is an evidence that EMF could potentially mine more Pi from goethite 

where the surrounding P availability is lower (Rosenstock et al. 2016). However, several studies 

have suggested that EMF are able to dissolve minerals too, exclusively to obtain nutrients (Smits 

and Wallander, 2017), suggesting that dissolution of goethite may be a consequence of nutrient 

requirements. This may justify why the release of Fe from Pi-Gtsand systems was negligible in the 

youngest sites and increased in the colonized mesh bags, similarly to Pi release. Mineral dissolution 

may occur by chelation of Fe
3+

 from goethite through fungal exudation of organic acid anions and 

siderophores (Casarin et al., 2004; Rosling and Rosenstock, 2008; Adeleke et al., 2012) or reduction 

of Fe
3+

 to Fe
2+

 (Parfitt, 1979; Marschner et al. 2011) probably through exudation of electron donor 

compounds such as phenolic compounds (Krumida, 2018) . 

The release of Pi connected with goethite dissolution ranged between 2.8 ÷ 54% of the total P 

present before incubation (Table 2), representing more than 14-78% of the total released fraction 

and without differences between the two chronosequences.  

Pi detachment from goethite can also be achieved by exudation of protons and organic acids 

through competition with phosphate for the same adsorption sites (Richardson et al. 2011). Thus, 

the remaining fraction of Pi could have been released from Pi-Gtsand systems by this mechanism. 

This fraction showed significant differences between the two chronosequences, with higher values 

in S sites (15.9 ÷ 23.0%) than in the SG ones (12.7 ÷ 18.3%). In the fertility-poorer S 

chronosequence, EMF could be more active in producing organic acid anions that may compete 

with inorganic P for the same sorption sites.  

The good correlation between the P fraction released within goethite dissolution and ergosterol 

(p<0.05) in S sites may suggest a key role of mycorrhizae, which adopt the production of organic 

acids or siderophores/e
-
 donor compounds to dissolve goethite as the main strategy for P uptake.  

However, goethite dissolution occurred also in Gtsand systems along the two chronosequences. 

Shah et al. (2015) demonstrated that EMF may reduce Fe
3+

 during organic matter decomposition to 

obtain N. Thus, EMF-mediated Fe reduction can also be related to other nutrients uptake. In 
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addition, the fact that Fe release was observed in all sites with larch trees and well-developed litter 

layers may not exclude a migration of plant derived organic acids and phenols into mesh bags 

positioned in the mineral layers and their contribution to goethite dissolution. In addition, when 

working in field conditions other microorganisms are usually present in the system (Jones and 

Smith, 2004), suggesting a complex interaction of mycorrhizae and other microorganisms with 

plants in mining P recalcitrant sources.   

Inositol phosphate was released in lower amounts compared to Pi, and less related to soil P status 

and type of lithology. Jansa et al. (2011) reviewed several works that demonstrate the capacity of 

EMF to produce enzymes that can hydrolize organic P substrates. Myers and Leake (1996) showed 

that EMF can use phosphodiesters as sole P source without the intervention of saprotrophs. Colpaert 

et al. (1997) evaluated the utilization of inositol hexaphosphate by EMF fungi, demonstrating 

substantial extracellular acid phosphatase activity associated with mycelial biomass and increased P 

nutrition of the mycorrhizal plants. However, when InsP6 is adsorbed onto Fe oxide surfaces, such 

as in our study, it forms stable complexes and this interaction led to a selective accumulation of 

inositol phosphates in most soils and sediment environments, with respect to other more labile P 

forms (Magid et al., 1996). George et al. (2007) and Giaveno et al. (2010) showed that phytases 

could not hydrolyze InsP6, once it is sorbed on soil and Fe oxides, such as goethite. The capacity of 

EMF to use this P source is thus conditional to mechanisms that can detach first the molecule from 

the Fe (hydr)oxide. However, the sole action of competitive compounds, such as H
+
 and organic 

acid anions was apparently low and accounted for only 5-12% of the total P released from the 

InsP6-Gt-sand systems. This is in agreement with previous works that show a limited extraction of 

InsP6 from iron oxides at pH 3.5-4.5 and by citrate (Celi et al., 2003, Martin et al., 2004). In 

addition, Martin et al. (2004) showed a low P acquisition in plants grown with InsP6 as only P 

source. The main P release was instead parallel to goethite dissolution and less related to lithology, 

accounting for 34-44% of the total P retained from the InsP6-Gt-sand systems. It can be thus 

inferred that the high capacity of EMF to release P as a consequence of Fe oxide dissolution, as 

invoked for Pi, may be strategic also for the utilization of such a highly stabilized P form. Although 

we cannot exclude other processes that can favour P detachment from goethite, such as fluxes of 

plant-derived organic compounds, the limited use of inositol phosphate sorbed onto goethite in soils 

by non-mycorrhizal plants (George et al 2007; Martin et al., 2004) may support the role of EMF in 

InsP6 release. Aside from the abovementioned mechanisms, this may be due to indirect effects of 

EMF on other components of the system involved in P cycling, such as bacteria and saprotrophytic 

fungi (Tibbett and Sanders, 2002). 
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CONCLUSIONS 

This work shows the main P dynamics in soils developed along two alpine chronosequences in a 

glacier forefield, dominated by serpentinite lithology. The extremely P-poor soils, particularly in the 

western chronosequence, together with other harsh conditions, drastically slowed down the 

encroachment by vegetation and the primary succession. 

In such hostile edaphic conditions for plant development, the symbiosis of larch with mycorrhizal 

fungi was found to be extremely important, particularly in the chronosequence characterized by low 

P availability on pure serpentinite, as shown by the high EMF growth in these sites. Ericoid 

mycorrhizae cannot be excluded as well in a few samples taken from S3000 and, to a lesser extent, 

SG3000. EMF were able to release both inorganic and organic P forms adsorbed onto goethite, 

likely adopting combined mechanisms. The release of P parallel to goethite dissolution led to 

hypothesize a production of specific metabolites by EMF, which seemed a strategic mechanism 

especially for the release of inositol phosphates. The greater affinity of this organic P form for the 

oxides with respect to inorganic P leads indeed to the formation of stable complexes, hardly 

affected by the action of organic acid anions. Conversely, the latter seemed particularly efficient for 

releasing inorganic P in the pure serpentinite sequence . However, the relevance of these results 

needs to be further investigated for better identifying the mechanisms of P release and 

understanding the acquisition of P by EMF and associated host plants from inositol phosphates. 
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Figure captions 

Fig. 1 Location of the Verra Grande glacier forefield and the samples sites. 

 

Fig. 2 Phosphorus forms in the soils along the two chronosequences: total P, TP (a); available P, 

Pav (b); and the ratio between the available fraction and the total P content, Pav/TP (c). The letters 

above the boxes evidence significant differences. 

 

Fig. 3 Ergosterol content in the Gt-sand (a), Pi-Gt-sand (b) and InsP6-Gt-sand (c) systems 

positioned between the organic and surface mineral soil horizons along the serpentinite 

chronosequence (S5, S70, S190 and S3000) and the serpentinite + 10% gneiss chronosequence 

(SG5, SG70, SG190 and SG3000). The letters above the boxes evidence significant differences. 

 

Fig 4 The net phosphorus content released from the Gt-sand (a), Pi-Gt-sand (b) and InsP6-Gt-sand 

(c) systems positioned between the organic and surface mineral soil horizons along the serpentinite 

chronosequence (S5, S70, S190 and S3000) and the serpentinite + 10% gneiss chronosequence 

(SG5, SG70, SG190 and SG3000). The letters above the boxes evidence significant differences. 

 

Fig.5 Iron released from the Gt-sand (a), Pi-Gt-sand (b) and InsP6-Gt-sand (c) systems positioned 

between the organic and surface mineral soil horizons along the serpentinite chronosequence (S5, 

S70, S190 and S3000) and the serpentinite + 10% gneiss chronosequence (SG5, SG70, SG190 and 

SG3000). The letters above the boxes evidence significant differences. 
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Tab. 1 Main chemical properties of organic (where present) and surface mineral soil horizons along the serpentinite chronosequence (S5, S70, S190 
and S3000) and the serpentinite + 10% gneiss chronosequence (SG5, SG70, SG190 and SG3000). 

 

Site Horizon pH Fet Mgt Nit Crt CEC Kex Mgex Caex Niex TOC TN TP TOC/TN TOC/TP 

   g kg-1
 mg kg-1

 cmol(+) kg-1
 mg kg-1    g kg-1

 mg kg-1   

S5 C 7.6 62.5 149 1422 1229 0.49 0.01 0.30 0.10 2.62 0.9 0.08 48.4 11.2 18.6 

S70 O 5.8 - - - - - - - - - 327 10.8 794 30.3 412 

 
AC 6.5 68.7 142 1249 1318 2.28 0.04 0.91 0.69 15.7 8.5 0.4 119 21.2 71.4 

S190 O 5.2 - - - - - - - - - 371 10.5 670 35.4 554 

 
A 6.6 64.9 139 1358 1268 2.55 0.14 1.09 0.67 20.7 7.9 0.36 54.6 21.9 144 

S3000 O 5.0 - - - - - - - - - 389 13.3 875 29.3 445 

 
A 5.7 63.8 138 884.2 1363 11.9 0.19 4.84 3.15 4.22 39.5 1.8 170 21.9 232 

                 

SG5 C 7.5 65.4 147 1358 1316 0.42 0.01 0.30 0.12 2.40 1.2 0.08 122 15.0 9.84 

SG70 O 5.8 - - - - - - - - - 359 11.1 907 32.2 394 

 
A 6.8 67.1 147 1294 1232 2.79 0.05 1.56 1.19 8.14 10.1 0.5 133 20.2 75.6 

SG190 O 5.9 - - - - - - - - - 333 16.7 1166 19.9 285 

 
A 6.7 53.6 89.3 914.1 1070 5.13 0.09 2.58 1.89 2.78 19.5 1.4 399 13.9 48.9 

SG3000 O 5.7 - - - - - - - - - 330 12.9 966 25.6 341 

 
A 6.1 49.2 94.5 739.0 974.4 4.40 0.05 2.68 1.22 0.90 14.1 0.7 342 20.1 41.2 
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Tab. 2 Calculated fractions of P released following goethite dissolution and by other mechanisms from Pi-Gt – sand and InsP6-Gt – sand systems 
positioned between the organic and surface mineral soil horizons along the serpentinite chronosequence (S5, S70, S190 and S3000) and the 
serpentinite + 10% gneiss chronosequence (SG5, SG70, SG190 and SG3000). 

 

  Pi-Gt – sand systems  InsP6-Gt – sand systems 

Lithology 
site  
(yrs) 

P released with goethite 
(mg kg-1) 

P released by other 
mechanisms  

(mg kg-1) 

 P released with goethite  
(mg kg-1) 

P released by other 
mechanisms 

 (mg kg-1) 

 
 

         

Serpentinite 5 0.67 a 5.46 b  0.00 a 1.97 a 

 70 7.83 b 2.89 ab  6.22 b 1.05 a 

 190 9.69 c 3.91 ab  6.56 b 2.24 a 

 3000 8.22 bc 3.45 ab  7.97 b 0.00 a 

 
 

      
 

  

Serpentinite 
+ 10%gneiss 5 0.51 a 2.43 a 

 
0.00 

a 
2.14 a 

 70 7.05 b 2.96 ab  6.33 b 0.00 a 

 190 6.57 b 3.32 ab  6.49 b 0.00 a 

 3000 8.25 bc 2.31 a  8.17 b 0.00 a 
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Fig. 1 Location of the Verra Grande glacier forefield and the samples sites. 
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Fig. 2 Phosphorus forms in the soils along the two chronosequences: total P, TP (a); available P, Pav (b); and 

the ratio between the available fraction and the total P content, Pav/TP (c). The letters above the boxes 

evidence significant differences. 

 

 

 

Fig. 3 Ergosterol content in the Gt-sand (a), Pi-Gt-sand (b) and InsP6-Gt-sand (c) systems positioned 

between the organic and surface mineral soil horizons along the serpentinite chronosequence (S5, S70, 

S190 and S3000) and the serpentinite + 10% gneiss chronosequence (SG5, SG70, SG190 and SG3000). The 

letters above the boxes evidence significant differences. 

 

 

 

 

 

 

 



30 
 

 

 

Fig 4 The net phosphorus content released from the Gt-sand (a), Pi-Gt-sand (b) and InsP6-Gt-sand (c) 

systems positioned between the organic and surface mineral soil horizons along the serpentinite 

chronosequence (S5, S70, S190 and S3000) and the serpentinite + 10% gneiss chronosequence (SG5, SG70, 

SG190 and SG3000). The letters above the boxes evidence significant differences. 

 

 

 

Fig.5 Iron released from the Gt-sand (a), Pi-Gt-sand (b) and InsP6-Gt-sand (c) systems positioned between 

the organic and surface mineral soil horizons along the serpentinite chronosequence (S5, S70, S190 and 

S3000) and the serpentinite + 10% gneiss chronosequence (SG5, SG70, SG190 and SG3000). The letters 

above the boxes evidence significant differences. 

 

 

 


