
Novelle, a collaborative open source writing tool software

Federico Gobbo
DICOM

21100, Insubria University
Varese, Italy

federico.gobbo@uninsubria.it

Michele Chinosi
DICOM

21100, Insubria University
Varese, Italy

michele.chinosi@gmail.com

Massimiliano Pepe
DICOM

21100, Insubria University
Varese, Italy

massimiliano.p@gmail.com

Abstract

In this paper we discuss the notions of hy-
pertext, blog, wiki and cognitive mapping
in order to find a solution to the main prob-
lems of processing text data stored in these
forms. We propose the structure and archi-
tecture of Novelle as a new environment
to compose texts. Its flexible model al-
lows the collaboration for contents and a
detailed description of ownership. Data
are stored in a XML repository, so as to
use the capabilities of this language. To
develop quickly and efficiently we choose
AJAX technology over the Ruby on Rails
framework.

1 Introduction

Computational linguists are facing the explosion
of new forms of writing as a mass phenomenon.
Telling personal and collaborative stories throught
web technologies is known under the etiquettes of
‘blog’ and ‘wiki’. It therefore brings new chal-
lenges to the field of natural language processing.
We are trying to address them by rendering explic-
itly the structure of these new forms of text in a
way suitable for linguistic computation. In order
to do so, we are building an open source writing
tool software, called Novelle.

1.1 Hypertext as a New Writing Space
Bolter (1991) was the first scholar who stressed
the impact of the digital revolution to the medium
of writing. Terms as ‘chapter’, ‘page’ or ‘foot-
note’ simply become meaningless in the new texts,
or they highly change their meaning. When
Gutenberg invented the printing press and Aldo
Manuzio invented the book as we know it, new

forms of writings arose. For example, when books
shouldn’t be copied by hand any longer, authors
took the advantage and start writing original books
and evaluation – i.e. literary criticism – unlike in
the previous times (Eisenstein, 1983). Nowadays
the use of computers for writing has drammati-
cally changed, expecially after their interconnec-
tion via the internet, since at least the foundation
of the web (Berners-Lee, 1999). For example, a
‘web page’ is more similar to an infinite canvas
than a written page (McCloud, 2001). Moreover,
what seems to be lost is the relations, like the tex-
ture underpinning the text itself. From a positive
point of view these new forms of writing may real-
ize the postmodernist and decostructionist dreams
of an ‘opera aperta’ (open work), as Eco would
define it (1962). From a more pessimistic one, an
author may feel to have lost power in this open-
ness. Henceforth the collaborative traits of blogs
and wikis (McNeill, 2005) emphasize annotation,
comment, and strong editing. They give more
power to readers, eventually filling the gap - the
so-called active readers become authors as well.
This situation could make new problems rise up:
Who owns the text? Which role is suitable for au-
thors? We have to analyse them before presenting
the architecture of Novelle.

1.2 Known problems

It is certainly true that wikis and blogs are new
forms of text. It is also true that we have already
met these problems in the first form of purely dig-
ital texts – hypertexts. Now we are facing the
same question during processing texts in blogs and
wikis. We consider hypertexts as parents of blogs
and wikis. Our aim is to use the analysis of hyper-
texts for interesting insights, useful for blogs and
wikis too.



Following the example of Landow (1994), we
will call the autonomous units of a hypertext lex-
ias (from ‘lexicon’), a word coined by Roland
Barthes (1970). Consequently, a hypertext is a set
of lexias. In hypertexts transitions from one lexia
to another are not necessarily sequential, but nav-
igational. The main problems of hypertexts, ac-
knowledged since the beginning, have been traced
as follows (Nelson, 1992):

• The framing problem, i.e. creating arbitrary
closed contexts of very large document col-
lections. When extracting sub-collections,
some links may be cut off.

• Comparing complex alternatives, i.e. to get
parallel or alternate versions of the same doc-
ument in a simple and effective way, one of
the main goal of Xanadu, the ultimate “global
hypertext” dreamt by Nelson.

• Typology of links, i.e. when links become too
many, we need a typology for links, avoiding
confusion to the reader/author.

• Version control, as the system should keep
track of the history of every document, sav-
ing differences and pointing out correspon-
dencies.

We take from wikis the concept of document
history and its consequences. We consider it as a
good approximation of the ‘version control’ con-
cept as shown above.

In wikis every document keeps track of its own
history: creating a document means to start a his-
tory, editing a document to move ahead, restoring
to move back onto the history timeline, destroying
a document to stop the history itself. Moreover,
a sandbox is a temporary view of a document it-
self - i.e. a sandbox can not cause a change in the
history (Cunningham and Leuf, 2001). Figure 1
shows the model.

creation

a very old
version

the document
history timeline

an old 
version

the current
version

the last
version

a restorean edit

destruction

sandbox

Figure 1: The document history model

History snapshots of the timeline may be con-
sidered as permanent views, i.e. views with a
timestamp. Consequently, except in the case of
sandboxes, every change in the document cannot
be erased. This model will have a strong impact
on the role of links and on the underpinning struc-
ture of Novelle itself.

2 The Structure of Novelle

Our aim is to create an open source hypertext mod-
eling software, called Novelle. ‘Novelle’ is an Ital-
ian old-fashioned word meaning ‘novels’, and in
German it means ‘novel’ too. It resembles the En-
glish word ‘novel’ and the French word ‘nuovelle’.
We believe that this name is clearly understable to
every people educated in a European-based cul-
ture, and this is why we have chosen it.

The emphasis on narrativity takes into account
the use of blogs as public diaries on the web, that
is still the main current interpretation of this lit-
erary genre, or metagenre (McNeill, 2005). Fur-
thermore we noticed that blogs and wikis are cur-
rently subjected to osmosis, because they have in
common the underlying core technology. So blogs
are a literary metagenre which started as authored
personal diaries or journals. Now they try to col-
lect themselves in so-called ‘blogspheres’. On the
other side, wikis started as collective works where
each entry is not owned by a single author - e.g.
Wikipedia (2005). Now personal wiki tools are
arising for brainstorming and mind mapping. See
Section 4 for further aspects.

2.1 The Problem of Ownership

The main difference between blogs and wikis is
in the ownership of documents. Most blogs fol-
low the annotation model, where a single lexia is
central and the others are comments, sometimes
in threads. Every lexia is authored and changes
are minimal. People prefer commenting instead of
editing. The paradigm is “write once, read many”.

On the contrary, in wikis no lexia is authored
and there is no hierarchy between lexias. In fact
a document is still a set of lexias, but every docu-
ment is only the set of historical versions of the
document itself. Generally, people avoid com-
menting, preferring to edit each document. The
paradigm is “write many, read many” (Cunning-
ham and Leuf, 2001).

We believe that ownership has an important role
and we do not want to force our users to take a



non-attributive copyright licence to their work. We
consider the Creative Commons model as the most
suitable one to let each author choose the rights
to reserve (Lessig, 2004). Narrative writings or
essays are creative works and they generally treat
ownership as authorship, even for the most enthu-
siastic fellows of free culture (Stallman, 2001).

2.2 The Representation of Context
In the structure of Novelle we are trying to retain
authorship and the core concept of document his-
tory of wikis through a typology of links, taking
what we consider the best of the two worlds of
blogs and wikis.

In Novelle each user owns his own lexias, and
the relations between them, i.e. links. Further-
more authors are free to read and to link other
users’ lexias. In other words, each user does per-
mit everyone to link its own lexias for free, at the
condition that the others do the same. Every user
may recall the link list on each element (e.g. a sin-
gle word) of his lexias at every time, but he can not
destroy them. Lexias may be commented by every
user, but the author may retain for himself the right
to edit. This decision has to be taken when a lexia
is created.

If a user lets others edit some lexias, he has the
right to retain or refuse the attribution when other
users have edited it. In the first instance, the edited
version simply moves ahead the document history.
In the second one, the last user, who has edited the
lexia, may claim the attribution for himself. The
lexia will be marked as a derivative work from the
original one, and a new document history time-
line will start (see Figure 2). Authors may choose
this right with the No-Deriv option of the Creative
Commons licences (Lessig, 2004).

creation
the document

history timeline

an old 
version

the current
version

creation of a
derivative work

a new document
 history timeline

Figure 2: How to create derivative works

If nobody claims the document for himself, it
will fall in the public domain. The set of lexias in
the public domain will form a special document,

owned by a special user, called Public Domain. If
the author refuses the permission to create deriva-
tive works, i.e. to edit his own lexias, users still
have the right to comment the author’s work. So
as to come to terms with this idea, we need a con-
cept invented by Nelson (1992), i.e. transclusion.

the document
history timeline

the current
version

an other document
 history timeline

a freezed quotation

transclusion

Figure 3: How transclusion works

Rather than copy-and-paste contents from a
lexia, a user may recall a quotation of the au-
thor’s lexia and write a comment in the surround-
ings. In doing so, the link list of the author’s
lexia will be updated with a special citation link
marker, called quotation link (see later for details).
Usually, the quotation will be ‘frozen’, as in the
moment where it was transcluded (see Figure 3).
Consequently the transclusion resembles a copied-
and-pasted text chunk, but the link to the original
document will always be consistent, i.e. neither it
expires nor it returns an error. Otherwise the user
who has transcluded the quotation may choose to
keep updated the links to the original document.
This choice has to be made when the transclusion
is done.

the document
history timeline

an old
version

an other document
 history timeline

an up-to-date 
quotation

transclusion

the current
version

Figure 4: An up-to-date transclusion

If so, the transcluded quotation will update au-
tomatically, following the history timeline of the
original document. For example, if the original



document changes topic from stars to pentagons,
the quotation transcluded will change topic too
(see Figure 4).

2.3 Contents and the Typology of Links

Following our model of ownership, there are at
least two categories of links: shallow links and
deep links. By shallow links we mean visual links
occurring in a single canvas, usually owned by the
same author. These will represent iconically the
relationship space of lexias, as explained by Mc-
Cloud, talking about web comics (2001). They are
particularly useful when comparing parallel ver-
sions of the same text, e.g. digital variants (see
Conclusions).

We consider a web page, or better a web can-
vas, as a view of lexias, i.e. a group of lexias and
their relations visually shown with shallow links.
A set of lexias is a document. Every author has the
right to decide the relation type of a set of lexias,
i.e. to form a document. A document can also be
considered as a collection of history timelines, i.e.
the set of related lexias and their versions. The set
of documents is the docuverse, a word coined by
Nelson (1992). We use the word docuverse, un-
likely the original sense, with the meaning of a set
of documents owned by a single author.

Every document can be viewed within a web
canvas, but users may click on a deep link and
so change view. With deep links we mean links
which let the user change view, i.e. rearrange el-
ements in the web canvas for revealing shallow
links between lexias, belonging to the same docu-
ment or not. Therefore a web canvas may show re-
lations between views owned by different authors.
We consider quotation links, i.e. links created by
transclusion, as a special kind of deep links. Au-
thors may create specific views adding labels to
links. The set of labels will form a typology of
links, customized by every user and even shared,
on demand of users’ desires.

With our typology of links, we aim to solve the
framing problem as defined in Section 1.2. We
want to model views as dynamic objects - the cre-
ation of context will be still arbitrary, but changes
are very easily. We would also provide a user
facility for choosing the right licence for every
lexia, following the model of Creative Commons
licences (Lessig, 2004).

3 The Architecture of Novelle

We have considered many hypotheses in order to
choose a first layer architecture to save a reposi-
tory. We used a multi-tier model based on XML.
Our idea is based on merging together some of the
most common design techniques used in blogs and
wikis. Recently previous implementation tech-
niques have been studied from their new aspects to
find innovative web technologies. A basic scheme
of Novelle architecture is presented in Figure 5.
The first layer is the most important. It is based on

AJAX

Ruby on Rails

RDBMS

XML

DBMS / Filesystem

GUI

Figure 5: Novelle: multi-tier architecture

an infrastructure for storing effectively data repos-
itory in order to obtain the best performances. We
have studied two alternatives for the repository.
On one side we have different techniques to map
XML trees onto a database management system.
On the other side we may map XML trees directly
on a filesystem – see below for details.

The second layer is represented by XML. Mes-
sages, data and metadata are exchanged between
layers using the capability of this language. This
allows to treat data and metadata on different level
of abstraction.

The Ruby on Rails (2006) framework permits
us to quickly develop web applications without
rewriting common functions and classes.

We used the Asyncronous Javascript And XML
(or AJAX) paradigm to create the graphical user
interface. AJAX function lets the communication
works asyncronously between a client and a server
through a set of messages based on HTTP protocol
and XML (Garrett, 2005).

3.1 XML repository

We chose to use XML trees to store together data,
metadata, messages and their meanings because it
has some benefits. The most important is storing



XML data. The other benefits of a native XML so-
lution are: the storing without mapping your XML
to some other data structure like objects, classes or
tables; the neatness of the structure; the underly-
ing technology from the abstract layer to the phys-
ical ones is based on a unique standard, widely ac-
cepted by the community. Data may be entered
and retrieved as XML. Another advantage is flexi-
bility, gained through the semi-structured nature of
XML and the schema independent model used by
most of native XML databases. This is especially
valuable when you have very complex XML struc-
tures that would be difficult or impossible to map
to a more structured database. At this time there
are not XML databases so stable to be used into
project of this kind.

Xindice (developed by Apache Group) proved
better than others. Apache Xindice is a database
designed from the ground up to store XML data
or what is more commonly referred to as a native
XML database. It stores short XML documents
in collections with runtime generation of indexes.
Unfortunately Xindice seems not to have been de-
veloped any more since April 2004.

Another native XML database, more usable and
supported, is eXist. eXist is growing quickly and it
implements some functionalities of Xindice. The
standards support is not completed and some func-
tions are currently being rewritten directly embed-
ded into the software. After doing many tests on it,
it reveals worse performances with respect to other
platforms, even if it is more complete in compari-
son to the others.

Anyway our interest keeps focusing on them
waiting for the first stable release effectively us-
able in Novelle. We have considered the possi-
bility to map XML trees to relational or object-
oriented database management systems that sup-
port XML. We can map directly an XML tree into
a memory tree structure, made up with classes and
objects, with object-oriented databases, as we can
see in Ozone project (2006). The last stable ver-
sion of Ozone was released in 2004. The main
problem with Ozone - and with others OODBMS
- is the overhead requested to the memory for
storing a complex tree. On the other side, many
RDBMS with XML support map directly an XML
tree to an entity-relationship schema. In some in-
stances XML trees are stored as Binary Large Ob-
ject, or BLOB, into one big table. In other situ-
ations XML trees are parsed, splitted and finally

stored in tables where attributes have the same
names than XML nodes.

Ronald Bourret (2006) mantains and updates a
very comprehensive list of native XML databases
on his web site.

While we are waiting for a native XML
database stable and useful for our project, we have
decided to get inspiration from the common idea
used in many blogs and wikis. Most of these archi-
tectures are used to store messages in a structure
that is similar to a directory tree saved on filesys-
tem. Often this idea is only developed to present to
users messages organized in collection ordered by
time (e.g. blogs), but all the platforms are based
on RDBMS. We have found in our research only
one other project in which messages are stored di-
rectly on filesystem: the Gblog project (Gblog,
2005). Nobody usually adopt this solution because
the security of the web site is less strong. In or-
der to represent messages archives the most com-
mon structure is the triple ../year/month/day/... In
our assumption, a message is a history. There-
fore a structure of this kind works very well with
our idea. We are going to build a filesystem time-
based structure in which we can directly map our
messages i.e. our histories. This structure is also a
tree. We can write also an XML document that
mantains an architecture scheme with some in-
dexes to speed up queries. Moreover, we store
with a message another XML document represent-
ing all the past history (i.e. the paths) of the mes-
sage.

So as to sum up, every time a user stores a
message, he has to save the first XML document
with the message, then saves or updates a second
XML document representing its past history and
finally saves or updates a third XML message with
filesystem directory tree. The overhead on band-
with and net speed of this solution does not let
users notice significant differences, even though it
is necessary to grant writing permissions to every-
one on the entire repository. Having a native XML
database will give the advantage of saving XML
documents in a rapid, neat and indicized way, in
order to be able to execute efficient queries on the
repository.

3.2 eXtensible Markup Language

We chose XML as language and meta-language
because we needed to be able to save messages
with their meanings. Every lexia is saved with



some tags and attributes which describe its mean-
ing. The possibility of storing separately data from
their representations lets a system access more
quickly to a data and extract the requested infor-
mation. XML is a W3C standard and this makes
our project ready to be changed and extended, as
well as to be connected with other applications and
services (XML, 2005). XML will be used to rep-
resent data, metadata, link typing, messages and
paths map, and to exchange messages betweeen
different layers.

3.3 Ruby on Rails
Ruby on Rails, or RoR, is a framework rich in ex-
tensions and libraries with licences suitable for our
usage, in particular XML Builder and gdiff/gpatch.
The first library offers a set of classes which allows
to generate XML code in a simple way (Builder,
2006). Gdiff/gpatch library is an implementation
of the gdiff protocol, that creates a patch from two
files and then a new file from one of the previ-
ous files and the patch (Gdiff, 2005). Using this
library we are going to be able to store the his-
tory and the last version in an easy way and sav-
ing space. Creating a document is therefore a se-
quence of patches. Storing works in the same way,
that is executing a gdiff protocol and storing the
new patch. Moving across the document history
means retrieving a number of patch commands un-
til you reach the desired version of the document.

Ruby on Rails does not support native XML
databases at this time, therefore in our architec-
ture there will be provisionally a relational DBMS
dedicated to RoR, which had no problem with a
filesystem repository.

3.4 Asyncronous Javascript And XML
AJAX is not a technology in itself but a term that
refers to the use of a group of technologies to-
gether, in particular Javascript and XML. In other
words AJAX is a web development technique for
creating interactive web applications using a com-
bination of XHTML and CSS, Document Ob-
ject Model (or DOM), the XMLHTTPRequest ob-
ject (Wikipedia, 2005).

AJAX paradigm has been recently defined,
when someone has rediscovered a simple func-
tion originally developed by Microsoft as ActiveX
control. This function, named XMLHTTPRequest
lets clients ask servers for some particular data
using asyncronous handshake. In this way users
can continue using web application (typically fill-

ing web forms) while the client and the server
exchange data and messages. Other developers
have published a concurrent version of this func-
tion for other browsers than Internet Explorer,
like Mozilla/Gecko, Opera and Safari. The web
pages builded with this technology give the im-
pression to have dynamic content. Important ex-
amples builded with AJAX paradigm are Gmail by
Google, Writely, Kiko, Webnote, Meebo. Using
AJAX to develop web applications and web ser-
vices needs some attention. First of all Javascript
must not be disabled in browsers. It is also neces-
sary to pay attention to estimate correctly the time
spent in exchanging messages between client and
server so to exploit the good capabilities gained
with AJAX, fully supported by and integrated in
Ruby on Rails.

3.5 Access points

We are going to add to every view of Novelle a
search engine that returns a list of meanings and
a set of link between them. These links are rep-
resented in our project with images. Every image
is itself a map that the user can surf and/or open
to increase details level. When the user has found
the message, he can access to it simply clicking
on it. An user can comment or modify every lexia,
if these actions are granted by the original author,
as explained above. Users can create new links
between lexias and they can describe what kind
of link they intend to create through appropriate
link type. These modifications are stored using the
document history model of Novelle through fol-
lowing patch.

4 Related Works

The main source of Novelle are wikis and blogs.
While wikis have spread from a detailed de-
sign (Cunningham and Leuf, 2001), unfortunately
blogs have not been designed under a model.
So we have tested and compared the most used
tools available for blogging: Bloggers, WordPress,
MovableType and LiveJournal.

Generally speaking, we find that the personal
public diary metaphor behind blogs (McNeill,
2005) may bring to an unsatisfactory representa-
tion of the context. The only way to retrieve infor-
mation is through a search engine or a calendar,
i.e. the date of the ‘post’ – a lexia in the jargon of
bloggers.

Moreover, we use some new web applications



to take and share notes or to browser everyone’s
bookmarks, e.g. del.icio.us. Mostly, these web
applications oriented to writing give a strong em-
phasis on collaboration and sharing. This led us
to rethink ownership and to use the Creative Com-
mons model to design the contents of Novelle.

Finally, we noticed that personal wikis are
used for storing cognitive maps of individuals
and brainstorming. This use was already thought
by the founders of wikis (Cunningham and Leuf,
2001), but it has not been widely explored in prac-
tics, as far as the authors know. However, this di-
rection of work is not actually new - concept and
mind mapping, the two main paradigms for cogni-
tive maps, have been used for several years.

Concept mapping has been used at least in ed-
ucation for over thirty years, in particular at the
Cornell University, where Piaget’s ideas gave the
roots to the assimilation theory by David Ausubel.
Very briefly, concept maps show the relationships
between concepts labelling both nodes and arcs.
Every arc always has a definite direction, i.e. arcs
are arrows (Novak, 1998).

In contrast, mind maps spread from a centre,
with branches radiating out. Furthermore, mind
maps, as thought and copyrighted by Tony Buzan,
can label only nodes, not arcs. The resulting
shape of mind maps is sometimes similar to neu-
rons’ (Buzan, 2000).

We have tested both concept and mind mapping
software tools, available for free or in a trial pe-
riod. In particular, CmapTools software is cur-
rently used at the Cornell University and it is free
as a client. It may run on CmapServers, and it is
a very good way to share the knowledge stored in
cognitive maps. Unfortunately, it does not collect
data in a format suitable for the web, and it does
not permit to view concepts across cognitive maps
owned by different users (Tergan, 2005). More,
concept maps require a learning curve very high
when started to be used, at least in our experience.
On the contrary, mind maps are by far more intu-
itive.

There are a lot of mind mapping tools, which
are clones of MindJet MindManager, the official
software for Buzan’s mind mapping. The mind
mapping tool we were looking for should have had
an open source licence, used a format for data stor-
age suitable for the web, and been cross-platform.
In fact, Freemind, as the closest approximation of
our needs (Mueller, 2000), succeeded in running

on the three major operating systems available,
without sensible differences.

Figure 6: Our free mind map for Novelle

Even if we like the idea behind mind maps, we
need to have a multiauthored environment, where
arcs may be labeled. In other terms, the centre
of the map should change according to the user’s
desire. That is why we thought about web canvas
as document views. If we consider documents as
free mind maps, the nodes will be lexias and the
arcs will be links.

Apart from wikis, blogs, and cognitive map-
ping, we were also inspired by the experiences of
early hypertext writing tools, in particular Inter-
media and Storyspace. In fact, they were used
expecially in academic writing with some suc-
cess. Intermedia is no more developed and no-
body of us had the opportunity to try it (Landow,
1994). Storyspace is currently distributed by East-
gate (2005), and we have used it for a time. How-
ever, in our opinion Storyspace is a product of its
time and in fact it isn’t a web application. Al-
though it is possible to label links, it lacks a lot
of features we need. Moreover, no hypertext writ-
ing tool available is released under an open source
licence. We hope that Novelle will bridge this gap
- we will choose the exact licence when our first
public release is ready.

We are persuaded that there is no contradiction
in collaborative mind mapping and academic writ-
ing. Maybe it is not by chance that Eastgate has
also released a “personal content management as-
sistant” (Eastgate, 2006). Our purpose is to bring
back again collaborative writing and free brain-
storming, as it should be.



5 Conclusions and Further Works

We are currently developing a prototype of Nov-
elle. We argue that the model under Novelle would
be an explicit representation of the context and a
clear model for the contents. One of the main ap-
plication of our software is natural language pro-
cessing. We are going to test it expecially on digi-
tal variants of literary texts.

Acknoweledgements

We want to acknowledge Dr. Marco Benini,
Dr. Alberto Trombetta for their deep insights and
Gabriella Canciani for having reviewed the final
draft of this paper.

References
Roland Barthes. 1970. S/Z. Editions du Seuil, Paris.

Tim Berners-Lee. 1999. Weaving the Web. Harper,
San Francisco.

Jay David Bolter. 1991. Writing Space: the Computer,
Hypertext, and the History of Writing. Erlbaum As-
sociates, Hillsdale, N.J.

Ronald Bourret. 2006. XML Database Products. Url:
http://www.rpbourret.com/xml/. Retrieved the 3rd

of January.

Builder library.for example 2006. Project: Builder.
Provide a simple way to create XML markup and
data structures. Url: http://builder.rubyforege.org/.
Retrieved the 4th of January.

Tony Buzan and Barry Buzan. 2000. The Mind Map
Book. BBC Worldwide Limited, London.

Ward Cunningham and Bo Leuf. 2001. The Wiki Way
- Quick Collaboration on the Web. Addison-Wesley,
Boston.

Eastgate 2005. Storyspace. Url:
http://www.eastgate.com/storyspace. Retrieved
the 31st of December.

Eastgate 2006. Tinderbox. Url:
http://www.eastgate.com/tinderbox. Retrieved
the 2nd of January.

Umberto Eco. 1962. Opera aperta. Bompiani, Milan,
Italy.

Elizabeth L. Eisenstein. 1983. The Printing Revolu-
tion in Early Modern Europe. Cambridge Univer-
sity Press, Cambridge, UK.

Jesse James Garrett. 2005. Ajax: A New
Approach to Web Applications. Url:
http://www.adaptivepath.com/publications/essays/
/archives/000385.php. Retrieved the 22nd of
December.

Gblog 2.0. 2005. Gblog 2.0. Blog, reloaded. Url:
http://gblog.com/. Retrieved the 27th of December.

Gdiff/Gpatch library. 2005. Gdiff/Gpatch. An
implementation of the W3C gdiff protocol. Url:
http://ruby.brian-schroeder.de/gdiff/. Retrieved the
28th of December.

George P. Landow 1994. Hypertext 2.0. The Conver-
gence of Contemporary Critical Theory and Tech-
nology. The Johns Hopkins University Press, Balti-
more, Maryland.

Lawrence Lessig 2004. Free Culture: How Big Media
Uses Technology and the Law to Lock Down Culture
and Control Creativity. Penguin Books.

Scott McCloud. 2001. Understanding Comics. Para-
dox Press, NY.

Laurie McNeill. 2005. Genre Under Construction:
The Diary on the Internet. Language@Internet, 1.

Joerg Mueller. 2000. FreeMind. Url:
http://freemind.sourceforge.net. Retrieved the
31st of December 2005.

Theodor Holm Nelson. 1992. Literary Machines 90.0.
Muzzio, Padua, Italy.

Joseph Donald Novak. 1998. Learning, Creating,
and Using Knowledge: Concept Maps As Facilita-
tive Tools in Schools and Corporations. Lawrence
Erlbaum Associates.

Ozone Database Project. 2006. Ozone Database
Project open initative. Url: http://ozone-db.org/. Re-
trieved the 03rd of January.

Ruby on Rails. 2006. Ruby on Rails.
Web developement that doesn’t hurt. Url:
http://www.rubyonrails.org/. Retrieved the 03rd of
January.

Richard M. Stallman. 2001. Free Software, Free Soci-
ety: Selected Essays of Richard M. Stallman. GNU
Press, Cambridge, Massachusetts.

Sigmar-Olaf Tergan and Tanja Kellers. 2005. Knowl-
edge And Information Visualization: Searching for
Synergies. Springer, Berlin.

Dave Thomas and David Heinemeier Hansson. 2005.
Agile Web Development with Rails - A pragmatic
guide. Pragmatic Bookshelf.

Wikipedia. 2005. Wikipedia. From
Wikipedia, the free encyclopedia. Url:
http://en.wikipedia.org/wiki/Wikipedia. Retrieved
the 31st of December.

XML, eXtensible Markup Language. 2005.
Extensible Markup Language (XML). Url:
http://www.w3.org/XML/. Retrieved the 27th

of December.


