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Abstract: Studies of e+e− →D+
s D(∗)0K− and the P -wave charmed-strange mesons are performed based on an e+e− collision

data sample corresponding to an integrated luminosity of 567 pb−1 collected with the BESIII detector at
√
s = 4.600GeV. The

processes of e+e− → D+
s D∗0K− and D+

s D0K− are observed for the first time and are found to be dominated by the modes

D+
s Ds1(2536)

− and D+
s D∗

s2(2573)
−, respectively. The Born cross sections are measured to be σB(e+e− → D+

s D∗0K−) =

(10.1±2.3±0.8) pb and σB(e+e− →D+
s D0K−)= (19.4±2.3±1.6) pb, and the products of Born cross section and the decay

branching fraction are measured to be σB(e+e− →D+
s Ds1(2536)

−+c.c.)·B(Ds1(2536)
− →D∗0K−)= (7.5±1.8±0.7) pb and

σB(e+e− →D+
s D∗

s2(2573)
−+c.c.)·B(D∗

s2(2573)
− →D0K−)= (19.7±2.9±2.0) pb. For the Ds1(2536)

− and D∗
s2(2573)

−

mesons, the masses and widths are measured to be M(Ds1(2536)
−) = (2537.7±0.5±3.1) MeV/c2, Γ(Ds1(2536)

−) = (1.7±
1.2±0.6) MeV, and M(D∗

s2(2573)
−) = (2570.7±2.0±1.7) MeV/c2, Γ(D∗

s2(2573)
−) = (17.2±3.6±1.1) MeV. The spin-

parity of the D∗
s2(2573)

− meson is determined to be JP = 2+. In addition, the process e+e− →D+
s D(∗)0K− are searched for

using the data samples taken at four (two) center-of-mass energies between 4.416 (4.527) and 4.575 GeV, and upper limits at the

90% confidence level on the cross sections are determined.

Key words: cross section, P -wave Ds mesons, resonance parameters, spin-parity, BESIII

PACS: 14.40 Lb, 13.66 Bc

1 Introduction

Although the Heavy Quark Effective Theory (HQET) [1–

4] has achieved great success in the past decades in ex-

plaining and predicting the spectrum of charmed-strange

mesons (Ds), there still exist discrepancies between the the-

oretical predictions and experimental measurements, espe-

cially for the P -wave excited states. The unexpectedly low

masses of D∗
s0(2317)

− and Ds1(2460)
− stimulated theoreti-

cal and experimental interest not only in them, but also in the

other two P -wave charmed-strange states, Ds1(2536)
− and

Ds2(2573)
−. The resonance parameters of the Ds1(2536)

−
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and D∗
s2(2573)

− mesons need more experimentally indepen-

dent measurements [5]. In particular, the latest result on the

D∗
s2(2573)

− mass from LHCb [6, 7] deviates from the other

measurements [8–10] significantly, and therefore, the world

average fit gives a bad quality χ2/ndf = 17.1/4 [5], where

ndf is the number of degrees of freedom. In addition, the

quantum numbers spin and parity (JP ) of the D∗
s2(2573)

−

meson have been determined to be JP = 2+ only recently

with a partial wave analysis carried out by LHCb [11], and

more confirmation is needed.

In recent years, measurements of the exclusive cross sec-

tions for e+e− annihilation into charmed or charmed-strange

mesons above the open charm threshold have attracted great

interest. First, the charmonium states above the open charm

threshold (ψ states) still lack of adequate experimental mea-

surements and theoretical explanations. The latest parameter

values of these ψ resonances are given by BES [12] from a fit

to the total cross section of hadron production in e+e− anni-

hilation. However, model predictions for ψ decays into two-

body final states were used, hence the values of the resonance

parameters remain model-dependent. Studies of the exclusive

e+e− cross sections would help to measure the parameters of

the ψ states model-independently. Second, many additional

Y states with JP = 1−− lying above the open charm thresh-

old have been discovered recently [13–17]. Exclusive cross

section measurements will provide important information in

explaining these states. Measurements of e+e− cross sections

for the D
(∗)

(s)D
(∗)

(s) final states were performed by Belle [18–

23], BABAR [24–26], and CLEO [27], only with low-lying

charmed or charmed-strange mesons in the final states. Up

to now, only the DD∗
2(2460) final states in e+e− annihilation

have been observed by Belle [32], others with higher excited

charmed or charmed-strange mesons have not yet been ob-

served. In addition, the cross sections of e+e− → DD(∗)π
have also been measured by CLEO [27] and BESIII [28–

31]. However, a search for final states with strange flavor,

e+e− →D+
s D

(∗)0K−, has not been performed before.

Using e+e− collision data corresponding to an integrated

luminosity of 567 pb−1 [33] collected at a center-of-mass en-

ergy of
√
s=4.600GeV with the BESIII detector operating at

the Beijing Electron-Positron Collider (BEPCII), we observe

the processes e+e− → D+
s D

∗0K− and e+e− → D+
s D

0K−,

which are found to be dominated by D+
s Ds1(2536)

− and

D+
s D

∗
s2(2573)

−, respectively. For the observed Ds1(2536)
−

and D∗
s2(2573)

− mesons, we present the resonance parame-

ters and determine the spin and parity of D∗
s2(2573)

−. In ad-

dition, the processes e+e− → D+
s D

(∗)0K− are searched for

using the data samples taken at four (two) center-of-mass en-

ergies between 4.416 (4.527) and 4.575 GeV, and upper limits

at 90% confidence level on the cross sections are determined.

Throughout the paper, the charge conjugate processes are im-

plied to be included, unless explicitly stated otherwise.

2 BESIII Detector and Monte Carlo Simula-

tion

The BESIII detector is a magnetic spectrometer [35] lo-

cated at the Beijing Electron Positron Collider (BEPCII) [36].

The cylindrical core of the BESIII detector consists of a

helium-based multilayer drift chamber (MDC), a plastic scin-

tillator time-of-flight system (TOF), and a CsI(Tl) electro-

magnetic calorimeter (EMC), which are all enclosed in a su-

perconducting solenoidal magnet providing a 1.0 T magnetic

field. The solenoid is supported by an octagonal flux-return

yoke with resistive plate counter muon identifier modules in-

terleaved with steel. The acceptance for charged particles and

photons is 93% over 4π solid angle. The charged-particle mo-

mentum resolution at 1 GeV/c is 0.5%, and the specific en-

ergy loss (dE/dx) resolution is 6% for electrons from Bhabha

scattering. The EMC measures photon energies with a reso-

lution of 2.5% (5%) at 1 GeV in the barrel (end cap) region.

The time resolution of the TOF barrel part is 68 ps, while that

of the end cap part is 110 ps.

Simulated data samples are produced with the GEANT4-

based [37] Monte Carlo (MC) package which includes the

geometric description of the BESIII detector and the detec-

tor response. They are used to determine the detection ef-

ficiency and to estimate the backgrounds. The simulation

includes the beam energy spread and effects of initial state

radiation (ISR) in the e+e− annihilations modeled with the

generator KKMC [38]. The inclusive MC samples consist of

the production of open charm processes, the ISR production

of vector charmonium(-like) states, and the continuum pro-

cesses incorporated in KKMC [38]. The known decay modes

are model-led with EVTGEN [39] using branching fractions

taken from the Particle Data Group [5], and the remaining

unknown decays from the charmonium states with LUND-

CHARM [40]. Final state radiation (FSR) from charged final

state particles is simulated with the PHOTOS package [41].

The intermediate states in the D+
s → K+K−π+ decay are

considered in the simulation [42]. In the measurements of

Ds1(2536)
− and D∗

s2(2573)
− resonance parameters, the an-

gular distributions are taken into account in the generation

of signal MC samples. For the signal process of e+e− →
D+

s Ds1(2536)
−,Ds1(2536)

− → D∗0K−, the spin-parity of

theDs1(2536)
− meson is assumed to be 1+. To determine the

spin-parity of D∗
s2(2573)

−, efficiencies were obtained from

the two MC samples, which assume the spin-parity as 1− or

2+. The MC sample with spin-parity 2+ is used in the mea-

surement of the D∗
s2(2573)

− resonance parameters.

3 Basic event selections

To identify the final state D+
s D

(∗)0K−, a partial recon-

struction method is adopted, in which we detect the K− and

reconstruct D+
s candidates through the D+

s →K+K−π+ de-

cay. The remaining D(∗)0 meson is identified with the mass
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recoiling against the reconstructedK−D+
s system.

For each of the four reconstructed charged tracks, the po-

lar angle in the MDC must satisfy |cosθ|< 0.93, and the dis-

tance of the closest approach from the e+e− interaction point

to the reconstructed track is required to be within 10 cm in

the beam direction and within 1 cm in the plane perpendicu-

lar to the beam direction. The ionization energy loss dE/dx
measured in the MDC and the time of flight measured by

the TOF are used to perform the particle identification (PID).

Pion candidates are required to satisfy prob(π) > prob(K),
where prob(π) and prob(K) are the PID confidence levels for

a track to be a pion and kaon, respectively. Kaon candidates

are identified by requiring prob(K)> prob(π).
The D+

s meson candidates are reconstructed from two

kaons with opposite charge and one charged pion. To sat-

isfy strangeness and charge conservation, each D+
s candi-

date must be accompanied by a negatively charged kaon.

For the D+
s candidates, the distributions of the reconstructed

masses M(K+K−) versus M(K−π+) and M(K−K+π+)
are shown in Figs. 1(a) and (b), respectively. The two dom-

inant sub-resonant decays, i.e., a horizontal band for the

process D+
s → φπ+ and a vertical band for the process

D+
s →K+K∗(892)0 are clearly visible. To improve the sig-

nal significance in Fig. 1(b), only the D+
s candidates which

satisfy M(K+K−) < 1.05 GeV/c2 (region A) or 0.863 <
M(K−π+) < 0.930 GeV/c2 (region B) are retained. The

corresponding M(K−K+π+) distributions for events in re-

gion A+B and A are plotted in Figs. 1(c) and (d), respectively,

showing improved signal significance. The final D+
s candi-

dates must have a reconstructed mass M(K−K+π+) in the

region (1.955,1.980) GeV/c2.

In this analysis, the resolution of the recoiling mass is im-

proved by using the variablesRQ(K−D+
s )≡RM(K−D+

s )+
M(D+

s )−m(D+
s ) and RQ(D+

s ) ≡ RM(D+
s ) +M(D+

s )−
m(D+

s ). Here, RM(D+
s ) and RM(K−D+

s ) are the recon-

structed recoiling masses against the D+
s and K−D+

s system,

respectively, and m(D+
s ) is the nominalD+

s mass taken from

the world average [5].

4 Studies of data at 4.600 GeV

4.1 Cross section of e+
e
−

→D
+
s
D

(∗)0
K

−

To reject the backgrounds fromΛ+
c decays in the measure-

ment of the cross section of e+e− → D+
s D

(∗)0K−, we fur-

ther demand that RQ(D+
s )< 2.59GeV/c2. Figure 2 presents

evident peaks in the distribution of RQ(K−D+
s ) around the

signal positions of D∗0 and D0, which correspond to the pro-

cesses e+e− →D+
s D

∗0K− and D+
s D

0K−, respectively.

To determine the signal yields of the processes e+e− →
D+

s D
(∗)0K− at 4.600 GeV, an unbinned maximum likelihood

fit is performed to the RQ(K−D+
s ) spectrum as shown in

Fig. 2. The signal peaks are described by the MC-determined

signal shapes and the background shapes are taken as AR-

GUS functions [50]. In the fit to data, the endpoint of the

background shape is fixed at the value obtained from a fit

of an ARGUS function to the RQ(K−D+
s ) spectrum in the

background MC sample. The Born cross section is calculated

as

σB =
Nobs

L(1+δ) 1
|1−Π|2

Bǫ , (1)

where Nobs is the number of the observed signal candidates,

L is the integrated luminosity, ǫ is the detection efficiency de-

termined from MC simulations, (1+δ) is the radiative correc-

tion factor [47], 1
|1−Π|2

is the vacuum polarization factor [48],

and B is branching fraction of D+
s → K+K−π+. The de-

tection efficiencies are estimated based on MC simulations,

assuming the two body final states of D+
s Ds1(2536)

− and

D+
s D

∗
s2(2573)

− dominate the decays toD+
s D

(∗)0K− accord-

ing to the studies in Secs. 4.2 and 4.3. The numerical results

are given in Table 1.

4.2 Studies on the D
s1(2536)

−

For the candidates surviving the basic event selections, we

further select the signal candidates for e+e− → D+
s D

∗0K−

by requiring 1.993 < RQ(K−D+
s ) < 2.024 GeV/c2, as

shown in Fig. 3(a). The RQ(D+
s ) distribution of the remain-

ing events is displayed in Fig. 4(a), where a clearDs1(2536)
−

signal peak near the nominalDs1(2536)
− mass is visible. An

unbinned maximum likelihood fit is performed to the dis-

tribution, where the signal shape is taken as a sum of the

efficiency-weighted D-wave and S-wave Breit-Wigner func-

tion convolved with the detector resolution function, [E · (f ·
BWS+(1−f)·BWD)]⊗R. Here, the resolution function R

(plotted in Fig. 4(c)) and the efficiency E (plotted in Fig. 4(b)

) are determined from MC simulations, and f is the fraction of

the S-wave Breit-Wigner function. The S-wave and D-wave

Breit-Wigner functions areBWS = 1
(RQ2−m2)2+m2Γ2

·p·q, and

BWD = 1
(RQ2−m2)2+m2Γ2

·p5 ·q, respectively, where m and Γ

are the mass and width of the Ds1(2536)
− to be determined

and p(q) is the momentum of K−(D+
s ) in the rest frame of

K−D∗0(e+e−) system. The backgrounds are described with

a first-order polynomial function. The parameter f is fixed to

0.72 [46], while the other parameters are determined in the fit.

In this fit, the number of signal candidates is estimated to

be 24.0±5.7(stat). The mass and width of the Ds1(2536)
−

are measured to be (2537.7±0.5(stat)±3.1(syst)) MeV/c2,

and (1.7± 1.2(stat)± 0.6(syst)) MeV, respectively. The

branching fraction weighted Born cross section is determined

to be σB(e+e− →D+
s Ds1(2536)

−+c.c.) ·B(Ds1(2536)
− →

D∗0K−) = (7.5± 1.8± 0.7) pb. The relevant systematic

uncertainties are discussed later and summarized in Table 3.

4.3 Studies on the D
∗

s2
(2573)−

To study the D∗
s2(2573)

− properties, we select the

signal candidates of the process e+e− → D+
s D

0K−

by requiring RQ(K−D+
s ) in the D0 signal region of

(1.850,1.880) GeV/c2, as shown in Fig. 3(b). To reject back-
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Figure 1. Scatter plot of M(K+K−) versus M(K−π+) for the D+
s →K+K−π+ candidates (a) and the corresponding invari-

ant mass M(K+K−π+) distribution (b) for data at
√
s=4.600GeV. The M(K+K−π+) distributions of the subsamples from

the regions A+B and from the region A are shown in plot (c) and (d), respectively. In plots (b), (c) and (d), fits with the sum of a

Gaussian function and a polynomial function are implemented to determine the signal regions for the D+
s candidates. The signal

windows are shown with arrows.
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s ) for the D+

s signal candidates in regions A + B in Fig. 1(c), for data taken at√
s=4.600GeV. The solid line shows the total fit to the data points and the dashed lines represent the D0 and D∗0 signals.
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Figure 3. At 4.600 GeV, (a) the RQ(K−D+
s ) distribution for the D+

s candidates from signal regions A and B in Fig. 1(c); (b)

the RQ(K−D+
s ) distribution for the D+

s candidates from signal regions A in Fig. 1(d). Fits with the sum of a Gaussian function

and a polynomial function are implemented to determine the signal regions for the D(∗)0 candidates, which are indicated with

arrows.
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Figure 4. At 4.600 GeV, the RQ(D+
s ) spectra in the samples of e+e− → D+

s D
∗0
K− (left) and e+e− → D+

s D
0
K− (right).

Plots (a) and (d) show the result of the unbinned maximum likelihood fits. Data are denoted by the dots with error bars. The

dash-dotted and dotted lines are the background and signal contributions, respectively. Plots (b) and (e) show the efficiency

functions. Plots (c) and (f) show the RQ(D+
s ) resolution functions determined from MC simulations.
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grounds from e+e− → Λ+
c Λ

−
c , only the D+

s candidates in re-

gion A of Fig. 1 are used. For the selected events, the corre-

sponding RQ(D+
s ) distribution is plotted in Fig. 4(d), where

a clear D∗
s2(2573)

− signal peak near the known D∗
s2(2573)

−

mass is observed.

An unbinned maximum likelihood fit is performed to

the RQ(D+
s ) spectrum in Fig. 4(d). The spin-parity of the

D∗
s2(2573)

− meson is fixed to be 2+, following the studies in

Sec. 4.4, and the D∗
s2(2573)

− meson is assumed to decay to

D0K− predominantly viaD-wave [2]. Hence, we take theD-

wave Breit-Wigner function BW = 1
(RQ2−m2)2+m2Γ2

·p5 · q5
convolved with the resolution function (shown in Fig. 4(f)),

BW ⊗R, to describe the signal, and a flat line to represent

backgrounds. Here, p(q) is the momentum ofK−(D+
s ) in the

rest frame of theK−D0(e+e−) system. Figure 4 (e) shows the

efficiency distribution with the assignment JP =2+, which is

consistent with a flat line. All parameters are left free in the

fit.

The fit yields 61.9± 9.1(stat) signal events. The mass

and width of the D∗
s2(2573)

− are measured to be (2570.7±
2.0(stat) ± 1.7(syst)) MeV/c2, and (17.2 ± 3.6(stat) ±
1.1(syst)) MeV, respectively, where the systematic uncer-

tainties are summarized in Table 2. The branching frac-

tion weighted Born cross section is given to be σB(e+e− →
D+

s D
∗
s2(2573)

−+c.c.) ·B(D∗
s2(2573)

− →D0K−)= (19.7±
2.9± 2.0) pb. The relevant systematic uncertainties are dis-

cussed later and summarized in Table 3.

4.4 Spin-parity of the D
∗

s2
(2573)−

At
√
s = 4.600GeV, the exclusive process e+e− →

D+
s D

∗
s2(2573)

− →D+
s D

0K− is observed just above the pro-

duction threshold. For the D∗
s2(2573)

− meson, the JP as-

signments with high spins would be strongly suppressed in

this process. Hence, we assume that the D∗
s2(2573)

− meson

can only have two possible JP assignments, 1− or 2+. Under

these two hypotheses, the differential decay rates as a func-

tion of the helicity angle θ′ of the K− in the rest frame of

theD∗
s2(2573)

−, dN/dcosθ′, follow two very distinctive for-

mulae of (1− cos2 θ′) for 1− and cos2 θ′(1− cos2 θ′) for 2+.

We can determine the true spin-parity from tests of the two

hypotheses based on data.

In each |cosθ′| interval of width 0.2, the number of back-

ground events is estimated from the RQ(D+
s ) sideband re-

gion (2.44, 2.50) GeV/c2 according to the global fit shown

in Fig. 4 (d) and subtracted from the signal candidates in

the signal region, (2.54, 2.60) GeV/c2. Then we obtain the

efficiency-corrected angular distribution of dσ/d|cosθ′|, as

depicted in Fig. 5 for the D∗
s2(2573)

− signals. The efficiency

distributions in Figs. 5 (a) and (c) are obtained from the signal

MC simulation samples, which assume the spin-parity of the

D∗
s2(2573)

− as 1− and 2+, respectively.

The shapes of the two spin-parity hypotheses are con-

structed as a1(1−cos2 θ′) and a2 cos
2 θ′(1−cos2 θ′) for 1− and

2+, respectively. Here, a1 and a2 normalize the shapes to the

area of the efficiency corrected angular distributions. To test

the two different assumptions, we calculate χ2 =Σ( yi−µi

σi

)2,

where i is the index of the interval in the angular distributions,

yi is the estimated signal yield in interval i, σi is the corre-

sponding statistical uncertainty, and µi is the expected num-

ber of signal events. The values of χ2 for the JP =1− and 2+

assumptions are evaluated as 278.67 and 7.85, respectively.

Hence, our results strongly favor the JP = 2+ assignment

and disfavor the JP =1− assignment for the D∗
s2(2573)

−.

5 Studies at the other energy points

The process e+e− →D+
s D

(∗)0K− is also searched for at

four (two) other energy points. The corresponding integrated

luminosities [33] and center-of-mass energies [34] are shown

in Table 1. The analysis strategy and event selection are the

same as those explained in Sec. 3. The resultantRQ(K−D+
s )

distributions are shown in Fig. 6, together with the results of

unbinned maximum likelihood fits as described in Sec. 4.1.

The fit results are given in Table 1.

As has been studied with the largest statistics data

at
√
s = 4.600GeV, the processes D+

s Ds1(2536)
− and

D+
s D

∗
s2(2573)

− dominate the processes e+e− →D+
s D

∗0K−

and e+e− → D+
s D

0K−, respectively. We assume that

this conclusion still holds for the MC simulations of the fi-

nal states of D+
s D

(∗)0K− for the energy points above the

D+
s Ds1(2536)

− or D+
s D

∗
s2(2573)

− mass thresholds. For the

energy points below the mass thresholds, the signal MC simu-

lation samples of the three-body processes are generated with

average momentum distributions in the phase space.

Since the four data samples taken at lower energies suf-

fer from low statistics, we also present upper limits at the

90% confidence level on the cross sections. The upper lim-

its are determined using a Bayesian approach with a flat prior.

The systematic uncertainties are considered by convolving the

likelihood distribution with a Gaussian function representing

the systematic uncertainties. The numerical results are sum-

marized in Table 1.

6 Systematic Uncertainties

The systematic uncertainties on the resonance parameters

and cross section measurements are summarized in Tables 2

and 3, respectively, where the total systematic uncertainties

are obtained by adding all items in quadrature. For each item,

details are elaborated as follows.

1. Tracking efficiency. The difference in tracking effi-

ciency for the kaon and pion reconstruction between

the MC simulation and the real data is estimated to be

1.0% per track [49]. Hence, 4.0% is taken as the sys-

tematic uncertainty for four charged tracks.

2. PID efficiency. The uncertainty of identifying the par-

ticle types of kaon and pion is estimated to be 1% per
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Figure 5. At 4.600 GeV, the efficiency-corrected |cosθ′| distribution for the background-subtracted D∗
s2(2573)

− signals are

shown in plots (b) and (d). Plots (a) and (c) are the corresponding efficiency distributions under the JP assumptions of 1−

and 2+, respectively. The shapes to be tested are shown in (b) and (d) for the two hypotheses, normalized to the area of data

distribution.

Table 1. Cross section measurements at different energy points. For the cross sections, the first set of uncertainties are statistical

and the second are systematic. The uncertainties of the number of observed signals are statistical only. The four samples with

lower center-of-mass energies suffer from low statistics, we therefore set the lower and upper boundary of the uncertainties of

Nobs as 0 and the upper limits at the 68.3% confidence level, respectively.

√
s (GeV) 4.600 4.575 4.527 4.467 4.416

L (pb−1) 567 48 110 110 1029
1

|1−Π|2
1.059 1.059 1.059 1.061 1.055

1+δ 0.765 0.755 0.735

ǫ(%) 16.1 14.3 13.2

D+
s D

∗0K− Nobs 41.0±9.3 0.0+2.0
−0.0 2.3+3.9

−2.3

σB (pb) 10.1±2.3±0.8 0.0+7.3+1.1
−0.0−0.0 3.9+6.6

−3.9±0.4

Nup 3.7 6.7

σB
U.L. (pb) 13.5 11.3

1+δ 0.694 0.698 0.702 0.691 0.762

ǫ(%) 22.3 23.9 20.3 18.2 14.6

D+
s D

0K− Nobs 98.4±11.7 0.0+3.0
−0.0 1.7+4.5

−1.7 4.1+7.1
−4.1 1.2+8.0

−1.2

σB (pb) 19.4±2.3±1.6 0.0+6.5+0.9
−0.0−0.0 1.9+5.0

−1.9±0.2 5.1+8.9
−5.1±0.4 0.3+1.2

−0.3±0.1

Nup 5.8 7.3 10.6 10.5

σB
U.L. (pb) 12.7 8.1 13.2 1.6
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Table 2. Summary of systematic uncertainties on the Ds1(2536)
− and D∗

s2(2573)
− resonance parameters measured at

√
s =

4.600GeV. “· · ·” means the uncertainty is negligible.

Mass (MeV/c2) Width ( MeV)

Source Ds1(2536)
− D∗

s2(2573)
− Ds1(2536)

− D∗
s2(2573)

−

Mass shift 3.0 1.3 · · · · · ·
Detector resolution · · · · · · 0.5 0.1

Center-of-mass energy 0.7 1.0 0.2 0.3

Signal model · · · · · ·
Background shape 0.2 0.4 0.2 0.3

Fit range · · · · · · 0.2 1.0

Total 3.1 1.7 0.6 1.1

Table 3. Relative systematic uncertainties (in %) on the cross section measurement. The first value in brackets is for D+
s D0K−,

and the second for D+
s D∗0K−. “· · ·” means the uncertainty is negligible. “-” means unavailable due to

√
s being below the

production threshold.

σB(e+e− →D+
s D

(∗)0
K−) at different

√
s(GeV) e+e− →D+

s D
−
sJ at 4.600 GeV

Source 4.600 4.575 4.527 4.467 4.416 Ds1(2536)
− D∗

s2(2573)
−

Tracking 4 4 4 4 4 4 4

Particle ID 4 4 4 4 4 4 4

Luminosity 1 1 1 1 1 1 1

Branching faction 3 3 3 3 3 3 3

center-of-mass energy · · · · · · · · · · · · · · · · · · · · ·
Fit range (· · · , 2) (2, · · · ) (4, 3) (· · · ,-) (· · · ,-) 3 4

Background shape (3, 1) (1, 4) (4, 5) (5,-) (6,-) 4 5

Line shape (3, 4) (2, 3) (1, 1) (1,-) (· · · ,-) 4 3

Total: (8, 8) (7, 8) (9, 9) (8,-) (9,-) 9 10
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Figure 6. RQ(K−D+
s ) distributions and the fit results at each energy point. Points with error bars are data, the dotted lines

peaking at the nominal mass of the D0(D∗0) are the signal shapes for e+e− →D+
s D0K−(D+

s D∗0K−) process.
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charged track [49]. Therefore, 4.0% is taken as the sys-

tematic uncertainty for the PID efficiency of the four

detected charged tracks.

3. Signal Model. In the fits of the Ds1(2536)
−, the frac-

tion of the D-wave and S-wave components is varied

according to the Belle measurement [46], and the max-

imum changes on the fit results are taken as systematic

uncertainties. In the measurement of the D∗
s2(2573)

−

resonance parameters, the uncertainty stemming from

the signal model is negligible as the D-wave amplitude

dominates in the heavy quark limit.

4. Background Shape. In the measurements of the

Ds1(2536)
− and D∗

s2(2573)
− resonance parameters,

linear background functions are used in the nominal

fits. To estimate the uncertainties due to the background

parametrization, higher order polynomial functions are

studied, and the largest changes on the final results are

taken as the systematic uncertainty. In the measurement

of σB(e+e− →D+
s D

(∗)0K−), we replace the ARGUS

background shape in the nominal fit with a second-

order polynomial function a(m−m0)
2+b, wherem0 is

the threshold value and is the same as that in the nom-

inal fit, while a and b are free parameters. We take the

difference on the final results as the systematic uncer-

tainty.

5. Fit Range. We vary the boundaries of the fit ranges

to estimate the relevant systematic uncertainty, which

are taken as the maximum changes on the numerical

results.

6. Mass Shift and Detector Resolution. In the nominal

fits to measure the Ds1(2536)
− and D∗

s2(2573)
− res-

onance parameters, the effects of a mass shift and the

detector resolution are included in the MC determined

detector resolution shape. The potential bias from the

MC simulations are studied using the control sample of

e+e− →D+
s D

∗−
s . We select the D+

s candidates follow-

ing the aforementioned selection criteria and plot the

RQ(D+
s ) distribution to be fitted to the D∗−

s peak. The

signal function is composed of a Breit-Wigner shape

convolved with a Gaussian function. We extract the

detector resolution parameters from a series of fits at

different momentum intervals of the D+
s candidates.

Hence, the absolute resolution parameters for the fits

to the Ds1(2536)
− or D∗

s2(2573)
− are extrapolated ac-

cording to the detected D+
s momentum. In an alter-

native fit, we fix the resolution parameters according

to this study, instead of to the MC-determined resolu-

tion shape. The resultant change in the new fit from the

original fit is considered as the systematic uncertainty.

7. Branching Fraction. The systematic uncertainty in the

branching fraction for the process D+
s →K+K−π+ is

taken from PDG [5].

8. Luminosity. The integrated luminosity of each sample

is measured with a precision of 1% with Bhabha scat-

tering events [33].

9. Center-of-mass energy. We change the values of center-

of-mass energy of each sample according to the uncer-

tainties in Ref. [34] to estimate the systematic uncer-

tainties due to the center-of-mass energy.

10. Line Shape of Cross Section. The line shape of the

e+e− → D+
s D

(∗)0K− cross section (including the

intermediate Ds1(2536)
− and D∗

s2(2573)
− states) af-

fects the radiative correction factor and the detection

efficiency. This uncertainty is estimated by changing

the input of the observed line shape to the simula-

tion. In the nominal measurement, a power function

of c · (√s−E0)
d is taken as the input of the observed

line shape. Here, E0 is the production threshold en-

ergy for the process e+e− → D+
s D

(∗)0K−, and c and

d are parameters determined from fits to the observed

line shape. To estimate the uncertainty, we change the

exponent of the nominal input power function to d±1
and compare the results with the nominal measurement.

The largest difference is taken as the systematic uncer-

tainty.

7 Summary

We study the process e+e− → D+
s D

(∗)0K− at 4.600

GeV and observe the two P -wave charmed-strange mesons,

Ds1(2536)
− andD∗

s2(2573)
−. TheDs1(2536)

− mass is mea-

sured to be (2537.7± 0.5± 3.1) MeV/c2 and its width is

(1.7 ± 1.2 ± 0.6) MeV, both consistent with the current

world-average values in PDG [5]. The mass and width of

the D∗
s2(2573)

− meson are measured to be (2570.7± 2.0±
1.7) MeV/c2 and (17.2 ± 3.6 ± 1.1) MeV, respectively,

which are compatible with the LHCb [6, 7] and PDG [5]

values. The spin-parity of the D∗
s2(2573)

− meson is de-

termined to be JP = 2+, which confirms the LHCb re-

sult [11]. The Born cross sections are measured to be

σB(e+e− → D+
s D

∗0K−) = (10.1 ± 2.3 ± 0.8) pb and

σB(e+e− → D+
s D

0K−) = (19.4 ± 2.3 ± 1.6) pb. The

products of the Born cross section and the decay branching

fraction are measured to be σB(e+e− → D+
s Ds1(2536)

− +
c.c.) · B(Ds1(2536)

− → D∗0K−) = (7.5± 1.8± 0.7) pb
and σB(e+e− → D+

s D
∗
s2(2573)

−+ c.c.) · B(D∗
s2(2573)

− →
D0K−) = (19.7 ± 2.9 ± 2.0) pb. In addition, the pro-

cesses e+e− → D+
s D

(∗)0K− are searched for using small

data samples taken at four (two) center-of-mass energies be-

tween 4.416 (4.527) and 4.575 GeV, and upper limits at the

90% confidence level on the cross sections are determined.
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