
20 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Why zombies can’t write significant source code: Thee Knowledge Game and the Art of Computer
Programming

Published version:

DOI:10.1080/0952813X.2014.940142

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1715705 since 2019-11-15T17:18:33Z



This is a preprint of a paper accepted for publication in:

The Journal of Experimental & Theoretical Artificial Intelligence
(Taylor & Francis)

ISSN 0952-813X (Print), 1362-3079 (Online)

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advanage and that copies bear this notice
and the full citation on the first page. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or
fee.

It is a publisher’s requirement to display the following notice:

The documents distributed by this server have been provided by the con-
tributing authors as a means to ensure timely dissemination of scholarly
and technical work on a noncommercial basis. Copyright and all rights
therein are maintained by the authors or by other copyright holders,
notwithstanding taht they have offered theri works here electronically.
It is understood that all persons copying this information will adhere to
the terms and constraints invoked by each author’s copyright. These
works may not reposted without explicit permission of the copyright
holder.



Why zombies can’t write significant source

code

The Knowledge Game and the Art of Computer

Programming

Federico Gobbo∗& Marco Benini†

May 15, 2013

Abstract

This paper analyses the knowledge needed to understand a computer
program within the Philosophy of Information. L. Floridi’s method of
Levels of Abstraction is applied to the relation between an ideal program-
mer and a modern computer seen together as an informational organism.
The results obtained by the mental experiment known as the Knowledge
Game are applied to this relation, so to explain what a programmer should
know in order to program a modern computer. In particular, this analysis
will clearly show why non-conscious agents have no hopes to write signifi-
cant programs. Two main objections are then presented and attacked by
correspondent counterobjections.

1 Introduction

What does it mean to know a computer program? In other words, what kind of
knowledge a programmer needs to write the source code of a program? In the
last years, one of the main contribution by L. Floridi to the epistemological side
of the Philosophy of Information (PI) is a clear and well-defined notion of knowl-
edge, which is distinct and richer than the notion of information—see Floridi
(2011) in Allo (2011). In particular, the challenge to artificial intelligence (AI)
posed by Dretske (2003) about the nature of self-conscious agents is attacked
via a mental experiment known as the Knowledge Game (KG), that explains

∗DISIM – Dep. of Inf. Eng., Comp. Science and Math., via Vetoio, 2, University of
L’Aquila, IT-67100 L’Aquila, Italy, federico.gobbo@univaq.it
†Department of Pure Mathematics, University of Leeds, Woodhouse Lane, Leeds, LS2

9JT, UK M.Benini@leeds.ac.uk. Dr Benini was supported by a Marie Curie Intra European
Fellowship, grant n. PIEF-GA-2010-271926, Predicative Theories and Grothendieck Toposes,
within the 7th European Community Framework Programme.



the relation between the nature of the agent and the notion of consciousness
(Floridi, 2011b, ch. 13), (Bringsjord, 2011).

However, the KG does not explicitly refer to computer programming, which
is a key process in the philosophy of AI—at least the logic-based variety. Here,
the results obtained by the KG are applied to computational informational
organisms (inforgs), i.e. every inforg whose computational part is a modern Von
Neumann’s machine (VNM), which requires to be programmed by an agent (Ag)
in order to function. The goal of the argumentation is to explain why neither a
conscious-less artificial Ag (e.g., a robot) nor a conscious-less biological Ag (e.g.,
Spinoza’s automata or Dretske’s zombies) can be real computer programmers.
In particular, we will explain what kind of consciousness is needed to be a
computer programmer through non-trivial examples of programming techniques
known in the literature.

The plan of this paper follows the structure of the argument. In section 2,
definitions are provided as the necessary tools used during the argumentation.
At first, it will be shown what is an intertwining of VNM-based machines,
which defines the interpretation of modern computers, and in particular why
the adjective ‘modern’ is important. Then, we will explain how the method of
Levels of Abstraction (LoAs) is used within a computational inforg. Finally,
the correct place of consciousness within the computational inforg will be given,
after some consideration of the KG after Dretske’s question.

Section 3 applies the method of LoAs to the process that shapes the com-
putational inforg, namely the act of programming. How the strata of a com-
puter program—from the source code to machine code—should be represented
in terms of LoAs? What kind of information do they carry?

Section 4 shows the key argument: how the knowledge needed by the Ag
cannot be reduced to the features describing the computer program itself, but
on the contrary a high degree of consciousness is required to write a significant
computer program—the adjective ‘significant’ being crucial.

Section 5, introduces some well-known examples of non-standard, ‘deviant’
computer programming habits that are analysed in terms of LoAs within the
computational inforg. These examples are used to explain why only humans can
be computer programmers since humans only are able to give non-predictable,
creative solutions to computer programming problems, a unavoidable require-
ment in the light of section 4.

Section 6 presents predictable objections to our argument and their respec-
tive counter-objections, while the last section 7 concludes the paper.

2 Definitions

Computational inforgs are instances of informational organisms where the hu-
man part has—at least—a counterpart made by a VNM-based machinery, i.e.,
a standard, modern computer based on the original architecture by Von Neu-
mann, which is the de facto standard implementation of the Universal Turing
machine (Floridi, 1999, 44–46). The method of LoAs can be used to describe



this kind of artifacts.
It is important to identify three different, complementary types of level de-

scribing an artifact (Floridi, 2011b, ch. 3): the proper Levels of Abstraction
(LoAs), the Levels of Organisation (LoOs), and the Levels of Explanations
(LoEs). LoOs can be constructively defined as the observable knowledge about
the artifact—e.g., the software source code—while the correspondent LoAs are
in the mind of the human counterpart of the inforg—e.g., the software specifi-
cation. Finally, LoEs are the pragmatically motivated epistemologies of LoAs,
and their motivation relies in the correspondent LoA (Floridi, 2011b, 69).

The history of modern computers—roughly, from ENIAC in 1945 (Ceruzzi,
2003)—shows an increasing number of LoAs while the corresponding LoOs be-
come more complex. Gobbo and Benini (2012) discuss how the architecture
of modern computers can be described as intertwining VNMs, where the in-
creasing number of LoOs is motivated by the externalisation of LoAs to allow
the coherent hiding of LoO’s information to the human part of the inforg. For
example, an operating system is a LoO that hides the information previously
input by human operators by hand. This process of externalisation—from LoAs
to LoOs—is central in the development of modern computing. In fact, it allows
the ability to conceive a computer as an abstract entity performing complex
tasks, instead of just a complicate electronic equipment—ultimately, justifying
why computers are useful.

As a side effect, new epistemologies (i.e. LoEs) could rise exactly because of
externalisation of LoAs in LoOs. For example, it is hard to conceive the end-
user’s LoE without the LoA of software applications supported by the graphic
interface known as the desktop metaphor found at Xerox Palo Alto Research
Center in the 1970s (Ceruzzi, 2003, 257–263): for instance, the elementary
action ‘clicking a button’ requires a sophisticated support from the graphical
libraries and from the computer hardware—a support provided by the LoA’s
implementation in a number of LoOs; at the same time, the graphical aspect of a
button invites to click it, referring to a metaphorical analogy well-known to the
users—which is part of the LoE of the graphical interface. Analogously, it is hard
to conceive the computer programmer’s LoE without (a) the externalisation of
the process of compiling into a new LoA, i.e., the compilers, conceived by Böhm
and Jacopini (1966) and (b) the externalisation of operators into operating
systems—from Multics and especially Unix (Donovan, 1974).

It is important to notice that the LoEs are always in the human part of
the computational inforg. This fact is explained by the levels of consciousness
needed to conceive “different epistemic approaches and goals” (Floridi, 2011b,
69), applying the results of the Knowledge Game (KG).

In the original formulation by Floridi (2011b), the KG is a mental experiment
which involves three kinds of populations, that may be logically extended to
four—see Table 2. The populations are classified by two Boolean variables: their
nature (biological vs. non-biological) and their level of consciousness (present
vs. absent).

The two populations at the extreme—i.e., human beings and strong A.I.
agents—are easily explained: human beings are members of the species homo



name of the population nature level of consciousness
human beings biological conscious
robots & artificial agents non-biological non-conscious
Dretske’s zombies biological non-conscious
strong A.I. agents non-biological conscious

sapiens, they are naturally biological and show a considerable level of conscious-
ness. As put by Dretske (2003), the point is not if we are conscious or not—this
can be given as granted; the point is how we are conscious. In fact, there is noth-
ing in what we perceive through our senses that tells us we are conscious, but
rather consciousness is revealed by the awareness of things we perceive—e.g., in
the case of sight, some examples are points of view, perspectives, boundaries,
and horizons. The other extreme, i.e., strong A.I. agents, is here only for logi-
cal completeness: there is no foreseeable realisation of conscious, non biological
agents: “the best artifacts that artificial intelligence (AI) will be capable of
engineering will be, at most, zombies” (Floridi, 2011, 3992).

On the contrary, the two populations in the middle—robots and zombies—
need more clarification. The population of robots (and artificial agents) is cur-
rently composed by engineered artifacts, where at least a programmed, VNM-
based computer is always present as a control device. They can show “interac-
tive, autonomous and adaptable behaviour” (Floridi, 2011b, 291)—and, some-
times, even adaptive behaviour, meaning that the machine tracks its interaction
with the human being using it, and adapts its behaviour according to the in-
ternal model it builds up of the user, see Acquaviva and Benini and Trombetta
(2005) for a more technical view. On the other hand, Dretske’s zombies are bi-
ologically identical to human beings, except for consciousness (Dretske, 2003).
The main difference between robots and zombies, apart from being biological,
is the ability to do counter-factual reflection. They are the ideally perfect be-
haviourists: every action is performed in the same way as humans, only without
any awareness—without consciousness. A multi-agent system made by zombies
may even pass the final KG-test (Floridi, 2011b, ch. 13).

Bringsjord (2011) rightly stresses that the key point in the KG relies in the
notion of consciousness, which should be refined. Following the “standard termi-
nological forniture of modern philosophy of mind” (Bringsjord, 2011, 1363)—in
particular, Block (1995)—he distinguishes three levels of consciousness: access-
consciousness (abbreviated as a-consciousness, which is equivalent to ‘environ-
mental consciousness’, in Floridi’s terminology); phenomenal consciousness (ab-
breviated as p-consciousness) and finally self-consciousness (abbreviated as s-
consciousness). Table 2 show that the only level of consciousness shared by all
populations (‘1’ means presence, ‘0’ absence, ‘?’ unknown) is a-consciousness,
i.e., the capability to represent a state and adapt the behaviour according to
the inputs from the external world.

By contrast, p-conscious properties can be described as experiential (Bringsjord,
2011) or having the experience of ‘what it is like to be’ an agent in that
state, while s-conscious properties additionally require introspective awareness



population a-conscious p-conscious s-conscious
humans 1 1 1
robots 1 0 0
zombies 1 0 0
strong A.I. agents 1 ? ?

(Floridi, 2011b, 292). It worth noticing, that p-consciousness is inferred from
s-consciousness in the final move of the KG: there is a logical priority of s-
consciousness over p-consciousness (Floridi, 2011b, 314). Both are internally
oriented.

All terminological tools are now ready for the argumentation. In sum, we will
deal with computational inforgs, programmability being the crucial feature—
after all, that’s why Turing called his machine ‘Universal’. The explanation of
computer programming in terms of the method of LoAs requires the distinction
between: (a) proper LoAs; (b) LoOs being their de re counterparts; and (c)
LoEs being the collection of epistemological reasons behind. We have seen that
the structure of the computational inforgs is shaped by the LoAs, which tend
to be externalised into new LoOs implementing a process of information hiding,
with the important consequence that new LoEs can emerge. On the other hand,
the KG gives us the populations of agents—logically four, pragmatically three—
that can be part of computational inforgs, and a tripartite view of the notion of
consciousness, where the internally oriented p-consciousness and s-consciousness
are available only to human beings (Bringsjord, 2011; Floridi, 2011), as far as
we know.

3 What is a Computer Program?

As soon as compilers have become available (Ceruzzi, 2003, 201–203), the corre-
sponding LoA allowed the creation of new programming languages—from here,
simply ‘languages’. In the sequel, we will take into account only computational
inforgs with compilers (or interpreters, but this variant is not influential for
our line of reasoning). The programmer writes his algorithms in the form of
source code, a piece of text which is then translated into a format which can
be directly executed by the machine. This process hides information about the
internal representation of data and its detailed manipulation, simplifying the
programmer’s task.

The usual expression high-level languages refer to the fact that a series of
LoAs, which configure themselves as a Gradient of Abstraction (GoA) in the
method of LoAs. In fact, each level is available to the programmer, being dis-
crete and deputed to provide an abstract description (set) of manipulation tools
for a coherent class of features. At the lowest level, the LoO is the hardware,
with CPUs, buses, wires, etc. The logical interpretation of electric signals in
terms of zeros and ones—a major result by Shannon (1940)—is the first LoA of
the GoA of computers programs; then, a stratified set of LoAs is provided, each



one implemented by a suitable LoO, forming the so-called operating system; in
modern computers, further LoAs are present, to cope with the graphical user
interface, the networked services, etc. These LoAs are usually implemented as
system libraries and services, which are the corresponding LoOs. Beyond the
highest LoA, there is the pragmatic reasons of creating a definite programming
language:

Just as high-level languages are more abstract than assembly lan-
guage, some high-level languages are more abstract than others. For
example, C is quite low-level, almost a portable assembly language,
whereas Lisp is very high-level.

If high-level languages are better to program in than assembly lan-
guage, then you might expect that the higher-level the language, the
better. Ordinarily, yes, but not always. [. . . ] If you need code to
be super fast, it’s better to stay close to the machine. Most operat-
ing systems are written in C, and it is not a coincidence. (Graham,
2004, 150–151)

There is always a trade-off between usability (for programmers) and efficiency
(for machines) in the design of a new programming language. In fact, the farther
the language is from the LoOs close to the physical machine, the higher is the
quantity of LoOs that are used to realise the language constructions. In this
sense, the C language is very close to the machine, and it comes equipped with
a minimal set of standard libraries; on the other hand, a language as Java is
very far from the machine, and it comes with abundance of packages to interact
with almost any conceivable system service, from web applications to databases.
The choice of the exact point where to collocate the language is a main part
part of the LoE conceived by the language programmer(s).

The result of a process of programming is the program, written into the
appropriate language—‘appropriate’ in the sense of the LoE of the language.
This result is a text that can be compiled and run into the computer system.
As reported by Eden (2007), an ontological dispute about the ultimate nature of
computer programs raised in the late 1990s, as they have a dualistic nature: the
program-script represents the static, a-temporal entity written in the language,
while the program-process is the dynamic, temporal entity which is put into the
machine via the compiler, as illustrated above.

Eden and Turner (2007) provide a top-level ontology of programs, where
metaprograms are the collection of the highest-level abstractions, as algorithms,
abstract automata (in particular, Turing’s formalisms), and software design
specification, including informal descriptions. However, metaprograms are not
defined in that ontology (Eden and Turner, 2007, sec. 2.4). In the terms of the
method of LoAs, followed here, metaprograms should be defined more precisely:
if the specifications are described through some programming formalism, they
are a proper LoA part of the GoA and a bridge to programs. On the contrary, if
metaprograms are informal specifications such as “program x translates French
into English” (Eden, 2007, table 4) they do not belong to the GoA but rather



to the pragmatic reasons, i.e., the rationale behind the program. In other words
they are part of the LoE. In the following, the term ‘metaprogramming’ will be
used in the restricted sense, i.e., where it is part of the GoA.

4 The Knowledge of Computer Programs

Traditionally, programs are thought of as formal description of a coordinated
set of algorithms in a specific language, in order to solve a well-defined problem.
The analysis made so far give a more complex and richer picture: the first result
of the programming act is a LoO (the running program) which corresponds to
a LoA (the program’s features deputed to solve the problem); apart, there is
a LoE which defines the purpose of the running object (the problem and its
solution), which is the ultimate reason to write programs.

Let us assume that the programmer and the end-user of a program are
different persons, with different abilities and ways to put into relations with the
computer machinery. This assumption is quite commonsensical—at least since
the advent of PCs in the 1980s (Ceruzzi, 2003, ch. 8).

The analysis just given is suitable for the end-user of the program, since it
gives the physical object (LoO), the way to operate it (LoA) and the reason to
use it (LoE), as a link between the user intention and the purpose of each part
of the program as perceived by the user. In this sense, the knowledge about a
program is the ability to perform a conscious interpretation of the purposes of
each part of the program to obtain a result which satisfies the user’s intention.

To some extent, the described picture applies also to the programmer: he
or she operates on an abstract machine, given by the language and the system
services, which constitutes the LoA; this abstract machine is implemented via
the compiler, the operating system, the system applications and libraries, which
constitute the LoO; finally, the programmer has a mental model of the various
parts of the abstract machine, as the knowledge about the language and the
various functions of the system, in the sense that he knows how to use them to
implement algorithms, i.e., to express algorithms in the language so that they
can compute the desired results, eventually interacting with the system services.

However, there is another point of view about the programmer that is quite
distant and interesting for our purposes. In fact, the programmer has to write a
piece of source code–program-script, in Eden (2007)—meeting some given spec-
ification, usually subject to a number of constraints. For example, he or she
has to calculate the income tax to pay, given the balance of a firm in the form
of a spreadsheet table with a fixed structure; the specification defines what the
program is expected to do—and not to do, see the distinction between liveness
and safety properties, introduced by Lamport (1977)—while the constraints de-
clare some technical aspects which must be met, like interacting with a specific
spreadsheet. In the terms of the method of LoAs, the programmer has to con-
ceive a LoA to solve the problem whose specification is (part of) the LoE, and
the work should be completed producing a LoO, the running program, which re-
alises the LoA. Moreover, the two LoEs are intertwined: the user’s LoE roughly



corresponds to the content of the end-user documentation of the program, while
the programmer’s LoA corresponds to the technical documentation of the pro-
gram.

So, the programmer’s task is to build another LoA over the abstract machine
he or she uses, to meet a goal corresponding to the LoE of the not-yet-existing
LoA. To accomplish this task, a programmer has to understand the specifica-
tion, devise a formal model of the world the specification lives in, design the
algorithms operating in this hypothetical world to meet the specification, and,
finally, code the algorithms in the language to obtain a source code program
which can be successfully compiled and executed. Then, the final product, i.e.,
the compiled program, has to be checked against the specification to verify its
correctness, that is, that it is really the LoO corresponding to the designed
LoA, eventually going again through the whole process to solve the mistakes.
The complete and detailed analysis of the whole process is beyond the scope of
the present paper, and the reader is referred to a good textbook on software
engineering, e.g., Peters and Pedrycz (2000).

The first step in the process above is to understand the specification: if the
specification is clear and well-defined, the knowledge needed by the program-
mer would be the ability to read it and correctly interpret it. In principle, this
ability can be performed by an artificial Ag—in the sense explained in Table
2—only a-consciousness is needed. In fact, there is an entire branch of theoret-
ical computer science devoted to study the formal synthesis of programs—see,
e.g., Benini (1999)—which deals exactly with the knowledge needed to write a
program meeting a formal specification, which has no ambiguity with respect
to a prefixed reference model. In principle, a formal specification in a suitable
mathematical theory is enough to write a program satisfying it: the requirement
is that the theory should be powerful enough to convey in the program specifi-
cation enough computational content to enable the mechanical extraction of a
program that satisfies the specification. Unfortunately, the so-derived program
is rarely ‘good’ with respect to the context: in most cases, even a poor human
programmer is able to write a more efficient program code. Reality of life is
that few specifications are formal, or even close to being formalised, making
the initial step in the programming process far from trivial. This point is very
important, so let us delve into it for a moment.

Even apparently formal specifications are not enough to determine a program
meeting them: for example, it is easy to write a logical formula in the theory of
orderings to express the fact that an array is sorted, making the specification
“given an array, sort it!” a perfectly clear statement. Nevertheless, this kind of
specification is still part of the LoE, as it is too vague to be part of a LoA. In
other words, that specification is not precise enough to provide an essentially
unique solution to the problem. In fact, an entire book in the monumental
work by Knuth (1998) is dedicated to sorting algorithms. Consider the fact
that different algorithms have different computational complexities, e.g., insert
sort is O(n2) in time, while heap sort is O(n log n), with n the size of the array.
But this by far not the only property to be considered. Interestingly, sorting
algorithms which are more inefficient may perform far better if the arrays to sort



belong to a restricted class, e.g., insert sort on quasi-sorted arrays operates on an
average time of O(n); the same algorithm can be coded in greatly different ways,
e.g., recursive versus iterative quick sort. The abstract machine the programmer
uses makes the choice even harder, as some operations may be significantly
slower than others: for example, 2-way heap sort may be quite inefficient on
a large array in a virtual memory system, while n-way heap sort with n > 2
acts more ‘locally’, reducing memory swaps, thus being faster, even if this is not
clear from a pure algorithmic analysis—most of these rather technical analyses
can be found in Knuth (1998c) and in Peterson and Silberschatz (1985).

The point we want to make here is that, even in the case of a formal speci-
fication, a variety of choices is available to the programmer, due to the context
where the program has to operate. The context is made of the programmer’s
abstract machine and the whole problem behind the specification. These as-
pects of the world’s problem that are not explicit, and therefore they are part of
the programmer’s LoE. In the program-script, this is exactly what distingueshes
a generated source code from a significant source code. In fact, a ‘good’ pro-
grammer is able to imagine the program in the context when it will be used,
a clear instance of p-consciousness. A possible objection would be to overcome
the knowledge of the p-consciousness by putting more and more information
in the specification statement, to formally encode the whole set of constraints
the programmer derives from his knowledge of the world where the program in
supposed to operate in. As it is easy to understand, a formal specification which
contains so much information, may exceed by far the size and complexity of the
final program implementing it—a phenomenon well-studied for mission-critical
systems, like aircraft control software, as reported in (Mackenzie, 2001)—while
the final program-script becomes a unsolvable mystery in terms of maintainance.

As we have seen, specifications are not exhaustive in the sense that they are
not strict enough to determine a unique piece of program-script source code as
their solution. But there is another fact to be considered. Usually, specifications
are not precise but rather an approximation of the required solution, since the
problem itself is well understood or stated neither by end-users nor by program-
mers until the program-script is actually realized. For example, it is common
practice to write web applications by refinement, validating an intermediate re-
lease with end-users: what is perceived as unsatisfactory or wrong is corrected
in the next release and the features which are absent in the current version but
required, even if not in the very beginning of the development process, are even-
tually introduced. This refinement process is unavoidable, as the requirements
are not really known in advance, and it is part of the life cycle of every software
system, identified in literature as the maintenance phase (Peters and Pedrycz,
2000). This phenomenon proves beyond any doubt that knowledge and infor-
mation are distinct, non equivalent concepts, supporting once more Floridi’s
approach to PI.

Moreover, a third fact should be considered now. A good programmer writes
the source code of program anticipating maintenance, which is the pragmatic
counterpart of the refinement process just stated—the program-script is changed
along the requests that emerge, while releases can be seen as milestones in its



evolution. All criteria behind maintenance are parte of the programmer’s LoE,
among the others: clear technical documentation, an intuitive choice for the
source code architecture, a clean organisation of code and data structures, ad-
herence to style rules are some of the strategies to make easier to modify an
existing source code program. A somewhat extreme example is given by ‘inter-
faces’ in object-oriented programming (Gosling et al., 2012): from the functional
point of view, these pieces of code have no state and they do not provide any
additional functions to existing packages and classes; instead, they provide a
uniform access to a series of classes, which are distinct also in their structure,
but, to some extent, identifiable under a common syntactical pattern, which is
exactly what the interface codes. There is no reason to use interfaces in object-
oriented programming, except to organise a complex set of classes as a clean
structure, with a uniform access schema—an action which makes sense only to
support maintenance.

From a philosophical point of view, the efforts a programmer makes to antic-
ipate maintenance reveal that the programmer is s-conscious. In fact, a human
programmer wants to minimise the future work caused by maintenance, which
is a implicit goal of programming, internal to the programmer. Moreover, main-
tenance is not only unpredictable—the programmer does not know in advance
how the current specification will be modified—but also open-ended—the pro-
grammer knows that the life of his or her code can be very long, without a
predictable bound. The strategies to facilitate maintenance are directed by the
principle: ‘when you write a piece of code, always imagine that you will be
asked to modify it exactly an instant after you completely forget how it works!’
(folklore says that all programmers receive such an advice in their early life).
Accomplishing this principle requires s-consciousness by definition.

Let us recall the main arguments behind the knowledge of programs. First,
we cannot avoid to consider end-user’s and programmer’s LoEs, which are in-
herently different. Second, it is not possible to reduce the knowledge of the
program in the LoE in terms of formal specifications, because not only its com-
plexity would grow tremendously. Third, the program’s LoE is made by the
intertwinement of the end-user’s and the programmer’s, which is a complex
process made of refinement, and ultimately determines the program-script in
terms of subsequent releases. An important part of the programmer’s LoE is to
anticipate maintenance, which requires s-consciousness.

5 Computer Programmers as Artists

Much of the philosophical problems analysed in this paper come from the fact
that programs are perceived as technological objects. This is certainly true, but
limiting our vision of programming as a technological activity deny some aspects
which are vital to software development and to the advancement of computer
science as a whole. In the following, we want to discuss some of these aspects,
through a series of examples, as they provide other reasons why zombies cannot
be programmers.



When a program is designed, the starting point is to define a problem to
solve—as we have already discussed, the problem statement may be informal
and underspecified—that is, there is a specific behaviour the program must
exhibit to satisfy an intended usage. For example, a web mail system, like
GmailTM (Google Inc.), is supposed to provide email access to users even when
they do not use their own computers. The service saves emails somewhere, so
that they are readable from any web-enabled device after authentication; also,
emails can be sent from everywhere using the same service. The intended use
of GmailTM is to communicate via a standardised electronic substitute of the
traditional mail system.

But users have found deviant and creative ways of using GmailTM. We
illustrate two of them, based on our first-hand experience. The first example is
an example of creative use by end-users. Since the storage space of GmailTM

is very large, users use it to backup important documents: the user sends a
message to himself with the document as an attachment; the direct effect is
that he can read his own message and retrieve his document from any place
where GmailTM can be accessed. But there is also a side-effect: the message
and, thus, the document, is saved in GmailTM’s storage. Since the Google
system is robust, the storage is a safe place to keep the document, safer than a
computer for personal use or a in-house server, as both may break or lose data
with no possibility to recover as they constitute a single point of failure. The
document is ‘protected’ by the redundant nature of Google network of servers,
providing, for free, a reliable backup service which is more robust than any other
a normal user can afford.

The second example pertains the LoE of system administrators—which by
definition are not end-users. Only Google’s system managers can access the
mail service with administrative powers. For this reason, some system admin-
istrators developed automatic procedures to periodically send messages, sum-
marising their system’s logs, to a fixed GmailTM mailbox1. The purpose of
those messages is to provide legal protection to the system managers and their
institutions. In fact, as those messages cannot be modified by the institution
and their personnel—potentially, they can be altered only by Google’s system
managers—they provide legal evidence of what happened to the institution’s
systems, an evidence that cannot be manipulated by an intruder, too—unless
he is able to break the strong security system of Google. So, in a court, those
messages provide facts which cannot be disputed about the state of the system
in time, because the exact time when they have been received by GmailTM is
recorded beyond any possibility of manipulation.

Evidently, these two examples of deviant use of a world-wide service have not
been part of the specification of GmailTM. They reveal a creative understanding
of the service, which is used beyond the intention it was designed for. In terms
of the methods of LoAs, the users adopting these deviant examples, have added
different LoEs to GmailTM, distinct from the one provided by the programmers

1One of the authors implemented this feature, only to discover that, independently, other
system manager did the same: he was unable to trace the first proposer, or an article docu-
menting the feature.



of the system, even if still associated with the same LoO and LoA that constitute
GmailTM.

Similar examples abounds in programming practice. We now give an exam-
ple to explain that the original, intended LoE externalised in the program-script
can be used together with a deviant LoE at the same time. The example is
an historical instance about the RTS instruction of the 6502TM (Motorola Inc.
trademark) microprocessor.2 This microprocessor was very popular in the times
of home computing—roughly, 1977–1984, see for instance Tomczyk (1984)—as
it was key hardware in the Apple IITM and of the Commodore 64TM. The mi-
croprocessor had an instruction set with a limited ability to reference memory;
in particular, branches were absolute but not relative: it was possible to say ‘go
to the instruction at address 1000’, or ‘go to the instruction whose address is in
the memory cell 1000’, but there was no instruction to say ‘go to the instruction
which is four instructions ahead’. This limitation was a problem for program-
ming: when the executable program is loaded into memory, it must have the
‘right’ addresses in the parameters of the jump instructions, thus it had to be
loaded at a fixed address, known at compile time. Otherwise, the program must
be ‘relocated’ before execution: every jump instruction must be adapted by the
difference between the loading address and the compiling address.

Since relocation was time-expensive on such a slow microprocessor, and load-
ing programs at a prefixed address was not always possible, programmers soon
found ways to write code which was independent from the loading position. The
idea is to use in a deviant way the pair of instructions RTS and JSR: the 6502TM

microprocessor provides the JSR instruction (‘jump to subroutine’) that oper-
ates by putting the address of the instruction onto the system stack and then
jumping to the address given as a parameter; the RTS (‘return from subroutine’)
instruction reverses the action of JSR since it takes the address on the top of
the stack and jumps to the instruction just after. The intended use of these pair
of instructions is to implement ‘subroutines’, i.e., functions needed more than
once in the program, that can be called from any point of the program itself.

However, since every computer has a resident part of the operating system
in memory, programmers found a way to use these instructions and the resident
system to write position-independent programs. In particular, the resident sys-
tem has a well-known address where there is an RTS instruction—for example,
this was in the Apple II system documentation. It suffices to start the program
with the following code: first, a JSR to the well-known RTS was performed, ob-
taining the side-effect that one position over the top of the stack there was the
address of the JSR instruction; second, that address was stored in a variable
(memory cell with a known address) which acted as the base; finally, whenever
a jump had to be performed, it was coded as an indirect jump to the instruc-
tion whose address was the base plus a displacement equal to the number of
instructions separating the destination from the beginning of the program, i.e.,
the initial JSR.

2This example comes from a practice which was folklore in the Apple IITM programmers’
community, according to one of the authors, who was part of that community.



We see that the RTS trick allows to overcome a design limit of the 6502TM

architecture—in its instruction set, in particular—by a deviant use of a pair of
instructions. The use is deviant because out of the intended meaning in the
original design, even if correct with respect to the manipulation of the internal
state of the microprocessor. In this case, the programmer uses two LoEs at the
same time when writing the source code: the one provided by the microproces-
sor’s manufacturer and a second LoE which substitutes the relative jumps with
a indirect jumps from a displaced base address. Thus, the source code contains
instructions, the jumps, which have to be read according to a different inter-
pretation: they stands for relative branches, even if coded as indirect absolute
jumps.

The main consequence of the RTS example is that rarely the source code of
a program can be read literally: there are multiple levels of interpretations of
its parts, corresponding to distinct LoEs. Only the composition of those LoEs
allows to understand the program-script as an expression of the programmer’s
thought. An extremely interesting set of examples of this kind can be found
in the beautiful book by Warren (2003), where programming techniques fully
developing the power of computer arithmetic are described in depth. Those tech-
niques reveal how far can be a program—as the formal description of a sequence
of instructions in a language—from its source code, showing how multiple LoEs
may interact in the production of an experienced programmer.

Let us consider another example, which shows how a deviant LoE became
part of the standard LoE of the internet for system administrators, as it con-
cerns the Internet Control Message Protocol (ICMP) by Postel (1981). This
network protocol, part of the standard TCP/IP suite, the reference implemen-
tation of the Internet architecture, is deputed to provide the services which are
used to report errors and problems in the Internet protocol, and to provide basic
services to check the correct behaviour of the network. The peculiar aspect of
ICMP is that the protocol implementation relies on deviant uses of the IP pro-
tocol. For example, the traceroute service, which tests whether a given host is
reachable tracing the sequence of hosts in between, shows how to systematically
misuse the standard mechanisms of IP networking. Specifically, the Time to
Live (TTL) field in the IP packet is used to give a maximal life to an IP packet:
whenever the packet is received by a network node, its TTL is decremented; if
the TTL becomes zero, the packet is discarded and an error, in the form of an
ICMP packet, is sent back to the source node. The rationale of this mechanism
is to prevent a packet to circulate forever in a network when its final destina-
tion is unreachable; moreover, the error packet informs the source node that a
packet has been lost. This mechanism allows some kind of recovery strategy,
which is used—e.g., by TCP—to construct reliable channels over an unreliable
network, and eventually being part fo the standard LoE that underpins the in-
ternet. Moreover, the traceroute service uses the mechanism differently: first,
it sends to the destination an IP packet whose TTL is 1, thus generating an
error at the first node it crosses; after receiving the corresponding error packet,
which contains the address of the discarding node as its source, it generates
another IP packet to the destination whose TTL is 2. Eventually, after enough



IP packets are generated with increasing TTLs, a packet reaches the final des-
tination. There, it gets discarded, as its TTL will be zero, and an ICMP error
packet is sent to the source. When this error packet is received, the sequence of
error packets contains the route from the source to the final destination, which
is very important in the standard LoE of system administrators of networks.

At a first sight, all the illustrated examples appear as ‘tricks’. But their
systematic use reveals a deeper truth: they are part of the knowledge of a pro-
grammer, a knowledge that arises from alternative but coherent interpretations
of the available LoOs and LoAs, i.e., alternative LoEs. In other terms, there
is a creative step a programmer has to perform to understand and, then, to
actuate these ‘tricks’: he or she must develop a new LoE, which is coherent
with an existing LoA and LoO—a step comparable to the creation of an art
work, which represent a fictitious reality but it is perfectly plausible. In the
case of programming, plausibility of the LoE means that also the machine has
to act coherently to the alternative explanation, so that the user may ‘believe’
to what he or she observes. The reader is invited to rethink to our examples
in comparison with movies: a ‘good’ movie is not necessarily depicting some
existing world, but, for the time of its projection, a viewer must think to the
depicted world as ‘real’. Similarly, although the alternative interpretations we
illustrated are not the standard ones, they ‘work’, which is exactly the ultimate
meaning of coherence with LoAs and LoOs.

Although the relation between art performances and programming can be
carried further, and constitutes a fascinating topic to explore, our point is made:
not only a programmer must be s-conscious, but he must also be creative on
need. Thus, zombies and robots both lack the fundamental capabilities to be
good programmers: at most, they can be coders, translating in a more or less
mechanical way specifications into a flat text that can be correctly interpreted by
a compiler. Hence, only humans are able to write significant programs, following
the whole software development process, as strong A.I. agents are non-existent
for the moment, and probably forever. The required abilities for programmers
are self-consciousness, to consider themselves as actors in the software devel-
opment process and to derive specifications from their role, and creativity, to
imagine and realise new explanations to existing abstract entities and features,
so to solve problems by reinterpreting the available abstractions.

6 Objections and Counter-Objections

Three objections can be envisaged: the first one concerns meta-reasoning in
programming, the second refers to language stratification, while the third one
addresses the problem of a federation of zombies-as-programmers.

The first objection can be described as machines that programs themselves:
there are many techniques of reflect, introspect, shift from the object-level rea-
soning to meta-reasoning and vice versa—for a survey, see Costantini (2002).
A program that modifies its (or other’s) program-script is doing programming,
therefore a robot or artificial agent (in the sense previously defined, see Table 2)



are programmers even if they lack some level of consciousness (see Table 2). The
objection is based on the implicit assumption: programming is the act of writing
source code. As we have seen previously, programming should not be limited
to the implementation of some formal specification, being a far more creative—
even artistic—activity. In fact, whatever technique of reflection is used or can
be found in the foreseeable future, there is no way to simulate the LoE behind
the meta-programming process, which is informal and bound to p-consciousness
and s-consciousness. Moreover, creating new and alternative LoEs is part of
programming and this activity shows no signs of being mechanisable or able to
be carried on by unaware entities.

The second objection can be posed as follows: there are no new LoEs in
the programming process like the ones illustrated in section 5; the so-called al-
ternative LoEs are, in fact, the explanations of new LoAs which abstract over the
given LoAs—in concrete terms, in the illustrated examples, the user/programmer
is not using the original program/language, but a new one which resides inside
the old one, thus stratifying the original language/program into two interacting
entities. The counter-objection is that every LoA must have a corresponding
LoO, which is evidently shared by the whole stratification in the objection. For
example, recalling the RTS trick, the same assembly language and the same mi-
croprocessor are used—no difference in the observables can be found between
the single LoA/multiple LoEs—our interpretation— and the multiple LoAs—
the objection’s interpretation. Thus, even if we may think of an auto-relocatable
source code as more abstract than one with fixed jumps, this abstraction is ab-
sent in the source code—it lies entirely in the programmer’s mind, with no coun-
terpart in the computational side of the inforg. So, since it keeps the one-to-one
correspondence between LoOs and LoAs, our explanation is more ‘economic’
than the counter-objection, as it does not force a reinterpretation of Floridi’s
model.

The third objection can be expressed as follows: if we concede that the KG
“promotes an intersubjective conception of agenthood” (Floridi, 2011, 315), then
a federation of zombies behaving as computer programmers could be effective.
In other words, we can supersede the programmer by splitting the need of a
LoE in an indefinite number of behaviourist programmers. Here, there are two
important aspects of programming that should be considered in order to address
this objection. First, even if it is true that real-world, complex program-scripts
are rarely written by a single programmer, in principle there is no advantage in
having many programmers instead of one only—beyond efficiency. In fact, the
ultimate product of the act of programming is a sequential text: the merging
process of the program-script pieces written by the many programmers is not
trivial, and it can be performed efficiently only if there is at least a partial
agreement between each programmer’s LoE. Again, issues in refinement and
maintainability are in charge: there is no way to externalise merging in pure
terms of a-consciousness.



7 Conclusion

This paper, starting from the provocative title, analysed the act of programming
in the Floridi’s framework of Philosophy of Information, using the method of
Levels of Abstraction and the Knowledge Game. We argue that programming
is a highly complex activity, which involves consciousness and creativity, and it
cannot be reduced to mere coding.

Our analysis is partial, because of the vastness and complexity of the ex-
plored field, and initial, as many aspects have been touched but not developed
in depth. To name just a few, creativity is a fundamental attribute of pro-
gramming and it relates to art—it is not by chance that Knuth’s masterpiece is
named ‘The Art of Computer Programming’; this relation has not be system-
atically and philosophically explored yet, and we believe that an ‘aesthetics of
programming’ may clarify many aspects why people find more pleasant or useful
some programming solutions or techniques. Also, the analysis of consciousness
in the programming life cycle has been limited to prove an argument satisfying
our thesis: it can—and it should—carried further to analyse the psychology of
programming, an unexplored field which may help to understand how to organ-
ise programs so to stimulate production and quality, two of the major concerns
of software producers.

We want to conclude acknowledging the source of inspiration for this paper:
the words at the beginning of the preface of Knuth (1998b):

The process of preparing programs for a digital computer is espe-
cially attractive, not only because it can be economically and scien-
tifically rewarding, but also because it can be an aesthetic experience
much like composing poetry or music.

References

Allo, P. editor (2011), Putting Information First: Luciano Floridi and the Phi-
losophy of Information, Oxford: Wiley-Blackwell.

Acquaviva, M., Benini, M., Trombetta, A. (2005), “Short-Term Content Adap-
tation in Web-based Learning Systems”, in Web Technologies, Applications,
and Services (WTAS 2005), Hamza, M.H. editor, Acta Press.

Benini, M. (1999), Verification and Analysis of Programs in a Constructive En-
vironment, PhD Thesis, Dipartimento di Scienze dell’Informazione, Università
degli Studi di Milano.

Block, N. (1995), “On a Confusion About a Function of Consciousness,” in
Behavioral and Brain Sciences, 18, 227–47.

Böhm, C. and Jacopini, G. (1966), “Flow Diagrams, Turing Machines and Lan-
guages with Only Two Formation Rules,” in Communications of the ACM,
9, 5, 366–371.



Bringsjord, S. (2011), “Metting Floridi’s Challenge to Artificial Intelligence from
the Knowledge-Game Test for Self-Consciousness,” in (Allo, 2011), 1310–1838.

Ceruzzi, P. (2003), A history of modern computing. Cambridge, Mass.; London:
MIT Press.

Costantini, S. (2002), “Meta-Reasoning: A Survey,” in Computational Logic:
Logic programming and Beyond: Essays in Honour of Robert A. Kowalski,
Kakas, A.C. and Sadri, F. editors, Springer Verlag, 253–288.

Donovan, J. J. (1974) Operating Systems, McGraw-Hill.

Dretske, F. I. (2003), “How Do You Know You Are Not a Zombie?,” in Privileged
Access and First-Person Authority, Gertler, B. editor, Burlington: Ashgate,
1–14.

Eden, A.H. (2011), “Three Paradigms of Computer Science,” in Mind and Ma-
chines, 17, 2, 135–167.

Eden, A.H. and Turner, R. (2011), “Problems in the Ontology of Computer
Programs,” in Applied Ontology, 2, 1, 13–36.

Floridi, L. (2011), “The Philosophy of Inormation: Ten Years Later,” in (Allo,
2011), 3942–4360.

Floridi, L. (2011b), The Philosophy of Information, Oxford: Oxford University
Press.

Floridi, L. (1999), Philosophy and Computing: an Introduction, London: Rout-
ledge.

Gobbo, F. and Benini, M. (2012), “The Minimal Levels of Abstraction in the
History of Modern Computing,” Philosophy and Technology, forthcoming.

Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A. (2012), The JavaTM

Language Specification, Java SE 7 Edition, Oracle Inc.

Graham, P. (2004), Hackers and Painters: Big Ideas from the Computer Age,
Sebastopol, CA: O’Reilly.

Knuth, D.E. (1998), The Art of Computer Programming, Addison-Wesley.

Knuth, D.E. (1998b), Fundamental Algorithms, volume 1 of (Knuth, 1998), third
edition.

Knuth, D.E. (1998c), Sorting and Searching, volume 3 of (Knuth, 1998), second
edition.

Lamport, L. (1977), “Proving the Correctness of Multiprocess Programs”, IEEE
Transactions on Software Engineering, 3(2):125–143.



Mackenzie, D. (2001), Mechanizing Proof: Computing, Risk, and Trust, MIT
Press.

Peters, J.F. and Pedrycz, W. (2000), Software Engineering: an Engineering
Approach, New York, NY: John Wiley and Sons.

Peterson, J.L. and Silberschatz, A. (1985), Operating System Concepts, second
edition, Addison-Wesley.

Postel, J. (1981), “Internet Control Message Protocol”, RFC792.

Shannon, C.E. (1940), A Symbolic Analysis of Relay and Switching Circuits.
Master’s thesis. Massachusetts Institute of Technology, Department of Elec-
trical Engineering

Warren, H.S. (2003), Hacker’s Delight, Addison-Wesley.

Tomczyk, M.S. (1984), The Home Computer Wars, Compute! Publications Inc.:
Greensboro, North Carolina.


