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a b s t r a c t

Wepresent explicit constructions of complete Ricci-flat Kähler metrics that are asymptotic
to cones over non-regular Sasaki–Einstein manifolds. The metrics are constructed from
a complete Kähler–Einstein manifold (V , gV ) of positive Ricci curvature and admit a
Hamiltonian two-form of order two.We obtain Ricci-flat Kählermetrics on the total spaces
of (i) holomorphic C2/Zp orbifold fibrations over V , (ii) holomorphic orbifold fibrations
over weighted projective spaces WCP1, with generic fibres being the canonical complex
cone over V , and (iii) the canonical orbifold line bundle over a family of Fano orbifolds. As
special cases, we also obtain smooth complete Ricci-flat Kähler metrics on the total spaces
of (a) rank two holomorphic vector bundles over V , and (b) the canonical line bundle over
a family of geometrically ruled Fano manifolds with base V . When V = CP1 our results
give Ricci-flat Kähler orbifold metrics on various toric partial resolutions of the cone over
the Sasaki–Einstein manifolds Y p,q.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction and summary

1.1. Introduction

A Sasaki–Einstein manifold (L, gL) is a complete Riemannian manifold whose metric cone

C(L) = R+ × L, gC(L) = dr2 + r2gL (1.1)
is Ricci-flat Kähler. The metric in (1.1) is singular at r = 0, unless (L, gL) is the round sphere, and it is natural to ask whether
there exists a resolution i.e. a complete Ricci-flat Kähler metric on a non-compact manifold X which is asymptotic to the
cone (1.1).More generally, one can consider partial resolutions inwhich X also has singularities. There are particularly strong
physical motivations for studying such partial resolutions; for example, certain types of orbifold singularity arewell-studied
in String Theory, and may give rise to interesting phenomena, such as non-abelian gauge symmetry.
These geometrical structures are of particular interest in the AdS/CFT correspondence [1]. In complex dimension three

or four, a Ricci-flat Kähler cone C(L) is AdS/CFT dual to a supersymmetric conformal field theory in dimension four or three,
respectively. Resolutions of such conical singularities are then of interest for a number of different physical applications. For
example, in AdS/CFT such resolutions correspond to certain deformations of the conformal field theory.
On a Kähler cone (C(L), gC(L)) there is a canonically defined vector field, the Reeb vector field:

ξ = J
(
r
∂

∂r

)
(1.2)
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where J denotes the complex structure tensor on the cone. ξ is a holomorphic Killing vector field, and has unit norm on the
link L = {r = 1} of the singularity at r = 0. If the orbits of ξ all close then ξ generates a U(1) isometry of (L, gL), which
necessarily acts locally freely since ξ is nowhere zero, and the Sasakian structure is said to be either regular or quasi-regular
if this action is free or not, respectively. The orbit space is in general a Kähler–Einstein orbifold (M, gM) of positive Ricci
curvature, which is a smooth manifold in the regular case. More generally, the orbits of ξ need not all close, in which case
the Sasakian structure is said to be irregular.
Suppose that (L, gL) is a regular Sasaki–Einsteinmanifold. In this case L is aU(1) fibration over a Kähler–Einsteinmanifold

(M, gM), which we assume2 is simply-connected. Let KM denote the canonical line bundle of M , and let I denote the Fano
index ofM . The latter is the largest positive integer such that

K−1/IM ∈ Pic(M) = H2(M;Z) ∩ H1,1(M;C). (1.3)

It is then well-known that the simply-connected cover of L is diffeomorphic to the unit circle bundle in the holomorphic
line bundle K 1/IM . Taking the quotient of L by Zm ⊂ U(1) gives instead a smooth Sasaki–Einstein manifold diffeomorphic to
the unit circle bundle in Km/IM . For example, suppose (M, gM) is CP2 equipped with its Fubini-Study metric. Then the Fano
index is I = 3, and the canonical line bundle is KCP2 = O(−3). The total space of the associated circle bundle is thus S5/Z3,
whereas the simply-connected cover of (L, gL) is S5 equipped with its round metric.
When m = I , there is a canonical way of resolving the above Ricci-flat Kähler cone: there exists a smooth complete

Ricci-flat Kähler metric on the total space of the canonical line bundle KM over M . The metric is in fact explicit, up to the
Kähler–Einstein metric gM on M , and is constructed using the Calabi ansatz [3]. These metrics were constructed in the
mathematics literature in [4], and in the physics literature in [5]. More generally, there may exist other resolutions. The
simplest example is perhaps given by M = CP1 × CP1 (also known as zeroth Hirzebruch surface, denoted F0) with its
standard Kähler–Einstein metric. Here I = 2, and for m = 2 the construction of [4,5] produces a complete metric on the
total space of KF0 , which is asymptotic to a cone over the homogeneous Sasaki–Einsteinmanifold T

1,1/Z2. On the other hand,
the cone over the Sasaki–Einstein manifold withm = 1 instead has a small resolution: there is a smooth complete Ricci-flat
Kähler metric on the total space of the rank two holomorphic vector bundleO(−1)⊕O(−1) overCP1, which is asymptotic
to a cone over T 1,1. This is known in the physics literature as the resolved conifold metric [6].
More generally, there are the existence results of Tian and Yau [7,8]. In the latter reference it is proven that, under certain

mild assumptions, X = X̄ \ D admits a complete Ricci-flat Kähler metric that is asymptotic to a cone, provided that the
divisor D ⊂ X̄ in the compact Kähler manifold (or orbifold) X̄ admits a Kähler–Einstein metric of positive Ricci curvature.
Thesemetrics are therefore also asymptotic to cones over regular, or quasi-regular, Sasaki–Einsteinmanifolds. However, the
metrics that we shall present in this paper lie outside this class, and their existence was not guaranteed by any theorem.
In [9–11] infinite families of explicit Sasaki–Einstein manifolds were constructed, in all odd dimensions, in both the

quasi-regular and irregular classes. In particular, these were the first examples of irregular Sasaki–Einstein manifolds. The
construction produces, for each complete Kähler–Einstein manifold (V , gV ) of positive Ricci curvature, an infinite family
Y p,k(V ) of associated complete Sasaki–Einstein manifolds. Here p and k are positive integers satisfying pI/2 < k < pI ,
where I is the Fano index of V . Given the above results, it is natural to investigate whether or not there exist resolutions of
the corresponding Ricci-flat Kähler cones. In fact examples of such resolutions have recently been constructed in [12,13]. In
this paper we significantly generalise these results; the results of [12,13] are recovered by substituting (V , gV ) = CP1 (in
particular, I = 2,m = 1) with its standard metric, or (V , gV ) = product of complex projective spaces, into Corollary 1.5,
respectively.
Quite recently, Futaki [14] has used the Calabi ansatz to construct complete Ricci-flat Kählermetrics on the canonical line

bundles (i.e.m = I , in the above notation) over toric Fanomanifolds. A key point in the construction is the general existence
result of [15] for toric Sasaki–Einstein metrics on links of isolated toric Gorenstein singularities.

1.2. Summary

Our constructions are based on a class of explicit local Kähler metrics that have appeared recently in the mathematics
literature [16–18] and have been independently discovered in the physics literature in [19]. The metrics we study all admit
a Hamiltonian two-form, in the sense of [16], of order two. As noted in [16], the Calabi ansatz is a special case of a local
Kähler metric admitting a Hamiltonian two-form of order one. More generally, a Kähler metric admitting a Hamiltonian
two-form of order one locally fibres over a product of Kähler manifolds: this ansatz was in fact used in the paper [20]
to construct complete Ricci-flat Kähler metrics on various holomorphic vector bundles over products of Kähler–Einstein
manifolds; the asymptotic cones are again all regular, however. For simplicity, we study here only a single Kähler–Einstein
manifold (V , gV ), rather than a product of Kähler–Einstein manifolds3. The local metrics depend on two real parameters. In
Sections 2.3 and 3we establish that it is possible to choose onemetric parameter ν in such away that themetric asymptotes
to a cone over one of the non-regular Sasaki–Einstein metrics constructed in [11]; there are a countably infinite number of

2 b1(M) = 0 necessarily [2].
3 The product case was in fact discussed briefly in [11], with some global analysis of the corresponding Sasaki–Einstein metrics appearing in [21].
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such choices for ν. The remainder of the paper is then devoted to analysing in detail the various choices for the secondmetric
parameter µ. We obtain Ricci-flat Kähler metrics on partial resolutions, with singularities that we carefully describe, as well
as various smooth complete Ricci-flat Kähler metrics, that provide distinct resolutions of the conical singularities. When the
Fano manifold (V , gV ) is toric, the resolutions we construct are all toric resolutions. In particular, when V = CP1 equipped
with its standard round metric, our results may be described in terms of the toric geometry of the family C(Y p,q) of isolated
toric Gorenstein singularities [22]. Such a description, together with the AdS/CFT interpretation of the metrics constructed
here, will appear elsewhere [23].
In Section 4we investigate two classes of (partial) resolution that we shall refer to as small resolutions. This nomenclature

is motivated by the fact that thesemetrics may be thought of as two different generalisations of the resolved conifoldmetric
on O(−1) ⊕ O(−1) → CP1. First, we obtain complete Ricci-flat Kähler orbifold metrics on the total spaces of certain
holomorphic C2/Zp fibrations over V . When p = 1 this leads to smooth Ricci-flat Kähler metrics on the total spaces of
certain rank two holomorphic vector bundles over the Fano V , as summarised in Corollary 1.2 below. For instance, taking
V = CP2 with its standard Kähler–Einstein metric, we obtain a smooth complete metric on the total space of the rank two
holomorphic vector bundle O(−2) ⊕ O(−1) → CP2. On the other hand, these results also produce an infinite family of
partial small resolutions of the cones over the non-regular Sasaki–Einstein manifolds Y p,q [10]. The resolution is in general
only partial since the normal fibre to the blown-upCP1 isC2/Zp. The fibres are non-trivially twisted overCP1, with the form
of the twisting depending on the integer q. When p = 1 we recover precisely the resolved conifold metric. In Section 4.3
we will describe a second type of partial resolution, where one instead blows up a weighted projective space. The partial
resolution is a fibration over this weighted projective space with generic fibres being the singular canonical complex cone
over the Fano V (cf. Theorem 1.3 below). In particular, when V = CP1, the latter fibres are simply copies of C2/Z2, which is
the blow-down of O(−2)→ CP1. More precisely, in this case we obtain a C2/Z2 orbifold fibration overWCP1

[d,p−d], where
d = k/2 implies that k = p+ qmust be even.
In Section 5 we investigate a class of complete Ricci-flat Kähler orbifold metrics on the total space of the canonical line

bundle over a family of Fano orbifolds. These are a direct generalisation of the work of [4,5], which was based on the Calabi
ansatz. Our Fano orbifolds areWCP1

[r,p−r] fibrations over V , where 0 < r < k/I . The induced orbifold metric onM , which is
the zero-section of the canonical line bundle, is Kähler, but (M, gM) is not Kähler–Einstein.M is smooth if and only if p = 2,
r = 1 and in this caseM is a CP1 fibration over the Fano V , of the formM = PV (O ⊕ K

m/I
V )where 0 < m < I . For instance,

when V = CP1,M is the first del Pezzo surface, which is well known to have non-vanishing Futaki invariant, the latter being
an obstruction to the existence of a Kähler–Einstein metric. More generally we obtain smooth complete metrics on the total
space of the canonical line bundle KM overM , generalising [4,5] to the case of non-regular Sasaki–Einstein boundaries.
We summarise our results more formally by the following Theorems. Note that for general p and k the Sasaki–Einstein

manifolds Y p,k(V ) [11] are irregular:

Theorem 1.1. Let (V , gV ) be a complete Kähler–Einstein manifold of positive Ricci curvature with canonical line bundle KV and
Fano index I. Then for every p, k ∈ N positive integers with pI/2 < k < pI there is an explicit complete Ricci-flat Kähler orbifold
metric on the total space of a C2/Zp bundle over V . Here Zp ⊂ U(1) ⊂ SU(2) acts on C2 in the standard way, and the bundle is
given by[

KV ⊕ K
k/I
V

]
×λ C2/Zp (1.4)

where

λ : S1 × S1 × C2/Zp → C2/Zp
(θ1, θ2; z1, z2) 7→ (exp(iθ1 − iθ2/p)z1, exp(iθ2/p)z2) (1.5)

and z1, z2 are standard complex coordinates on C2. The metric asymptotes to a cone over the Sasaki–Einstein manifold Y p,k(V ).

When p = 1 we obtain a finite number of completely smooth resolutions, for each (V , gV ). These may be regarded as
higher-dimensional versions of the small resolution of the conifold, which are asymptotic to non-regular Ricci-flat Kähler
cones. Setting p = 1,m = I − k in Theorem 1.1 gives

Corollary 1.2. Let (V , gV ) be a complete Kähler–Einstein manifold of positive Ricci curvature with canonical line bundle KV and
Fano index I. Then for every m ∈ N with 0 < m < I/2 there is an explicit smooth complete asymptotically conical Ricci-flat
Kähler metric on the total space of the rank two holomorphic vector bundle Km/IV ⊕ K

(I−m)/I
V over V . The metric asymptotes to a

cone over the Sasaki–Einstein manifold Y 1,I−m(V ).

We also obtain

Theorem 1.3. Let (V , gV ) be a complete Kähler–Einstein manifold of positive Ricci curvature with canonical line bundle KV and
Fano index I. Then for each p, d ∈ N with p/2 < d < p there is an explicit complete Ricci-flat Kähler orbifold metric on the total
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space of the canonical complex cone CV over V , fibred over the weighted projective spaceWCP1
[d,p−d]. The fibration structure is

given by the orbifold fibration

KWCP1
[d,p−d]

×U(1) CV . (1.6)

Here the U(1) ⊂ C∗ action is the standard one on the complex cone CV . The metric is completely smooth away from the tip of the
complex cone fibres, and asymptotes to a cone over the Sasaki–Einstein manifold Y p,Id(V ).

In Section 5 we prove

Theorem 1.4. Let (V , gV ) be a complete Kähler–Einstein manifold of positive Ricci curvature with canonical line bundle KV and
Fano index I. Then for every p, k, r ∈ N positive integers with p/2 < k/I < p, 0 < r < k/I , there is an explicit smooth complete
Ricci-flat Kähler orbifold metric on the total space of the canonical line bundle KM over the Fano orbifold

M = Km/IV ×U(1) WCP1
[r,p−r], (1.7)

wherem = k−rI. Herewe use the standard effective action of U(1) on theweighted projective spaceWCP1
[r,p−r], with orientation

fixed so that the section with normal fibre C/Zp−r has normal bundle K
m/I
V . The metric asymptotes, for every r, to a cone over the

Sasaki–Einstein manifold Y p,k(V ).

Setting p = 2, r = 1 in Theorem 1.4 effectively blows up the zero section of the orbifold metric in Theorem 1.1 to again
obtain a finite number of completely smooth resolutions, for each (V , gV ):

Corollary 1.5. Let (V , gV ) be a complete Kähler–Einstein manifold of positive Ricci curvature with canonical line bundle KV and
Fano index I. Then for each m ∈ Nwith 0 < m < I there is an explicit smooth complete Ricci-flat Kähler metric on the total space
of the canonical line bundle KM over the geometrically ruled Fano manifold M = PV (O⊕ K

m/I
V ). The metric asymptotes to a cone

over the Sasaki–Einstein manifold Y 2,m+I(V ).

We note that I ≤ n + 1 with equality if and only if V = CPn. In fact also I = n if and only if V = Qn is the quadric in
CPn+1—see, for example, [24]. Both of these examples admit homogeneous Kähler–Einstein metrics.

2. Local metrics

In this section we introduce the class of explicit local Kähler metrics that we wish to study. These metrics all admit a
Hamiltonian two-form [16]. In Section 2.1 we give a brief review of local Kähler metrics admitting Hamiltonian two-forms,
focusing on the relevant cases of order one and order two, and present the local form of the metrics used throughout the
remainder of the paper. In Section 2.2 we introduce local complex coordinates. Finally, Section 2.3 demonstrates that, in a
certain limit, the local metrics are asymptotic to a cone over the local class of Sasaki–Einstein metrics studied in [11].

2.1. Kähler metrics with Hamiltonian two-forms

If (X, g, J, ω) is a Kähler structure, then a Hamiltonian two-form φ is a real (1, 1)-form that solves non-trivially the
equation [16]

∇Yφ =
1
2

(
d trωφ ∧ JY [ − Jd trωφ ∧ Y [

)
. (2.1)

Here Y is any vector field, ∇ denotes the Levi-Civita connection, and Y [ = g(Y , ·) is the one-form dual to Y .
The key result for our purposes is that the existence of φ leads to an ansatz for the Kählermetric g such that Ricci-flatness

is equivalent to solving a simple set of decoupled ordinary differential equations.We thereforemerely sketch the basic ideas
that lead to this result; for a full exposition on Hamiltonian two-forms, the reader is referred to [16]. We note that many of
these ansätze had been arrived at prior to the work of [16], both in the mathematics literature (as pointed out in [16]), and
also in the physics literature. The theory of Hamiltonian two-forms unifies these various approaches.
One first notes that if φ is a Hamiltonian two-form, then so is φt = φ− tω for any t ∈ R. One then defines themomentum

polynomial of φ to be

p(t) =
(−1)N

N!
∗ φNt . (2.2)

Here N is the complex dimension of the Kähler manifold and ∗ is the Hodge operator with respect to the metric g . It is then
straightforward to show that {p(t)} are a set of Poisson-commuting Hamiltonian functions for the one-parameter family
of Killing vector fields K(t) = Jgradgp(t). For a fixed point in the Kähler manifold, these Killing vectors will span a vector
subspace of the tangent space of the point; the maximum dimension of this subspace, taken over all points, is called the
order s of φ. This leads to a Hamiltonian Ts action, at least locally, on the Kähler manifold, and one may then take a (local)
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Kähler quotient by this torus action. The reduced Kähler metric depends on the moment map level at which one reduces,
but only very weakly: the reduced Kähler metric is a direct product of S Kähler manifolds (Vi, ci(µ)gVi), i = 1, . . . , S, where
ci(µ) are functions of the moment map coordinates µ. The 2s-dimensional fibres turn out to be orthotoric, which is a rather
special type of toric Kähler structure. For further details, we refer the reader to reference [16].
The simplest non-trivial case is a Hamiltonian two-form of order one, with S = 1. This turns out to be precisely the Calabi

ansatz [3]. The local metric and Kähler form may be written in the form

g = (β − y)gV +
dy2

4Y (y)
+ Y (y)(dψ + A)2,

ω = (β − y)ωV −
1
2
dy ∧ (dψ + A). (2.3)

Here A is a local one-form on the Kähler manifold (V , gV , ωV ) satisfying dA = 2ωV . The Killing vector field ∂/∂ψ generates
the Hamiltonian action, with Hamiltonian function y. The momentum polynomial is given by p(t) = (t − y)(t − β)N−1
where β ∈ R is a constant. Calabi used this ansatz to produce an explicit family of so-called extremal Kähler metrics on the
blow-up of CP2 at a point. One of these metrics is conformal to Page’s Einstein metric [25], which is perhaps more well-
known to physicists. The same ansatz was used in [4,5] to produce explicit constructions of complete non-compact Kähler
metrics; indeed, this leads to the construction of complete Ricci-flat Kähler metrics on KM , where (M, gM) is a complete
Kähler–Einstein manifold of positive Ricci curvature. The general form of a Kähler metric with a Hamiltonian two-form
of order one allows one to replace (V , gV ) by a direct product of S > 1 Kähler manifolds, as mentioned above. In fact
precisely this ansatzwas used in section 5 of [20], before thework of [16], to produce a number of examples of complete non-
compact Ricci-flat Kähler manifolds. The same general form was thoroughly investigated in [18], and used to give explicit
constructions of compact extremal Kähler manifolds.
In this paperwe study the case of aHamiltonian two-formof order two,with S = 1. AKähler structure (X, g, ω) admitting

such a two-form may be written in the form

g =
(β − x)(β − y)

β
gV +

y− x
4X(x)

dx2 +
y− x
4Y (y)

dy2

+
X(x)
y− x

[
dτ +

β − y
β

(dψ + A)
]2
+
Y (y)
y− x

[
dτ +

β − x
β

(dψ + A)
]2
, (2.4)

ω =
(β − x)(β − y)

β
ωV −

1
2
dx ∧

[
dτ +

β − y
β

(dψ + A)
]
−
1
2
dy ∧

[
dτ +

β − x
β

(dψ + A)
]
. (2.5)

Here (V , gV , ωV ) is again a Kähler manifold with, locally, dA = 2ωV . The momentum polynomial is now given by p(t) =
(t − x)(t − y)(t − β)n, where we denote n = dimC V = N − 2. The Hamiltonian action is generated by the Killing vector
fields ∂/∂τ , ∂/∂ψ .
A computation shows that themetric (2.4) is Ricci-flat if (V , gV ) is a Kähler–Einsteinmanifold of positive4 Ricci curvature

and the metric functions are given by

X(x) = β(x− β)+
n+ 1
n+ 2

c(x− β)2 +
2µ

(x− β)n

Y (y) = β(β − y)−
n+ 1
n+ 2

c(β − y)2 −
2ν

(β − y)n
. (2.6)

Here β , c , µ and ν are real constants and, without loss of generality, we have normalised the metric gV so that RicV =
2(n+ 1)gV .
Note that, provided β 6= 0, one may define x = β x̂, y = β ŷ, multiply g by 1/β , and then relabel x̂ = x, ŷ = y to obtain

(2.4) with β = 1. Similarly, provided c 6= 0, one may define x′ = 1+ c(x− 1), y′ = 1+ c(y− 1), τ ′ = cτ , multiply g by c2,
and then relabel x′ = x, y′ = y, τ ′ = τ to obtain (2.4) with c = 1. The cases c = 0 and β = 0 (accompanied by a suitable
scaling of the coordinates) are treated in the Appendix, where the parameter β is also further discussed. Henceforth we set
β = c = 1.

2.2. Complex structure

In this section we introduce a set of local complex coordinates on the (local) Kähler manifold (X, g, ω). We first define
the complex one-forms

η1 =
dx
2X(x)

−
dy
2Y (y)

− idψ

η2 =
1− x
2X(x)

dx−
1− y
2Y (y)

dy+ idτ . (2.7)

4 More generally one might also consider zero or negative Ricci curvature.
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The following is then a closed (n+ 2, 0)-form:

Ω = κ
√
X(x)Y (y) [(1− x)(1− y)]n/2 (η1 − iA) ∧ η2 ∧ΩV (2.8)

where

κ = exp[i(n+ 1)(τ + ψ)] (2.9)

andΩV is the n-form on V satisfying

dΩV = i(n+ 1)A ∧ΩV . (2.10)

More precisely, we may introduce local complex coordinates z1, . . . , zn on V and locally write

ΩV = fVdz1 ∧ · · · ∧ dzn. (2.11)

Globally, fV is a holomorphic section of the anti-canonical line bundle of V ; on the overlaps of local complex coordinate
patches this transforms oppositely to dz1 ∧ · · · ∧ dzn, giving a globally defined n-form ΩV on V . So fV ∈ H0(V , K−1V ). The
holomorphicity of fV may be seen by comparing with (2.10), which implies

[d log fV − i(n+ 1)A] ∧ΩV = 0. (2.12)

The local one-form (n + 1)A is a connection on the holomorphic line bundle K−1V , since (n + 1)dA = ρV is the Ricci form
of V . Eq. (2.12) then says that fV is a holomorphic section. Note thatΩV has constant norm, even though fV necessarily has
zeroes on V .
We may then introduce the local complex coordinates

Z1 = exp
[
−iψ +

∫
dx
2X(x)

−
dy
2Y (y)

]
f −1/(n+1)V

Z2 = exp
[
iτ +

∫
(1− x)dx
2X(x)

−
(1− y)dy
2Y (y)

]
(2.13)

satisfying

d log Z1 = η1 −
1

(n+ 1)
d log fV , d log Z2 = η2. (2.14)

2.3. Asymptotic structure

The metric (2.4) is symmetric in x and y. We shall later break this symmetry by choosing one coordinate to be a radial
coordinate and the other to be a polar coordinate. Without loss of generality, we may take x to be the radial coordinate. We
analyse the metric in the limit x→±∞. Setting

x = ±
n+ 1
n+ 2

r2 (2.15)

we obtain∓g → dr2 + r2gL where gL is the Sasaki–Einstein metric

gL =
(
n+ 1
n+ 2

dτ + σ
)2
+ gT . (2.16)

Note in particular that for x→∞ it is−g that is positive definite. In (2.16) we have defined

σ =
n+ 1
n+ 2

(1− y)(dψ + A) (2.17)

with dσ = 2ωT , and gT is a local Kähler–Einstein metric given by

gT =
n+ 1
n+ 2

[
(1− y)gV +

dy2

4Y (y)
+ Y (y)(dψ + A)2

]
. (2.18)

Note this is of the Calabi form (2.3). The vector field

n+ 2
n+ 1

∂

∂τ
(2.19)

is thus asymptotically the Reeb vector field: locally the metric (2.4) asymptotes, for large ±x, to a cone over the local
Sasaki–Einstein metric of [11].
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3. Global analysis: ±x > ±x±

We begin by making the following change of angular coordinates

τ = −α, ψ = α +
γ

n+ 1
. (3.1)

The metric (2.4) becomes

g = (1− x)(1− y)gV +
y− x
4X(x)

dx2 +
y− x
4Y (y)

dy2 +
v(x, y)
(n+ 1)2

[dγ + (n+ 1)A]2

+w(x, y)
[
dα +

f (x, y)
n+ 1

[dγ + (n+ 1)A]
]2

(3.2)

where we have defined

w(x, y) =
1
y− x

[
y2X(x)+ x2Y (y)

]
(3.3)

f (x, y) = 1−
[yX(x)+ xY (y)]
y2X(x)+ x2Y (y)

(3.4)

v(x, y) =
X(x)Y (y)
w(x, y)

. (3.5)

The strategy for extending the local metric (2.4) to a completemetric on a non-compactmanifold is as follows.We shall take

y1 ≤ y ≤ y2 (3.6)

where y1, y2 are two appropriate adjacent zeroes of Y (y) satisfying

y1 < y2 < 1. (3.7)

On the other hand, we take x to be a non-compact coordinate, with

−∞ < x ≤ x− ≤ y1, or 1 ≤ x+ ≤ x < +∞. (3.8)

Here x− is the smallest zero of X(x) and x+ is the largest zero; thus X(x) > 0 for all x < x− or x > x+. First, we examine
regularity of the metric (3.2) for±x > ±x±. Following a strategy similar to [10,11], we show that the induced metric at any
constant x, that is not a zero of X(x), may be extended to a complete metric on the total space of a U(1) principal bundle
(with local fibre coordinate α̃) over a smooth compact base space Z(V ). In particular, this will fix the metric parameter ν.
The analysis essentially carries over from that presented in [11]. Note, however, that the results of Section 3.3 complete the
discussion in reference [11]. The remaining sections of the paper will deal with regularity of the metric at x = x±.

3.1. Zeroes of the metric functions

Recall that

Y (y) =
p(y)

(1− y)n
(3.9)

where

p(y) = (1− y)n+1 −
(n+ 1)
(n+ 2)

(1− y)n+2 − 2ν. (3.10)

One easily verifies that p′(y) = 0 if and only if y = 0 or y = 1. The former is a local maximum of p(y), whereas the latter is
a local minimum or a point of inflection depending on whether n is odd or even, respectively. Defining

νmax =
1

2(n+ 2)
(3.11)

we also see that p(0) ≤ 0 for ν ≥ νmax and p(1) ≥ 0 for ν ≤ 0. Since for regularity we require two adjacent real zeroes
y1, y2 of Y (y), with 1 6∈ (y1, y2), it follows that we must take

0 ≤ ν ≤ νmax. (3.12)

Since p′(0) = 0, the roots then satisfy y1 ≤ 0, y2 ≥ 0, and we have Y (y) > 0 for y ∈ (y1, y2). We also note that for any zero
yi of Y (y)we have

Y ′(yi) = −(n+ 1)yi. (3.13)
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The metric with ν = 0 is the local Ricci-flat Kähler metric one obtains by using the Calabi ansatz with local Kähler–Einstein
metric gT in (2.18). Thus this metric admits a Hamiltonian two-form of order one, with S = 1. The local metric gT extends
to a smooth Kähler–Einstein metric on a complete manifold only when V = CPn, in which case gT is the Kähler–Einstein
metric on CPn+1. More generally, the quasi-regular Sasaki–Einstein metrics constructed in [11] lead to smooth complete
orbifold metrics. For ν = νmax one finds that y1 = y2 = 0. One can verify that the metric also reduces to the Calabi ansatz
in this limit, with the product Kähler–Einstein metric on CP1 × V as base. Hence one obtains a complete Ricci-flat Kähler
metric on the canonical line bundle over CP1 × V . Henceforth we take ν ∈ (0, νmax).
We now turn to an analysis of the zeroes of X(x). Recall that

X(x) =
q(x)

(x− 1)n
(3.14)

where

q(x) = (x− 1)n+1 +
(n+ 1)
(n+ 2)

(x− 1)n+2 + 2µ. (3.15)

Any root x0(µ) of q(x) therefore satisfies

dx0
dµ
= −

2
(n+ 1)x0(x0 − 1)n

. (3.16)

Note that x0 = 0 is a root of q(x)when

µ = µ̄ =
(−1)n

2(n+ 2)
(3.17)

and that x0 = 1 is a root of q(x)whenµ = 0. In our later analysis we shall require there to exist either a smallest zero x− of
X(x), with x− ≤ y1 < 0, or a largest zero x+, with 1 ≤ x+. It is easy to see that q′(x) = 0 if and only if x = 0 or x = 1. The
former is local maximum for n odd and a local minimum for n even, while the latter is local minimum for n odd and a point
of inflection for n even. The behaviour of x− is summarised by the following

Lemma 3.1. For each x− ∈ (−∞, 0] there exists a unique µ such that x− is the smallest zero of X(x). Moreover, x−(µ) is
monotonic.

Proof. The proof depends on the parity of n. For n odd, x− →−∞ asµ→∞. Since x−(µ̄) = 0, (3.16) shows that x−(µ) is
monotonic decreasing in [µ̄,∞). For n even, instead x− →−∞ asµ→−∞. Eq. (3.16) now shows that x−(µ) ismonotonic
increasing in (−∞, µ̄]. �

For x+ we similarly have

Lemma 3.2. For each x+ ∈ [1,∞) there exists a unique µ ≤ 0 such that x+ is the largest zero of X(x). Moreover, x+(µ) is
monotonic decreasing.

Proof. Noting that q(1) = 2µ, and q′(x) > 0 for x > 1, we see that for a zero x+ ≥ 1 of X(x) to exist, wemust requireµ ≤ 0
(independently of the parity of n). Moreover, (3.16) immediately implies that x+(µ) is monotonic decreasing in µ. �

3.2. Regularity for±x > ±x±

Let us fix xwith±x > ±x± and consider the positive definite5 metric hx given by

∓ hx = (1− x)(1− y)gV +
y− x
4Y (y)

dy2 +
v(x, y)
(n+ 1)2

[dγ + (n+ 1)A]2 . (3.18)

Near to a root yi of Y (y)we have

Y (y) = Y ′(yi)(y− yi)+ O((y− yi)2). (3.19)

Defining

∓ R2i =
(yi − x)(y− yi)

Y ′(yi)
(3.20)

for each i = 1, 2, one easily obtains, near to Ri = 0,

hx = ±(x− 1)(1− yi + O(R2i ))gV + dR
2
i + R

2
i [dγ + (n+ 1)A]

2
+ O(R4i ). (3.21)

5 For x > x+ the metric (3.2) is negative definite. Henceforth all metrics we write will be positive definite.
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Fixing a point on V , we thus see that the metric is regular near to either zero provided that we take the period of γ to be
2π . This ensures that y = yi is merely a coordinate singularity, resembling the origin of R2 in polar coordinates (Ri, γ ). The
one-form

dγ + (n+ 1)A (3.22)

is precisely the global angular form on the unit circle bundle in the canonical line bundle KV over V . Indeed, recall that
(n+ 1)dA = 2(n+ 1)ωV = ρV (3.23)

is the curvature two-formof the anti-canonical line bundleK−1V . It follows that hx extends to a smoothmetric on themanifold

Z(V ) = KV ×U(1) S2 (3.24)

for all ν with 0 < ν < νmax. That is, Z(V ) is the total space of the S2 bundle over V obtained using the U(1) transition
functions of KV , with the natural action of U(1) ⊂ SO(3) on the S2 fibres.
The induced metric on±x > ±x± is in fact

gx = hx ∓ w(x, y)
[
dα +

f (x, y)
n+ 1

[dγ + (n+ 1)A]
]2
. (3.25)

One first notes that w(x, y) < 0 for all x > x+, and w(x, y) > 0 for all x < x−, y ∈ [y1, y2], so that gx has positive definite
signature. We then consider the one-form dα + Bwhere

B =
f (x, y)
n+ 1

[dγ + (n+ 1)A] . (3.26)

As in [11], the strategy now is to show that, for appropriate ν, there exists ` ∈ R+ such that `−1B is locally a connection
one-form on aU(1) principal bundle over Z(V ). By periodically identifying αwith period 2π`, we thereby obtain a complete
metric on the total space of this U(1) principal bundle.
Assuming that V is simply-connected6, one can show that Z(V ) has no torsion in H2(Z(V );Z). The isomorphism class

of a complex line bundle over Z(V ) is then determined completely by the integral of a curvature two-form over a basis of
two-cycles. Such a basis is provided by {Σ, σ∗(Σi)}. HereΣ is represented by a copy of the fibre S2 at any fixed point on V ;
σ : V → Z(V ) is the section y = y1, and {Σi} are a basis of two-cycles for H2(V ;Z), which similarly is torsion-free.
One may then compute the periods∫

Σ

dB
2π
=

1
n+ 1

(f (x, y1)− f (x, y2))∫
σ∗(Σi)

dB
2π
=
f (x, y1)
n+ 1

〈c1(K−1V ),Σi〉. (3.27)

We now note that

f (x, yi) =
yi − 1
yi
≡ f (yi) (3.28)

is independent of the choice of x. Notice that f (y1) > 0 since y1 < 0. Defining

` =
If (y1)
k(n+ 1)

(3.29)

it follows that the periods of `−1dB/2π over the two-cycles {Σ, σ∗(Σi)} are{
k(f (y1)− f (y2))

If (y1)
,
k
I
〈c1(K−1V ),Σi〉

}
. (3.30)

We now choose ν so that
f (y1)− f (y2)
f (y1)

=
pI
k
∈ Q (3.31)

is rational. In particular p, k ∈ N are positive integers; no coprime condition is assumed, so the rational number (3.31) is not
assumed to be expressed in lowest terms. We note the following useful identities

y2(1− y1)
y2 − y1

=
k
pI

y1(1− y2)
y2 − y1

=
k
pI
− 1, (3.32)

6 Again, b1(V ) = 0 necessarily.
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which we will use repeatedly in the remainder of the paper. We shall return to which values of p and k are allowed
momentarily. The periods (3.30) are then{

p, k
〈
c1(K

−1/I
V ),Σi

〉}
. (3.33)

Notice that, by definition of the Fano index I , c1(K
−1/I
V ) ∈ H2(V ;Z) is primitive. Defining the new angular variable

α̃ = `−1α, (3.34)

it follows that if we periodically identify α̃with period 2π , then themetric gx at fixed x is a smooth completemetric on aU(1)
principal bundle over Z(V ), where the Chern numbers of the circle fibration over the two-cycles {Σ, σ∗(Σi)} are given by
(3.33). We denote the total space by Lp,k(V ). Note that Lph,kh(V ) is simply a Zh quotient of Lp,k(V ), where Zh ⊂ U(1) acts on
the fibres of the U(1) principal bundle Lp,k(V )→ Z(V ). We may also think of this manifold as a Lens space L(1, p) = S3/Zp
fibration over V . Since the regularity analysis was essentially independent of x, we see that the Ricci-flat Kähler metric g
extends to a smooth asymptotically conical metric on R+ × Lp,k(V ), where x− x+ > 0 or x− − x > 0 is a coordinate on R+.
The asymptotic cone has Sasaki–Einstein base Y p,k(V ), constructed originally in [11].

3.3. Allowed values of p and k

We will now determine the allowed values of p and k in (3.31). We begin by defining

Q (ν) ≡
f (y1)− f (y2)
f (y1)

=
y2 − y1
y2(1− y1)

, (3.35)

regarding the roots yi of p(y) as functions of the metric parameter ν. In the remainder of this section we shall prove

Proposition 3.3. The function Q : [0, νmax] → R is a continuous monotonic increasing function with Q (0) = 1, Q (νmax) = 2.

Given (3.31), this implies that

pI
2
< k < pI (3.36)

and that, for each p and k, there is a corresponding uniquemetric7. From the defining equations of the roots we have

2ν = (1− y1)n+1 −
n+ 1
n+ 2

(1− y1)n+2 = (1− y2)n+1 −
n+ 1
n+ 2

(1− y2)n+2, (3.37)

and from (3.37) one easily obtains the following useful identity

(1− y2)n+1

(1− y1)n+1
=
1+ (n+ 1)y1
1+ (n+ 1)y2

. (3.38)

From (3.37) one also computes

dyi
dν
= −

2
(n+ 1)yi(1− yi)n

. (3.39)

One may then use this formula to prove the following

Lemma 3.4. y1(ν) (respectively y2(ν)) is monotonically increasing (respectively decreasing) in the interval [0, νmax]. In
particular, in the open interval (0, νmax) the following bounds hold:

−
1
n+ 1

< y1 < 0 (3.40)

0 < y2 < 1. (3.41)

Proof. We have y1(0) = −1/(n+ 1) and y1(ν) < 0 for all ν ∈ (0, νmax) since p′(y = 0) = 0 for all ν. Thus from (3.39) y1 is
monotonic increasing in this range. A similar argument applies for y2 on noting that y2 > 0 and y2(0) = 1. �

We now define

R(ν) =
y1(1− y2)
y2(1− y1)

, (3.42)

7 Note this analysis completes the argument presented in [11].
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so that Q = 1− R. Using (3.38) and (3.39) one easily obtains

dR
dν
=

−2(y2 − y1)
(n+ 1)y1y32(1− y1)(1− y2)n(1+ (n+ 1)y2)

D (3.43)

where we have defined

D ≡ y1 + y2 + (n+ 1)y1y2. (3.44)

Making use of the above identities, we also compute

dD
dν
= −

2(1+ (n+ 1)y2)
(n+ 1)y1(1− y1)n

(1+ R). (3.45)

The above computations, and Lemma 3.4, result in

Lemma 3.5. In the open interval (0, νmax) the sign of D′ is correlated with that of 1 + R, and the sign of R′ is correlated with
that of D. In particular, we have

R = −1 iff
dD
dν
= 0 (3.46)

D = 0 iff
dR
dν
= 0. (3.47)

Next, we turn to analysing the behaviour of R, D and their derivatives at the endpoints of the interval. It is easily checked
that R(0) = 0, D(0) = −1/(n + 1) and D(νmax) = 0. In order to compute R(νmax) we write ν = νmax − (n + 1)δ2, where
the factor of (n+ 1) is inserted for later convenience. We may solve for y in a power series in δ; the first two terms suffice
for our purposes:

y1 = −2δ +
4
3
nδ2 + O(δ3), y2 = 2δ +

4
3
nδ2 + O(δ3). (3.48)

With these one then computes

R = −1+
(
4+

4
3
n
)
δ + O(δ2), (3.49)

which proves that R→−1 as ν → νmax. Before turning to the proof of Proposition 3.3 we shall need another

Lemma 3.6. R′(ν)→−∞ for ν → 0+ and ν → ν−max.

Proof. Near ν = 0 this is easily checked; near ν = νmax the result follows from (3.49). �

Proof of Proposition 3.3. It is enough to show that R(ν) is a monotonically decreasing function in the interval (0, νmax).
Suppose this is not so. Then R′(ν1) = 0 for some least ν1 ∈ (0, νmax). By Lemma 3.5, this is also the first time that D crosses
zero, D(ν1) = 0. There are then three cases. We make repeated use of Lemma 3.5:

• Suppose R(ν1) > −1. Then D′(ν1) > 0, and D is positive in the range (ν1, ν1 + ε) for some ε > 0. Since D(νmax) = 0,
there must be a turning point D′(ν2) = 0 for some smallest ν2 ∈ (ν1, νmax). We then have R(ν2) = −1. But R′(ν) > 0 for
all ν ∈ (ν1, ν2) since D > 0 in this interval, which implies that R is strictly monotonic increasing in this range. This is a
contradiction since we assumed R(ν1) > −1.
• Suppose R(ν1) < −1. Then D′(ν1) < 0. This is an immediate contradiction, since D(0) = −1/(n+ 1) is negative and ν1
is the first zero of D; hence D′(ν1)must be non-negative.
• Suppose R(ν1) = −1. Either R(ν1) = −1 is a local minimum or a point of inflection:
– Suppose R(ν1) = −1 is a local minimum of R. Since R(νmax) = −1 also, there must be a turning point R′(ν3) = 0 for
some least ν3 ∈ (ν1, νmax). Then D(ν1) = D(ν3) = 0. Since R(ν) > −1 for ν ∈ (ν1, ν3), it follows that D′ > 0 in the
same range, a contradiction.

– Suppose R(ν1) = −1 is a point of inflection of R. Then D(ν1) = 0 is a local maximum of D. But since D(νmax) = 0
also, D must have a turning point D′(ν5) = 0 for some least ν5 ∈ (ν1, νmax). Thus R(ν5) = −1. But D(ν) < 0 for all
ν ∈ (ν1, ν5) implies that R′ < 0 in the same range, a contradiction.

This proves that there is no ν1 ∈ (0, νmax) where R′(ν1) = 0, and hence R is strictly monotonic decreasing in this
range. �
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3.4. Summary

We end the section by summarising what we have proven so far:

Proposition 3.7. Let (V , gV ) be a complete Kähler–Einstein manifold of positive Ricci curvature with Fano index I. Then for every
p, k ∈ N positive integers with pI/2 < k < pI there is an asymptotically conical Ricci-flat Kähler metric on R+ × Lp,k(V ), with
local form (2.4)–(2.6) and R+ coordinate either x− x+ > 0 or x− − x > 0. All metric parameters and ranges of coordinates are
fixed uniquely for a given p and k, except for the constant µ. The metric is asymptotically a cone over the Sasaki–Einstein manifold
Y p,k(V ).

In the remainder of the paper we examine regularity of the above metric at x = x± for the cases x− = y1, x+ = 1 and
x− < y1, x+ > 1.

4. Small resolutions

In this section we consider the cases x− = y1 and x+ = 1. Equivalently, these are the special cases µ = ±ν and µ = 0.
These will give rise to partial small resolutions, where one blows up the Fano V or a weighted projective space WCP1,
respectively. In particular, we prove Theorems 1.1 and 1.3. As a simple consequence of Theorem 1.1, we shall also obtain
smooth small resolutions, as summarised in Corollary 1.2. The remaining cases where x− < y1 or x+ > 1 will be the subject
of Section 5.

4.1. Partial resolutions I: x− = y1

In this section we analyse regularity in the case that x− = y1. This special case arises since the function y − x appears
in the metric (2.4); when x− < y1 this function is strictly everywhere positive, whereas when x− = y1 the function has a
vanishing locus. From Section 3.1 one easily deduces that x− = y1 corresponds to µ = −ν when n is odd, and µ = ν when
n is even.
The first remarkable point to note is that, due to the symmetry in x and y, the analysis of the collapse at x = x−, for

y1 < y < y2, is identical to that of the collapse at y = yi for x < x−. Thus for fixed y ∈ (y1, y2)we deduce immediately that
the metric collapses smoothly at x = x− for all µ. It thus remains to check the behaviour of the metric at {x = x−, y = y1}
and {x = x−, y = y2}.
The induced metric on x = y1 is

g{x=y1} = (1− y1)(1− y)gV +
dy2

4W (y)
+ y21W (y)

[
dα +

y1 − 1
(n+ 1)y1

[dγ + (n+ 1)A]
]2

(4.1)

where we have defined

W (y) =
Y (y)
y− y1

. (4.2)

Since y = y1 is a simple zero of Y (y), for y1 6= 0, we haveW (y1) 6= 0. Thus y = y2 is the only zero ofW (y) for y1 ≤ y ≤ y2,
withW (y) > 0 for y1 ≤ y < y2. We thus see that the above metric is regular at y = y1.
In general it will turn out that {x = y1, y = y2} is a locus of orbifold singularities. Although one can analyse the behaviour

of the metric here using (4.1), it will turn out that x = y1 is a rather unusual type of coordinate singularity; this might have
been anticipated from the above factorisation of Y (y) into W (y). We will therefore introduce a new set of coordinates,
resembling polar coordinates8 on R4 = R2 ⊕ R2, in which this coordinate singularity is more easily understood.
We begin by defining

R21 = a1(x− y2)(y− y2)

R22 = a2(x− y1)(y− y1) (4.3)

where a1, a2 are constants that will be fixed later. The induced change in the x− y part of the metric is then

y− x
4X(x)

dx2 +
y− x
4Y (y)

dy2 =
1

(y− x)(y1 − y2)2

{[
(x− y1)2

X(x)
+
(y− y1)2

Y (y)

]
R21
a21
dR21 +

[
(x− y2)2

X(x)
+
(y− y2)2

Y (y)

]
R22
a22
dR22

−
2R1R2
a1a2

[
(x− y1)(x− y2)

X(x)
+
(y− y1)(y− y2)

Y (y)

]
dR1dR2

}
. (4.4)

8 As we shall see later, the global structure is in fact C2/Zp .
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R1

R2

Fig. 1. An illustration of the change of coordinates (4.8). Curves of constant x and constant y are depicted.

Let us expand this near to x = y1, y = y2, which is R2 = 0, R1 = 0. Using

y2 − y =
R21

a1(y2 − y1)
+ O(R21, R

2
2)

y1 − x = −
R22

a2(y2 − y1)
+ O(R21, R

2
2) (4.5)

one finds

y− x
4X(x)

dx2 +
y− x
4Y (y)

dy2 = −
1

a1Y ′(y2)
[1+ O(R2)]dR21 +

1
a2X ′(y1)

[1+ O(R2)]dR22 + O(R1, R2)dR1dR2, (4.6)

where O(R2) denotes terms of order O(R21) or order O(R
2
2). We thus set

a1 = −
1

Y ′(y2)
=

1
(n+ 1)y2

a2 =
1

X ′(y1)
=

1
(n+ 1)y1

. (4.7)

The change of coordinates (4.3) now becomes

R21 =
1

(n+ 1)y2
(y2 − x)(y2 − y)

R22 = −
1

(n+ 1)y1
(y1 − x)(y− y1) (4.8)

and these relations imply

y2
y2 − x

R21 +
y1
x− y1

R22 =
y2 − y1
n+ 1

y2
y2 − y

R21 +
y1
y− y1

R22 =
y2 − y1
n+ 1

. (4.9)

Despite the symmetry in x and y, the curves of constant x and constant y are different due to the difference in ranges of
the variables. Recall that y1 ≤ y ≤ y2 and x ≤ x− = y1. The constant x curves are ellipses, while the constant y curves are
hyperbolae. This behaviour is depicted in Fig. 1. Notice that both sets of curves degenerate on the R1-axis. Indeed, note that
R1 = 0 if and only if y = y2; but R2 = 0 if x = y1 or y = y1. In particular, when x = y1 we have R21 = a1(y2 − y)(y2 − y1)
and thus this branch of the R1-axis is coordinatised by y. On the other hand, when y = y1 we have R21 = a1(y2− x)(y2− y1),
and thus this branch of the R1-axis is coordinatised by x.
Fixing a point on V , to leading order the induced metric near R1 = R2 = 0 is

gfibre = dR21 +
(n+ 1)2

(y2 − y1)2
y22R

2
1

[
y1dα +

(y1 − 1)
(n+ 1)

dγ
]2
+ dR22 +

(n+ 1)2

(y2 − y1)2
y21R

2
2

[
y2dα +

(y2 − 1)
(n+ 1)

dγ
]2
. (4.10)

We then define

φ1 = −
(n+ 1)
(y2 − y1)

y2

[
y1α +

(y1 − 1)
(n+ 1)

γ

]
φ2 = −

(n+ 1)
(y2 − y1)

y1

[
y2α +

(y2 − 1)
(n+ 1)

γ

]
(4.11)

so that (4.10) becomes

gfibre = dR21 + R
2
1dφ

2
1 + dR

2
2 + R

2
2dφ

2
1 . (4.12)
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In terms of the variable α̃ = `−1α, the change of coordinates (4.11) becomes

φ1 =
1
p
α̃ +

k
pI
γ

φ2 =
1
p
α̃ +

(
k
pI
− 1

)
γ (4.13)

on using the identities (3.32). Notice that the Jacobian of the transformation (4.13) is 1/p. Recall also from Section 3.2 that
α̃ and γ are periodically identified with period 2π . It follows from (4.12) that a neighbourhood of R1 = R2 = 0, at a fixed
point on V , is diffeomorphic to R4/Zp. Indeed, as mentioned in Section 3, the surfaces of constant x < x− are Lens space
fibrations L(1, p) = S3/Zp over V . These are then constant radius surfaces in the R4/Zp fibration over V . The set of points
{x = x−, y = y2} are the zero-section, which is a copy of V and locus of orbifold singularities. In fact, the possible existence
of such metrics was raised at the end of reference [10]. The fibres must of course be complex submanifolds, and one easily
checks that the complex structure is such that each fibre is C2/Zp.
Onemaywork out the precise fibration structure as follows. Setting y = y1 and y = y2 gives two differentC/Zp fibrations

over V . It is enough to determine the fibration structure of these bundles. Of course, the unit circle bundle in each is a U(1)
principal bundle over V . These U(1) bundles are determined from the analysis in Section 3. The U(1) bundle at fixed x < x−
and y = y1 has first Chern class kc1(KV )/I . The associated complex line bundle is thus K

k/I
V . The U(1) bundle at fixed x < x−

and y = y2 is determined from the periods of −`−1dB/2π over the image of cycles Σ in V at y = y2. We denote these as
τ∗(Σi). The periods are given by

−

∫
τ∗(Σi)

`−1
dB
2π
= −`−1

f (y2)
n+ 1

〈c1(K−1V ),Σi〉

=

(
p−

k
I

)
〈c1(K−1V ),Σi〉. (4.14)

This implies that the U(1) bundle has first Chern class (pI − k)c1(KV )/I , and thus the associated line bundle is K
(pI−k)/I
V .

It is now a simple matter to determine the twisting of the C2/Zp fibres themselves. The Zp ⊂ U(1) ⊂ SU(2) acts via
the standard action of SU(2) on C2. Define L1 = KV and L2 = K

k/I
V . Let {Uα} be a trivialising open cover of V , and let g

i
αβ ,

i = 1, 2, denote the transition functions of the above bundles. Thus g iαβ : Uα∩Uβ → S1. Let (z1, z2) denote standard complex
coordinates on C2. These are identified via the action of Zp ⊂ U(1) ⊂ SU(2). We must specify precisely how Uα × C2/Zp is
glued to Uβ ×C2/Zp over the overlap Uαβ = Uα ∩ Uβ . To do this, we define the following action of T2 = S1 × S1 on C2/Zp:

λ : S1 × S1 × C2/Zp → C2/Zp
λ(θ1, θ2; z1, z2) = (exp(iθ1 − iθ2/p)z1, exp(iθ2/p)z2). (4.15)

Note that this indeed defines an action of S1 × S1 on C2/Zp. Note also that the standard action of U(1) ⊂ SU(2) on C2

descends to a non-effective action of U(1) on the quotient C2/Zp—this factors p times through the effective U(1) action in
(4.15). The C2/Zp bundle is then constructed using the gluing functions

Fαβ : Uαβ × C2/Zp → Uαβ × C2/Zp

Fαβ [u; z1, z2] = [u; λ(g1αβ(u), g
2
αβ(u); z1, z2)]. (4.16)

To check this is correct, we simply set z1 = 0 and z2 = 0 separately. This should be equivalent to setting y = y1 and
y = y2, respectively, to give C/Zp fibrations over V . From (4.15) we see that z1 = 0 has U(1) principal bundle given by K

k/I
V .

On the other hand, setting z2 = 0, the corresponding U(1) principal bundle is given by K
p
V ⊗ K

−k/I
V . These are precisely the

same C/Zp fibrations determined above using the metric. This completes the proof of Theorem 1.1.

4.2. Smooth resolutions: p = 1

Setting p = 1 in the last subsection gives a family of smooth complete Ricci-flat Kähler metrics for each choice of (V , gV ).
These are all holomorphicC2 fibrations over V . From (4.15) this is easily seen to be a direct sum of two complex line bundles
over V , namely

[
KV ⊗ K

−k/I
V

]
⊕ K k/IV . Setting m = I − k this is K

m/I
V ⊕ K

(I−m)/I
V , as stated in Corollary 1.2. The range of k is

given by (3.36) with p = 1, which implies that 0 < m < I/2.
For example,wemay takeV = CPnwith its standardKähler–Einsteinmetric. In this case I = n+1 andKV = O(−(n+1)),

so that K−1/IV = O(1). We have 0 < m < (n + 1)/2 and the metrics are defined on the total space of the rank two
holomorphic vector bundle O(−m) ⊕ O(−(n − m + 1)) over CPn. Note that m = n = 1 is the small resolution of the
conifold O(−1)⊕ O(−1)→ CP1, which is understood as a limiting case.
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As another simple example, one might take V to be a product of complex projective spaces, equipped with the natural
product Kähler–Einstein metric:

V =
M∏
a=1

CPda−1 (4.17)

where
M∑
a=1

da = n+M. (4.18)

In this case I = hcf{da} and the rank two holomorphic vector bundle is given by
O(−md1/I, . . . ,−mdM/I)⊕ O(−(I −m)d1/I, . . . ,−(I −m)dM/I). (4.19)

4.3. Partial resolutions II: x+ = 1

In this subsectionwe consider a different small partial resolution, where the Fano V shrinks to zero size, while aweighted
projective space WCP1 is blown up. The analysis of this subsection is summarised by Theorem 1.3. Notice that when
V = CP1, the process of going from the round CP1 to the weighted WCP1 may be understood as a form of generalised
flop transition (called a flip) in the Kähler moduli space of the family of toric Gorenstein singularities C(Y p,q) [22]. This will
be discussed elsewhere [23].
From the general form of the metric (2.4) it is simple to see that in order for V to collapse one requires x+ = 1, and this

implies that µ = 0. We then have

X(x) =
x− 1
n+ 2

(1+ (n+ 1)x). (4.20)

We choose the x ≥ 1 branch of x. To analyse the metric near x = 1 it is useful to change coordinates, defining

x = 1+ r2. (4.21)
Expanding the metric near r = 0, and keeping terms up to order r2, we find

g = (1− y)

{
dr2 + r2

[
gV +

1
(n+ 1)2

[dγ + (n+ 1)(A+ F(y)dα)]2 +
dy2

4Y (y)(1− y)
+ G(y)dα2

]}

+
1− y
4Y (y)

dy2 +
Y (y)
1− y

dα2 + O(r4), (4.22)

where we have defined

F(y) =
Y (y)

(1− y)2
−

y
1− y

(4.23)

G(y) =
1

(1− y)4
[
Y (y)2 + (1− y)− 2Y (y)(1− y)

]
. (4.24)

We first analyse the induced metric on r = 0, which is given by

gW =
1− y
4Y (y)

dy2 +
Y (y)
1− y

dα2. (4.25)

As usual, near each root yi we introduce the coordinates

R2i =
(yi − 1)
(n+ 1)yi

(y− yi) (4.26)

from which we see that

gW = dR2i +
[
I
k
yi(1− y1)Ri
y1(1− yi)

]2
dα̃2 + O(R4i ). (4.27)

Thus

gW =


dR21 +

I2

k2
R21dα̃

2
+ O(R41) near y = y1

dR22 +
I2

(pI − k)2
R22dα̃

2
+ O(R42) near y = y2.

Recall now that α̃ has period 2π . In order to obtain an orbifold singularity near to y = y1, it is therefore necessary that
the Fano index I divides k. Thus we assume this, and define k = Id with d a positive integer. It follows that gW smoothly
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approaches, in an orbifold sense, the flat metric onC/Zd, where y = y1 is the origin. Similarly, at y = y2 themetric smoothly
approaches the flat metric on C/Zp−d. It follows that, provided k = Id, the induced metric on r = 0 is a smooth Kähler
orbifold metric on the weighted projective spaceW = WCP1

[d,p−d].
Now fix any smooth point (y, α) onW , so y1 < y < y2. Setting R2 = (1− y)r2, the induced metric near to R = 0 is

g = dR2 + R2
[
gV +

1
(n+ 1)2

[dγ + (n+ 1)A]2
]
+ O(R4). (4.28)

FromSection 3, γ has period 2π , and the inducedmetric (4.28) is simply the canonical complex coneCV overV . Equivalently,
fixed R gives the associated circle bundle in the canonical line bundle over (V , gV ), and near to R = 0 the whole metric is
a real cone over this regular Sasaki–Einstein manifold. Thus near to R = 0 the fibre metric over a smooth point onW itself
approaches a Ricci-flat Kähler cone.
One needs to consider what happens over the roots y = yi separately. These are the singular points of the weighted

projective space W = WCP1
[d,p−d]. To determine the period of γ in (4.28) over these points one may simply compute the

volume of {y = yi, x = 1 + r2} with r2 small and fixed, and compare with Section 3. Each space is a U(1) principal bundle
over V , namely that associated to the complex line bundles K k/IV , K

(pI−k)/I
V , respectively. From Section 3 we have the induced

metric

g = (1− yi)r2gV +
y2i
1− yi

r2dα2 + O(r4) (4.29)

where α has period 2π`. Comparing with (4.28), we see that γ must be identified with period∆γi over each pole, where

∆γi =
(n+ 1)yi`
1− yi

2π =


−
2π I
k

i = 1
2π I
pI − k

i = 2.
(4.30)

Thus γ has period 2π/d over y = y1 and period 2π/(p− d) over y = y2. This implies that the fibres over the singular points
ofW are complex cones over V associated to K dV and K

p−d
V , respectively; the generic fibre is the complex cone CV associated

to KV . This gives fibres CV/Zd and CV/Zp−d over the singular points ofW , respectively.
In fact this latter behaviour of the fibres could have been deduced differently, by considering the fibration structure.

Recall we have now checked that the metric is smooth away fromW = WCP1
[d,p−d], thatW is itself a smooth orbifold, and

that each fibre overW is a complex cone over V . We now compute the twisting of this fibration. The twisting is determined
via the one-form dγ + (n+ 1)(A+ F(y)dα) in the metric (4.22). The integral of the corresponding curvature two-form is

n+ 1
2π

∫
W
dF(y)dα =

p
d(p− d)

. (4.31)

Fixing a point on V , and fixing r > 0, we obtain a circle orbibundle over W . The right hand side of (4.31) is minus the
Chern number9 of this orbibundle, and corresponds to the canonical line orbibundle overW = WCP1

[d,p−d]. This is given by
KW = O(−p). One way to see this is via the Kähler quotient description of the weighted projective space together with its
canonical line bundle over it. This is C3//U(1) where the U(1) action has weights (d, p − d,−p). The weighted projective
space itself is z3 = 0, in standard complex coordinates on C3.
The above fibration structure immediately implies the earlier statements about the period of γ over the singular points

ofW . In order to see this one needs to know some facts about orbibundles and orbifold fibrations. SupposeW is an orbifold,
with local orbifold charts {Uα = Ũα/Γα}, where Ũα is an open set in RN and Γα is a finite subgroup of GL(N,R). The data
that defines an orbibundle overW with structure group G includes elements hα ∈ Hom(Γα,G) for each α, subject to certain
gluing conditions. In particular, if F denotes a fibre over a smooth point ofW , on which G acts, then the fibre over a singular
point with orbifold structure group Γα is F/hα(Γα). Thus an orbibundle is generally not a fibration in the usual sense, since
not all fibres are isomorphic.
In the present situation it is particularly simple to work out the representations hα , since the orbibundle we require is

the canonical line bundle KW over W . Since W is a complex orbifold of dimension one, this is the holomorphic cotangent
orbibundle. The orbifold structure groups are of the form Zd,Zp−d ⊂ U(1), and then the maps h1 : Zd → U(1),
h2 : Zp−d → U(1) are just the standard embeddings into U(1). This implies that the metrics above are defined on

KWCP1
[d,p−d]

×U(1) CV . (4.32)

Here the U(1) ⊂ C∗ action is the standard one on the canonical complex cone CV . The fibres over the poles of W =
WCP1

[d,p−d] are then CV/Zd and CV/Zp−d, where the cyclic groups are embedded in U(1) in the standard way. Here we have
used the above maps hα , α = 1, 2. This completes the proof of Theorem 1.3.

9 For an explanation, see Section 5.1.
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Note that, in contrast to the previous section, we only obtain metrics for which k = Id is divisible by I . Note also that the
weighted projective space is a smooth CP1 if and only if p = 2, k = I , which is a limiting case of the solutions considered
here.

5. Canonical resolutions

In this section we turn our attention to complete Ricci-flat Kähler orbifold metrics, where the conical singularity gets
replaced by a divisor M with at worst orbifold singularities. In Section 3.2 we addressed regularity of the metrics for
±x > ±x±, and this fixed uniquely the value of the parameter ν in terms of the pair of integers p and k, in the range
(3.36). The strategy here will be to show that one can choose appropriate values for the parameter µ so that the metrics
collapse smoothly, in an orbifold sense, to a divisor M at x = x+ or x = x−, provided x+ > 1 and x− < y1. In fact for
each p and k we shall find a family of values of µ, indexed by an integer r with 0 < r < k/I . M is then a Fano orbifold of
complex dimension n + 1 which is aWCP1

[r,p−r] fibration over V . The Ricci-flat Kähler metric is defined on the total space
of the canonical line bundle over M . The induced metric on M is Kähler, though in general the Kähler class is irrational. In
order thatM be smooth ones requires p = 2, r = 1, and this leads to Corollary 1.5.

5.1. Partial resolutions III

Again, due to the symmetry in x and y, the analysis of the collapse at x = x±, for y1 < y < y2, is identical to that of the
collapse at y = yi for±x > ±x±. Thus for fixed y ∈ (y1, y2)we deduce that the metric collapses smoothly at x = x± for all
µ. It thus remains to check the behaviour of the metric at {x = x±, y = y1} and {x = x±, y = y2}.
We begin by writing the induced metric on x = x±

∓ gM = (1− x±)(1− y)gV +
y− x±
4Y (y)

dy2 +
x2
±
Y (y)

y− x±

[
dα +

x± − 1
(n+ 1)x±

[dγ + (n+ 1)A]
]2
. (5.1)

Near to a root y = yi we define

∓ R2i =
(yi − x±)(y− yi)

Y ′(yi)
, (5.2)

so that near each root we have the positive definite metric

gM = ±(x± − 1)(1− yi + O(R2i ))gV + dR
2
i +

[
(n+ 1)x±yiRi
yi − x±

]2 [
dα +

x± − 1
(n+ 1)x±

[dγ + (n+ 1)A]
]2
+ O(R4i ).

(5.3)

Let us define

ϕi =
(n+ 1)x±yi
yi − x±

[
α +

x± − 1
(n+ 1)x±

γ

]
. (5.4)

In order to allow for orbifold singularities, we impose the periodicities

∆ϕ1 =
2π
r

∆ϕ2 =
2π
s

(5.5)

for r, s positive integers. This implies the necessary condition

−
ry1

y1 − x±
=

sy2
y2 − x±

(5.6)

where the minus sign ensures that both sides of the equation have the same sign. This then gives

x± =
(r + s)y1y2
ry1 + sy2

. (5.7)

We shall return to this formula in a moment. A calculation using (5.7) and (3.32) shows that

ϕ1 =
(
1+

s
r

) 1
p
α̃ +

k(1+ s
r )− pI
pI

γ

−ϕ2 =
(
1+

r
s

) 1
p
α̃ +

k(1+ r
s )− pI
pI

γ . (5.8)
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Recall that α̃ and γ have period 2π . In order to satisfy (5.5) we must then require that p = s+ r , which gives

ϕ1 =
1
r
α̃ +

(
k
rI
− 1

)
γ

−ϕ2 =
1
s
α̃ +

(
k
sI
− 1

)
γ . (5.9)

Let us now examine (5.7). Since the numerator is negative definite, for ν ∈ (0, νmax), this implies that

x− =
(r + s)y1y2
ry1 + sy2

, for ry1 + sy2 > 0

x+ =
(r + s)y1y2
ry1 + sy2

, for ry1 + sy2 < 0. (5.10)

Note that ry1 + sy2 = 0 implies from (5.6) that y1 = y2, which is impossible for ν ∈ (0, νmax). In particular we have

x− − y1 =
ry1(y2 − y1)
ry1 + sy2

< 0 (5.11)

since the numerator is negative. By Lemma 3.1 there is therefore a unique µ such that X(x) has x− as its smallest zero. On
the other hand, using (3.32) it is easy to compute

y1(x+ − 1)
y1 − x+

=
k− pI
pI
+
s
r
k
pI
. (5.12)

Since y1/(y1 − x+) is certainly positive, this implies that x+ > 1 if and only if the right hand side of (5.12) is positive. Using
r + s = p, this easily becomes

x+ > 1 iff k− rI > 0. (5.13)

Thus when ry1+ sy2 < 0 and k− rI > 0, by Lemma 3.2 there is a uniqueµ < 0 such that x+ > 1 is the largest zero of X(x).
We now define

m = k− rI (5.14)

and compute

ry1 + sy2 =
1
I
[(ky1)+ (pI − k)y2 +m(y2 − y1)] . (5.15)

Here we have substituted s = p− r . Using

y1 =
(
k
pI
− 1

)
(y2 − y1)+ y1y2

y2 =
k
pI
(y2 − y1)+ y1y2, (5.16)

which is a rewriting of (3.32), we thus have

ry1 + sy2 = py1y2 +
m
I
(y2 − y1). (5.17)

Suppose thatm > 0. Then either ry1 + sy2 > 0 and we are on the x− branch, with x− < y1; or else ry1 + sy2 < 0 and by
(5.13) we are on the x+ branch, with x+ > 1. Ifm < 0 then from (5.17) ry1+sy2 < 0 and hencewe are on the x+ branch; but
by (5.13) x+ < 1 and hence the metric cannot be regular. When m = 0 we formally obtain x+ = 1, which was the special
case considered in the previous section. We thus conclude that we obtain regular orbifold metrics if and only ifm > 0.
We have now shown that the metric gM extends to a smooth orbifold metric, for all p, k, r positive integers with

p
2
<
k
I
< p, 0 < r <

k
I
. (5.18)

It remains simply to check the fibration structure ofM and thus describe its topology. Defining

ϕ =
(n+ 1)ky1
I(y1 − 1)

[
α +

x± − 1
(n+ 1)x±

γ

]
= α̃ +

k− rI
I

γ (5.19)

we see that the one-form in the second line of the metric (5.1) is proportional to

dϕ +
k− rI
I

(n+ 1)A. (5.20)
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Since ϕ has canonical period 2π , this is a global angular form on the associated circle bundle to Km/IV , where recallm = k−rI .
ThusM may be described as follows. One takes the weighted projective spaceWCP1

[r,p−r] and fibres it over V . The transition
functions are precisely those for Km/IV , using the standard effective U(1) action onWCP1

[r,p−r]. ThusM may be written

M = Km/IV ×U(1) WCP1
[r,p−r]. (5.21)

The Ricci-flat Kähler metric is defined on the total space of an orbifold line bundle overM , which is necessarily the canonical
line orbibundle.
Notice that M is singular precisely along the two divisors D1, D2, located at y = y1, y = y2, respectively. D1 has normal

fibre C/Zr , and D2 has normal fibre C/Zp−r . The normal bundles are K
−m/I
V , Km/IV , respectively. Due to the fact that the only

orbifold singularities are in complex codimension one, M is in fact completely smooth as a manifold, and as an algebraic
variety.10 In either case,M is a CP1 fibration over V . One must then be extremely careful when making statements such as
‘‘M is Fano’’: the anti-canonical line bundle and anti-canonical orbifold line bundle are different objects.
Let π : M → V denote the projection. Then the canonical line bundle is

KM = π∗KV − 2D1 −mπ∗(KV/I). (5.22)

Recall here that the divisor D1 at y = y1 has normal bundle K
−m/I
V . Note in (5.22) we have switched to an additive notation,

rather than the multiplicative notation we have been using so far throughout the paper; this is simply so that the equations
are easier to read. On the other hand, the orbifold canonical line bundle is

K orbM = KM +
(
1−

1
r

)
D1 +

(
1−

1
p− r

)
D2. (5.23)

Thismay be argued simply by the following computation, taken largely from [26]. LetU be an open set inM containing some
part of a divisor D with normal fibre C/Zr . We suppose that Ũ ⊂ Cn is the local covering chart, and that the preimage of
the divisor D is given locally in Ũ by x1 = 0. This is called the ramification divisor; we denote this divisor in Ũ by R. We also
complete x1 to a set of local complex coordinates on Ũ , (x1, . . . , xn). The orbifold structure group is Γ = Zr , and the map
φ : Ũ → U near D looks like

φ : (x1, x2, . . . , xn)→ (z1 = xr1, z2 = x2, . . . , zn = xn) (5.24)

where (z1, . . . , zn) are complex coordinates on U , which is also biholomorphic to an open set in Cn. In particular, we may
compute

φ∗(dz1 ∧ · · · ∧ dzn) = rxr−11 dx1 ∧ · · · ∧ dxn. (5.25)

Now, the orbifold line bundle K orbM is defined as the canonical line bundle of Ũ in each covering chart Ũ , i.e. as the top exterior
power of the holomorphic cotangent bundle. These naturally glue together on the orbifoldM to give an orbifold line bundle
overM . However, we see from (5.25) that

KŨ = π
∗KU ⊗ [(r − 1)R]. (5.26)

Since π∗D = rR, this gives the general formula

K orbM = KM +
∑(

1−
1
ri

)
Di (5.27)

where Di is a so-called branched divisor, with multiplicity ri. This rather formal expression may be understood more
concretely as follows. M is a complex manifold with divisors KM and Di defining complex line bundles over M . For each
line bundle, by picking a connection we obtain a curvature two-formwhose cohomology class lies in the image of H2(M;Z)
inH2(M;R). The corresponding cohomology class of the right hand side of (5.27) is thus inH2(M;Q). This in fact represents
the cohomology class of the curvature of a connection on the orbifold line bundle K orbM .
Returning to (5.23), we obtain

K orbM = −
p

r(p− r)
D1 +

(
I −

m
p− r

)
π∗(KV/I)

= −
p

r(p− r)
D2 +

(
I +
m
r

)
π∗(KV/I) (5.28)

where note that

D1 − D2 = −mπ∗(KV/I). (5.29)

10 Note that V is a smooth Fano manifold, and hence is projective.
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Note in (5.28) the first Chern class of the weighted projective spaceWCP1
[r,p−r] appearing. Indeed, by the above comments

the integral of this orbifold first Chern class is∫
WCP1

[r,p−r]

corb1
(
WCP1

[r,p−r]

)
= 2−

(
1−

1
r

)
−

(
1−

1
p− r

)
=

p
r(p− r)

, (5.30)

a formula we encountered earlier in Eq. (4.31).
Let Σ ⊂ V be a holomorphic curve in V . We may map Σ intoM via the sections si : V → M at y = yi. Using (5.28) we

then compute

〈c1(K orbM ), s1(Σ)〉 =
[

p
r(p− r)

m+
(
I −

m
p− r

)]
〈c1(K

1/I
V ),Σ〉

=
k
r
〈c1(K

1/I
V ),Σ〉, (5.31)

〈c1(K orbM ), s2(Σ)〉 =
[
−

p
r(p− r)

m+
(
I +
m
r

)]
〈c1(K

1/I
V ),Σ〉

=
pI − k
p− r

〈c1(K
1/I
V ),Σ〉. (5.32)

Here we have used that e.g 〈D1, s1(Σ)〉 = −m〈c1(K
1/I
V ),Σ〉, since y = y1 has normal bundle K

−m/I
V . Since V is Fano,

〈c1(K
1/I
V ),Σ〉 < 0, and henceM Fano implies that

k− pI < 0. (5.33)
Of course, this condition is indeed satisfied by the explicit metrics we have constructed. This completes the proof of
Theorem 1.4.

5.2. Smooth resolutions: p = 2

Setting p = 2, r = 1 in the last subsection gives a family of smooth complete Ricci-flat Kähler metrics for each choice
of (V , gV ), leading to Corollary 1.5. These are all defined on the canonical line bundle over M , where M = PV (O ⊕ Km/I),
m = k− I , and 0 < m < I .
For example, wemay take V = CPn with its standard Kähler–Einsteinmetric. In this case 0 < m < n+1 and themetrics

are defined on the total space of the canonical line bundle over PCPn(O(0)⊕O(−m)). Note that n = m = 1 is precisely the
metric found in reference [12].
On the other hand, taking V to be a product of complex projective spaces, as in (4.17), reproduces themetrics discussed in

reference [13]. In the latter reference the authors considered each product separately; this was necessary, given themethod
they use to analyse regularity of the metric. The number of smooth metrics found is I − 1 = hcf{da} − 1; one can easily
verify that this number agrees with the number of smooth resolutions found in the various cases considered in [13].
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Appendix. Limits

In this section we briefly analyse various special limits of the metrics (2.4). Recall that these depend on four real
parameters: c, β, ν, µ. First, note that setting c = 0 in the functions (2.6) implies that the gττ component of the metric
asymptotes to a constant (∓β) as x→ ±∞. Therefore the metric is not asymptotically conical. When c 6= 0 we may then
set c = 1 by a diffeomorphism and rescaling of the metric, as we have assumed throughout the paper.
If β is different from zero, it may also be scaled out as an overall coefficient of the metric (2.4), where β = 1. However,

we may also consider asymmetric scalings of the variables x and y, before letting β → 0, with the result depending on
which variable goes to zero faster. There are then two cases to consider. Thus, let us first make the substitution y→ βy. The
resulting metric reads

g =
βy− x
4Xβ(x)

dx2 +
βy− x
4Y (y)

dy2 +
Xβ(x)
βy− x

[dτ + (1− y)(dψ + A)]2

+
Y (y)
βy− x

[βdτ + (β − x)(dψ + A)]2 + (β − x)(1− y)gV , (A.1)
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where the parameter ν in Y (y) has been redefined, and we have introduced the notation

Xβ(x) = β(x− β)+
n+ 1
n+ 2

(x− β)2 +
2µ

(x− β)n
(A.2)

to emphasize that Xβ(x) depends β , as opposed to Y (y). Setting β = 0 in (A.1) and introducing the change of variable

x = ±
n+ 1
n+ 2

r2 (A.3)

as in Section 2.3, we obtain the positive definite metric

g =
1
H(r)

dr2 + H(r)r2
(
n+ 1
n+ 2

dτ + σ
)2
+ r2gT , (A.4)

where

H(r) = 1+ 2µ
(
n+ 1
n+ 2

)n+3
(−1)n

r2n+4
. (A.5)

This is precisely the Calabi ansatz of [4,5]. Note from the metric (A.1) that β plays the role of a resolution parameter in all
cases considered in the paper. The parameter ν is fixed by regularity at x > x+ or x < x−, as discussed in Section 3.2, and
one is left with two parametersµ and β . This is analogous to the two-parameter family of Ricci-flat metrics on the canonical
line bundle over CP1 × CP1 found in [27], which has regular asymptotic boundary metric T 1,1/Z2. However, in the present
case, regularity (in the orbifold sense) of the metrics at x = x± imposes a relation. This leaves β as the only free parameter,
measuring the size of the blown-up cycles. It would be interesting to investigate generalisations of the ansatz (2.4), allowing
for more than one resolution parameter.
Finally, it is straightforward to repeat the previous analysis setting instead x → βx, by exchanging the roles of x and y.

However, in this case if we set β = 0, the metric becomes

g =
y

4X(x)
dx2 +

y
4Y0(y)

dy2 + X(x)y(dψ + A)2 +
Y0(y)
y
[dτ + (1− x)(dψ + A)]2 − y(1− x)gV , (A.6)

where Y0(y) denotes the function Y (y) in (2.6), evaluated at β = 0. We see that the metric is again not asymptotically
conical.
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