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1. Introduction

The AdS/CFT correspondence [1] may be used as a powerful tool for addressing difficult

problems in field theory using geometric techniques. The correspondence provides us with

a precise map between a large class of conformal field theories, together with certain defor-

mations of these theories, and various types of geometry. A rich set of examples consists
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of Type IIB string theory in the background AdS5 × Y , where Y is a Sasaki-Einstein five-

manifold [2 – 5]. For example, one may take Y = T 1,1 [3], or the more recently discovered

infinite families of Sasaki-Einstein manifolds, Y p,q [6, 7] and La,b,c [8, 9]. In all these cases,

the dual field theories [10 – 15] are conjectured to be supersymmetric gauge theories, at an

infra-red (IR) conformal fixed point of the renormalisation group (RG). More briefly, they

are N = 1 SCFTs.

Such AdS5 backgrounds arise from placing a large number N of parallel D3-branes

at the singular point of a Calabi-Yau singularity C(Y ), equipped with a Ricci-flat Kähler

cone metric

gC(Y ) = dr2 + r2gY . (1.1)

The backreaction of the branes induces a warp factor, which is essentially the Green’s

function for the metric (1.1), and produces an AdS5 × Y geometry together with N units

of Ramond-Ramond (RR) five-form flux.

One interesting generalisation of the original AdS/CFT correspondence is to consider

deformations of the conformal field theories and their dual geometric description. The class

of deformations that we will study in this paper correspond to giving vacuum expectation

values (VEVs) to certain baryonic operators. These types of deformation allow one to

explore different baryonic branches of the moduli space of a given theory, and are in general

related to (partial) resolutions of the conical Calabi-Yau singularity. In the context of the

conifold theory [3] some features of these solutions were discussed in [16], and recently

expanded upon1 in [20]. However, a systematic discussion of these baryonic branches, from

an AdS/CFT perspective, has not appeared before. The full ten-dimensional metric is

simply a warped product

g10 = H−1/2gR1,3 +H1/2gX , (1.2)

where gX is a Ricci-flat Kähler metric that is asymptotic to the conical metric (1.1), and

the warp factor H is the Green’s function on X, sourced by a stack of D3-branes that

are localised at some point x0 ∈ X. The baryonic branches considered here are different

from the kind studied in [21, 22], where the field theory undergoes a cascade of Seiberg

dualities. Nevertheless, the results presented in this paper may be useful for obtaining a

better understanding of baryonic deformations of non-conformal theories as well.

Until recently, explicit Ricci-flat Kähler metrics of this kind were not known, apart

from the case of the conifold and its Z2 orbifold [23].2 In [26] we presented families of ex-

plicit Ricci-flat Kähler partial resolutions of conical singularities in all dimensions. These

included several classes in three complex dimensions that give rise to toric partial resolu-

tions of the Y p,q singularities (see also [27 – 29]). In the present paper we will further discuss

these metrics, providing their toric geometry description and their dual gauge theory in-

terpretation. In fact, these are just examples of a general feature that we shall describe:

1For other examples, see [17 – 19].
2More generally one may also study the Ricci-flat Kähler metrics on the canonical line bundles over

Kähler-Einstein manifolds constructed in [24, 25], which are explicit up to the Kähler-Einstein metric.

– 2 –
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giving vacuum expectation values to certain baryonic operators in the UV, the theory flows

to another fixed point in the far IR. In the supergravity solution a new “throat” develops

in the IR, at the bottom of which one generally finds a new Sasaki-Einstein manifold.3

Following [20], we also propose that one may extract information about the one-point

function (condensate) of baryonic operators turned on in a given geometry by computing

the Euclidean action of certain instantonic D3-brane configurations in the background. In

particular, we will gather evidence for the validity of this conjecture by showing that the

exponentiated on-shell Euclidean D3-brane action quite generally reproduces the correct

scaling dimensions and baryonic charges of the baryonic operators that acquire non-zero

VEVs. This generalises the result of [20], which was for the resolved conifold geometry.

Given a background geometry, one may also use these results as a guide to predict which

operators have acquired non-zero expectation values. We shall illustrate this for the Y p,q

theories and their resolutions in section 5. We anticipate that a complete treatment of

such instantonic D3-branes will be rather involved and subtle. In particular, one requires a

somewhat deeper understanding of the map between baryonic operators in the gauge theory

and the dual objects, which are, roughly speaking, specified by certain divisors/line bundles

in the geometry. We shall make a few more comments on this in the discussion section.

The plan of the rest of the paper is as follows. In section 2 we discuss generic features of

supergravity backgrounds corresponding to baryonic branches, including some remarks on a

Euclidean D3-brane calculation that quite generally should compute baryonic condensates.

In sections 3 and 4 we provide a toric description of Calabi-Yau metrics on various partial

resolutions recently discovered by the authors in [26]. In section 5 we present the gauge

theory interpretation of the geometries previously discussed. In section 6 we conclude and

discuss briefly some of the issues that have arisen in the paper.

2. Baryonic branches

2.1 Spacetime background

In this section we discuss the class of Type IIB backgrounds we wish to consider. These

will be supergravity backgrounds produced by placing N coincident D3-branes at a point

on a complete asymptotically conical Ricci-flat Kähler six-manifold (X, gX ). The presence

of the D3-branes induces a warp factor that is essentially the Green’s function on (X, gX );

we argue that such a warp factor always exists and is unique.

The spacetime background (M10, g10) we are interested in is given by the following

supersymmetric solution of Type IIB supergravity

g10 = H−1/2gR1,3 +H1/2gX (2.1)

G5 = (1 + ∗10)dH
−1 ∧ vol4 . (2.2)

Here gR1,3 is the flat Minkowski metric, with volume form vol4, and (X, gX ) is a complete

Ricci-flat Kähler six-manifold. The warp factor H is a function on X. If we take H to be a

3This may happen to be an orbifold of S5, as will be the case in the examples we shall discuss.
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positive constant then the background metric (2.1) is Ricci-flat. However, if we now place

a stack of N D3-branes parallel to R
1,3 and at the point x0 ∈ X then these act as a source

for the RR five-form flux G5. The corresponding equation of motion then gives

∆xH = − C√
det gX

δ6(x− x0) . (2.3)

Here ∆ is the Laplacian on (X, gX ), and C is a constant given by

C = (2π)4gs(α
′)2N . (2.4)

Thus H = G(x,x0) is a Green’s function on the Calabi-Yau (X, gX ). For instance, when

X = C(Y ) is a cone over a Sasaki-Einstein manifold (Y, gY )

gX = dr2 + r2gY , (2.5)

placing the D3-branes at the apex of the cone x0 = {r = 0} results in the following Green’s

function4

Hcone =
L4

r4
(2.6)

where

L4 =
C

4vol(Y )
. (2.7)

This last relation is determined by integrating
√

det gX∆xH over the cone: the right hand

side of (2.3) gives −C, whereas the integral of the left hand side reduces to a surface integral

at infinity, which gives the relation to vol(Y ). The Type IIB solution (2.1) is then in fact

AdS5 × Y , where L in (2.7) is the AdS5 radius.

Assuming the Green’s function G(x,x0) on (X, gX ) exists, asymptotically it will ap-

proach the Green’s function for the cone (2.6), and the same reasoning as above still requires

the relation (2.7) to hold. On the other hand, the Green’s function blows up at the point

x0. Indeed, we have

G(x,x0) =
L4

IR

ρ(x,x0)4
(1 + o(1)) , (2.8)

where ρ(x,x0) is the geodesic distance from x0 to x, and

L4
IR =

C
4vol(S5)

. (2.9)

The normalisation constant L4
IR is computed as above, noting that the metric in a neigh-

bourhood of x0 looks like flat space in polar coordinates dρ2 + ρ2gS5 . If (X, gX ) is only a

partial resolution of X and x0 is a singular point, this metric is instead dρ2 + ρ2gZ where

4Since we are interested in the near-horizon geometry, we have dropped an additive constant. Restoring

this corresponds to the full D3-brane solution.
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gZ is a Sasaki-Einstein metric on the link Z of the singularity. More generally one would

then have5 L4
IR = C/4vol(Z).

Due to the singular behaviour of the Green’s function at the point x0 in (2.8) we see

that the metric (2.1), with H = G(x,x0), develops an additional “throat” near to x0, with

the metric in a neighbourhood of x0 (with x0 deleted) being asymptotically AdS5×Z. Here

Z = S5 if x0 is a smooth point. Thus the gravity solution (2.1) - (2.2) has two asymptotic

AdS regions, and may be interpreted as a renormalisation group flow from the original

theory to a new theory in the IR.

A Green’s function on a Riemannian manifold (X, gX) of dimension n is by definition

a function on X ×X \ diag(X ×X) satisfying:

• G(x,y) = G(y,x), and ∆xG = 0 for all x 6= y with y fixed.

• G(x,y) ≥ 0.

• As x → y, with y fixed, we have

G(x,y) =
A

ρ(x,y)n−2
(1 + o(1)) (2.10)

for n = dimRX > 2, where ρ(x,y) denotes the geodesic distance between x and y,

and A is a positive constant.

Such a function doesn’t necessarily always exist. However, in the present set-up we may

apply the following result of [30]: if (X, gX ) is complete and has non-negative Ricci cur-

vature then the Green’s function above exists and is finite and bounded away from the

diagonal in X ×X if and only if
∫

∞

r

t

vol(B(t,y))
dt < ∞ (2.11)

for all r > 0 and all y ∈ X. Here B(t,y) is the ball of radius t and centre y. If the volume

growth of the manifold is at least quadratic, then the integral on the left hand side of (2.11)

always converges. In our case, (X, gX ) is complete, Ricci-flat, and is asymptotically conical,

which implies the volume of any ball grows like ρ6, where ρ is the distance function from

any point in X. There is, moreover, a unique Green’s function that asymptotes to zero at

infinity. The proof of this is a simple application of the maximum principle.

The background geometries will depend on various moduli. An asymptotically conical

Ricci-flat Kähler metric on X will generally depend on a number of moduli. However, we

note that, in contrast to the case of compact Calabi-Yau manifolds where the moduli space

is understood extremely well, there is currently no general understanding of the moduli

space of non-compact Calabi-Yau manifolds. In addition to the metric moduli, there are a

number of flat background fields that may be turned on without altering the solution (2.1)

- (2.2). For instance, there is the dilaton φ, which determines the string coupling constant6

5However, the general existence of the Green’s function on such a singular (X, gX) is not guaranteed by

any theorem we know of, unlike the smooth case treated below.
6Here it really is constant.
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gs = exp(φ). This is paired under the SL(2; R) symmetry of Type IIB supergravity with

the axion field C0. The topology of X in general allows one to turn on various topologically

non-trivial flat form-fields. In particular we have the NS B-field, as well as the RR two-

form C2 and four-form C4. These play an important role in a detailed mapping between

the gauge theory and geometry moduli spaces. However, these fields will be largely ignored

in the present paper.

2.2 Baryons and baryonic operators

Below we recall how baryonic symmetries and baryonic particles arise in AdS/CFT. We

also extend the proposal of [20] for the use of Euclidean D3-branes as a means to detect

non-zero expectation values of baryonic operators in a given background geometry.

Consider a Sasaki-Einstein manifold Y with b3 ≡ b3(Y ) = dimH3(Y ; R). By wrapping

a D3-brane on a 3-submanifold Σ ⊂ Y we effectively obtain a particle in AdS. This particle

is BPS precisely when the 3-submanifold is supersymmetric, which is equivalent to the

cone C(Σ) ⊂ C(Y ) being a complex submanifold, or divisor. In [31 – 33] such wrapped

D3-branes were interpreted as baryonic particles. This also leads one to identify the non-

anomalous baryonic symmetries in the field theory as arising from the topology of Y , as

follows. Fluctuations of the RR four-form potential C4 in the background AdS5 × Y may

be expanded in a basis of harmonic three-forms of (Y, gY )

δC4 =

b3∑

I=1

AI ∧HI . (2.12)

Here HI ∈ H3(Y, gY ) are harmonic three-forms that are generators of the image ofH3(Y ; Z)

in H3(Y, gY ). The fluctuations give rise to b3 gauge fields AI in AdS5. As usual these gauge

symmetries in AdS become global symmetries in the dual field theory, and are identified

precisely with the non-anomalous baryonic symmetries U(1)b3B . The charge of a baryonic

particle arising from a 3-submanifold Σ, with respect to the I-th baryonic U(1)B , is thus

given by

QI [Σ] =

∫

Σ
HI . (2.13)

In fact, the above discussion overlooks an important point: the D3-brane carries a

worldvolume gauge field M . For a D3-brane wrapping Rt × Σ, supersymmetry requires

this gauge field to be flat. Thus, as originally pointed out in [32], if Σ has non-trivial

fundamental group one can turn on distinct flat connections on the worldvolume of the

wrapped D3-brane, and a priori each corresponds to a different baryonic particle. These

flat connections are defined on torsion line bundles L over Σ. Thus c1(L) ∈ H2
tor(Σ; Z).

The dual operator that creates a baryonic particle associated to (Σ, L) is denoted

B(Σ, L). For fixed Σ these all have equal baryonic charge (2.13) and also equal R-charge,

where the latter is determined by the volume of Σ via [33]

R(Σ) =
Nπvol(Σ)

3vol(Y )
. (2.14)

– 6 –
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Given a background geometry that is dual to an RG flow induced by giving expectation

values to some baryonic operators, it is natural to ask whether it is possible to compute

baryonic one-point functions by performing some supergravity calculation. Following the

conifold example discussed in [20] we shall argue that, quite generally, a candidate for

computing the VEV of a baryonic operator is a Euclidean D3-brane that wraps an asymp-

totically conical divisor D in the asymptotically conical (partial) resolution X, such that

D has boundary ∂D = Σ ⊂ Y . Indeed, taking inspiration from the Wilson loop pre-

scription [34, 35], it is natural to conjecture that the holographic expectation value of a

baryonic operator is given by the path integral of a Euclidean D3-brane with fixed boundary

conditions:

〈B(Σ, L)〉 =

∫

∂D=Σ
DΨ exp(−SD3) ≈ exp(−Son−shell

D3 ) . (2.15)

Roughly, Son−shell
D3 is the appropriately regularized action of a Euclidean D3-brane,

whose worldvolume D has as boundary a supersymmetric three-dimensional submanifold

Σ ⊂ Y . In fact, a complete prescription for computing a baryonic condensate should take

into account the analogous extension of the torsion line bundle L, and thus in particular

the worldvolume gauge field. This is rather subtle and would take us too far afield in the

present paper — we will return to this, and related issues, in a separate publication [36].

In the following two subsections we will show that the exponentiated on-shell Euclidean

D3-brane action obeys the following two basic properties: (1) it reproduces the correct

scaling dimension, and (2) it carries the correct baryonic charges. In the computation of

the scaling dimension we will formally set the worldvolume gauge field to zero, in line

with the comment above. One might worry7 that in general the gauge field contributes a

divergent term to the large radius expansions we discuss below. However, since the result

with zero gauge field already produces the expected scaling dimension of the dual operator,

it is natural to conjecture that including the worldvolume gauge field does not alter this

result. This will be shown in detail in the paper [36].

2.3 Scaling dimensions of baryonic condensates

The real part of the Euclidean D3-brane action is given by the Born-Infeld term

SBI = T3

∫

D
d4σ

√
det(h+M) . (2.16)

Here D is the D3-brane worldvolume, with local coordinates σα, α = 1, . . . , 4, and super-

symmetry requires D to be a divisor in X. T3 is the D3-brane tension, given by

T3 =
1

(2π)3α′2gs
. (2.17)

h is the first fundamental form i.e. the induced metric on D from its embedding into

spacetime ι : D →֒ (M10, g10). M is the worldvolume gauge field that we will formally set

7We are grateful to the referee for suggesting that we emphasize this issue.
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to zero. Then the real part of the action reduces to

SBI = T3

∫

D
d4σ

√
det gDH (2.18)

where gD is the metric induced from the embedding of D into (X, gX ). Below we show that

the integral in (2.18) is always divergent and thus needs to be regularised.8 We evaluate

the integral up to a large UV cut-off r = rc. This will show that the action has precisely

the divergence, near infinity rc → ∞, expected for a baryonic operator that has acquired a

non-zero expectation value. As mentioned at the end of section 2.2, this calculation of the

scaling dimension is rather formal since we have set the worldvolume gauge field M to zero.

A complete treatment that also includes the gauge field will appear in [36]. Our analysis

below will also lead to a simple necessary condition for the holographic condensate to be

non-vanishing.

At large r, the geometry is asymptotically AdS5 × Y , where r becomes a radial coor-

dinate in AdS5. Then, following9 [16], one can interpret the asymptotic coefficients in the

expansion of a field Φ near the AdS5 boundary

Φ ∼ Φ0 r
∆−4 +AΦ r

−∆ , (2.19)

as corresponding to the source of a dual operator O∆ and its one-point function, respec-

tively. Here ∆ is the scaling dimension of O∆. In particular, if Φ0 vanishes, the background

is dual to an RG flow triggered purely by the condensation of the operator O∆, without

explicit insertion of the operator into the UV Lagrangian.

Let D[rc] denote the compact manifold with boundary defined by cutting off a divisor

D at some large radius rc. We then define

S[rc,x0] = T3

∫

D[rc]
d4σ

√
det gD G(x,x0) , (2.20)

where we regard this as depending on the position of the stack of D3-branes x0 ∈ X. We

then show that the following result is generally true:

exp(−S[rc,x0]) =





0 if x0 ∈ D

O
(
r
−∆(Σ)
c

)
if x0 /∈ D .

(2.21)

Here

∆(Σ) =
Nπvol(Σ)

2vol(Y )
(2.22)

is the conformal dimension of any baryonic operator associated to Σ, under the correspon-

dence discussed in section 2.2. In particular, this result is insensitive to the choice of torsion

8See [37] for a careful treatment of holographic renormalisation of probe D-branes in AdS/CFT.
9Strictly speaking, the prescription of [16], which is an extension of the original prescriptions of [38, 39],

is formulated for supergravity modes. Here we shall assume that this remains valid for the intrinsically

stringy field describing a (Euclidean) D3-brane, as in [20, 40].
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line bundle L on Σ. It is interesting to note that if we keep the divisor D fixed and regard

exp(−S[rc,x0]) as depending on the position of the D3-branes x0, then from (2.21) we may

deduce that this has a zero along D, and is otherwise non-singular. These properties are

compatible with the interpretation that a baryonic condensate is in fact a section of the

divisor bundle O(D).

The proof of (2.21) is rather simple. Suppose first that x0 ∈ D. In a small ball around

a smooth point x0 in X the Green’s function behaves as

H =
L4

IR

ρ4
(1 + o(1)) L4

IR =
C

4vol(S5)
(2.23)

where ρ is the geodesic distance from x0. A neighbourhood of x0 in D looks like R
4 with

radial coordinate ρ |D. Let us evaluate the integral in a compact annular domain V (ǫ),

defined by 0 < ǫ ≤ ρ |D≤ δ. Here we shall hold δ small and fixed, and examine the integral

in the limit ǫ→ 0:

∫

V (ǫ)
d4σ

√
det gG(x,x0) =

∫

V (ǫ)

L4
IR

ρ4
ρ3(1 + o(1))dρ dvolS3 ∼ L4

IRvol(S3) log(1/ǫ) . (2.24)

Since the Green’s function is positive everywhere, this logarithmic divergence at ǫ = 0

(that is at x = x0) cannot be cancelled, and we have proved the first part of (2.21).

Suppose now that x0 /∈ D. Then the Green’s function G(x,x0) is positive and bounded

everywhere on D. Let us cut the integral in two. We integrate first up to r0 < rc, where

r0 will be held large and fixed, and then integrate from r0 to rc. Let the latter domain be

denoted V (r0, rc). The integral up to r0 is finite. The integral over V (r0, rc) is, in the limit

rc → ∞,

∫

V (r0,rc)
d4σ

√
det gG(x,x0) ∼

∫ rc

r0

L4

r4
r3drvol(Σ) ∼ L4vol(Σ) log rc . (2.25)

Now recalling the normalisation (2.4) and (2.17) that we gave earlier, we compute

T3C = 2πN . (2.26)

Inserting this into (2.7), we arrive at

S[rc,x0] ∼ T3L
4vol(Σ) log rc = ∆(Σ) log rc , (2.27)

showing that indeed

exp(−S[rc,x0]) ∼ Ar−∆(Σ)
c (2.28)

gives the leading behaviour as rc → ∞. We interpret this result as a signal that a bary-

onic operator B(Σ, L) of conformal dimension ∆ has acquired a vacuum expectation value

〈B(Σ, L)〉 ∝ A. When x0 ∈ D the above analysis shows that A = 0 identically and thus

the condensate certainly vanishes. Thus x0 /∈ D is a necessary condition for non-vanishing

of the condensate.
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2.4 Baryonic charges of baryonic condensates

We will now consider the Chern-Simons part of the Euclidean D3-brane action, which upon

setting M = 0, reduces to

SCS = iµ3

∫

D
C4 . (2.29)

Here C4 is the RR potential and the D3-brane charge is given by10

µ3 =
1

(2π)3α′2
. (2.30)

A careful analysis of the remaining terms, involving C2 and C0 RR potentials, will be

presented elsewhere [36].

Given that our background geometries are non-compact, it is important to consider

the role of the boundary conditions for the background fields. Asymptotically we approach

an AdS5 × Y geometry. This describes the superconformal theory that is being perturbed,

and in particular the boundary values of fields on Y specify this superconformal theory. We

thus require all background fields to approach well-defined fields on AdS5 × Y at infinity.

To make this statement more precise, we may cut off the asymptotical conical geometry

at some large radius rc; the boundary is denoted Yrc , which for large rc is diffeomorphic

(by not isometric in general) to the Sasaki-Einstein boundary (Y, gY ). The restriction of

all fields to Yrc , or rather R
1,3 × Yrc , should then give well-defined smooth fields on Y in

the limit rc → ∞, and these values specify the superconformal theory in this asymptotic

region.

Note that for the conical geometry C(Y ), which corresponds to the AdS5 × Y back-

ground itself, the internal RR flux is proportional to the volume form on (Y, gY ). Thus, in

particular, there is no globally defined C4 such that dC4 = G5. Since Gcone
5 |X= volY , a

natural gauge choice is to take C4 (locally) to be a pull-back from Y under the projection

π : C(Y ) ∼= R+ × Y → Y . By picking a trivialisation over local patches U ⊂ Y , the

integral of the corresponding Ccone
4 over D ∩ π−1(U) vanishes, since D is a cone and the

contraction of ∂/∂r into Ccone
4 is zero by construction. For a general asymptotically coni-

cal background (X, gX ) with the N D3-branes at the point x0 ∈ X, the corresponding G5

will approach asymptotically the conical value. Thus we may choose a gauge Cbackground
4

which approaches the above gauge choice for Ccone
4 near infinity. With this gauge choice

we deduce that the integral

iµ3

∫

D
Cbackground

4 (2.31)

is finite.11

10See, for example, [41].
11When X is toric, using symplectic coordinates one can show that there is a gauge in which C4 has

vanishing pull-back to any asymptotically conical toric divisor. In particular, we may locally write C4 =

dφ1 ∧ dφ2 ∧ dφ3 ∧ A for some one-form A.
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In general, to any background choice of Cbackground
4 we may add a closed four-form.

If this four-form is not exact one obtains a physically distinct background. Indeed, recall

that the basic gauge transformation of C4 is the shift

C4 → C4 + dK (2.32)

where K is a three-form. The above integral (2.31) then clearly depends on the choice of

gauge, since

iµ3

∫

D
C4 → iµ3

∫

D
C4 + iµ3

∫

Σ
KY , (2.33)

where KY = K |Y is the restriction to Y of the three-form K ∈ Ω3(X). As discussed

above, we should consider only those gauge choices for C4 that give a well-defined form on

Y , implying that dK also restricts to a well-defined form on Y . We may thus take K itself

to be well-defined in the limit Y = limrc→∞ Yrc, modulo an exact part that has no such

restriction. The exact part may diverge in the limit, but at the same time it drops out of

the integral (2.33) since Σ is compact, where more precisely we should define the integral

as the limit of an integral over Σrc . Note that the phase shift (2.33) depends only on KY ,

and not on the extension K of KY over X.

On the other hand, true symmetries are gauge transformations that do not change the

fields at infinity. Thus we should consider a fixed gauge choice for C4 |Y on the AdS bound-

ary, and gauge transformations whose generator K ∈ Ω3(X) is such that dKY = 0. Gauge

transformations of C4 whose generators K vanish at infinity act trivially on physical states.

Thus shifts (2.32) where K |Y = 0 produce physically equivalent C4 fields. Indeed, recall

that global symmetries in gauge theories arise from gauge symmetries whose generators

do not vanish at infinity but that leave the fields fixed at infinity.12 We therefore identify

these transformations of the background C4 as the non-anomalous baryonic symmetries in

the gauge theory.

We may pick a natural representative for a class in H3(Y ; R) using the Hodge decom-

position

Ω3(Y ) = dΩ2(Y ) ⊕H3(Y, gY ) ⊕ δΩ4(Y ) (2.34)

on (Y, gY ). We may then write any closed KY uniquely as

KY = Kharm
Y + dλ (2.35)

where Kharm
Y ∈ H3(Y, gY ) ∼= H3(Y ; R). Of course,

∫
Σ dλ = 0. Thus, although there is an

infinite set of background gauge-equivalent C4 fields on X that approach a given boundary

gauge choice on Y , the integral of C4 over any D depends only on a finite dimensional part

of this space, namely the harmonic part of KY . We may then expand

µ3K
harm
Y =

b3∑

I=1

βI HI (2.36)

12Notice that this discussion parallels a similar discussion in [42].
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where recall that HI ∈ H3(Y, gY ) form an integral basis for the image H3(Y ; Z) →
H3(Y ; R). Notice that shifting the periods of C4 by an integer multiple of (4π2α′)2 (large

gauge transformations) does not change the quantum measure exp(−S). Thus the global

symmetry group arising from gauge symmetries of C4 is, more precisely, the compact

abelian group H3(Y ; U(1)) ∼= U(1)b3 , and in particular the βI are periodic coordinates.

Notice that these harmonic three-forms are the same as those appearing in the KK ansatz

discussed in section 2.2, that give rise to the baryonic symmetries. We conclude that the

effect of the above gauge transformation is to shift

exp

[
iµ3

∫

D
C4

]
→ exp

(
iβIQI [Σ]

)
exp

[
iµ3

∫

D
C4

]
. (2.37)

This is a global transformation in the boundary SCFT, where QI [Σ] is the baryonic charge

of the baryonic operator B(Σ, L) with respect to the I−th baryonic U(1)B [14].

3. Toric description of Y
p,q partial resolutions

So far our discussion has been rather general. In the remainder of the paper we discuss a set

of examples, namely the Y p,q theories. In the present section we review the toric geometry

of Y p,q [10] and discuss several classes of (partial) resolutions of the corresponding iso-

lated Gorenstein singularities. We present explicit asymptotically conical Ricci-flat Kähler

metrics on these partial resolutions in section 4. The results of section 2.3 concerning the

vanishing of certain baryonic condensates due to the behaviour of the Green’s function in

fact translate into simple pictures in toric geometry. For the Y p,q theories, the map from

toric conical divisors D = C(Σ), with link Σ equipped with a torsion line bundle L, to a

class of baryonic operators constructed simply as determinants of the bifundamental fields

is known from the original papers [12, 14]. The toric pictures for the partial resolutions

referred to above then immediately allow one to deduce which bifundamental fields do not

obtain a VEV for that background. In the examples we discuss this simple sufficient con-

dition for the condensate to vanish thus leads to predictions that may easily be checked

directly in the quiver gauge theory. In section 5 we verify these predictions by giving VEVs

to the relevant bifundamental fields, and determining where the resulting theory flows in

the far IR. The results agree precisely with the geometry of the partial resolutions.

3.1 Toric geometry and the Y p,q singularities

We begin by briefly reviewing the geometry of toric Gorenstein (Calabi-Yau) singularities,

focusing in particular on the Y p,q geometries and their toric resolutions.

A toric Gorenstein singularity in complex dimension three is specified by a convex

lattice polytope ∆ ⊂ R
2. Such a polytope may be specified by a set of vectors wa ∈ Z

2 ⊂
R

2, a = 1, . . . , d, which are the defining external vertices of the polytope. More precisely,

there is a 1-1 correspondence between such singularities and SL(2; Z) equivalence classes

of convex lattice polytopes, where the origin may be placed anywhere in the lattice. Here

SL(2; Z) acts on Z
2 ⊂ R

2 in the obvious way. A choice of lattice polytope for the Y p,q

singularities is shown in figure 1. The external points of the lattice polytope are, moving
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(0,0) (1,0)

(p−q−1,p−q)

(p,p)

(s,s)

Figure 1: Toric diagram of a Y p,q singularity, with internal point (s, s) shown. Here 0 < s < p.

anti-clockwise starting from the lower right corner, given by: w1 = (1, 0), w2 = (p, p),

w3 = (p − q − 1, p − q), w4 = (0, 0). Thus d = 4 for the Y p,q singularities.

The geometry is recovered from the lattice polytope by a form of Delzant’s construc-

tion. One first defines the three-vectors va = (1, wa) ∈ Z
3. These define a linear map

A : R
d → R

3

ea 7→ va (3.1)

where {ea}a=1,...,d denotes the standard orthonormal basis of R
d. Let Λ ⊂ Z

3 denote the

lattice spanned by the {va} over Z. This is of maximal rank, since the polytope ∆ is

convex. There is then an induced map of tori

U(1)d ∼= R
d/2πZ

d −→ R
3/2πZ

3 ∼= U(1)3 (3.2)

where the kernel is a compact abelian group A, with π0(A) ∼= Γ ∼= Z
3/Λ.

Using this data we may construct the geometry as a Kähler quotient. Thus, using the

flat metric, or equivalently standard symplectic form, on C
d, we may realise

C(Y ) = C
d //0 A . (3.3)

Here A ∼= U(1)d−3 × Γ ⊂ U(1)d acts holomorphically and Hamiltonianly on C
d. The

subscript zero in (3.3) indicates that we take the Kähler quotient at level zero. The origin

of C
d projects to the singular point in C(Y ), and the induced Kähler metric on C(Y ) ∼=

R+ × Y is a cone. Moreover, the quotient torus U(1)d/A ∼= U(1)3 acts holomorphically

and Hamiltonianly on this cone, with moment map

µ : C(Y ) → t∗ ∼= R
3 (3.4)

µ(C(Y )) = C∗ . (3.5)

Here t∗ ∼= R
3 denotes the dual Lie algebra for U(1)3. The image of the moment map

C∗ ⊂ R
3 is a convex rational polyhedral cone formed by intersecting d planes through the

origin of R
3. These bounding planes (or facets) of the cone have inward pointing normal

vectors precisely the set {va}, and we have thus come full circle.
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The quotient (3.3) may be written explicitly in GLSM terms as follows. One computes

a primitive basis for the kernel of A over Z by finding all solutions to

∑

a

Qa
Iva = 0 (3.6)

with Qa
I ∈ Z, and such that for each I the {Qa

I | a = 1, . . . , d} have no common factor.

The number of solutions, which are indexed by I, is d− 3 since A is surjective; this latter

fact again follows from convexity. One then has

X = Kξ/A ≡ C
d //ξ A (3.7)

with

Kξ ≡
{

(z1, . . . , zd) ∈ C
d |
∑

a

Qa
I |za|2 = ξI

}
⊂ C

d (3.8)

where za denote standard complex coordinates on C
d and the charge matrix Qa

I specifies

the torus embedding U(1)d−3 ⊂ U(1)d. In GLSM terms, the matrix Qa
I is the charge

matrix, and the set Kξ is the space of solutions to the D-term equations. The cone C(Y )

is given by setting ξ = (ξ1, . . . , ξd−3) = 0.

By instead taking the Kähler quotient (3.3) at level ξ 6= 0 we obtain various (partial)

resolutions of the singularity C(Y ). In fact, to fully resolve the singularity we must enlarge

the above Kähler quotient to include all lattice points wα ⊂ ∆ ∩ Z
2, α = 1, . . . ,D, rather

than simply the external vertices wa. We then follow precisely the same procedure as

above, to obtain a Kähler quotient of C
D with D − 3 FI parameters. Here D = d + I,

where I is the number of internal points of the toric diagram. For example, for Y p,q this

number is I = p − 1. It is not too difficult to show that d = 3 + b3(Y ) and I = b4(X),

where X is any complete toric resolution of the singularity. In this larger Kähler quotient

the image C∗ of X under the moment map is more generally a rational convex polyhedron.

The bounding planes are precisely the images of the toric divisors in X — that is, the

divisors that are invariant under the U(1)3 action. These are divided into non-compact

and compact, which number d and I, respectively. By considering a strict subset of the

set of all lattice points in ∆ we obtain only partial resolutions by taking the moment map

level ξ 6= 0. However we choose to present the singularity as a Kähler quotient, the space of

FI parameters (moment map levels) that lead to non-empty quotients form a convex cone,

subdivided into conical chambers {C}. Passing from one chamber into another across a

wall, the quotient space undergoes a small birational transformation. We shall see some

examples of this momentarily.

It is rather well-known that the chambers correspond to different triangulations of the

toric diagram ∆. The graph theory dual of such a subdivision of the toric diagram is

called the pq-web in the physics literature. That is, one replaces faces by vertices, lines by

orthogonal lines, and vertices by faces. The corresponding subdivision of R
2 into convex

subsets is in fact precisely the projection of the image of the moment map C∗ ⊂ R
3 onto

R
2. One can do this canonically here precisely due to the Calabi-Yau condition, which
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D

D3-branes

Figure 2: On the left: pq-web with D3-branes at a toric singularity. On the right: a partially

resolved geometry, with D3-branes localised at a residual singularity. If a toric divisor D asymptotic

to C(Σ) intersects the point-like D3-branes, the corresponding baryonic operators do not acquire a

VEV. On the other hand, toric divisors D that do not intersect the D3-branes may give rise to a

condensate, as denoted by the shaded region.

singles out the vector (1, 0, 0) one uses to construct the projection. Thus the pq-web is a

literal presentation of the Calabi-Yau: the moment map image C∗, which in general is a

non-compact convex polyhedron in R
3, describes the quotient by the torus action U(1)3,

and the pq-web is a projection of this onto R
2. In particular, the bounding planes of C∗,

which recall are the images of the toric divisors, map onto the convex polytopic regions in

the pq-web. This allows one to map complicated changes of topology into simple pictures

that may be drawn in the plane. This is why toric geometry is so useful.

Assuming there is an asymptotically conical Ricci-flat Kähler metric for a given (par-

tial) toric resolution X, we may then use the pq-web to give a pictorial representation of the

corresponding flow geometry. A choice of point x0 ∈ X where the N D3-branes are placed

determines a choice of point13 in the pq-web. Thus, using the results of section 2.3, one

obtains a simple pictorial representation of which toric divisors lead to zero condensates –

see figure 2.

We decorate the pq-web with a blob, representing the location of the point-like stack

of D3-branes, and shade the divisors that do not intersect the latter. Notice that when the

D3-branes are at the conical singularity it is clear from the picture that no operators may

have a VEV — all toric divisors intersect the origin and thus must have zero condensate.

This is as one expects of course, since the diagram on the left of figure 2 corresponds to the

superconformal field theory. Note also that the existence argument for the Green’s function

presented in section 2.1 applied only to smooth X. When X is singular, as in figure 2,

we do not know of any general theorems. However, at least for partial resolutions that

13Note that vertices in the pq-web really are points in X, but that points on a line in the pq-web are

images of circles in X, points on an open face are images of two-tori in X, and points “out of the page”

(recall the pq-web is a projection of C∗) are images of three-tori.
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Small resolution IISmall resolution I

Figure 3: The pq-webs for the cone C(Y p,q) and its two small partial resolutions.

contain at worst orbifold singularities, the theorems referred to in section 2.1 presumably

go through without much modification. For the Y p,q partial resolutions we shall restrict

our attention to, we shall indeed encounter at worst orbifold singularities.

3.2 Small partial resolutions

In the following two subsections we examine a simple set of partial resolutions of the Y p,q

singularities, starting with the partial resolutions that correspond to the minimal presen-

tation of the singularity [10]. Thus we realise C(Y p,q) as a Kähler quotient C
4 //0 U(1).

Explicitly, the charge vector is Q = (p,−p + q, p,−p − q), with the corresponding D-term

equation given by

Kξ = {p|z1|2 − (p− q)|z2|2 + p|z3|2 − (p+ q)|z4|2 = ξ} . (3.9)

The convex cone of FI parameters is the real line R, parameterised by ξ, and this is

separated into two chambers CI = {ξ > 0} and CII = {ξ < 0}. The pq-webs are shown in

figure 3.

Setting ξ = 0 gives the Kähler cone, whose corresponding Ricci-flat Kähler cone met-

ric was constructed explicitly in [7]. The two partial resolutions corresponding to the two

chambers will be referred to as small partial resolution I, II, respectively. In [26] we

constructed explicit asymptotically conical Ricci-flat Kähler metrics on these partial reso-

lutions. However, the construction did not use toric geometry. Thus, in the following two

subsections we describe more explicitly the geometry of each partial resolution in order to

make contact with the metrics of [26], which will subsequently be presented in section 4.

3.2.1 Small partial resolution I

Let us first consider ξ > 0. In this case we partially resolve the conical singularity by

blowing up a CP
1 = S2. Explicity, this exceptional set is cut out by {z2 = z4 = 0} ⊂ C

4.

The D-term in (3.9), modulo the U(1) action, then clearly gives a copy of CP
1, with size

determined by ξ. In fact, the whole space X is a holomorphic C
2/Zp fibration over CP

1,

where Zp ⊂ U(1) ⊂ SU(2) y C
2. One can deduce this explicitly from the Kähler quotient

construction, much as in [10]. An explicit Ricci-flat Kähler metric, that is asymptotic to the
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conical metric over Y p,q, was constructed on this bundle in [26] — we shall give the metric

in section 4. The precise fibration structure was also spelled out explicitly in reference [26].

The pq-web is drawn on the left hand side of figure 3. The line segment in this picture

is the image of the exceptional CP
1 at z2 = z4 = 0, and has length given roughly by

ξ. The ends of this line segment are two vertices corresponding to the north and south

poles of CP
1, which is acted on isometrically by SU(2). Since the whole CP

1 is a locus

of orbifold singularities, these two vertices are singular points, with tangent cones being

C × C
2/Zp. This follows from the above fibration structure, but one may also deduce this

straightforwardly from the toric diagram by applying Delzant’s construction. This realises

a neighbourhood of either point as the quotient C
3/Zp = C × C

2/Zp, as the reader may

easliy verify. This is precisely the local geometry of an N = 2 Ap−1 singularity.

3.2.2 Small partial resolution II

Next we consider ξ < 0. Here one instead blows up an exceptional weighted projective

space, cut out by {z1 = z3 = 0} ⊂ C
4. The details, however, depend on the parity of p+ q.

Suppose first that p+q is odd. In this case the U(1) action on {za ∈ Kξ | z1 = z3 = 0} is

effective, and we obtain the weighted projective space WCP
1
[p−q,p+q] as exceptional set. The

partial resolution is then a certain holomorphic C
2 orbifold fibration over this. Precisely,

this is given by

K
1/2

WCP
1
[p−q,p+q]

×U(1) C
2 (3.10)

where KM generally denotes the canonical orbifold line bundle of M , and the U(1) action

on C
2 above is the diagonal U(1) ⊂ U(2) y C

2. No Ricci-flat Kähler metric is known on

this space in general.

Suppose instead that p + q is even. In this case the U(1) action on {za ∈ Kξ | z1 =

z3 = 0} is not effective, but rather factors through a Z2 subgroup. This means that

{za ∈ Kξ | z1 = z3 = 0}/U(1) is the weighted projective space WCP
1
[(p−q)/2,(p+q)/2]. The

partial resolution is then a holomorphic C
2/Z2 fibration over this, given by

K
WCP

1
[(p−q)/2,(p+q)/2]

×U(1) C
2/Z2 . (3.11)

Here the U(1) acts effectively and diagonally on C
2/Z2. In particular, the fibre over a

generic (non-singular) point is now C
2/Z2, which is the A1 singularity, rather than C

2.

An explicit Ricci-flat Kähler metric was constructed on this orbifold in [26] and will be

reviewed in the next section.

The pq-web is given on the right hand side of figure 3. The line segment corresponds

to the weighted projective space exceptional set (or zero-section in the above fibration

description), with length roughly given by ξ. The two vertices correspond to the two

singular points of the weighted projective space. The local geometry around these points

may be determined either via the above orbifold fibration structure, or directly via the

toric diagram. The latter may be more palatable. Let us consider the singular point on the

weighted projective space with local orbifold group C/Zp−q or C/Z(p−q)/2 (the other point

will be similar). In either case the toric diagram describing the local geometry is given by
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the triangular lattice polytope with external vertices w4 = (0, 0), w3 = (p − q − 1, p − q),

w1 = (1, 1, 0) — see figure 15. The kernel of the corresponding map of tori, which is a

finite subgroup, is generated by the vector [−2/(p− q), 1/(p− q), 1/(p− q)]. Thus the local

geometry is C
3/Zp−q, where Zp−q ⊂ U(1) is embedded inside SU(3) with weights (−2, 1, 1).

Note that, independently of the parity of p − q, the fibre over the singular point on the

exceptional set is C
2/Zp−q, with Zp−q ⊂ U(1) embedded into the diagonal of U(2). This

may be seen explicitly from the above orbifold fibration also – for details, see [26].

Thus the two points have local geometry C
3/Zp−q, C

3/Zp+q, where the two abelian

subgroups are embedded inside U(1) ⊂ SU(3) y C
3 with weights (−2, 1, 1). Note that

these are both N = 1 orbifolds, rather than the N = 2 orbifolds obtained for ξ > 0 in the

previous subsection.

3.3 Canonical partial resolutions

In this section we consider partial resolutions of the Y p,q singularities where one blows up

an orbifold Fano divisor. These may be described as a Kähler quotient of C
5 by U(1)2 with

charges given by the kernel of the map defined by

A =




1 1 1 1 1

1 p p− q − 1 0 s

0 p p− q 0 s


 , (3.12)

with FI parameters in an appropriate chamber C. The last column corresponds to the

internal point w5 = (s, s) in figure 1. As we explain, these partial resolutions may be

thought of as the total space of the canonical orbifold line bundle over a Fano orbifold M ,

which is the exceptional divisor.

Let us begin by defining

m = − p+ q + 2s . (3.13)

For m ≥ 0 we consider as basis for the C
5 // U(1)2 quotient, obtained from the kernel

of (3.12), the charge vectors
(
s 0 s p− q − 2s −p+ q

0 s 0 p− s −p

)
(3.14)

with both FI parameters taken to be positive. To see what this quotient is, we effectively

drop the last column by setting z5 = 0, and consider the resulting U(1)2 quotient of C
4.

The first line in (3.14) produces O
CP

1(p − q − 2s) ⊕ O
CP

1(0), with the fibre of the first

factor being C/Zs
∼= C. Indeed, the non-zero charges give rise to a Kähler quotient of

C
3 by the U(1) group (s, s, p − q − 2s), which gives O

CP
1(p − q − 2s), and then the zero

charge entry gives the product of this with C. This may be thought of as the bundle

O
CP

1(p− q−2s)⊕O
CP

1(0). The second row in (3.14) then projectivises this bundle via the

quotient C
2 \ {0} → WCP

1
[p−s,s] on each C

2 = C ⊕ C fibre. This space is a Fano orbifold,

which in [26] was denoted

M = K
m/2

CP
1 ×U(1) WCP

1
[p−s,s] . (3.15)
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CP
1

WCP
1
[p−s,s]

WCP
1
[p−s,s]

CP
1

Figure 4: pq-web of a canonical orbifold resolution of a C(Y p,q) singularity. The quadrangle

represents the compact divisor D5, which is the Fano orbifold M . The four non-compact divisors

Da = {za = 0}, a = 1, . . . , 4, are the total spaces of the orbifold line bundles OWCP1
[p−s,s]

(−p),
OCP1(−p − q), OWCP1

[p−s,s]
(−p), OCP1(−p + q), respectively. Slightly more precisely, these are all

Kähler quotients of C3 by the U(1) actions with weights (p − s, s,−p), (p − s, p − s,−p − q),

(p− s, s,−p), (s, s,−p+ q), respectively, and with positive moment map level.

In fact, to make contact with [26] one should set

s = p− r , (3.16)

a relation which also appears in this reference. Adding back the z5 coordinate then gives the

canonical line bundle over M . The fact that the charges in (3.14) sum to zero guarantees

that the first Chern class of the total space vanishes and so is Calabi-Yau. For every s

such that 2s > p − q, which is equivalent to m > 0, an explicit Ricci-flat Kähler metric,

asymptotic to the cone metric over Y p,q, was constructed in [26]. We shall briefly review

these metrics in the next section.

The pq-web is drawn in figure 4. The four line segments are images of copies of

CP
1 and WCP

1
[p−s,s]. More precisely, the segments on the left and right hand side of

the quadrangle representing the blown up M are two copies of CP
1. These are orbifold

divisors in M , having normal fibres C/Zs and C/Zp−s, and were denoted D2,D1 in [26],

respectively. The segments at the top and bottom represent two copies of WCP
1
[p−s,s]. The

four intersection points are the fixed points of the U(1)3 action on X, and have tangent

cones C
3/Zp−s,C

3/Zs,C
3/Zp−s,C

3/Zs, respectively (see figure 4). More precisely, in each

case the Zn ⊂ U(1) ⊂ SU(2) ⊂ SU(3) quotient produces the N = 2 An−1 singularity

C × C
2/Zn, where either n = s or n = p − s. These may be deduced from the dual toric

diagram — figure 1 — by applying Delzant’s theorem for each neighbourhood of the four

points.

Finally, suppose instead that m ≤ 0. Consider as basis for the C
5 // U(1)2 quotient,

obtained from the kernel of (3.12), the charge vectors
(
p− s −p+ q + 2s p− s 0 −p− q

0 s 0 p− s −p

)
. (3.17)
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Repeating the same reasoning as above, we see that this GLSM describes the total space

of the canonical line bundle over the Fano orbifold

M = K
−m/2

CP
1 ×U(1) WCP

1
[s,p−s] . (3.18)

Note then that m < 0 is equivalent to replacing m with −m in (3.15) (so that −m > 0)

and interchanging s and p− s. M is an orbifold fibration over CP
1, which may be thought

of as a projectivisation of the bundle O
CP

1(0)⊕O
CP

1(−p+ q + 2s). This is also the blown

up divisor at z5 = 0. For these cases no explicit Ricci-flat Kähler metric is known. The

pq-web and corresponding discussion of divisors is qualitatively similar to the case m ≥ 0.

4. Supergravity solutions for resolved Y
p,q metrics

In this section we describe Type IIB supergravity solutions that are dual to various baryonic

branches of the Y p,q quiver gauge theories. These are constructed from Ricci-flat Kähler

metrics on partial resolutions of the singular C(Y p,q) [26], whose toric description was given

in the previous section, together with the appropriate Green’s function. In the next section

we will present the gauge theory duals of these branches.

4.1 Ricci-flat Kähler metrics on Y p,q partial resolutions

In reference [26] we constructed explicit asymptotically conical Ricci-flat Kähler metrics

on the partial resolutions discussed in the previous section. Indeed, one of the aims of

section 3 was to express the toric geometry of these partial resolutions in the orbifold

fibration language of [26], which is how they were naturally constructed in that reference.

In this subsection we briefly present these metrics, in particular determining the explicit

dependence of the metric parameters on the integers p, q, s of the previous section.

We start by specialising the metrics to the case of interest. This sets n = 1 and

V = CP
1 with its standard metric, in the notation of [26]. The local Ricci-flat Kähler

metric gX is then given by

± gX =
y − x

4X(x)
dx2 +

y − x

4Y (y)
dy2 +

X(x)

y − x
[dτ + (1 − y)(dψ − cos θdφ)]2

+
Y (y)

y − x
[dτ + (1 − x)(dψ − cos θdφ)]2 + (x− 1)(1 − y)g

CP
1 , (4.1)

where the metric functions are given by

X(x) = x− 1 +
2

3
(x− 1)2 +

2µ

x− 1
(4.2)

Y (y) = 1 − y − 2

3
(1 − y)2 +

2ν

y − 1
. (4.3)

The ± sign in (4.1) depends on the choice of metric parameters µ and ν. The Kähler-

Einstein metric on CP
1 is the standard one

g
CP

1 =
1

4
(dθ2 + sin2 θdφ2) (4.4)
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which obeys Ric = 4g. As always for a Ricci-flat geometry, one is free to scale the overall

metric by a positive constant. This may be regarded as the overall size of the exceptional

sets.14

Recall from [26] that the parameter ν is uniquely fixed in terms of two integers p, k,

obeying

p < k < 2p (4.5)

where we have used the fact that the Fano index of CP
1 is I(CP

1) = 2. The integer k

of [26] is related to the p and q of Y p,q via

k = p+ q . (4.6)

Henceforth we adopt the standard Y p,q notation. The roots yi of Y (y) may be expressed

in terms of p and q, and are given by quadratic irrationals in
√

4p2 − 3q2. These obey [7]

y1 + y2 + y3 =
3

2
y1y2 + y1y3 + y2y3 = 0

y1y2y3 = 3ν − 1

2
(4.7)

where

ν =
1

12
+
p2 − 3q2

24p3

√
4p2 − 3q2 . (4.8)

The roots themselves are given by

y1 =
1

4p
(2p − 3q −

√
4p2 − 3q2)

y2 =
1

4p
(2p + 3q −

√
4p2 − 3q2) . (4.9)

In [26] we showed that, for the Ricci-flat Kähler metrics on the two small partial

resolutions of C(Y p,q), the second metric parameter µ is fixed simply in terms of ν. In

particular, µ = −ν for the small partial resolution I of section 3.2.1, whereas µ = 0 for the

small partial resolution II of section 3.2.2. Note that, in the latter case, one should take

the minus sign in (4.1).

For the canonical partial resolutions in section 3.3 with m > 0, the parameter µ instead

depends on p, q and s, where s > (p − q)/2 determines the exceptional divisor or blow-up

vertex. We may easily determine this dependence as follows. The equation

x± =
py1y2

(p − s)y1 + sy2
(4.10)

14We expect that a general asymptotically conical Ricci-flat Kähler metric on the canonical partial reso-

lutions should depend on two independent resolution parameters. However, the explicit metrics constructed

in [26] depend only on the overall size of the exceptional Fano orbifold, implying that the general metric

lies outside the ansatz considered in [26].
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determines x± in terms of p, q, s. Using [26]

−2µ = (x± − 1)2 +
2

3
(x± − 1)3 (4.11)

we obtain

− 2µ =
9m2q2

(
2p2 − 3q2 − p

√
4p2 − 3q2 +mq

)

(
2p2 − 3q2 − p

√
4p2 − 3q2 + 3mq

)3 , (4.12)

where m was defined in (3.13). In particular, note that setting m = 0 formally gives µ = 0,

as expected from the analysis of [26]. The metrics are defined only for m > 0.

We now expand the metric (4.1) near infinity to extract its subleading behaviour with

respect to the conical metric. This will allow us to make a general prediction for the order

parameter which is turned on in the gauge theory. Following [26], we define

x = ∓2

3
r2 , (4.13)

where the ∓ sign is correlated with the ± sign in (4.1). We then have

± gX = dr2 +
2

3
r2
[

1

4Y (y)
dy2+Y (y)η2+(1−y)g

CP
1 +

2

3
[dτ+ (1−y)η]2

]

± 1

r2

{
3

2

(
y − 1

2

)
dr2 + r2

[
y

4Y (y)
dy2 + y(1 − y)g

CP
1 +

+Y (y)[2(dτ+η) − yη]η

]
+

2

3
r2
(

1

2
−y
)

[dτ + (1−y)η]2
}

+ · · · ,(4.14)

where we have defined the one-form η = dψ− cos θdφ. The first line is precisely the Ricci-

flat metric on the cone over the Sasaki-Einstein manifold Y p,q. We see that the subleading

behaviour is O(r−2), indicating the presence of a dimension two operator turned on in the

gauge theory [16]. Notice that this term is universal to all metrics, while sub-subleading

terms depend for instance on µ. This behaviour should be reflected by some distinctive

property of the field theory.

4.2 Warped resolved Y p,q metrics

As discussed in section 2.1, to construct a baryonic branch solution we must specify a

location for the stack of D3-branes x0 ∈ X, and subsequently determine the corresponding

Green’s function on (X, gX ). In order to preserve the isometries of the metrics gX , we shall

restrict to U(1)3-invariant Green’s functions. The relevant part of the Laplace operator

reads

√
det gX∆ =

1

4
sin θ

[
(1 − y)

∂

∂x

(
q(x)

∂

∂x

)
+ (1 − x)

∂

∂y

(
p(x)

∂

∂y

)]

+
1

4
(y − x)

∂

∂θ

(
sin θ

∂

∂θ

)
, (4.15)
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where we have defined

q(x) = (1 − x)X(x) = − 2µ− (1 − x)2 +
2

3
(1 − x)3

p(y) = (1 − y)Y (y) = − 2ν + (1 − y)2 − 2

3
(1 − y)3 . (4.16)

One must then solve

√
det gX ∆xG(x,x0) = −C δ(x − x0) . (4.17)

Of course, the differential equation is the same in all cases, while the boundary conditions

depend on the particular class of resolution. The Green’s functions may then be determined

by separation of variables, and written as a formal expansion15

G(θ, y, x) =
∑

I

ΘI(θ)RI(y)KI(x) (4.18)

where the sum is over some “quantum numbers”, here collectively denoted I, to be deter-

mined. Equation (4.17) then reduces to three decoupled ordinary differential equations

d

dθ

(
sin θ

dΘI

dθ

)
+ a1 sin θΘI = 0 (4.19)

d

dy

(
p(y)

dRI

dy

)
− (a2y + a1 − a2)RI = 0 (4.20)

d

dx

(
q(x)

dKI

dx

)
+ (a2x+ a1 − a2)KI = 0 (4.21)

where a1, a2 are two integration constants. Here we have dropped the delta functions; this

may be done, provided of course one then imposes the appropriate boundary conditions on

the solutions.

The solutions to the first equation are just ordinary spherical harmonics Pl(cos θ)

(Legendre polynomials), labelled by an integer l through a1 = l(l + 1). Equations (4.20)

and (4.21) (when µ 6= 0), are particular cases of the Heun16 differential equation, as may

be shown by a simple change of variable [43]. In particular, setting

z =
y − y1

y2 − y1
, (4.22)

equation (4.20) may be written in the canonical form

d2R(z)

dz2
+

(
γ

z
+

δ

z − 1
+

ǫ

z − a

)
dR(z)

dz
+

αβz − λ

z(z − 1)(z − a)
R(z) = 0 , (4.23)

where the four singular points are {0, 1, a,∞} and the five parameters obey the relation

α+ β − γ − δ − ǫ+ 1 = 0 . (4.24)

15We are suppressing dependence on the location of the D3-branes, x0.
16When µ = 0, which recall corresponds to small partial resolution II, (4.21) reduces to a hypergeometric

equation and the analysis goes through with obvious modifications.
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By comparison, one reads off the following values of the parameters

a =
y3 − y1

y2 − y1
γ = δ = ǫ = 1

αβ = −3

2
a2 λ =

3(a2(y1 − 1) + a1)

2(y2 − y1)
, (4.25)

with α+ β = 2, and

a2 =
2

3
n(n+ 2) , n ∈ N , (4.26)

following from regularity.

Equation (4.21) may be dealt with in a similar way, with the roots xi of q(x) replacing

the yi above. We then arrive at the general expression for the Green’s function

G(θ, y, x) =
∑

l,n

Θl(θ)Rln(y)Kln(x) . (4.27)

The sum runs over two positive integers l, n, and the dependence on x0 may be easily

determined in each case, by an analysis near the source, similarly to [20].

In fact, as we discussed in section 2.1, existence and uniqueness of the appropriate

Green’s functions is guaranteed by general results. In particular, near to x0, the Green’s

function behaves as G(x,x0) ∼ ρ−4(x,x0), where ρ is the geodesic distance from x0. The

warped resolved metric

g10 = G(x,x0)
−1/2gR1,3 +G(x,x0)

1/2gX (4.28)

then interpolates between AdS5 ×Y p,q at infinity and AdS5 ×Z in the interior, where here

Z is an appropriate orbifold of S5. In particular, if x0 ∈ CP
1 in the small partial resolution

I, we have the N = 2 orbifold S5/Zp; if x0 is at the north or south pole of WCP
1 in the

small partial resolution II, we obtain N = 1 orbifolds S5/Zp+q or S5/Zp−q, respectively;17

finally,18 taking x0 to be a U(1)3-invariant point in a canonical partial resolution, Z is one

of the N = 2 orbifolds S5/Zs or S5/Zp−s, with 0 < s < p.

5. Baryonic branches of Y
p,q quiver theories

We now turn our attention to the Y p,q quiver gauge theories [10 – 12] and the dual interpre-

tation of the Ricci-flat Kähler partial resolutions of C(Y p,q) described in the previous two

sections. Using the results of section 2.3 one can argue that placing the N D3-branes at a

U(1)3-invariant point x0 ∈ X, for X one of the toric partial resolutions discussed, leads to

zero VEVs for most of the bifundamental fields in the Y p,q theory. We thus give generic

VEVs to the remaining fields, in each case, and analyse where the Higgsed theory flows in

17Notice that when x0 is a generic (non-singular) point on WCP
1, we have the A1 orbifold S5/Z2 when

p + q is even, and simply S5 when p + q is odd.
18In fact, more generally it turns out that Z may also be a Y p′,q′ Sasaki-Einstein manifold, such that

vol(Y p′,q′) > vol(Y p,q), although no explicit metrics gX are currently known.
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the far IR. We find in each case that the theory flows to an AdS5× (S5/Γ) supersymmetric

orbifold theory, where the action of Γ on S5 ⊂ C
3 precisely agrees with the near-horizon

limit of the N D3-branes at the point x0 ∈ X. We obtain both N = 1 and N = 2 orbifolds

this way.

We begin in section 5.1 by briefly reviewing the Y p,q quiver gauge theories. In sec-

tions 5.2, 5.3 and 5.4 we study the small partial resolutions I and II, and the canonical

partial resolutions, respectively, with various choices for the point x0 ∈ X.

5.1 Y p,q quiver gauge theories

The Y p,q quiver gauge theories may be represented by quiver diagrams with 2p nodes,

each node having gauge group U(N). For large N these theories were conjectured to flow

to a non-trivial infra-red fixed point that is AdS/CFT dual to Type IIB string theory on

AdS5 × Y p,q, where Y p,q are the Sasaki-Einstein manifolds constructed in references [6, 7].

The precise field content of a Y p,q theory may be summarised as follows:

• p SU(2) doublet fields Uα
i , i = 1, . . . , p, α = 1, 2

• q SU(2) doublet fields V α
i , i = 1, . . . , q, α = 1, 2

• p− q Zi fields, i = q + 1, . . . , p

• p+ q Yi fields, i = 1, . . . , p+ q.

In particular, the fields Uα
i , V α

i are acted on by an SU(2) flavour symmetry. The represen-

tations under the 2p gauge groups may be taken as follows:

Uα
i : N2i−1 × N2i, i = 1, . . . , p

V α
i : N2i × N2i+1, i = 1, . . . , q

Zi : N2i × N2i+1, i = q + 1, . . . , p

Yi :

{
Ni+2 × Ni, i = 1, . . . , 2q

N2(i−q)+2 × N2(i−q)−1, i = 2q + 1, . . . , p+ q.

Here we have introduced, for simplicity, a periodic index i ∈ Z/2pZ for the nodes of the

quiver; thus node 2p + 1 is identified with node 1. Without loss of generality, we have

chosen a toric phase [44] for the theory in which all Z fields appear consecutively in the

quiver diagram. For general p and q there exist different N = 1 quiver gauge theories that,

via a generalised form of Seiberg duality, flow to the same infra-red fixed point theory as

the above theories. See figure 5 for an example.

The superpotential is constructed from cubic and quartic terms in the fields, i.e. closed

oriented paths of length three and four, respectively. The cubic terms each use one U, V

and a Y field of the first kind, whereas the quartic terms are constructed using two U

fields, one Z and one Y field of the second kind. The general superpotential is given by

W = ǫαβ

(
q∑

i=1

Uα
i V

β
i Y2i−1 + V α

i U
β
i+1Y2i

)
− ǫαβ

p∑

i=q+1

ZiU
α
i+1Yi+qU

β
i . (5.1)

A trace is understood in this formula, and all subsequent such formulae for W .
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Y4 2 Y4 2

Figure 5: On the left hand side: a Y 4,2 quiver diagram in the toric phase that we adopt in this

paper. On the right hand side: a Y 4,2 quiver in a different toric phase. The two are related by

Seiberg duality.

Y4 4

Figure 6: Quiver diagram for Y 4,4, which is a

C3/Z4 orbifold.

Y4 0

Figure 7: Quiver diagram for Y 4,0, which is a

Z4 orbifold of the conifold.

The Y p,p theories are in fact abelian orbifold quiver gauge theories. More precisely, they

are the orbifold theories obtained by placing N D3-branes at the origin of C
3/Z2p where

the Z2p group is embedded as Z2p ⊂ U(1) ⊂ SU(3) y C
3 where the U(1) subgroup of SU(3)

is specified by the weight vector (−2, 1, 1). The Y p,q theories may then be constructed via

an iterative procedure, described in [12]. For illustration, some quiver diagrams are shown

in figures 6, 7, 8 and 9. The U, V,Z and Y fields have been colour-coded magenta, green,

red and blue, respectively.

Using the toric description of the Y p,q singularities, to each toric divisor Da in the

Calabi-Yau cone C(Y p,q), a = 1, . . . , 4, we may associate baryonic operators B(Σa, Li).

Here the Σa, a = 1, . . . , 4, are the links of the toric divisors Da, and Li is a torsion line

bundle on Σa. In the Kähler quotient (or equivalently GLSM) description of C(Y p,q) =

C
4 //0 U(1) in section 3.1 recall that the toric divisors are given by Da = {za = 0}. For

example, we have Σ1
∼= S3/Zp, so that

|π1(Σ1)| = p . (5.2)
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Y4 3

Figure 8: Quiver diagram for Y 4,3.

Y4 1

Figure 9: Quiver diagram for Y 4,1.

Xi Σa |π1(Σa)| Qa[UB(1)]

U1
i Σ1 p −p
Yi Σ2 p+ q p− q

U2
i Σ3 p −p
Zi Σ4 p− q p+ q

Table 1: Bifundamentals of the Y p,q quivers and the corresponding four irreducible toric divisors.

This leads to p distinct baryonic particles that may be wrapped on Σ1, due to the p distinct

flat line bundles that may be turned on in the worldvolume theory. In fact the correspond-

ing baryonic operators may be constructed from determinants of the bifundamental fields

U1
i :

B(Σ1, Li) = B(U1
i ) =

1

N !
ǫα1···αNU1 β1

i,α1
· · ·U1 βN

i,αN
ǫβ1···βN

. (5.3)

The relation between fields (or rather their corresponding baryons) and toric divisors for

Y p,q is summarised in the table below.

The last entry is the baryonic charge, which is precisely the GLSM charge for the

minimal presentation of the singularity [14]. The V α
i fields, that do not appear in the

table, are slightly more complicated objects from the geometric point of view. These may

be associated to the reducible toric submanifolds Σ4 ∪ Σ1 and Σ3 ∪ Σ4, respectively [14].

Classically, a VEV for a baryonic operator in the UV field theory may be given by

assigning a constant value to a determinant operator, and this in turn may be achieved

by setting the constituent bifundamental fields to some multiple of the identity matrix. In

other words, giving a VEV to a baryonic operator is, at the classical level, equivalent to

Higgsing some of the bifundamental fields. Therefore, in the following, we will talk about

Higgsing fields or giving VEVs to baryonic operators interchangeably.

The procedure of obtaining new quivers from old ones, via Higgsing the original the-

ory, is well-studied. In particular, for toric theories this method allows one to derive, in

principle, a quiver gauge theory that describes the worldvolume theory for N D3-branes at

any partial resolution of the parent toric singularity. Although an analysis of the classical

moduli space of vacua directly from the gauge theory is not available for the Y p,q theories,
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U
1

U
2

Figure 10: Placing the D3-branes at the north or south pole of the exceptional CP
1 in the first

small resolution gives VEVs to either the U1 or U2 baryons. These are related by the action of

SU(2).

it is worth noting that the following non-chiral protected operator should generically be

turned on

U = −p
p∑

i=1

2∑

α=1

|Uα
i |2 + (p+ q)

p∑

i=q+1

|Zi|2 + (p− q)

p+q∑

i=1

|Yi|2 + q

q∑

i=1

2∑

α=1

|V α
i |2 . (5.4)

This operator belongs to the conserved baryonic current supermultiplet of the single non-

anomalous baryonic U(1)B symmetry (recall that b3(Y
p,q) = 1). This has protected con-

formal dimension ∆ = 2 and its presence may be inferred from the subleading expansion

of the metrics at infinity (see section 4). This is the Y p,q generalisation of the operator

that was originally discussed in [16] for the conifold theory.

5.2 Small partial resolution I

We begin with the small partial resolution I. Consider placing the N D3-branes at any point

x0 ∈ CP
1 on the exceptional CP

1, as shown in figure 10. All such points are equivalent

under the SU(2) isometry of the metric (4.1). By placing the N D3-branes at the north

(south) pole of CP
1 = S2, the results of section 2.3 immediately imply that the only

toric divisor that may produce a non-zero condensate is that shaded in figure 10. This

corresponds to the fields U1
i (U2

i ), where recall i = 1, . . . , p labels the torsion line bundle.

The theory should flow in the IR to the near horizon geometry of the N D3-branes, which is

determined by the toric diagrams in figure 11. Indeed, according to our general discussion

in section 2, this gravity solution should correspond to an RG flow from the Y p,q theory in

the UV to the N = 2 Ap−1 SCFT orbifold theory in the IR, where the latter arises as the

near horizon limit of the branes at the point x0 ∈ CP
1.

We now verify these facts directly in the gauge theory. In particular, we give non-zero

VEVs to all p of the U1 fields by setting

U1
i = λi IN×N (5.5)
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(0,0)

(p−q−1,p−q)

(p,p)

(0,0) (1,0)

(p,p)

Figure 11: Toric diagrams for the Ap−1 = C × C2/Zp orbifold theories obtained by giving VEVs

to the U1 and U2 baryons, respectively.

where λi 6= 0 for i = 1, . . . , p. Each chiral matter field is in the bifundamental representa-

tion of U(N)i × U(N)j for the two nodes i and j that the corresponding arrow connects.

The VEVs (5.5) then break the gauge symmetry to the diagonal U(N) subgroup. This

breaks the U(N)2p gauge symmetry to U(N)p, where the nodes of the quiver are effectively

contracted pairwise around the quiver diagram. The VEVs also break the SU(2) flavour

symmetry. The fields U2
i are adjoints under the diagonal U(N), and thus become loops at

each of the p nodes. The superpotential becomes

W̃ =

q∑

i=1

λiV
2
i Y2i−1 − U2

i V
1
i Y2i−1 + V 1

i U
2
i+1Y2i − λi+1V

2
i Y2i

+

p∑

i=q+1

λiZiU
2
i+1Yi+q − λi+1ZiYi+qU

2
i . (5.6)

Introducing the new fields

Mi = λiY2i−1 − λi+1Y2i, i = 1, . . . , q (5.7)

and substituting for Y2i in terms of Y2i−1 one obtains

W̃ =

q∑

i=1

V 2
i Mi − U2

i V
1
i Y2i−1 +

1

λi+1
V 1

i U
2
i+1(λiY2i−1 −Mi)

+

p∑

i=q+1

λiZiU
2
i+1Yi+q − λi+1ZiYi+qU

2
i . (5.8)

The quadratic terms give masses to the corresponding fields, which should thus be inte-

grated out in the IR limit. Integrating out V 2
i sets Mi = 0 and hence

λiY2i−1 = λi+1Y2i ≡ Ỹi, i = 1, . . . , q . (5.9)

This reduces the number of Y fields by q, giving p Y and p Ỹ fields in total. Integrating

out Mi sets λiV
2
i = λi+1V

1
i U

2
i+1. In the IR we thus obtain the effective superpotential

W̃eff =

q∑

i=1

1

λi+1
V 1

i U
2
i+1Ỹi −

1

λi
U2

i V
1
i Ỹi +

p∑

i=q+1

λiZiU
2
i+1Yi+q − λi+1ZiYi+qU

2
i . (5.10)
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Figure 12: Quiver diagram for the C3/Z4 orbifold theory, obtained via Higgsing all U1 or all U2

baryons in the Y 4,1 theory. The origin of each field may be traced via its colour.

This is precisely the matter content, and cubic superpotential, of the N = 2 Ap−1 orbifold

theory. There are p gauge groups i = 1, . . . , p, with the following matter content:

U2
i : Ad[U(N)i], i = 1, . . . , p

V 2
i : Ni × Ni+1, i = 1, . . . , q

Zi : Ni × Ni+1, i = q + 1, . . . , p

Ỹi : Ni+1 ×Ni, i = 1, . . . , q

Yi : Ni−q+1 × Ni−q, i = 2q + 1, . . . , p+ q.

The final quiver for Y 4,1 is shown in figure 12. Note that the couplings λi may effectively

all be set equal to one in (5.10) by the field redefinitions

U2
i = λiŨ

2
i , i = 1, . . . , p

Zi =
1

λiλi+1
Z̃i, i = q + 1, . . . , p+ q . (5.11)

5.3 Small partial resolution II

In this section we consider the second small partial resolution. There are various inequiv-

alent points x0 ∈ WCP
1 to place the N D3-branes.

5.3.1 Higgsing Z

Consider first placing the N D3-branes at the north pole of the exceptional WCP
1, as

shown in figure 13. This point has local geometry (tangent cone) C
3/Zp+q, where recall

from section 3.2.2 that the latter is embedded as Zp+q ⊂ U(1) ⊂ SU(3) where the U(1)

subgroup has weights (−2, 1, 1). According to our general discussion, the only fields that

may acquire VEVs are the Z fields, and the theory should flow in the IR to the N = 1

orbifold theory corresponding to the abelian quotient singularity C
3/Zp+q.

To verify the above directly in the gauge theory, we thus Higgs all p−q of the Zi fields,

i = q + 1, . . . , p, by setting

Zi = λi IN×N (5.12)

where λi 6= 0 for i = q+1, . . . , p. The Higgsing breaks to the diagonal U(N) gauge groups:

this contracts p − q nodes in the quiver pairwise, leaving a U(N)p+q gauge theory. Of
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(p,p)

Figure 13: Placing the D3-branes at the north pole of the exceptional WCP
1 in the second small

partial resolution gives VEVs to all the Z baryons.

Figure 14: Quiver diagram for the C3/Z5 orbifold theory, obtained via Higgsing all Z baryons in

the Y 4,1 theory. The origin of each field may be traced via its colour.

course, since Z is a singlet under SU(2), the VEVs preserve the SU(2) symmetry. The

cubic terms in the superpotential are unaffected. We obtain the superpotential

W̃eff = ǫαβ

q∑

i=1

Uα
i V

β
i Y2i−1 + V α

i U
β
i+1Y2i + ǫαβ

p∑

i=q+1

λiU
α
i+1Yi+qU

β
i . (5.13)

Note that the couplings λi may be effectively set to unity by the field redefinitions Ỹi+q =

λiYi+q, i = q + 1, . . . , p. This is indeed precisely the gauge theory for the N = 1 C
3/Zp+q

orbifold singularity [12].

5.3.2 Higgsing Y

Next consider placing theN D3-branes at the south pole of the exceptional WCP
1, as shown

in figure 15. This point has local geometry (tangent cone) C
3/Zp−q, where again the latter

is embedded as Zp−q ⊂ U(1) ⊂ SU(3) where the U(1) subgroup has weights (−2, 1, 1).

According to our general discussion, the only fields that may acquire VEVs are the Y

fields, and the theory should flow in the IR to the N = 1 orbifold theory corresponding to

the abelian quotient singularity C
3/Zp−q.
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Figure 15: Placing the D3-branes at the south pole of the exceptional WCP
1 in the second small

partial resolution gives VEVs to all the Y baryons.

We thus Higgs all p+ q of the Yi fields, i = 1, . . . , p+ q, by setting

Yi = λi IN×N (5.14)

where λi 6= 0 for i = 1, . . . , p+ q. This Higgsing leaves a U(N)p−q theory, one gauge group

for each Z field. Again the Higgsing leaves SU(2) unbroken, resulting in the superpotential

W̃ = ǫαβ

q∑

i=1

V β
i

(
λ2i−1U

α
i − λ2iU

α
i+1

)
− ǫαβ

p∑

i=q+1

λi+qZiU
α
i+1U

β
i . (5.15)

We make the following field redefinition

Mα
i = λ2i−1U

α
i − λ2iU

α
i+1, i = 1, . . . , q (5.16)

and solve for Uα
i+1, for i = 1, . . . , q, in terms of Uα

1 and {Mα
i }. The first sum in (5.15)

contains only quadratic terms, resulting in masses for these fields. In particular, integrating

out V β
i sets Mα

i = 0 for all i = 1, . . . , q, resulting in

λ2i−1U
α
i = λ2iU

α
i+1, i = 1, . . . , q . (5.17)

This leaves only p− q independent Uα fields, for each α = 1, 2. Integrating out Mα
i allows

one to solve for the V β
i . The IR superpotential is then

W̃eff = ǫαβ

p∑

i=q+1

λi+qZiU
α
i+1U

β
i , (5.18)

where as usual we may redefine Z̃i = λi+qZi, i = q+1, . . . , p to set the coefficients equal to

1. This is the correct matter content and superpotential for the C
3/Zp−q orbifold theory.

5.3.3 Higgsing Z and Y

Finally, consider placing the D3-branes at a generic (non-singular) point on the exceptional

WCP
1, as shown in figure 17. The near horizon limit of the branes depends on the parity

of p+ q: for p+ q even one obtains C×C
2/Z2, whereas for p+ q odd one obtains C

3. Thus
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Figure 16: Quiver diagram for the C3 theory (N = 4 SYM), obtained via Higgsing all Y baryons

in the Y 4,3 theory. The origin of each field may be traced via its colour.

Y

Z

Figure 17: Placing the D3-branes at a generic point on the exceptional WCP
1 of the second small

resolution gives VEVs to all Z and Y baryons.

this gravity solution describes an RG flow from the Y p,q theory in the UV to either the

N = 2 A1 orbifold theory, for p+ q even, or N = 4 SYM, for p+ q odd. Note that only in

the former case is there an explicit Ricci-flat Kähler metric in section 4.

The picture in figure 17 suggests that we Higgs all the Z and Y baryons simultaneously.

We thus give the following non-zero VEVs:

Yi = λi IN×N + Ỹi , i = 1, . . . , p+ q

Zi = µi IN×N + Z̃i , i = q + 1, . . . , p . (5.19)

Notice that we have included explicitly the fluctuation fields around the vacuum expectation

values.

Recalling that the quiver is in a toric phase where all loops corresponding to cubic

and quartic superpotential terms appear consecutively on going around the quiver, one

can verify that starting from any node of the quiver, and grouping it with gauge groups

(nodes) connected to the first one by a Higgsed field (Z or Y ), there are two possibilities:

(1) if p+ q is even, the nodes are divided into two disjoint sets of p gauge groups each, and

therefore the unbroken gauge groups are the two diagonal subgroups respectively, which

we denote U(N)1 × U(N)2, (2) if p + q is odd, chasing around the quiver the nodes that

are connected by fields that have a non-zero VEV, we see that all nodes are covered. Thus

the unbroken gauge group is simply the diagonal U(N)diag.

Most of the calculation of the effective IR superpotential may be carried out for the

two cases simultaneously, and we will indicate at which point the two calculations differ.
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Inserting (5.19) into the superpotential one obtains

W̃ = ǫαβ

q∑

i=1

V β
i (λ2i−1U

α
i − λ2iU

α
i+1) − ǫαβ

p∑

i=q+1

µiλi+qU
α
i+1U

β
i

+ǫαβ

q∑

i=1

(
Uα

i V
β
i Ỹ2i−1 + V α

i U
β
i+1Ỹ2i

)

−ǫαβ

p∑

i=q+1

(
µiU

α
i+1U

β
i Z̃i + λi+qU

β
i U

α
i+1Ỹi+q

)
, (5.20)

where we have omitted the quartic terms that will turn out to be irrelevant in the IR. The

first line is quadratic in the 2(p+q) fields U and V ; however, not all these fields get masses.

To see how many of them remain massless one must diagonalise the 2(p + q) × 2(p + q)

quadratic form in the U and V fields. It turns out that four linear combinations are massless

if p+q is even, whereas only two combinations are massless if p+q is odd. We may set Mα
i =

λ2i−1U
α
i −λ2iU

α
i+1 for i = 1, . . . , q, and go to the basis consisting of Mα

i , V
α
i for i = 1, . . . , q,

and Uα
q+2, . . . , U

α
p , U

α
1 , where we have solved for Uα

q+1 in terms of the other fields as19

Uα
q+1 = cUα

1 −
q∑

i=1

aiM
α
i . (5.21)

Integrating out V α
i and Mα

i then implies

λ2i−1U
α
i = λ2iU

α
i+1

V α
i /ai = λ2q+1µq+1U

α
q+2

i = 1, . . . , q , (5.22)

respectively. Integrating out the remaining Uα
i fields yields

µi−1λq+i−1U
α
i−1 = µiλi+qU

α
i+1 i = q + 2, . . . , p (5.23)

µpλp+qU
α
p = cµq+1λ2q+1U

α
q+2 (i = 1) . (5.24)

If p+ q is even we obtain the following identifications:

Aα =
Uα

1

c1
= · · · =

Uα
q

cq
=
Uα

q+1

cq+1
= · · · =

Uα
p−1

cp−1
∈ N1 × N2

Bα =
V α

1

a1
= · · · =

V α
q

aq
=
Uα

q+2

cq+2
= · · · =

Uα
p

cp
∈ N1 × N2 , (5.25)

where ci are constants that may be determined iteratively using the relations (5.22)–(5.24).

Inserting these into W̃ , we get the final expression for the effective superpotential

W̃eff = H̃1

(
A1B2 −A2B1

)
+ H̃2

(
B1A2 −B2A1

)
(5.26)

19The constants c, ai may be determined iteratively in terms of the λi. It is straightforward, if cumber-

some, to write them down.
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Figure 18: Quiver diagram for the A1 theory, obtained via Higgsing all Z and Y baryons in a Y p,q

theory with p + q even. Bifundamentals arise as a mixture of U and V fields, while the adjoints

arise as a combination of Z and Y fields.

where we have defined the two adjoint fields

H̃1 =

q∑

i=1

aiciỸ2i−1 +

(p−q)/2∑

i=1

cq+2i−1cq+2i

(
λ2q+2i−1Ỹ2q+2i−1 − µq+2i−1Z̃q+2i−1

)

H̃2 =

q∑

i=1

aiciỸ2i +

(p−q)/2∑

i=1

cq+2icq+2i+1

(
λ2q+2iỸ2q+2i − µq+2iZ̃q+2i

)
. (5.27)

This is indeed the correct superpotential for the N = 2 A1 theory, as pictured in figure 18.

If p+ q is odd, the last entries in the relations (5.25) are exchanged, hence Uα
p ∼ Uα

q+1

and Uα
p−1 ∼ Uα

q+2, so that all fields get identified on using (5.24). This case may be obtained

formally from the result above, on setting Xα = Aα = Bα and inserting this into (5.26).

Of course, one has to remember that the gauge group is broken further to the diagonal

U(N)diag. The final expression for the effective superpotential is simply

W̃eff = H̃(X1X2 −X2X1) , (5.28)

where H̃ = H̃1 + H̃2. This is the N = 4 SYM theory, as expected.20

5.4 Canonical partial resolutions

Finally, we consider the canonical partial resolutions of section 3.3. These correspond to

blowing up a toric Fano orbifoldM . The partial resolution is the total space of the canonical

orbifold line bundle over this Fano orbifold. There are p−1 such partial resolutions, labelled

naturally by an integer s, with 0 < s < p, that labels the blow-up vertex in the toric

diagram — see figure 1. In this section we consider placing the N D3-branes at the toric

fixed points of the exceptional divisor. As one can see from figure 4, there are four such

points. However, two points that lie on the same CP
1 ⊂M divisor in M are related by the

isometric action of SU(2). Thus there are really only two cases to consider. We consider

these in the next two subsections.

20We remark that there are many more Higgsing patterns that one may consider, resulting in different

partial resolutions. Here we have considered a set of examples motivated by the existence of the corre-

sponding explicit Ricci-flat Kähler metrics [26], in which the theory always flows to an orbifold theory

in the IR. However, there also exist baryonic branches where the theory flows between two non-orbifold

SCFTs. Rather simple examples may be given for the Y p,q theories. In particular, giving VEVs to (any)

set of 2s ≤ p− q Z baryonic operators, the theory flows to a Y p−s,q+s quiver in the IR. Furthermore, giving

VEVs to 2r ≤ 2q pairs of Y baryonic operators, the theory flows to a Y p−r,q−r quiver in the IR. In both

cases, it may be verified that the IR value of the a central charge is smaller than that in the IR.

– 35 –



J
H
E
P
0
4
(
2
0
0
8
)
0
6
7

U1V 1

C
3/Zp−s

Z

Figure 19: Placing the D3-branes at the U(1)3-invariant point on the exceptional divisor, as shown,

gives VEVs to a set of U1, V 1 and Z baryons.

5.4.1 Higgsing U1, V 1 and Z

Placing the D3-branes at the corner of the exceptional divisor M , as in figure 19, implies

that no Y or U2 fields get non-zero VEVs. In this section we show that a certain two-

parameter family of VEVs all flow to the same IR theory, namely the N = 2 Ap−s−1

orbifold theory. This is precisely as expected from the gravity dual, since this is indeed the

near-horizon geometry of the stack of D3-branes.

We give the following VEVs:

U1
i = λi IN×N , i = 1, . . . , p

V 1
i = µi IN×N , i = 1, . . . t

Zi = µi IN×N , i = q + 1, . . . , q + s− t . (5.29)

This is not the most general set of VEVs we could turn on, but an analysis of the most

general case would be too cumbersome; the above choice for the VEVs is nonetheless still

rather general. Here 0 ≤ t ≤ s, with 0 < s < p. We also assume, again for simplicity, that

t < q and s− t < p− q; the non-strict forms of these inequalities must hold, since e.g. there

are only q V 1 fields to give VEVs to. The strict inequalities slightly simplify some of the

following analysis.

The superpotential becomes

W̃ =

t∑

i=1

λiV
2
i Y2i−1 − µiU

2
i Y2i−1 + µiU

2
i+1Y2i − λi+1V

2
i Y2i

+

q∑

i=t+1

λiV
2
i Y2i−1 − U2

i V
1
i Y2i−1 + V 1

i U
2
i+1Y2i − λi+1V

2
i Y2i

+

q+s−t∑

i=q+1

λiµiU
2
i+1Yi+q − λi+1µiU

2
i Yi+q

+

p∑

i=q+1+s−t

λiZiU
2
i+1Yi+q − λi+1ZiYi+qU

2
i . (5.30)
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We introduce the following new fields

Mi = λiY2i−1 − λi+1Y2i, i = 1, . . . , q

Ni = µiY2i − µi+1Y2i+1, i = 1, . . . , t− 1

Pi = µi

(
λiU

2
i+1 − λi+1U

2
i

)
, i = q + 1, . . . , q + s− t (5.31)

and substitute for Y2i in terms of Y2i−1 and Mi, i = 1, . . . , q; Y2i+1 in terms of Y2i and Ni,

i = 1, . . . , t− 1; and U2
i+1 in terms of U2

i and Pi, i = q+1, . . . , q+ s− t. In particular, note

that

Y2t−1 = cY1 −
t−1∑

i=1

aiMi + biNi (5.32)

where c, ai and bi are positive constants that we do not need to determine explicitly.21 The

superpotential, in these new variables, then reads

W̃ = −λ1U
2
1Y1 +

(
t−1∑

i=1

V 2
i Mi + U2

i+1Ni

)
+ V 2

t Mt +
1

λt+1
µtU

2
t+1 (λtY2t−1 −Mt)

+

q∑

i=t+1

V 2
i Mi − U2

i V
1
i Y2i−1 +

1

λi+1
V 1

i U
2
i+1 (λiY2i−1 −Mi) +

q+s−t∑

i=q+1

Yi+qPi

+

p∑

i=q+1+s−t

λiZiU
2
i+1Yi+q − λi+1ZiYi+qU

2
i (5.33)

where one must substitute for Y2t−1 in the first line using (5.32). As usual, the quadratic

terms lead to masses for the corresponding fields, which must then be integrated out in the

IR. Integrating out V 2
i , U2

i+1 and Yi+q sets

Mi = 0, i = 1, . . . , q

Ni = 0, i = 1, . . . , t− 1

Pi = 0, i = q + 1, . . . , q + s− t (5.34)

respectively. Integrating out Mi, i = 1, . . . , t− 1 sets V 2
i = (aiλtµt/λt+1)U

2
t+1. Integrating

out Mt sets V 2
t = (µt/λt+1)U

2
t+1. Integrating out Mi, i = t+1, . . . , q sets λi+1V

2
i = V 1

i U
2
i+1.

Integrating out Ni, i = 1, . . . , t − 1 sets U2
i+1 = (biλtµt/λt+1)U

2
t+1. Integrating out Pi,

i = q + 1, . . . , q + 1 + s− t sets Yi+q = 0.

Finally, we integrate out U2
1 to obtain λ1Y1 = λpYp+qZp; Y1 to obtain

λ1U
2
1 = (cλtµt/λt+1)U

2
t+1 ; (5.35)

and U2
t+1 to obtain µtλtY2t−1 = λt+1V

1
t+1Y2t+1.

21These constants may be determined by using iteratively the relations (5.31).
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q − t nodes

Yp+q Yp+q

Zp

U 2
t+1 U 2

t+2

Y2t+1

V 1
t+1

U 2
q+1

Zp

U 2
pU 2

q+2

p − (q + s − t) nodes

Y2q+1+s−t

Zq+1+s−t

Figure 20: Quiver for the N = 2 Ap−s−1 orbifold quiver gauge theory, obtained via Higgsing a

set of U1, V 1 and Z fields.

All this results in the simple cubic superpotential

W̃eff =

q∑

i=t+1

λi

λi+1
V 1

i U
2
i+1Y2i−1 − U2

i V
1
i Y2i−1

+

p∑

i=q+1+s−t

λiZiU
2
i+1Yi+q − λi+1ZiYi+qU

2
i . (5.36)

Here U2
t+1 is to be identified with U2

1 = U2
p+1 via (5.35), and U2

q+1+s−t is to be identified

with U2
q+1 using Pi = 0 iteratively in the relations (5.31). As usual, the reader may check

that some simple field redefinitions effectively set all the constants in W̃eff equal to one.

This is precisely the field content and superpotential of the N = 2 Ap−s−1 orbifold theory,

depicted in figure 20.

5.4.2 Higgsing U1 and Y

Placing the D3-branes at the corner of the exceptional divisor M , as in figure 21, implies

that no Z or U2 fields get non-zero VEVs. In this section we show that a certain two-

parameter family of VEVs all flow to the same IR theory, namely the N = 2 Ap−r−1

orbifold theory. Recall that here r = p − s. This is again precisely as expected from the

gravity dual, since this is indeed the near-horizon geometry of the stack of D3-branes.

We give the following VEVs:

U1
i = λi IN×N , i = 1, . . . , p

Yi = µi IN×N , i = 1, . . . 2t

Yi = µi IN×N , i = 2q + 1, . . . , 2q + r − t . (5.37)

Again, this is not the most general set of VEVs we could turn on, but rather a representative

calculation. In particular, one may also turn on an odd number of VEVs for the cubic Y

fields. We have 0 ≤ t ≤ r, with 0 < r < p, t < q, r − t < p− q.
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Figure 21: Placing the D3-branes at the U(1)3-invariant point on the exceptional divisor, as shown,

gives VEVs to a set of U1 and Y baryons.

The superpotential becomes

W̃eff =
t∑

i=1

λiµ2i−1V
2
i − µ2i−1V

1
i U

2
i + µ2iV

1
i U

2
i+1 − λi+1µ2iV

2
i

+

q∑

i=t+1

λiV
2
i Y2i−1 − U2

i V
1
i Y2i−1 + V 1

i U
2
i+1Y2i − λi+1V

2
i Y2i

+

q+r−t∑

i=q+1

λiµi+qZiU
2
i+1 − λi+1µi+qZiU

2
i

+

p∑

i=q+1+r−t

λiZiU
2
i+1Yi+q − λi+1ZiYi+qU

2
i . (5.38)

Note the linear terms in V 2
i for i = 1, . . . , 2t. Strictly speaking we should have allowed for

fluctuations of the fields around their vacuum expectation values. These fluctuations will

give a mass to V 2
i , which as usual is then integrated out in the IR. Since these fluctuation

terms will turn out to be irrelevant in the IR, we suppress them in order to keep expressions

to a manageable length. We now define

Mi = µ2iU
2
i+1 − µ2i−1U

2
i i = 1, . . . , 2t

Ni = λiY2i−1 − λi+1Y2i, i = t+ 1, . . . , q

Pi = µi+q

(
λiU

2
i+1 − λi+1U

2
i

)
, i = q + 1, . . . , q + r − t . (5.39)

We then substitute for U2
i+1 in terms of U2

i and Mi, i = 1, . . . , 2t; Y2i in terms of Y2i−1 and

Ni, i = t + 1, . . . , q; and U2
i+1 in terms of U2

i and Pi, i = q + 1, . . . , q + r − t. Integrating

out massive fields proceeds much as in the previous subsection. In particular, however, we

obtain the necessary relations

λiµ2i−1 = λi+1µ2i, i = 1, . . . , t (5.40)
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on the VEVs. These effectively come from the F-term relations. There are thus effectively

only r independent VEVs for the Y fields, rather than the 2t + (r − t) VEVs we began

with. The pattern of VEVs then parallels that for the Z fields in the previous subsection.

The final effective superpotential in the IR is given by

W̃eff =

q∑

i=t+1

λi

λi+1
V 1

i U
2
i+1Y2i−1 − U2

i V
1
i Y2i−1

+

p∑

i=q+1+r−t

λiZiU
2
i+1Yi+q − λi+1ZiYi+qU

2
i . (5.41)

Here U2
t+1 is essentially identified with U2

1 ; and U2
q+1+r−t is essentially identified with U2

q+1.

Note this is precisely the same as (5.36), with r in place of s. This is therefore the matter

content and cubic superpotential of the Ap−r−1 orbifold quiver gauge theory.

6. Discussion

In this paper we studied deformations of SCFTs with Sasaki-Einstein duals, obtained by

giving non-zero VEVs to baryonic operators. We have argued that giving expectation

values to baryonic operators (and only to these) in a superconformal quiver induces an RG

flow to another IR conformal fixed point. The supergravity backgrounds AdS/CFT dual

to these flows are warped resolved asymptotically conical Calabi-Yau metrics, where the

warping is induced by a stack of N D3-branes placed at some residual singularity, encoding

the IR SCFT. When the geometries and field theories are toric, one may represent the

full background in terms of pq-web-like diagrams. As explicit examples, we have discussed

the partially resolved Y p,q metrics presented in [26]. The toric geometry description of

the latter elucidates the dual field theory interpretation in terms of VEVs of baryonic

operators.

We have also discussed a proposal for computing the condensate of the baryonic op-

erators that are turned on in a given VEV-induced RG flow. In particular, we have given

further evidence for identifying the exponentiated on-shell Euclidean D3-brane action as

the string dual to baryonic condensates in a generic supergravity background of the above

type. This identification gives a simple sufficient condition for a condensate to vanish, and

we have checked this criterion in a number of non-trivial examples. However, the examples

studied in this paper make clear that in a generic situation (i.e different from the conifold

example discussed in [20]) the calculation of the condensate that we have outlined is neces-

sarily rather more complicated. Indeed, recall that the AdS/CFT definition of a baryonic

particle involves specifying a supersymmetric 3-submanifold and a flat (hence torsion) line

bundle. Incorporating this into the instantonic D3-brane calculation requires studying the

extension of this pair of data from the boundary to the interior. In turn, this requires

a careful analysis of the flat background fields in a given geometry. These issues will be

addressed in future work [36].
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