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Abstract: A measure of the dependence of a multivariate response variable upon a cate-
gorical variable is introduced. Its characteristics are explored via simulations by referring
to a specific mixture association model. Inferential aspects are investigated using a per-
mutation test approach. We present preliminary results.
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1 Introduction

Kapp and Tibshirani (2007) introduce the IGP (In Group Proportion) measure within the
context of validating clusters. LetPT be a partition ofN observations on a multivariate
variableY into K clusters. Here,T denotes the (training) data set. Suppose that new
observations onY are available in a second datasetD. It is of interest to assign them
to one of the previously determined clusters; the IGP has been introduced to evaluate
the adequacy of the chosen assignment procedure. (The classification procedure may be
defined in different ways).
Let CT(i) indicate the cluster to which thei-th observation inD is assigned, withi =
1, . . . ,ND andND indicating the size ofD. Denote byPD the resulting partition ofD.
The (overall) IGP is defined as the proportion of cases inD that are classified to the
same group as their nearest neighbor. More precisely, letNN(i) ∈ D indicate the nearest
neighbor of thei–th observation inD, and letCT(NN(i)) denote the cluster to which
NN(i) is assigned. The IGP is thereforeIGP(PD) = 1

ND
∑ND

i=11[CT(NN(i)) = CT(i)].
We propose to use the IGP index to measure the extent of the association between one
set of response variables,Y, and one or more explanatory variablesX, both observed on
a singledataset. In particular, we focus on the case of one categorical variableX, taking
valuesx∗1, . . . ,x

∗
K. Let PX indicate the partition induced by theseK groups andCX(i) the

group to which thei–th observation belongs, whereCX(i) = k if xi = x∗k. We define:

IGP(Y|X) =
1
N

N

∑
i=1

1[CX(NN(i)) = CX(i)] (1)

If the responsesY are related toX, thenPX should provide a good partition also with
respect toY, characterized by a high value ofIGP(Y|X).
In their paper, Kapp and Tibshirani consider two different data sets. The first one,T, is
used to find clusters, and the observations of the second one,D, are assigned to those
clusters. The IGP measures the reliability of this procedure, i.e., if and to which extent
the clusters obtained onT provide an adequate prediction of cases inD. The two data



sets contain information on the same variables. In other words, an overall data set is
partitioned by row into one training and one validation set.
In our problem thesame data set is used but it is partitioned by columns. This can be
described as a sort of nonparametric ANOVA problem on possibly multivariate responses.
Below we explore the main features of this IGP-based approach through simulations
based on a specific multivariate association model, with particular attention to the in-
ferential aspects of the approach.

2 IGP as a measure of association

Consider the association model betweenX andY such thatY is a mixture of two dis-
tributions fV and fZ with mixing parameterπ ∈ [0,1]. Also, V andZ are distributed as
two mixtures, each of three components( fV

1 , fV
2 , fV

3 ) and( f Z
1 , f Z

2 , f Z
3 ) respectively, with

mixing vectors(αV
1 ,αV

2 ,αV
3 ) and(αZ

1 ,αZ
2 ,αZ

3 ). V andZ are assumed independent.
In particular, we set

fV
1 ∼ N((0,2)T ,σ2

V I) fV
2 ∼ N((−1,−1)T ,σ2

V I) fV
3 ∼ N((1,−1)T ,σ2

V I)
f Z
1 ∼ N((0,−5)T ,σ2

ZI) f Z
2 ∼ N((2,5)T ,σ2

ZI) f Z
3 ∼ N((−2,5)T ,σ2

ZI)

with (αV
1 ,αV

2 ,αV
3 ) = (0.5,0.25,0.25) and(αZ

1 ,αZ
2 ,αZ

3 ) = (0.5,0.25,0.25). The categori-
cal explanatory variableX is defined as the mixture component from whichV is generated.
Notice that this induces three groups whose within dispersion is related to the standard
deviationσV . Thus,Y is related toX if the association parameterπ assumes values close
to 1. If π assumes low values,Y does not depend uponX (throughV) but, rather, upon
Z. In particular, the valueπ = 0 in this model corresponds to the null hypothesis ofno
association. This null hypothesis consists of the fact that the groups induced byV have
no explanatory power onY.
We conducted some simulations to explore the relationship betweenπ and the IPG. For
fixed values ofσ2

V , σ2
Z we repeatedly generated samples of sizeN from the model above,

and estimated the expected value of the IGP measure over the simulated samples. We used
1000 simulated datasets for each value ofπ. As an illustration, the left panel in Figure 1
shows the monotonicity that was observed across the simulations (results refer to the case
σ2

Z = 5; similar patterns were observed for different values). This behavior suggests that
IGP may be considered a reasonable measure of dependence.
However, a confounding effect exists in general between association (as measured byπ)
and the strength of the structure inY. For example, ifπ = 1 but Y has weak structure
(equivalently, ifY coincides withV but the varianceσ2

V is very large) then the groups
induced byV will not retain information on the dispersion ofY. This situation will practi-
cally coincide with the case of no association, even thoughπ = 1. This behavior appears
to be a general characteristic of this problem in general, and should be kept in mind when
interpreting the index.
In other words, the ability of the IGP to measure the level of association is dependent on
the fact that there is some structure inY to begin with. IfY has no structure, so that the
X-groups can essentially be viewed as a random selection from the observations’ labels
thenany measure of association will be useless. By construction IGP assumes values
ranging from 0 to 1. As mentioned above, the maximum value is reached only if: (i)
There is a strong association betweenY andX; and (ii) Y has a strong structure, i.e.,Y



Figure 1: E(IGP) (left) and power (right) estimated over 1000 simulations. Plots are
based on samples of sizeN = 100(please refer to the text for details) .
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can be meaningfully partitioned into clusters having a low within-dispersion. If attention
is focused on the evaluation of association, we may be interested in removing the depen-
dence of the index (or, better, of its maximum value) on theY-structure. Consistently
with what we pointed out above, in simulations we observed that when theY structure is
highly dispersed, the IGP index does not reach its theoretical maximum value (one) and,
moreover, the index shows a low sensitivity to the strength of association (i.e., it increases
very slowly asπ increases). This poses the problem of finding sharp bounds for the IGP.
Therefore, the capability ofX to describe theY-dispersion should not be evaluated in
absolute terms, i.e. by comparing theX-groups with an hypothetical optimal partition
having IGP equal to one, as such a partition might simply not exist. On the contrary,PX
should be compared with its best competitor, sayP∗ = PX∗. If IGP(Y|X∗) << 1, then
IGP(Y|X) should be compared not with one, but withIGP(Y|X∗). This raises the prob-
lem of determiningX∗ or, better, the maximum attainable IGP value. One possibility is
to limit attention to the class of partitions having the same structure asPX (i.e., having the
number of groups and group sizes asPX). Adaptive optimization techniques (e.g., genetic
algorithms) or search algorithms (e.g., the greedy heuristics proposed in Kalantariet al.
(1993)) may perform adequately, as enumeration algorithms are clearly computationally
prohibitive.

3 Inferential aspects

We now discuss some distributional and inferential aspects of the IGP measure as used
here. Firstly, note that the IGP is a sample average and that it is therefore a (strongly)
consistent estimator ofPr({Y andNN(Y) belong to the same group induced byX}) asN
tends to infinity.
Under the null hypothesis of no association (π = 0 in our model) it can be shown that
E[IGP(Y|X)] = ∑K

k=1[Pr(X = x∗k)]
2. This value can be computed exactly for the simulated

model above from the theoretical parametersαV
k . For example, for the parameter values

that were used one finds thatE[IGP(Y|X)] = .375underH0. (This null value can be noted



in the left panel of Figure 1). On actual data, the quantityE[IGP(Y|X)] underH0 can be
estimated from the observed counts in theK groups induced byX.
To testH0 one can use a permutation distribution approach, i.e. extract random permuta-
tions from the set of theN X-group labels associated to theY-observations. For each per-
mutation of the labels the IGP is computed, and the p-value forIGP(Y|X) is obtained as
the proportion of IGP values that are more extreme (larger) than the observedIGP(Y|X).
A small p-value indicates rejection ofH0 in favor of the alternative hypothesis of associa-
tion. To evaluate the power of this procedure one can simulate many datasets, and for each
determine whether the permutation test would rejectH0 at a chosen alpha level. Thus one
can easily estimate the power of the test to rejectH0 for different values ofσ2

V andσ2
Z, for

various alternative values ofπ. Note that the rejection probability that one obtains with
this procedure is averaged over all the possible group label counts that could be observed
when distributingN observations overK groups. In other words, in our model the average
is taken over a multinomial distribution having parameters(N,(α1

V ,α2
V ,α3

V)). In Figure
1 (right panel) the estimated powers of permutation tests are reported for the case when
α = 0.1 for various combinations of values ofπ andσ2

V (results refer to the caseσ2
Z = 5;

similar patterns were observed for different values). It is worth noting that the power ap-
pears to be increasing withπ but its maximum value depends upon the dispersion within
Y. This phenomenon is consistent with the discussion above on the confounding effect of
π and the variance ofY.

4 Conclusions

In this paper we discuss the use of the IGP as a measure of association. This seems a
promising direction. As any other measure ofX/Y–association, the IGP reflects both
dependency and the amount of “explainable” structure inY. Hence, the rejection of the
null hypothesis strongly suggests the existence of association.
This approach is very flexible, as it only requires the distances (or dissimilarities) between
all possible pairs of cases, the dissimilarity being defined on the basis ofY only. Also,
the procedure can be applied whatever the measure used to obtain the dissimilarities: for
example, it is possible to consider time series (one for each case), sequence data (e.g.
categorical time series or genetic sequences), and other situations whereY is complex but
a dissimilarity measure between two cases can be defined.
Lastly, as we have pointed out, the null hypothesis considered above is a translation of the
null hypothesis of ANOVA into this new context. Should the null hypothesis be rejected,
it could be of interest to investigate further, evaluating whichX-groups are responsible
for the rejection using some adaptation of the post-hoc tests approach.
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