Clustering-based measurement of dependence
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Abstract: A measure of the dependence of a multivariate response variable upon a cate-
gorical variable is introduced. Its characteristics are explored via simulations by referring
to a specific mixture association model. Inferential aspects are investigated using a per-
mutation test approach. We present preliminary results.
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1 Introduction

Kapp and Tibshirani (2007) introduce the IGP (In Group Proportion) measure within the
context of validating clusters. L&} be a partition ofN observations on a multivariate
variableY into K clusters. Herel denotes the (training) data set. Suppose that new
observations oty are available in a second datagkt It is of interest to assign them

to one of the previously determined clusters; the IGP has been introduced to evaluate
the adequacy of the chosen assignment procedure. (The classification procedure may be
defined in different ways).

Let Cr (i) indicate the cluster to which thieth observation irD is assigned, with =
1,...,Np andNp indicating the size oD. Denote by the resulting partition obD.

The (overall) IGP is defined as the proportion of case®ithat are classified to the
same group as their nearest neighbor. More precisel)Nt) € D indicate the nearest
neighbor of thei—th observation irD, and IetCT(N N(')) denote the cluster to which
NN(i) is assigned. The IGP is therefd@P(Fp) = Z, Dl 1Cr(NN(i)) =Cr (i)].

We propose to use the IGP index to measure the extent of the association between one
set of response variableg, and one or more explanatory variabdsboth observed on
asingledataset. In particular, we focus on the case of one categorical vaXakdd&ing
valuesxj,...,Xg. Let P indicate the partition induced by theKegroups andCx (i) the

group to which theé—th observation belongs, whe@g (i) = k if x; = x¢. We define:

IGP(Y|X) = Zle (NN(i)) = Cx (i)] (1)

If the response¥ are related toX, thenPx should provide a good partition also with
respect tor, characterized by a high value I&P(Y |X).

In their paper, Kapp and Tibshirani consider two different data sets. The firsTomne,
used to find clusters, and the observations of the secondnae assigned to those
clusters. The IGP measures the reliability of this procedure, i.e., if and to which extent
the clusters obtained oh provide an adequate prediction of case®inThe two data



sets contain information on the same variables. In other words, an overall data set is
partitioned by row into one training and one validation set.

In our problem thesame data set is used but it is partitioned by columns. This can be
described as a sort of nonparametric ANOVA problem on possibly multivariate responses.
Below we explore the main features of this IGP-based approach through simulations
based on a specific multivariate association model, with particular attention to the in-
ferential aspects of the approach.

2 |IGP as a measure of association

Consider the association model betweémndY such thaty is a mixture of two dis-
tributions fy and fz with mixing parametert € [0,1]. Also,V andZ are distributed as
two mixtures, each of three componenfy, fy, f¥) and(fZ, f, f) respectively, with
mixing vectors(ay,ay ,ay ) and(a¥,a%,a%). V andZ are assumed independent.

In particular, we set

fi\L/ ~ N((Ov 2)T>O-\§I) f;/ ~ N((—l,—l)T,U\%l) fi\%/ ~ N((l,—l)T,U\%U
f£ ~N((0,-5)T,021) f£~N((2,57,02l) f£ ~N((-2,5)7,02)

with (ay ,ay,a¥) = (0.5,0.25,0.25) and(af,a%,a%) = (0.5,0.25,0.25). The categori-

cal explanatory variablX is defined as the mixture component from whitts generated.
Notice that this induces three groups whose within dispersion is related to the standard
deviationoy. Thus)Y is related toX if the association parametarassumes values close

to 1. If massumes low value¥, does not depend upox (throughV) but, rather, upon

Z. In particular, the valuer = 0 in this model corresponds to the null hypothesisof
association This null hypothesis consists of the fact that the groups induced bgve

no explanatory power ovi.

We conducted some simulations to explore the relationship betwesd the IPG. For

fixed values ob\%, 022 we repeatedly generated samples of §izeom the model above,

and estimated the expected value of the IGP measure over the simulated samples. We used
1000 simulated datasets for each valugrofAs an illustration, the left panel in Figure 1
shows the monotonicity that was observed across the simulations (results refer to the case
o2 = 5; similar patterns were observed for different values). This behavior suggests that
IGP may be considered a reasonable measure of dependence.

However, a confounding effect exists in general between association (as measued by
and the strength of the structureYn For example, ifr= 1 butY has weak structure
(equivalently, ifY coincides withV but the variances? is very large) then the groups
induced by will not retain information on the dispersion %f This situation will practi-

cally coincide with the case of no association, even thaughl. This behavior appears

to be a general characteristic of this problem in general, and should be kept in mind when
interpreting the index.

In other words, the ability of the IGP to measure the level of association is dependent on
the fact that there is some structureyirio begin with. IfY has no structure, so that the
X-groups can essentially be viewed as a random selection from the observations’ labels
thenany measure of association will be useless. By construction IGP assumes values
ranging from O to 1. As mentioned above, the maximum value is reached only if: (i)
There is a strong association betweeandX; and (ii) Y has a strong structure, i.&,



Figure 1: E(IGP) (left) and power (right) estimated over 1000 simulations. Plots are
based on samples of sike= 100 (please refer to the text for details) .
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can be meaningfully partitioned into clusters having a low within-dispersion. If attention
is focused on the evaluation of association, we may be interested in removing the depen-
dence of the index (or, better, of its maximum value) onYhstructure. Consistently

with what we pointed out above, in simulations we observed that when gteicture is
highly dispersed, the IGP index does not reach its theoretical maximum value (one) and,
moreover, the index shows a low sensitivity to the strength of association (i.e., itincreases
very slowly asrtincreases). This poses the problem of finding sharp bounds for the IGP.
Therefore, the capability oK to describe thér-dispersion should not be evaluated in
absolute terms, i.e. by comparing tegroups with an hypothetical optimal partition
having IGP equal to one, as such a partition might simply not exist. On the coriary,
should be compared with its best competitor, Bay= P«-. If IGP(Y|X*) << 1, then
IGP(Y|X) should be compared not with one, but withP(Y |X*). This raises the prob-

lem of determiningX™ or, better, the maximum attainable IGP value. One possibility is
to limit attention to the class of partitions having the same structuRe &ése., having the
number of groups and group sizes®3. Adaptive optimization techniques (e.g., genetic
algorithms) or search algorithms (e.g., the greedy heuristics proposed in Kattrdari
(1993)) may perform adequately, as enumeration algorithms are clearly computationally
prohibitive.

3 Inferential aspects

We now discuss some distributional and inferential aspects of the IGP measure as used
here. Firstly, note that the IGP is a sample average and that it is therefore a (strongly)
consistent estimator &r({Y andNN(Y) belong to the same group inducedXy) asN

tends to infinity.

Under the null hypothesis of no association=€ 0 in our model) it can be shown that
E[IGP(Y|X)] = SK_;[Pr(X = x)]2. This value can be computed exactly for the simulated
model above from the theoretical paramem&’s For example, for the parameter values
that were used one finds tHal GP(Y|X)] = .375underHp. (This null value can be noted



in the left panel of Figure 1). On actual data, the quarkity\GP(Y|X)] underHp can be
estimated from the observed counts in khgroups induced b.

To testHp one can use a permutation distribution approach, i.e. extract random permuta-
tions from the set of th&l X-group labels associated to thieobservations. For each per-
mutation of the labels the IGP is computed, and the p-valuéGeXY|X) is obtained as

the proportion of IGP values that are more extreme (larger) than the ob3&R¢ed|X).

A small p-value indicates rejection bl in favor of the alternative hypothesis of associa-
tion. To evaluate the power of this procedure one can simulate many datasets, and for each
determine whether the permutation test would relgcat a chosen alpha level. Thus one

can easily estimate the power of the test to relgctor different values ob& andazz, for

various alternative values af. Note that the rejection probability that one obtains with

this procedure is averaged over all the possible group label counts that could be observed
when distributingN observations ovef groups. In other words, in our model the average

is taken over a multinomial distribution having paramet@is(al, aZ,ad)). In Figure

1 (right panel) the estimated powers of permutation tests are reported for the case when
a = 0.1 for various combinations of values afand o (results refer to the case = 5;

similar patterns were observed for different values). It is worth noting that the power ap-
pears to be increasing witti but its maximum value depends upon the dispersion within

Y. This phenomenon is consistent with the discussion above on the confounding effect of
rmand the variance of.

4 Conclusions

In this paper we discuss the use of the IGP as a measure of association. This seems a
promising direction. As any other measureXfY—-association, the IGP reflects both
dependency and the amount of “explainable” structuré.irdence, the rejection of the

null hypothesis strongly suggests the existence of association.

This approach is very flexible, as it only requires the distances (or dissimilarities) between
all possible pairs of cases, the dissimilarity being defined on the ba¥iofy. Also,

the procedure can be applied whatever the measure used to obtain the dissimilarities: for
example, it is possible to consider time series (one for each case), sequence data (e.g.
categorical time series or genetic sequences), and other situations¥nle@mplex but

a dissimilarity measure between two cases can be defined.

Lastly, as we have pointed out, the null hypothesis considered above is a translation of the
null hypothesis of ANOVA into this new context. Should the null hypothesis be rejected,

it could be of interest to investigate further, evaluating whiclgroups are responsible

for the rejection using some adaptation of the post-hoc tests approach.
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