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(Ramesh et al., 2016, 2018). The 1,3-dipolar cycloaddition was
performed with 1 mol% of CAN in 2 h, while the reaction was
complete after 30min when heterogeneous TiO2 nanoparticles
were used. Both reactions showed excellent regioselectivity and
stereoselectivity, and the TiO2 nanocatalyst was reused 5 times
without losing catalytic activity. 20 different spirooxindole-
pyrrolidines were obtained, in 65–90% yields with CAN and
the reaction showed increased average yield in the presence
of TiO2.

SCHEME 17 | Proposed mechanism.

Diazoalkanes can be generated from the decomposition of
tosylhydrazones and are efficient 1,3-dipoles exploitable for the
synthesis of several nitrogen containing heterocycles (Munro
and Sharp, 1984). An intramolecular 1,3-dipolar cycloaddition
strategy for rapid access to pyrazoles or triazoles makes use of
the in situ generated diazomethanes, in a two-step sequence,
in which diazomethanes undergo smooth cycloaddition with
alkyne or nitrile moieties (Padwa and Ku, 1980). As described in
Scheme 19, this process can be used as a step-economical route
to benzopyranopyrazole from propargylated salicylaldehydes and
tosyl hydrazone. This reaction, which is usually performed in
DMF, can be performed in water with K2CO3, providing excellent
yields (more than 80%).

ORGANO-CATALYZED AND
CATALYST-FREE
1,3-DIPOLAR-CYCLOADDITION

A novel organocatalytic asymmetric 1,3-dipolar addition has
been proposed by MacMillan, that explored the synthesis
of oxazolidine starting from nitrones and α,β- unsaturated
aldehydes (Jen et al., 2000). In the presence of different chiral
imidazolidinone·HCl the reaction between crotonaldehyde and
N-benzyl phenyl nitrone showed moderate to high yield (45–
77%) and ee (42–93%); when a Brønsted acid was added as
co-catalyst, the efficient iminium activation could increase yield
(98%) and ee (94%).

SCHEME 18 | Synthesis of spiroindole by 1,3-dipolar cycloaddition with TiO2 in water and with CAN in solvent.
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SCHEME 19 | Synthesis of benzopyranopyrazole from propargylated salicylaldehydes and tosyl hydrazine.

SCHEME 20 | Enantioselective synthesis of substituted isoxazolidine.

SCHEME 21 | Schematic representation of iminoesters as the precursors of stabilized azomethine ylides.

In 2007 Córdova et al. proposed an enantioselective
organocatalyzed synthesis of substituted oxazolidine. N-
arylhydroxylamines, aldehydes, and α,β-unsaturated aldehydes
were reacted in the presence of a chiral organic catalyst.
The in-situ generated nitrone reacted with activated enal,
in chloroform or THF at room temperature (16 h) to
give the isoxazolidine as a single diastereomer (>25:1
endo:exo). TMS protected diarylprolinol gave ee % up to 98%
(Scheme 20) (Rios et al., 2007).

Organo-catalyzed (3+2) dipolar cycloadditions of
azomethineylide with various dipolarophiles has been the
object of intense investigation. Several publications studied
iminoesters as the precursors of stabilized azomethine ylides,
because, as described in the scheme, they can undergo thermal
tautomerism to produce azomethine ylides (Scheme 21).

Vicario et al. observed that cycloaddition of imine and
crotonaldehyde catalyzed diphenylprolinol provided a single
endo isomer with excellent enantioselectivity (Vicario et al.,
2007). The authors highlighted the fundamental role of free OH
groups on the catalyst and the acceleration rate by water addition.

The optimized protocol was performed at 4◦C in THF. Similarly,
Cordoba et al. proposed the synthesis of pyrrolidine in CHCl3,
at room temperature with protected prolinol. As described in
Scheme 22, a slightly lower yield and selectivity were observed
(Ibrahem et al., 2007).

An elegant example of 1,3-dipolar cycloaddition in
asymmetric catalysis has been published by the Córdova
group, which proved that a hydrogen bond donating network
with a co-catalyst was to direct the cycloaddition by locking
the conformation of the intermediate so to achieve a highly
selective reaction (Lin et al., 2011). This dynamic one pot
reaction was directed to cycloaddition in THF or DMF and the
presence of hydrogen bond donating molecules such as oximes
was favorable for the acceleration of the reaction when the
substrate was cyanoacetate or α-cyanoglycine. Compared to the
previously described approach, this one pot reaction generated
four contiguous chiral centers including a quaternary carbon. As
described in the scheme, the proposed mechanism involves the
prototropy of the imine cyanoglycine so that the H bond activate
the iminium salt and lock is conformation as 1 (see Scheme 23)
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SCHEME 22 | Enantioselective synthesis of substituted pyrrolidines.

stereoselective ccloaddition from the Re face of intermediate 3

by and endomechanism.
Another recent approach to activate different dipolarophiles

other than unsaturated aldehydes was pursued by Chen
et al. and chiral phosphoric acids were successfully exploited
to obtain pyrrolidine or spirooxindole (Chen et al., 2009;
Chang et al., 2016). Excellent yield and enantioselectivity
were obtained in DCM at room temperature with chiral
sterically hindered phosphoric acids for the imine activation
(see Scheme 24).

Pyrazoles are known to be potent insecticides and herbicides,
and have been also studied for their anti-tumor, anti-
inflammatory, anti-microbial and anti-psychotic properties.
Diazo compounds may react with alkynes to provide efficient
synthesis of pyrazole via 1,3-dipolar cycloaddition. The
1,3-dipolar cycloaddition of alkynes to electron-rich diazo
compounds has been described, whereas the intermolecular
1,3-dipolar cycloaddition of alkynes with electron-poor
diazocarbonyl compounds is much less often reported because
of the to the high HOMO–LUMO energy difference between
alkynes and diazocarbonyl compounds. In presence of Lewis
acid or transition metals LUMO of the alkyne dipolarophiles is
lowered. Wang et al. (2013) developed an organocatalytic
inverse-electron-demand [4+2] cycloaddition between
diazoacetates and various carbonyl compounds. Secondary
amines we employed as “green promoters,” to catalyze the
cycloaddition reaction and produce the target pyrazole ring

(Scheme 25). Pyrrolidine was selected as the most effective
catalyst and DMSO as best solvent for this transformation.
The optimized protocol was performed in DMSO at room
temperature with 10 mol% of pirrolidine and a 1:2 ratio of
diazoacetates and carbonyl compounds.

When the reaction was performed with unsymmetrical
cyclic ketones, high levels of regioselectivity were achieved.
Nonetheless, the authors discovered that in the reaction between
diazoacetates and aldehydes, it performed better in presence of
acyclic secondary diethyl amine catalysis. Moderate-to-excellent
yields of the corresponding adducts were obtained also varying
the side-chain of the carbonyl group.

The hypothesis of selective C-H1 bond-breaking was
confirmed by a deuterium labeling experiment. The enamine-
promoted cycloaddition reaction with α-deuterated benzyl
diazoacetate yielded the final compound without any deuterium
being incorporated into the pyrazole ring, which supports the
hypothesis of a selective C-H1 bond breaking. The authors
supposed that the C-H1 bond is activated by the adjacent
electron-withdrawing ester group, toward the selective cleavage
over the C-H2 bond. The final product derived from an
elimination step followed by tautomerization (Scheme 26).

Liu et al. (2017) have presented the first catalyst-free 1,3-
dipolar cycloaddition of C,N-cyclic azomethine imines and 3-
nitroindoles to prepare highly functionalised, five-ring-fused
tetrahydroisoquinolines, which feature an indoline scaffold
with excellent diastereoselectivity. The reaction performed the
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SCHEME 23 | One pot Three component catalytic asymmetric synthesis of pyrazolidine.

use of catalysts or additives and more than 95% yield was
obtained in EtOAc (Scheme 27). In the presence of 20 mol%
Cu(OTf)2 in CHCl3 the cycloaddition reaction afforded the
corresponding product with only 23% conversion after 24 h
at room temperature. When Ni(OAc)2·4H2O was used in
CHCl3, the conversion was enhanced to 89%. N-tosyl and N-
alkoxycarbonylated protected, 3-nitroindoles performed very
well giving in high yields the corresponding cycloadducts.
Because of its reduced electrophilicity N-Methyl-protected 3-
nitroindole failed to undergo the transformation. The versatility

of this method was demonstrated with a list of structurally
different C,N-cyclic azomethine imines.

1,2,3-triazoles have a wide range of applications as potential
bioactive compounds and are often used in drugs synthesis.
A general and efficient method for their fabrication came in
the early 2000s with the novel concept of “click” chemistry
and the Cu-catalyzed alkyne–azide cycloaddition reaction
provides the regioselective formation of 1,4-disubstituted 1,2,3-
triazoles. The metallo-catalyzed alkyne–azide cycloaddition
reaction for the formation of 1,5-disubsituted 1,2,3-triazoles
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SCHEME 24 | Organocatalytic synthesis of spiro[pyrrolidin-3,3′-oxindoles].

SCHEME 25 | Polysubstituted pyrazoles synthetic route from diazoacetates and carbonyl compounds.

was published later. However, the reactions mentioned above
have made use of heavy metals, which has limited their
practical applications.

Alternative synthetic pathways for 1,2,3-triazoles have also
been developed and 1,2,3 triazoles have freely been obtained
from a combination of azides with a range of reaction partners:

e.g., cycloadditions of either β-keto esters or nitriles to azides
catalyzed by secondary amines (Costa et al., 2017), cycloaddition
of a triple domino sequence of reactions between azide, amine,
and 5-bromo-2-furylcarbinol (Yang et al., 2015), the reaction
of enols and enamines with azides (Blastik et al., 2018), nitro
methylene-based three-component synthesis (Thomas et al.,
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SCHEME 26 | Postulated reaction pathway.

SCHEME 27 | Synthesis of polycyclic tetrahydroisoquinoline derivatives.

2014), and others. However, these methods entail the use of
organic azides or sodium azides, which are difficult to handle
and toxic, particularly on a large scale. In a 2017 review, Ahmed

(Ahmed et al., 2017) presented some less well-known synthetic
protocols for 1,2,3-triazoles under azide-free and metal-free
environments (Figure 3).
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FIGURE 3 | “Metal-free” and “azide-free” syntheses of triazoles.

SCHEME 28 | Synthesis of bicyclic 1,2,4-oxadiazolines.

LIGHT INDUCED

The importance of aza-heterocycles relates to their presence as
natural products, drugs and biologically relevant compounds.
A variety of methods have been developed for the synthesis
of 1,2,4-oxadiazolines, and these are typically carried out via
the [4+2] cycloaddition of an imine with a nitrile oxide
(generated in situ from hydroxamoyl chloride or nitroalkane).
The design of a new synthetic path of 1,2,4-oxadiazolines,
especially greener methods, is highly desirable because many of
these methods suffer from one or more drawbacks. Soni et al.
(2018) have very recently presented a greener method for the
synthesis of 1,2,4-oxadiazolines via an intramolecular oxidative
cyclisations of amidoximes in the presence of an organocatalyst
and molecular oxygen. The authors optimized the reaction
conditions to give 3-phenyl- 5,6,7,7a-tetrahydropyrrolo[1,2-
d][1,2,4]oxadiazole from phenyl(pyrrolidin- 1-yl)methanone
oxime, which was used as a model substrate. The optimized
conditions involved 2 mol% of an organophotocatalyst, 2,4,6-
tris(4-fluorophenyl)pyrylium tetrafluoroborate [T(p-F)PPT] at
a 0.2M concentration in DMF under an atmosphere of
molecular oxygen. Visible-light irradiation was provided by a

compact fluorescent lamp (CFL, 23W). Organophotocatalyst
can reduce the drawbacks of transition metals related to
toxicity and the low residues admitted in pharmaceutical
products (Scheme 28).

The authors investigated several pyrrolidinyl oxime
derivatives both with electron-withdrawing and electron-
donating substituents, for the oxidative cyclization to
1,2,4-oxadiazolines with a mechanism as proposed
in Scheme 29.

It was observed that triphenylpyrylium (TPP) derivatives
were the only effective photocatalysts among those examined,
with conversion even in absence of light. As described in the
Scheme 29, the reaction begins with the nucleophilic addition to
the triphenylpyrylium ion (A) toward intermediate B. Molecular
oxygen provides the oxidation of C by regenerates catalyst A. The
iminyloxyl radical D undergoes an intramolecular 1,5- hydrogen
atom transfer (HAT) to the radical E, which is then oxidized to
the iminium ion F. The final 1,2,4-oxadiazoline is generated by
intramolecular cyclization of F.

Visible-light-driven photoredox catalysis is attracting interest
because of its inherent features of green chemistry and
sustainability. In addition to a number of radical reactions,
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SCHEME 29 | Plausible mechanism for the synthesis of 1,2,4-oxadiazolines.

SCHEME 30 | Visible-light mediated synthesis of pyrroles and isozazoles from of 2H-azirines and 2H-oxazirine.
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several [2+3] cycloaddition applications have been described
in the existing literature (Narayanam and Stephenson, 2011;
Nakajima et al., 2016; Staveness et al., 2016; Savateev and
Antonietti, 2018).

2H-azirines can react with activated alkynes or aldehydes
to produce polysubstituted pyrroles or 2,5-dihydrooxazole,
respectively, under very mild reaction conditions (visible-light
irradiation, metal-free, and room temperature). As described
by Xuan et al., the optimized procedure is catalyzed by
9-mesityl-10-methyl-acridinium perchlorate in dichloroethane
under irradiation from a 3W white LED light. Excellent results
were obtained when a range of substituted 2H-azirines were
reacted with dimethyl but-2-yne-dioate (Xuan et al., 2014). 2H-
Azirines reacted with aldehydes in the presence of Li2CO3. This
was done to avoid the oxidation of aldehydes to carboxylic
acids, and 2,3-dichloro5,6-dicyano-1,4-benzoquinone (DDQ)
was added to the reaction system in order to perform the
one pot synthesis of oxazole. The applicability of the reactions
was demonstrated using a panel of 12 2,4,5 trisubstituted
oxazoles, giving yields in the 40–80% range (Scheme 30)
(Zeng et al., 2015).

The ring-opening of 2H-oxazirine has been described
as occurring via visible-light-mediated photoredox-catalyzed
single-electron transfer (SET), giving nitrone precursors. The
1,3-dipolar cycloaddition was therefore used for the synthesis of

4-isoxazolines. 9-mesityl-10-methyl-acridinium perchlorate was

the strategic choice of catalyst because of its high oxidizing power
(+2.06V). The [3+ 2] cycloaddition reaction of oxaziridine with
dimethyl acetylenedicarboxylate gave very good results when
performed in CH3CN in the presence of water, used as an
additive, and a large set of 4-isoxazolines was synthesized with
a good average yield.

The first attempt to describe the mechanism of pyrrole
cyclization focused on a radical cycloaddition of the intermediate
2-azaallenyl radical cation, which was in equilibrium with
a 1,3-radical-cationic species. Subsequently, the publication
mentioned the synthesis of the dihydroisoxazole by an hypothesis
of a polar cycloaddition. In fact, the authors proposed
the single-electron reduction of the nitrone radical to a
nitrone species.
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