

UNIVERSITÀ DEGLI STUDI DI TORINO

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Grazing Management Plans improve pasture selection by cattle and forage quality in sub-alpine and alpine grasslands

This is the author's manuscript Original Citation: Availability: This version is available http://hdl.handle.net/2318/1711702 since 2019-09-13T11:26:25Z Published version: DOI:10.1007/s11629-019-5522-8 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use

(Article begins on next page)

of all other works requires consent of the right holder (author or publisher) if not exempted from copyright

protection by the applicable law.

Grazing Management Plans improve pasture selection by cattle and foragequality in sub-alpine and alpine grasslands

21

22 Marco Pittarello¹, Massimiliano Probo², Elisa Perotti^{2*}, Michele Lonati¹, Giampiero Lombardi¹, Simone Ravetto Enri¹

- ¹ Department of Agricultural, Forest, and Food Sciences, University of Torino, Grugliasco, Italy
- 24 ² Agroscope, Grazing Systems, Nyon, Switzerland
- 25 *corresponding author: Elisa Perotti
- 26e-mail: elisa.perotti@agroscope.admin.ch27Agroscope, Grazing Systems, Nyon, Switzerland
 - Route de Duillier 50, CP 1012, 1260 Nyon 1, Switzerland
- 29

30 Abstract

31 Over the last decades, the reduction of manpower for herd management has led to an increase of continuous grazing 32 systems (CGS) in the Italian Alps, which allow cattle to roam freely. Under CGS, due to high selectivity, livestock exploit 33 grasslands unevenly, over- and under-using specific areas at the same time with negative effects on their conservation. 34 To counteract these effects, a specific policy and management tool (i.e. Grazing Management Plan) has been 35 implemented by Piedmont Region since 2010. The Grazing Management Plans are based on the implementation of 36 rotational grazing systems (RGS), with animal stocking rate adjusted to balance it with grassland carrying capacity. A 37 case study was conducted on alpine summer pastures to test the 5-year effects produced by the implementation of a 38 Grazing Management Plan in grasslands formerly managed under several years of CGS on 1) the selection for different 39 vegetation communities by cattle, 2) the abundance of oligo-, meso-, and eutrophic plant species (defined according to 40 Landolt N indicator value), and 3) forage yield, quality, and palatability. A total of 193 vegetation surveys were carried 41 out in 2011 and repeated in 2016. Cows were tracked yearly with Global Positioning System collars to assess their grazing 42 selectivity, and forage Pastoral Value (PV) was computed to evaluate forage yield, quality, and palatability. Five years 43 after RGS implementation, cow selectivity significantly decreased and the preference for the different vegetation 44 communities was more balanced than under CGS. The abundance of meso- and eutrophic species increased, whereas 45 oligotrophic ones decreased. Moreover, the abundance of moderately to highly palatable plant species increased, 46 whereas non-palatable plant species decreased, with a consequent significant enhancement of the PV. Our findings 47 indicate that the implementation of Grazing Management Plans can be considered a sustainable and effective 48 management tool for improving pasture selection by cattle and forage quality in mountain pastures.

49 **Keywords:** mountain, GPS tracking, agricultural policies, livestock, Pastoral Value, vegetation community

50 Introduction

51 Mountain pastures provide a wide range of ecosystem functions and services for the society. For instance, Alpine 52 pastures support food production, plant and animal diversity, carbon storage, nutrient cycling, regulation of climate and 53 water quality, pollination, as well as aesthetic and recreational values (Harrison et al 2010, Silva et al 2010; Lonati et al 54 2015). However, a dramatic change in land-use and cover in the European Alps occurred in the last century due to deep 55 socio-economic changes, resulting in a reduction of the area covered by sub-alpine and alpine pastures, which are 56 nowadays among the main threatened ecosystems (Rutherford et al 2008; Orlandi et al 2016). The number of family 57 farms, relying on herding to manage small herds and flocks, decreased and nowadays a smaller number of farms rear 58 larger herds and flocks compared to the past (Probo et al 2013). Moreover, continuous grazing systems (CGS) spread 59 and often replaced herding-based grazing management to reduce labour and capital inputs. Under CGS cows are 60 allowed to roam freely, which results in an uneven spatial distribution of the grazing animals within pastures, i.e. 61 widespread underuse of the steepest and most marginal areas and overuse of the flattest and most accessible ones 62 (Probo et al 2014). As a consequence, grasslands are reducing their extension, as well as their herbage mass and nutritive 63 value (Pittarello et al 2018), often evolving towards shrub and tree encroached communities, with negative effects on 64 the provision of the abovementioned ecosystem services (Prévosto et al 2011).

65 To preserve pastoral environments, also by contrasting the negative impact of uneven grazing distribution, specific 66 policies were adopted by the European Union, among which the Rural Development Program (RDP) 2007-2013. During 67 the period of the program, EU supported the implementation of RDP agri-environmental measures in 1,5 Mio farms 68 managing an area of over 63 Mio ha, with a total expenditure of about 37,000 MIn€ (ENRD 2019). Italy spent about 69 3,600 Mln€ to subsidize agri-environmental measures (ENRD 2019), which were implemented in different ways by 70 regional administrations. In Piedmont Region (north-western Italy), regional government allocated 14.7 MIn€ to support 71 grazing systems' extensification (Sistema Piemonte 2019). Among the good agricultural practices to improve the 72 sustainability of extensive grazing system management, the implementation of Grazing Management Plans (GMP) was 73 promoted, which enhances farm productivity while preserving biodiversity, soil, and landscape. GMP define a set of 74 farm-specific and sustainable grazing management actions based on the concept that animal stocking rate has to 75 balance the grassland carrying capacity (Argenti and Lombardi 2012). The carrying capacity of grasslands has been 76 defined by Allen et al (2011) as the maximum stocking rate achieving a target level of animal performance, which can 77 be applied over a defined period without grazing land deterioration. The implementation of rotational grazing systems 78 (RGS) is the best and easiest way to achieve the abovementioned balance. Under RGS, pastures are subdivided in 79 paddocks, which are grazed in rotation (Cavallero et al 2007; Lombardi et al 2011). The use of paddocks increases 80 stocking density and grazing intensity, and changes livestock spatial distribution compared to CGS (Probo et al 2014). 81 Indeed, in their research, Probo et al (2014) found a more homogeneous selection for different vegetation communities 82 by beef cattle under RGS with respect to CGS. The RGS can also positively promote seed transportation and increase 83 connectivity amongst different vegetation communities through a more homogeneous selection for different areas 84 within each paddock, even the most inaccessible, steep, and at higher elevation (Bailey and Sims 1998). In another 85 recent research, Perotti et al (2018) found that the 5-year implementation of a Grazing Management Plan had positive 86 effects on plant diversity conservation leading to an increase in both species richness and Shannon diversity index.

87 However, to the best of our knowledge no research has focused on forage yield, quality, and palatability changes 88 produced by the medium-term implementation of RGS in alpine pastures. Forage features of each single plant species 89 for livestock can be expressed and synthetized by the Index of Specific Quality (ISQ), which summarizes the preference, 90 morphology, structure, and productivity of different plant species (Daget and Poissonet 1971; Cavallero et al 2007). 91 Considering both the abundance and the ISQ of each single plant species found within a vegetation community, the 92 forage Pastoral Value (PV) can be computed to evaluate the overall forage yield, quality, and palatability of that 93 vegetation community (Daget and Poissonet 1971). The PV is also related to nutrients, mainly nitrogen and 94 phosphorous, available in the soil (Güsewell et al 2012; Gardarin et al 2014). Nutrient-poor grasslands have generally 95 low PV and host mainly oligotrophic plant species, whereas nutrient-rich grasslands have higher PV and a dominance of 96 meso-eutrophic plant species (Ravetto Enri et al 2017), if nutrient level is restricted under certain critical thresholds 97 (Pittarello et al 2018).

98 Probo et al (2014) highlighted the beneficial effects produced by a 2-year RGS implementation on the selection for 99 vegetation communities by cattle on sub-alpine and alpine pastures formerly managed under CGS. However, since cows 100 have an accurate spatial memory (Bailey and Sims 1998), their short-term selection could have been influenced by 101 historical resource selection strategies experienced under several years of CGS. Hence, the present study was carried 102 out to compare on the medium term the selection for different vegetation communities by beef cattle under the two 103 grazing systems and to evaluate the changes produced on grassland PV five years after the implementation of RGS. The 104 specific objectives were: (1) to assess the selection for different vegetation communities by cattle under CGS and during 105 5-year RGS implementation, (2) to assess the changes in the abundance of different functional groups of plant species (i.e. oligo-, meso-, and eutrophic species and species characterized by different IQS), and (3) to measure forage PV
 changes along the 5-year timespan.

108 Material and Methods

109 Study area and grazing systems

The research was carried out in Val Troncea Natural Park, south-western Italian Alps (44°57′ N, 6°57′ E). Average annual temperature was approximately 4°C (Feb: –3.8°C; Jul: 12.6°C) and annual average precipitation was 703 mm (mean 2003–2015; data gathered from the meteorological station located at 2150 m a.s.l. - 44°98′N, 6°94′E). Dominant soils were gravelly and nutrient-poor over calcareous parent rock. The study area was 448 ha wide, ranging from 1900 to 2820 m a.s.l.

Vegetation was characterized by sub-alpine and alpine (*sensu* Ozenda 1985) grasslands, subjected to shrub encroachment due to a decrease of grazing exploitation (Probo et al 2013). Dominant grassland species were *Festuca curvula* Gaudin, *Carex sempervirens* Vill., *Festuca nigrescens* Lam. non Gaudin, *Agrostis tenuis* Sibth., and *Poa alpina* L..
 Shrublands were predominantly composed by *Rhododendron ferrugineum* L., *Juniperus nana* Willd., *Vaccinium myrtillus*

119 L., and *Vaccinium gaultherioides* Bigelow.

120 One cattle herd of 80 AU (AU, Animal Units; Allen et al 2011) exploited the study area for several years from early June

to late September under CGS, until 2010. From 2011 to 2015, following the directions of a specific Grazing Management

Plan, the farmer implemented a RGS over the area, with four paddocks grazed in rotation by 105 AU from early June to
 late September (starting in paddock 1 and ending in paddock 4; Fig. 1). Grazing Management Plan prescriptions for the

subdivision of the whole grazing area into four paddocks grazed in sequence took into account several features, such as

125 vegetation cover, botanical composition, forage Pastoral Value, average phenological development of grassland

- 126 communities, altitude, aspect, natural borders, water availability, and management facilities (Table 1). The number of
- animal units was increased according to vegetation carrying capacity, which was computed using Daget and Poissonet
- (1971) methodology, i.e. by multiplying forage PV with altitudinal and slope conversion coefficients and the grazablearea.

130 Vegetation surveys and cattle tracking

131 To assess vegetation changes after 5 years of RGS, the grazable surface of the study area was subdivided into 150 X 150-

- m grid cells, for a total of 193 cells. At the centroid of each grid cell, a vegetation survey was carried out during summer
- 133 2011 (before the beginning of grazing, at the flowering stage of dominant graminoids) and it was repeated in 2016.
- 134 Vegetation surveys were carried out with vertical point-quadrat method (Daget and Poissonet 1971), along a 10-m linear 135 transect in which every plant species touching a steel needle was identified and recorded at every 50-cm interval. To
- account for occasional species, likely missing with the point-quadrat method, a complete list of all other species included
- within a 1-m buffer area surrounding the transect was also recorded (lussig et al 2015). Species nomenclature followed
 Dignatti (1082)
- 138 Pignatti (1982).

Seven to thirteen randomly-selected cows were equipped with Global Positioning System (GPS) collars with an average
 accuracy of 5 m (Model Corzo Collars, Microsensory SLL, Fernàn Nunèz, Andalusia, Spain). Positions were recorded all

along the grazing season at 15 min interval, to ensure sufficient battery life for the monitoring period. Animals were

142 tracked during period 2010-2015, each year but during summer 2011, due to technical device failure.

143 Data analyses

The frequency of occurrence of each plant species recorded was calculated for each transect by dividing the number of occurrences by 20 points of vegetation measurements. Species Relative Abundance (SRA) of each plant species was computed by dividing its frequency of occurrence by the sum of frequency of occurrences values for all species in the transect and multiplying it by 100 (Pittarello et al 2017). The SRA can be used to detect the proportion of different species expressed in percentage. To all occasional plant species found within vegetation plots but not along the linear transects a SRA value = 0.3% was attributed (Tasser and Tappeiner 2005; Vacchiano et al 2016).

Landolt indicator value for soil nutrient content (hereafter N Landolt; Landolt et al 2010) was attributed to each plant

species to assess the demand for nutrients. Plant species were pooled into three functional groups, i.e. oligotrophic species (i.e. plant species growing in nutrient-poor conditions; N Landolt = 1 and 2), mesotrophic species (i.e. plant species growing in moderate nutrient conditions; N Landolt = 3), and eutrophic species (i.e. plant species growing in

species growing in moderate nutrient conditions; N Landolt = 3), and
 fertile conditions; N Landolt = 4 and 5) (Nervo et al 2017).

To each plant species was also attributed the Index of Specific Quality (ISQ; Daget and Poissonet 1971), which ranges

156 from 0 (low) to 5 (high). Plant species were pooled into three palatability groups according their ISQ: non-palatable (i.e.

plant species with ISQ = 0 and 1), moderately palatable (i.e. plant species with ISQ = 2 and 3), and highly palatable (i.e.

158 plant species with ISQ = 4 and 5).

Forage PV, which ranges from 0 to 100, was calculated for each transect of 2011 and 2016 on the basis of the SRA and ISQ according to the following equation (Daget and Poissonet 1971):

161 162

$$PV = \sum_{i=1}^{n} (SRA_i \cdot ISQ_i) \cdot 0.2$$

163

164 where ISQ_i is the ISQ value for the species *i* (Cavallero et al 2007).

165 Statistical analyses

A cluster analysis was performed using the SRA of each plant species to classify vegetation transects into vegetation types and vegetation ecological groups according to Cavallero et al (2007). Pasture types can be defined as herbaceous or mixed tree-shrub herbaceous communities characterized by the dominance of 1-2 (3) species and the constant presence of a variable number of common species having similar ecologically needs (Cavallero et al 2007). Pearson correlation was used to compute the similarity matrix and UPGMA (Unweighted Pair Group Method using Arithmetic Averages) as grouping method.

172 For each vegetation ecological group, preference and standardized indexes were calculated to evaluate cattle selection 173 (Hobbs and Bowden 1982). Preference indexes were computed as the proportion of GPS fixes within a vegetation 174 ecological group divided by the proportional area covered by that vegetation ecological group within the study area. A 175 95 % confidence interval with a Bonferroni adjustment (Manly et al 2002) was calculated for each preference index to 176 determine if individual ecological groups were avoided, used indifferently, or preferred by cows. Values >1 for the lower 177 confidence limit indicated preferential selection for a particular ecological group, while values <1 for the upper 178 confidence limit indicated that cows used that particular ecological group proportionally less than its availability would 179 suggest. If the value of 1 was within the confidence interval, it implied that cows used a particular vegetation ecological 180 group in proportion to its presence. Standardized indexes are an alternative way to present the preference indexes so 181 that they add to 1 (Manly et al 2002). Therefore, standardized indexes express the estimated probability of selection of 182 a particular vegetation ecological group if all vegetation ecological groups were equally frequent. 183 Paired sample statistical tests were carried out to detect differences between 2011 and 2016 in terms of (1) SRA of

Paired sample statistical tests were carried out to detect differences between 2011 and 2016 in terms of (1) SRA of
 oligotrophic, mesotrophic, and eutrophic plant species, (2) SRA of non-palatable, moderately palatable, and highly
 palatable plant species, and (3) forage PV of the whole pasture. The SRA and forage PV were tested for normality and
 homogeneity of variance through Shapiro-Wilk and Levene's tests, respectively. When assumptions were not verified,
 non-parametric Wilcoxon signed rank tests (Sokal and Rohlf 1995) were carried out instead of paired sample parametric
 t-tests.

Cluster analysis was performed using IBM SPSS Statistics 24.0 (IBM SPSS Statistics for Windows, v 24.0; IBM, Armonk,
 NY, USA) and paired sample statistical tests were carried out with PAST software (PAST 3.16; Hammer, Harper, & Ryan,

190 NY, US 191 2001).

192 Results

193 The number of plant species recorded in 2011 and 2016 was 273 and 280, respectively. Vegetation surveys were 194 classified into 17 vegetation types and 6 ecological groups (Table 2 and Fig. 2A).

195 Under CGS, snow-bed, eutrophic, and mesotrophic ecological groups were the most preferred by cows, whereas 196 oligotrophic, pre-forest and shrub-encroached, and thermic ecological groups were avoided (Table 3). With the 197 implementation of RGS, mesotrophic vegetation group became the most preferred group and it was increasingly 198 selected over time according to both preference and standardized indexes. Snow bed were always amongst the 199 preferred vegetation ecological groups, even though the preference index considerably decreased from CGS to RGS. 200 Eutrophic vegetation group was the second most preferred group under CGS, whereas under RGS it was preferred only 201 in 2012 and then avoided. Pre-forest and shrub-encroached vegetation group was avoided under CGS, whereas it 202 resulted both preferred or indifferently grazed with the implementation of RGS depending on the year. Thermic and

oligotrophic vegetation groups were avoided both under CGS and RGS, even if with the implementation of RGS an
 increasing trend of exploitation was almost always evident.

From 2011 to 2016, the SRA of oligotrophic plant species decreased (-5.5 % on average), whereas the SRA of mesotrophic and eutrophic plant species significantly increased (+2.6 % and +2.8 % on average, respectively) (Fig. 3A). Five years after the implementation of RGS the SRA of non-palatable plant species decreased (-1.8 % on average),

208 moderately palatable species SRA increased (+1.8 % on average), and highly palatable plant species SRA did not change 209 (Fig. 3B).

The forage PV of the whole study area significantly increased from 15.0 ± 0.58 (mean \pm standard error) in 2011 to 15.8

211 ± 0.59 in 2016 (P < 0.036) (Fig. 2B).

212 Discussion

213 Our results suggest that the five-year implementation of a Grazing Management Plan was an efficient tool to improve 214 pasture use by cattle and enhance forage quality in sub-alpine and alpine pastures.

215 Indeed, under CGS cows were free to roam over the whole pasture and consequently they highly selected few most-216 preferred vegetation groups, such as mesotrophic, eutrophic, and snow-bed vegetation communities. These ecological 217 groups were characterized by a medium-high forage yield and quality, and they were typically located at the gentlest 218 and most accessible sites. Meso- and eutrophic vegetation groups were situated at lowest elevations and they could 219 offer a highly palatable vegetative regrowth in the second half of the grazing season (Probo et al 2014). Snow-bed 220 vegetation group, even though placed at highest elevations (i.e. often above 2400 m a.s.l.) and with a low herbage mass due to the short vegetative cycle under harsh climatic conditions (Körner 2003), was the most preferred ecological group 221 222 as it hosted a highly nutrient-rich forage (Björk and Molau 2007).

With the implementation of RGS, cattle selectivity decreased and the preference for different vegetation communities 223 224 was more balanced. Indeed, even if the snow-bed vegetation group was always a vegetation group preferred by cattle, 225 its selection markedly decreased over time. Moreover, eutrophic vegetation group shifted from preferred to avoided, 226 likely as a consequence of the changed availability and palatability of different vegetation groups within each paddock. 227 The RGS not only forced cattle to graze within paddocks having different proportions of vegetation groups, but it also 228 imposed predefined grazing periods, thus encouraging animals to exploit vegetation communities having specific 229 phenology and related forage quality and palatability. For this reason, in the rotation imposed by the RGS, the selection 230 for the eutrophic group may have decreased due to an exploitation occurred often later than under the CGS. This later 231 exploitation may have coincided with an advanced phenological stage and less palatable forage, above all for fast-232 growing eutrophic dominant species such as Dactylis glomerata L. For all these reasons, and considering also the 233 increase in the selection for the pre-forest and shrub-encroached group, which was generally highly avoided during CGS, 234 the present results confirmed the hypothesis according which the implementation of a Grazing Management Plan was 235 an effective way to improve cattle distribution over a five-year timespan. Indeed, the implementation of RGS through 236 Grazing Management Plans allows planning and optimizing the relationship between forage supply (yield and quality) 237 and its consumption by grazing animals. The detailed study of forage resources on which Grazing Management Plan are 238 based (i.e. mapping of the grazable area of different plant communities, based on botanical composition and the 239 abundance of the individual plant species) allows to predict the temporal development of forage supply and to balance 240 it with the stocking rate that will use it in a given period. This result can be achieved by optimizing the grazing length 241 that a given number of animals belonging to certain categories (e.g. cattle, goats, sheep, horses of different ages, having 242 different dietary needs and selectivity) will graze on the area of interest. Moreover, Grazing Management Plan can 243 account for the integration of RGS with supplementary pastoral practices (i.e. strategic placement of drinking troughs 244 and mineral mix supplements, arrangement of temporary night camp areas, etc..), which can additionally improve 245 grazing distribution, botanical composition, vegetation structure, and forage quality (Probo et al 2013; Pittarello et al 246 2016a; Probo et al 2016).

247 A research conducted in the same study area (Perotti et al 2018) demonstrated that RGS increased the average soil 248 nutrient content of the whole pasture over a five-year span. This result may explain the increase in abundance of 249 medium-high nutrient demanding plant species (i.e. meso- and eutrophic) and the reduction of the abundance of 250 nutrient-poor ones (i.e. oligotrophic). Indeed, nutrient-demanding plant species respond more efficiently to an increase 251 in nutrient availability compared to nitrogen-poor ones (Chapin et al 1986). Moreover, the overall increase of nutrient 252 content over the pasture may also explain the increase in the abundance of moderately to highly palatable plant species 253 and the reduction of non-palatable ones. Indeed, plant species with a moderate and high ISQ are typically associated 254 with moderate to high grazing and fertilization processes (Pittarello et al 2016b). Consequently, the increase in the 255 abundance of these species enhanced the grassland PV. This index can theoretically assume values bounded between 256 0 and 100, but it actually ranges between 0 and 63 in western Italian Alps, with an average value around 20.7 (Cavallero 257 et al 2007). Therefore, the increase of about 5 % (from 15.0 to 15.8) of PV in the five-year monitoring period was a non-258 negligible result for high-elevation grasslands, where environmental constraints (e.g. low temperatures and short 259 growing season) slow down the ecological response of plant communities (Körner 2003).

- 260 In conclusion, the results extend the existing knowledge on the effects of the implementation of a RGS by assessing the
- 261 improvement of the yield, quality, and palatability of forage for livestock. Previous research were mainly focused on 262 ecological conservation results, such as plant diversity (i.e. species richness and Shannon diversity index), proportion of
- ecological conservation results, such as plant diversity (i.e. species richness and Shannon diversity index), proportion of different vegetation functional groups' cover and redistribution of nutrients (Jacobo et al 2006; Perotti et al 2018), while
- agronomic aspects were not considered. Other than the scientific interest in the assessment of the agronomic effects
- 265 produced on high elevation grassland communities, the importance of the present research relies also in the medium-
- term monitoring of the effects of EU policy measures aiming to enhance grazing management sustainability. Even
- though Piedmont region was a test area for GMPs and the regional government allocated for their implementation only
- 268 5.4 % out of the total expenditure for RDP agri-environmental measures (Sistema Piemonte 2019), the area potentially
- improved by large scale implementation of GMP would be much larger: grazing livestock use in the EU about 39,5 Mio
 ha of permanent grasslands (55 % of UAA), managed by 2,1 Mio livestock farms (Eurostat, 2019). Encouraged by our
- 271 results, European Union policies should support GMP and promote RGS implementation as multifunctional tool aimed
- at the conservation, restoration, and improvement of sub-alpine and alpine grasslands.

273 **References**

- Allen VG, Batello C, Berretta EJ, Hodgson J, Kothmann M, Li X, McIvor J, Milne J, Morris C, Peeters A (2011) An
 international terminology for grazing lands and grazing animals. Grass and forage science 66:2–28.
- Argenti G, Lombardi G (2012) The pasture-type approach for mountain pasture description and management. Italian
 Journal of Agronomy 7:39. doi: 10.4081/ija.2012.e39
- Bailey DW, Sims PL (1998) Association of food quality and locations by cattle. Journal of Range Management 51:2–8.
 doi: 10.2307/4003555
- Björk RG, Molau U (2007) Ecology of Alpine Snowbeds and the Impact of Global Change. Arctic, Antarctic, and Alpine
 Research 39:34–43. doi: 10.1657/1523-0430(2007)39[34:EOASAT]2.0.CO;2
- Cavallero A, Aceto P, Gorlier A, Lombardi G, Lonati M, Martinasso B, Tagliatori C (2007) I tipi pastorali delle Alpi
 piemontesi. (Pasture types of the Piedmontese Alps). Alberto Perdisa Editore. p. 467, Bologna
- Chapin FS, Vitousek PM, Van Cleve K (1986) The Nature of Nutrient Limitation in Plant Communities. The American
 Naturalist 127:48–58. doi: 10.1086/284466
- 286 Daget P, Poissonet J (1971) A method of plant analysis of pastures. Annales Agronomiques 22:5–41.
- 287 ENRD European Network for Rural Development (2019) RDP Monitoring Indicator Tables 2007-2013.
 288 <u>https://enrd.ec.europa.eu/policy-in-action/rural-development-policy-in-figures/rdp-monitoring-indicator-</u>
 289 <u>tables en</u> (site visited on April 4th, 2019)
- 290 EUROSTAT https://ec.europa.eu/eurostat (site visited on February 25th, 2019)
- Gardarin A, Garnier É, Carrère P, Cruz P, Andueza D, Bonis A, Colace M-P, Dumont B, Duru M, Farruggia A, Gaucherand
 S, Grigulis K, Kernéïs É, Lavorel S, Louault F, Loucougaray G, Mesléard F, Yavercovski N, et al (2014) Plant trait digestibility relationships across management and climate gradients in permanent grasslands. Journal of Applied
 Ecology 51:1207–1217. doi: 10.1111/1365-2664.12293
- 295Güsewell S, Peter M, Birrer S (2012) Altitude modifies species richness-nutrient indicator value relationships in a296country-wide survey of grassland vegetation. Ecological Indicators 20:134–142. doi:29710.1016/J.ECOLIND.2012.02.011
- Harrison PA, Vandewalle M, Sykes MT, Berry PM, Bugter R, de Bello F, Feld CK, Grandin U, Harrington R, Haslett JR,
 Jongman RHG, Luck GW, da Silva PM, Moora M, Settele J, Sousa JP, Zobel M (2010) Identifying and prioritising
 services in European terrestrial and freshwater ecosystems. Biodiversity and Conservation 19:2791–2821. doi:
 10.1007/s10531-010-9789-x
- Hobbs NT, Bowden DC (1982) Confidence Intervals on Food Preference Indices. The Journal of Wildlife Management
 46:505–507. doi: 10.2307/3808667
- lussig G, Lonati M, Probo M, Hodge S, Lombardi G (2015) Plant species selection by goats foraging on montane semi natural grasslands and grazable forestlands in the Italian Alps. Italian Journal of Animal Science 14:484–494. doi:
 10.4081/ijas.2015.3907
- Jacobo EJ, Rodríguez AM, Bartoloni N, Deregibus VA (2006) Rotational Grazing Effects on Rangeland Vegetation at a
 Farm Scale. Rangeland Ecology & Management 59:249–257. doi: 10.2111/05-129R1.1
- Körner C (2003) The alpine life zone. Alpine Plant Life. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 9–20
- Landolt E, al E (2010) Flora indicativa: Ökologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und
 der Alpen (Ecological Indicator Values and Biological Attributes of the Flora of Switzerland and the Alps). Haupt
 Verlag Ag, Bern; Stuttgart; Wien
- Lombardi G, Gorlier A, Lonati, Michele M, Probo M (2011) Pastoral Plans to support mountain farming in SW Alps.
- Lonati M, Probo M, Gorlier A, Lombardi G (2015) Nitrogen fixation assessment in a legume-dominant alpine community:
 comparison of different reference species using the 15N isotope dilution technique. Alpine Botany 125:51–58.

- doi: 10.1007/s00035-014-0143-x
- Manly BF, McDonald L, Thomas DL, McDonald TL, Erickson WP (2002) Resource Selection by Animals: Statistical Design
 and Analysis for Field Studies, 2nd edn. Springer
- Nervo B, Caprio E, Celi L, Lonati M, Lombardi G, Falsone G, Iussig G, Palestrini C, Said-Pullicino D, Rolando A (2017)
 Ecological functions provided by dung beetles are interlinked across space and time: evidence from ¹⁵N isotope
 tracing. Ecology 98:433–446. doi: 10.1002/ecy.1653
- Orlandi S, Probo M, Sitzia T, Trentanovi G, Garbarino M, Lombardi G, Lonati M (2016) Environmental and land use
 determinants of grassland patch diversity in the western and eastern Alps under agro-pastoral abandonment.
 Biodiversity and Conservation 25:275–293. doi: 10.1007/s10531-016-1046-5
- 325 Ozenda P (1985) La Vegetation de la Chaine Alpine dans l'Espace Montagnard Europeen, Masson. ed. Paris.
- Perotti E, Probo M, Pittarello M, Lonati M, Lombardi G (2018) A 5-year rotational grazing changes the botanical
 composition of sub-alpine and alpine grasslands. Applied Vegetation Science 21:647–657. doi:
 10.1111/avsc.12389
- 329 Pignatti S (1982) Flora d'Italia (Flora of Italy). Edagricole, Bologna
- Pittarello M, Lonati M, Gorlier A, Perotti E, Probo M, Lombardi G (2018) Plant diversity and pastoral value in alpine
 pastures are maximized at different nutrient indicator values. Ecological Indicators 85:518–524. doi:
 10.1016/j.ecolind.2017.10.064
- Pittarello M, Lonati M, Gorlier A, Probo M, Lombardi G (2017) Species-rich Nardus stricta grasslands host a higher
 vascular plant diversity on calcareous than on siliceous bedrock. Plant Ecology and Diversity 10:343–351. doi:
 10.1080/17550874.2017.1393703
- Pittarello M, Probo M, Lonati M, Bailey DW, Lombardi G (2016a) Effects of traditional salt placement and strategically
 placed mineral mix supplements on cattle distribution in the Western Italian Alps. Grass and Forage Science
 71:529–539. doi: 10.1111/gfs.12196
- Pittarello M, Probo M, Lonati M, Lombardi G (2016b) Restoration of sub-alpine shrub-encroached grasslands through
 pastoral practices: effects on vegetation structure and botanical composition. Applied Vegetation Science 19:381–
 390. doi: 10.1111/avsc.12222
- Prévosto B, Kuiters L, Bernhardt-Römermann M, Dölle M, Schmidt W, Hoffmann M, Van Uytvanck J, Bohner A, Kreiner
 D, Stadler J, Klotz S, Brandl R (2011) Impacts of Land Abandonment on Vegetation: Successional Pathways in
 European Habitats. Folia Geobotanica 46:303–325. doi: 10.1007/s12224-010-9096-z
- Probo M, Lonati M, Pittarello M, Bailey DW, Garbarino M, Gorlier A, Lombardi G (2014) Implementation of a rotational
 grazing system with large paddocks changes the distribution of grazing cattle in the south-western Italian Alps.
 The Rangeland Journal 36:445–458. doi: 10.1071/RJ14043
- Probo M, Massolo A, Lonati M, Bailey DW, Gorlier A, Maurino L, Lombardi G (2013) Use of mineral mix supplements to
 modify the grazing patterns by cattle for the restoration of sub-alpine and alpine shrub-encroached grasslands.
 The Rangeland Journal 35:85–93. doi: 10.1071/RJ12108
- Probo M, Pittarello M, Lonati M, Lombardi G (2016) Targeted grazing for the restoration of sub-alpine shrub-encroached
 grasslands. Italian Journal of Agronomy 11:268–272. doi: 10.4081/ija.2016.775
- Ravetto Enri S, Renna M, Probo M, Lussiana C, Battaglini LM, Lonati M, Lombardi G (2017) Relationships between
 botanical and chemical composition of forages: a multivariate approach to grasslands in the Western Italian Alps.
 Journal of the Science of Food and Agriculture 97:1252–1259. doi: 10.1002/jsfa.7858
- Rutherford GN, Bebi P, Edwards PJ, Zimmermann NE (2008) Assessing land-use statistics to model land cover change in
 a mountainous landscape in the European Alps. Ecological Modelling 212:460–471. doi:
 10.1016/J.ECOLMODEL.2007.10.050
- Silva, J. P., Toland, J., Jones, W., Eldridge, J., Thorpe, E., & O'Hara E (2008) LIFE and Europe's grasslands. Restoring a
 forgotten habitat. doi: 10.2779/23028
- 361 Sistema Piemonte (2019) <u>http://www.sistemapiemonte.it/psr2011/elenco.jsp</u> (site visited on on April 4th, 2019)
- Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. W.H. Freeman. p. 887,
 New York, NY, USA
- Tasser E, Tappeiner U (2005) New model to predict rooting in diverse plant community compositions. Ecological
 Modelling 185:195–211. doi: 10.1016/j.ecolmodel.2004.11.024
- Vacchiano G, Meloni F, Ferrarato M, Freppaz M, Chiaretta G, Motta R, Lonati M (2016) Frequent coppicing deteriorates
 the conservation status of black alder forests in the Po plain (northern Italy). Forest Ecology and Management
 382:31–38. doi: 10.1016/j.foreco.2016.10.009
- 369
- 370

371 Figures

372 Figure 1 - Location of the four paddocks in Val Troncea, Western Alps, Piedmont, Italy (UTM zone 32 north, WGS84 datum).

Figure 2 - Location of vegetation ecological groups (A) and forage Pastoral Value pattern in 2016 (B) across the four paddocks grazed under rotational grazing system (RGS) in Val Troncea

Figure 3 – Effects produced by the five-year implementation of a Rotational grazing system (RGS) on the Species Relative Abundance (SRA) of oligotrophic, mesotrophic, and eutrophic plant species (A) and of non-palatable, moderately palatable, and highly palatable plant species (B).

384 Tables

385Table 1 - Area, topographic characteristics, average pastoral value, and length of the grazing period of the four paddocks grazed386under a rotational grazing system by a herd of 105 Animal Units from 2011 to 2015 within the Val Troncea Natural Park

Paddock	Area (ha)	Grassland cover (%)	Shrub cover (%)	Bare ground and rock cover (%)	Average altitude (m)	Average slope (°)	Average Pastoral Value (2011)	Yearly days of grazing (average number from 2011 to 2015)
1	27.2	77.2	9.7	13.0	2020	24.5	19.1	27 ± 5.6
2	46.9	52.9	23.9	23.2	2256	25.6	14.9	24 ± 3.9
3	115.9	41.3	1.9	56.8	2637	27.8	9.4	32 ± 7.4
4	155.4	47.7	6.6	45.7	2489	26.4	11.0	32 ± 6.3

388 Table 2 - Vegetation ecological groups and vegetation types (labelled according to dominant species names) and area covered by

each of them. Average forage Pastoral Value (PV) is also specified for each vegetation ecological group in 2011 and in 2016.

390 Vegetation ecological groups and vegetation types follow Cavallero et al (2007) and species nomenclature follows Pignatti (1982).

Vegetation ecological groups	Vegetation types	Area (ha)	Area (%)	PV	PV
				2011	2016
Thermic		139.6	32.1	11.7	12.4
	Carex rosae				
	Elyna myosuroides				
	Festuca quadriflora				
	Helianthemum nummularium				
	Helianthemum oelandicum				
	Sesleria varia				
Pre-forest and shrub- encroached		78.8	18.1	10.6	13.0
	Calamagrostis villosa				
	Juniperus nana				
	Vaccinium gaultherioides				
Oligotrophic		85.6	19.7	14.0	14.0
	Nardus stricta				
	Carex sempervirens				
	Trifolium alpinum and Carex sempervirens				
Mesotrophic		42.8	9.8	24.3	24.0
	Festuca gr. rubra and Agrostis tenuis				
Eutrophic		58.5	13.5	22.5	22.2
	Dactylis glomerata				
	Poa alpina				
Snow-bed		29.3	6.7	17.3	19.6
	Salix herbacea				
	Plantago alpina				
TOTAL		434.6	100.0		

393 Table 3 – Preference Index (PI) and Standardized Index (SI) for each vegetation ecological group under continuous (CGS) and

394 rotational (RGS) grazing systems. Light brown cells and light grey cells indicate a significant (95% confidence interval with a

395 396 Bonferroni adjustment) avoidance or preference for a specific vegetation ecological group, respectively. Orange cells indicate an

indifferent selection for a vegetation ecological group.

Indexes	Vegetation ecological group	CGS	RGS				
	vegetation ecological group		2011	2012	2013	2014	2015
PI	Thermic	0.66	n.a.	0.86	0.71	0.83	0.95
	Pre-forest and shrub-encroached	0.35	n.a.	0.96	1.35	1.10	1.00
	Oligotrophic	0.75	n.a.	0.96	1.03	0.93	0.66
	Mesotrophic	1.30	n.a.	2.80	3.36	3.44	3.51
	Eutrophic	1.94	n.a.	1.08	0.74	0.91	0.87
	Snow-bed	2.83	n.a.	1.07	1.70	1.14	1.40
	Thermic	0.08	n.a.	0.11	0.08	0.10	0.11
	Pre-forest and shrub-encroached	0.04	n.a.	0.12	0.15	0.13	0.12
SI	Oligotrophic	0.10	n.a.	0.12	0.12	0.11	0.08
	Mesotrophic	0.17	n.a.	0.36	0.38	0.41	0.42
	Eutrophic	0.25	n.a.	0.14	0.08	0.11	0.10
	Snow-bed	0.36	n.a.	0.14	0.19	0.14	0.17