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ON SOME PROPERTIES OF RANK 2 REFLEXIVE SHEAVES
ON A SMOOTH THREEFOLD

MARIO VALENZANO ∗

ABSTRACT. We show that some properties of rank 2 reflexive sheaves true on P3 can be
extended to a wide class of smooth projective threefolds. In particular, we establish some
cohomological conditions in order that a rank 2 reflexive sheaf is locally free or a split
bundle, or, equivalently, that an equidimensional, locally Cohen-Macaulay and generically
local complete intersection curve lying on the threefold is subcanonical or a complete
intersection.

1. Introduction

It is well known that there exists a correspondence, also called “Hartshorne-Serre”
correspondence, between rank 2 reflexive sheaves on the projective space P3 on the one hand
and equidimensional, locally Cohen-Macaulay and generically local complete intersection
curves embedded in P3 on the other hand. In fact we have a short exact sequence of type

0 → OP3 → F → IC(c1)→ 0

linking a rank 2 reflexive sheaf F on P3 and a curve C zero locus of a global section of
F , where c1 is the first Chern class of F considered as an integer. This result, due to
Hartshorne (1980), is the generalization of the so called Serre correspondence between rank
2 vector bundles, i.e., locally free sheaves, on P3 and subcanonical curves embedded in P3,
where a curve is called subcanonical if its dualizing sheaf is isomorphic to a suitable twist
of its structure sheaf. Thanks to the above exact sequence we obtain that cohomological
properties of a reflexive sheaf and of a corresponding curve are in very close connection.
This interaction between reflexive sheaves, or vector bundles, and curves in P3 allows us to
work on the ones or on the others to get as a consequence results on both. It is also known
that the Hartshorne-Serre correspondence can be extended, with little changes, from the
3–dimensional projective space P3 to a smooth algebraic threefold X (see Valenzano 2004)).

In the present paper we study rank 2 reflexive sheaves on a smooth algebraic projective
polarized threefold (X ,OX (1)) verifying some technical conditions, where OX (1) is a fixed
very ample invertible sheaf on X , with the aim of extending some results true for rank 2
reflexive sheaves on P3. We assume that the threefold X satisfies two conditions: the Picard
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A4-2 M. VALENZANO

group of X is isomorphic to Z and the 1–cohomology, and so also the 2–cohomology, of
OX (n) = OX (1)⊗n vanishes for every n ∈ Z.

Under these technical conditions we extend some properties of rank 2 reflexive sheaves
known on P3 [see, for example, Hartshorne (1978, 1980), Okonek et al. (1980), Roggero
(1988), Geramita et al. (1989), and Roggero and Valabrega (1994), and also the survey
paper by Roggero et al. (2001) for a partial overview on the matter]. In fact we establish
cohomological conditions in order that a reflexive sheaf is locally free or, equivalently, that
an equidimensional, locally Cohen-Macaulay and generically local complete intersection
curve in X is subcanonical, where subcanonical means that the dualizing sheaf of the curve
is isomorphic to the restriction to the curve of some invertible sheaf on the threefold. The
cohomological condition is the vanishing of one 2–cohomology group of F for a suitable
shift in a given range, which is the best one. Then we use a result by Madonna (1998),
which extends the Chiantini-Valabrega splitting criterion for rank 2 vector bundles on P3

(see Chiantini and Valabrega 1984), to get some cohomological conditions in order that
a reflexive sheaf is a split bundle or that a curve in X is a complete intersection. These
cohomological conditions in the case X = P3 were studied by Roggero (1988). For all
general facts not explicitly mentioned we refer to Hartshorne (1977).

2. Preliminaries

We consider a smooth polarized threefold (X ,OX (1)) defined over an algebraically closed
field k of characteristic zero. This means that X is a nonsingular irreducible projective
algebraic variety of dimension three and OX (1) is a fixed very ample invertible sheaf on X .

Given a coherent sheaf F on X we use the following notations: OX (n) = OX (1)⊗n for
each n ∈ Z, H i(F ) = H i(X ,F ) and hi(F ) = dimk H i(X ,F ), also F∨ denote the dual of
F as a sheaf, while V ∗ is the dual of V as a k-vector space. We call vector bundle a locally
free sheaf of finite rank. We assume that the threefold (X ,OX (1)) verifies the following
technical conditions:

• Pic(X)∼= Z (generated by OX (1)),

• H1
∗OX =

⨁︂
n∈Z

H1(OX (n)) = 0.

By the first assumption every invertible sheaf on X is, up to isomorphism, of type OX (a)
with a ∈ Z, so we set ωX = OX (ε). Furthermore by Serre duality the second assumption
implies that the 2-cohomology H2(OX (n)) vanishes for all n ∈ Z.

Some smooth threefolds which verify the above conditions are:

• the projective space P3;
• the smooth hypersurfaces in P4;
• the smooth complete intersections of dimension 3;
• some Fano threefolds, like the intersection of the Grassmannian of lines of P5, in

its Plücker embedding, with five general hyperplanes of P14, or the intersection
of the Grassmannian of lines of P4, in its Plücker embedding, with two general
hyperplanes and a general quadric of P9.

Let A(X) = ⊕3
i=0 Ai(X) be the Chow ring of the threefold X , with A1(X) = Pic(X)

and A0(X) ∼= Z. For every rank r coherent sheaf F on X it is defined the i-th Chern
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class ci(F ) ∈ Ai(X) for i = 0,1, . . . ,r, and the Chern polynomial of F is ct(F ) = c0(F )+
c1(F )t+ · · ·+cr(F )tr. We denote with h= c1(OX (1)) the class of the “hyperplane” divisor
in A1(X). Given a cycle Z on X of codimension i, that is Z ∈ Ai(X), we define the degree of
Z with respect to OX (1) as

deg(Z;OX (1)) = Z ·h3−i

having identified codimension 3 cycles with integers through the degree map. So we denote
with δ = h3 the degree of X with respect to OX (1), and with c̄i(F ) = deg(ci(F );OX (1))
the degree of the i-th Chern class of a coherent sheaf F on X .

We are interested in rank 2 reflexive sheaves on the smooth threefold (X ,OX (1)). The
main references for reflexive sheaves are the papers by Hartshorne (1980) and Okonek et al.
(1980). Let F be a rank 2 reflexive sheaf on X . The singular locus of F is the closed set

S(F ) = {x ∈ X | Fx is not a free OX ,x-module}

which has codimension ≥ 3 (see Okonek et al. 1980, Lemma 1.1.10), thus S(F ) is a finite
number of points or is empty, and in the latter case the sheaf F is actually locally free.
Since F is reflexive we have

S(F ) = Supp (E xt1
X (F ,L )) with L ∈ Pic(X).

We denote with λ (F ) the length of the zero-dimensional scheme S(F ), therefore we have

λ (F ) = h0(E xt1
X (F ,L ))

and it holds trivially the following

Proposition 2.1. Let F be a rank 2 reflexive sheaf on X. Then F is locally free if and only
if λ (F ) = 0.

Proposition 2.2. Let F be a rank 2 reflexive sheaf on X. Then F∨ ≃ F ⊗ (detF )−1.

Proof. See Hartshorne (1980, Proposition 1.10). □

For the following results see Valenzano (2004).

Proposition 2.3. Let F be a rank 2 reflexive sheaf on X and l ∈ Z. Then the Chern classes
of F (l) are

c1(F (l)) = c1(F )+2l ∈ Z

c2(F (l)) = c2(F )+ c1(F )lh2 + l2h2 ∈ A2(X)

c3(F (l)) = c3(F )

and the degree of the second Chern class of F (l) is

c̄2(F (l)) = c̄2(F )+ c1(F )δ l +δ l2 ∈ Z.

Proposition 2.4. Let F be a rank 2 reflexive sheaf on X with first Chern class c1. Then
F∨ ≃ F (−c1).
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A4-4 M. VALENZANO

Proposition 2.5 (Serre duality). Let F be a reflexive sheaf on X with first Chern class c1.
Then for every l ∈ Z there are isomorphisms

H0(F (m))∼= H3(F (l))∗

H3(F (m))∼= H0(F (l))∗

and an exact sequence

0 → H1(F (m))→ H2(F (l))∗ → H0(E xt1
X (F (l),ωX ))→ H2(F (m))→ H1(F (l))∗ → 0

where m =−l − c1 + ε .

Remark 2.6. By Serre’s vanishing theorem (see Hartshorne 1977, III Theorem 5.2), it
holds that H i(F (l)) = 0 for i > 0 and l ≫ 0. If F is locally free on X this implies that
H i(F (l)) = 0 for i < 3 and l ≪ 0. If F is reflexive, the above version of Serre duality
shows that H i(F (l)) = 0 for i = 0,1 and l ≪ 0, and that H2(F (l)) is of constant dimension
λ (F ) = h0(E xt1

X (F ,ωX )) for l ≪ 0.

Proposition 2.7 (Riemann-Roch). Let F be a rank 2 reflexive sheaf on X with Chern
classes c1, c2 and c3. Then the Euler-Poincaré characteristic of F is

χ(F ) =
1
6
(︁
c3

1δ −3c1c̄2 +3c3
)︁
+

1
4
(︁
2c̄2 − c2

1δ
)︁

ε +
1

12
c1
(︁
ε

2
δ + τ

)︁
− 1

12
ετ

where τ = c̄2(X).

Corollary 2.8. Let F be a rank 2 reflexive sheaf on X and l ∈ Z. Then the Euler-Poincaré
characteristic of F (l) is

χ(F (l)) =
1
3

δ l3 +
1
2
(c1 − ε)δ l2 +

(︃
1
2

c2
1δ − c̄2 −

1
2

c1εδ +
1
6

ε
2
δ +

1
6

τ

)︃
l+

+
1
6
(︁
c3

1δ −3c1c̄2 +3c3
)︁
+

1
4
(︁
2c̄2 − c2

1δ
)︁

ε+

+
1

12
c1
(︁
ε

2
δ + τ

)︁
− 1

12
ετ

Theorem 2.9 (Hartshorne-Serre correspondence). Fix an integer c1. Then there is a bijective
correspondence between

(i) pairs (F ,s), where F is a rank 2 reflexive sheaf on X with c1(F ) = c1 and s ∈
H0(F ) is a global section whose zero locus has codimension 2, and

(ii) pairs (Y,ξ ), where Y is a closed subscheme of X of pure dimension 1, locally Cohen-
Macaulay and generically local complete intersection and ξ ∈ H0(Y,ωY (−ε − c1)) is a
global section which generates the sheaf ωY (−ε − c1) except at finitely many points.
If the pairs (F ,s) and (Y,ξ ) are in correspondence, then there is the exact sequence

0 → OX (−c1)→ F∨ → IY → 0

or

0 → OX → F → IY (c1)→ 0.
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Remark 2.10. If the sheaf F corresponds to the curve Y we have the above exact sequence
which gives a cohomological connection between the reflexive sheaf F and the curve Y
zero locus of a section of F . In fact we get in cohomology the exact sequence

0 → H0(OX (l))→ H0(F (l))→ H0(IY (l + c1))→ 0

and the isomorphism
H1(F (l))∼= H1(IY (l + c1))

for all integer l.

Theorem 2.11 (Serre correspondence). Fix an integer c1. Then there is a bijective corre-
spondence between

(i) pairs (E ,s), where E is a rank 2 locally free sheaf on X with c1(E ) = c1 and
s ∈ H0(E ) is a global section whose zero locus has codimension 2, and

(ii) pairs (Y,ξ ), where Y is a closed subscheme of X of pure dimension 1, locally com-
plete intersection with ωY ≃ OY (ε + c1) and ξ ∈ H0(Y,ωY (−ε − c1)) is a global section
which generates the sheaf ωY (−ε − c1) everywhere.

Corollary 2.12. Let E be a locally free sheaf on X corresponding to the curve Y . Then Y
is a complete intersection if and only if E splits.

Proposition 2.13. Let F be a rank 2 reflexive sheaf on X and Y a curve in X of degree d
and arithmetic genus pa which corresponds to F . Then it holds

c̄2(F ) = d

λ (F ) = 2pa −2−d(ε + c1).

3. Cohomological conditions

In the present section we look for cohomological conditions which characterize a rank 2
reflexive sheaf on X to be locally free or to split. Through the Hartshorne-Serre correspon-
dence this is equivalent to find conditions such that a curve in X is either subcanonical or a
complete intersection. This is an extension of some results by Roggero (1988) on rank 2
reflexive sheaves on the projective space P3.

Definition 3.1. Given a rank 2 reflexive sheaf F on X we define

G(n) = h2(F (n))−h1(F (−n− c1 + ε)) ∀n ∈ Z,

where F (−n− c1 + ε)≃ F (n)∨⊗ωX .

Lemma 3.2. It holds:
1. G(n)≥ 0 for all n ∈ Z;

2. G(n)+G(−n− c1 + ε) = λ for all n ∈ Z, where λ = λ (F );

3. if h2(F (n)) = 0, then G(n) = 0 and h1(F (−n− c1 + ε)) = 0.

Proof. Given n ∈ Z we set m = −n− c1 + ε . Then it holds F (n)∨⊗ωX ≃ F (m), so by
Serre duality (see Proposition 2.5) we have the exact sequence

0→H1(F (m))→H2(F (n))∗→H0(E xt1
X (F (n),ωX ))→H2(F (m))→H1(F (n))∗→ 0
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from which we get

G(n) = h2(F (n))−h1(F (m))≥ 0

and also

G(n)+G(m) = h2(F (n))−h1(F (m))+h2(F (m))−h1(F (n))

= h0(E xt1
X (F (n),ωX )) = λ .

If h2(F (n)) = 0, then G(n) = −h1(F (−n− c1 + ε)) ≤ 0, but, by point 1, G(n) ≥ 0, so
G(n) = 0 and h1(F (−n− c1 + ε)) = 0. □

Proposition 3.3. A rank 2 reflexive sheaf F on X is locally free if and only if G(n) = 0 for
all n ∈ Z.

Proof. If F is locally free, then by Serre duality for vector bundles we have

H i(F )∼= H3−i(F∨⊗ωX )
∗ i = 0,1,2,3

and hence h2(F (n)) = h1(F (−n− c1 + ε)) for all n ∈ Z, that is G(n) = 0 for all n ∈ Z.
Conversely, if G(n) = 0 for all n ∈ Z, then, by the above Lemma, λ = 0 and so F is locally
free (see Proposition 2.1). □

Proposition 3.4. A rank 2 reflexive sheaf F on X is locally free if and only if G(n) =
G(m) = 0 for a pair of integers n and m such that n+m = ε − c1.

Proof. If F is locally free, then G(n) = 0 for every n ∈ Z (see Proposition 3.3).
For the converse, assume that there is two integers n and m, with n+m = ε − c1, such that
G(n) = G(m) = 0. Then by Lemma 3.2(2) λ = G(n)+G(m) = 0 and so F is locally free
(see Proposition 2.1). □

Proposition 3.5. Let C be a curve on X zero locus of a section of F (t) and let n and m be
integers such that n+m = ε − c1. Then:

1. h1(OC(n+ t + c1))−h0(OC(m+ t + c1)) = G(n);

2. (n−m)d = 2h0(OC(n+ t + c1))−2h0(OC(m+ t + c1))−G(n)+G(m);

3. if h2(F (m)) = 0, then h1(IC(n+ t + c1)) = 0 and
(n−m)d = 2h0(OC(n+ t + c1))−2h0(OC(m+ t + c1))−λ ;

where d is the degree of C.

Proof. 1. Using the exact sequences

0 → IC → OX → OC → 0

0 → OX (−2t − c1)→ F (−t − c1)→ IC → 0

and Serre duality we obtain in cohomology the equalities
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h1(OC(n+ t + c1)) = h2(IC(n+ t + c1))

= h2(F (n))+h3(OX (n− t))−h3(F (n))+h3(IC(n+ t + c1))

= h2(F (n))+h0(OX (m+ t + c1))−h0(F (m))+h0(OX (m− t))

= h2(F (n))+h0(OX (m+ t + c1))−h0(IC(m+ t + c1))

= h2(F (n))+h0(OC(m+ t + c1))−h1(IC(m+ t + c1))

= h2(F (n))+h0(OC(m+ t + c1))−h1(F (m))

from which

h1(OC(n+ t + c1))−h0(OC(m+ t + c1)) = h2(F (n))−h1(F (m)) = G(n).

2. Computing the Hilbert polynomial of C for n+ t + c1 and m+ t + c1, we find the
expressions

d(n+ t + c1)+1− pa = h0(OC(n+ t + c1))−h1(OC(n+ t + c1))

d(m+ t + c1)+1− pa = h0(OC(m+ t + c1))−h1(OC(m+ t + c1))

where d is the degree and pa the arithmetic genus of C. Then subtracting the second one
from the first one and using the above formula we get the thesis.
3. If h2(F (m)) = 0, then, by Lemma 3.2, G(m) = 0 and h1(IC(n+ t+c1)) = h1(F (n)) =
0, so G(n) = λ , always by Lemma 3.2. Substituting these values in the above formula we
get the thesis. □

Proposition 3.6. Let C be an integral curve contained in X. Then for all integer n it holds

h0(ωC(n))−h0(OC(e+n))≤ h0(ωC(n+1))−h0(OC(e+n+1))

where e = max{t ∈ Z | h1(OC(t)) = h0(ωC(−t)) ̸= 0} is the index of speciality of C.

Proof. The same proof by Roggero (1988, Proposition 2.2) works in this case too. □

Lemma 3.7. Let F be a rank 2 reflexive sheaf on X with first Chern class c1. Then for all
t ≫ 0 the sheaf F (t) has a section whose zero locus is an integral curve C with index of
speciality e = 2t + c1 + ε .

Proof. For t ≫ 0 the general section of F (t) gives rise to an integral curve C (see Roggero
1985, Teorema 3), hence e ≥ 2t + c1 + ε since ωC(−2t − c1 − ε) has a non zero global
section which corresponds to the reflexive sheaf F (t) (see Theorem 2.9). Moreover we
have

h0(ωC(−2t − c1 − ε −1)) = h1(OC(2t + c1 + ε +1))

= h2(IC(2t + c1 + ε +1))

= h2(F (t + ε +1))

where the last equality follows from the exact sequence

0 → OX → F (t)→ IC(2t + c1)→ 0

because h3(OX (ε+1)) = h0(OX (−1)) = 0, so for t ≫ 0 we get h0(ωC(−2t−c1−ε−1)) =
0, that is e = 2t + c1 + ε . □
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Proposition 3.8. Let F be a rank 2 reflexive sheaf on X, then G(n) ≥ G(n+ 1) for all
n ∈ Z.

Proof. By the above Lemma there is an integer t such that F (t) has a section whose zero
locus is a reduced and irreducible curve C with index of speciality e = 2t + c1 + ε . Setting
r+1 =−n− t − c1, then

e+ r+1 = 2t + c1 + ε −n− t − c1 =−n+ ε + t = m+ t + c1

where m =−n− c1 + ε , so by Proposition 3.5(1) we get

G(n) = h1(OC(n+ t + c1))−h0(OC(m+ t + c1))

= h1(OC(−r−1))−h0(OC(e+ r+1))

= h0(ωC(r+1))−h0(OC(e+ r+1))

G(n+1) = h1(OC(n+1+ t + c1))−h0(OC(m−1+ t + c1))

= h1(OC(−r))−h0(OC(e+ r))

= h0(ωC(r))−h0(OC(e+ r))

and then by Proposition 3.6

G(n+1) = h0(ωC(r))−h0(OC(e+ r))≤ h0(ωC(r+1))−h0(OC(e+ r+1)) = G(n).

□

Remark 3.9. Given a reflexive sheaf F on X , the function G : Z → Z of Definition 3.1
is, by Proposition 3.8, non increasing, and also G(n) = 0 for n ≫ 0 and G(n) = λ for
n ≪ 0 (see Remark 2.6). Moreover the graph of G, obtained by connecting with seg-
ments the points with integer coordinates (n,G(n)), is simmetric with respect to the point
P = ((ε − c1)/2,λ/2) (which not necessarily has integer coordinates).
Note also that if c1 + ε is even, then also ε − c1 is even, so (ε − c1)/2 is a whole num-
ber. Setting n = (ε − c1)/2 and m = −n− c1 + ε , we get that m = n and therefore, by
Lemma 3.2(2) it results G(n) = λ/2 ∈ Z, i.e., λ is even. In othe words: c1 +ε even implies
λ even, and also c3 even (being c3 = λδ by Valenzano (2004, Proposition 10). In the
particular case X = P3 we have ε =−4, so c1 +ε is even if and only if c1 is even, moreover
c3 = λ because δ = 1, therefore it holds: c1 even implies c3 even.

Theorem 3.10. Let F be a rank 2 reflexive sheaf on X with first Chern class c1. Then the
following facts are equivalent:

1. F is locally free;

2. h2(F (n)) = 0 for all n ≪ 0;

3. h2(F (n)) = 0 for some n ≤ (ε − c1)/2;

4. h2(F (n)) = h1(F (−n− c1 + ε)) for some n ≤ (ε − c1)/2;

5. G(n) = 0 for some n ≤ (ε − c1)/2;

6. G(m) = λ for some m ≥ (ε − c1)/2.
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Proof. 1.⇒ 2. See Hartshorne (1977, Chapter III, Theorem 7.6).
2.⇒ 3. Obvious.
3.⇒ 4. If there is an integer n ≤ (ε −c1)/2 such that h2(F (n)) = 0, then by Lemma 3.2(3)
h1(F (−n− c1 + ε)) = 0, so we have h2(F (n)) = h1(F (−n− c1 + ε)) for some n ≤
(ε − c1)/2.
4.⇒ 5. By the hypothesis and the definition of the function G we have G(n) = 0 for some
n ≤ (ε − c1)/2.
5.⇒ 6. If G(n) = 0 for some n ≤ (ε − c1)/2, then by Lemma 3.2(2) G(m) = λ for some
m ≥ (ε − c1)/2, where m =−n− c1 + ε .
6.⇒ 1. If G(m) = λ for some m ≥ (ε − c1)/2, then by Lemma 3.2(2) G(n) = 0 for some
n ≤ (ε − c1)/2, where n = −m− c1 + ε . As it holds m ≥ n, by Proposition 3.8 we get
0 = G(n)≥ G(m) = λ , therefore λ = 0, so F is locally free. □

Translating the above result in the language of curves, we obtain the following

Theorem 3.11. Let C be a curve in X, equidimensional, locally Cohen-Macaulay and
generically local complete intersection. Then C is a-subcanonical, i.e., ωC ≃ OC(a), if and
only if ωC(−a) has a global section which generates it almost everywhere and h1(OC(n)) =
h0(OC(a− n)) for some n ≤ a/2. If, moreover, C is reduced and irreducible, then C is
e-subcanonical, with e the index of speciality of C, if and only if h1(OC(n)) = h0(OC(e−n))
for some n ≤ e/2.

Proof. If C is a-subcanonical, then ωC ≃ OC(a), hence the sheaf ωC(−a) is generated by a
global section and by duality we have h1(OC(n)) = h0(ωC(−n)) = h0(OC(a−n)) for all
integer n.
Conversely, let F be the reflexive sheaf on X corresponding to C, that exists by the
hypothesis on ωC(−a), where a = c1 + ε . Let n such that h1(OC(n)) = h0(OC(a−n)), set
p = n− c1 and q =−p− c1 + ε = ε −n, then by Proposition 3.5(1)

G(p) = h1(OC(p+ c1))−h0(OC(q+ c1))

= h1(OC(n))−h0(OC(a−n))

and so G(p) = 0 for some

p = n− c1 ≤
a
2
− c1 =

ε − c1

2
.

By Theorem 3.10 F is locally free and therefore C is a-subcanonical. □

Example 3.12. Let X be a smooth quadric threefold in P4. Then ωX ≃ OX (−3) so ε =−3.
Let C be either a line or a conic lying on X , then C is a nonsingular irreducible curve of
degree d = 1 or 2 which is a-subcanonical with a = ε +d. Let F be the reflexive sheaf
corresponding to C through a non zero section of ωC(1− ε − d) = ωC(1− a) ≃ OC(1),
then c1 = d − 1. Note that the sheaf we are considering is not the one “canonically”
associated to the curve C, that is the reflexive sheaf, or more precisely the vector bundle,
corresponding to C through a non zero section of ωC(−a). From the exact sequence
0 → OX → F → IC(c1)→ 0 we get

h2(F (n))≤ h2(IC(n+ c1)) = h1(OC(n+ c1)) = h0(ωC(−n− c1)) = h0(OC(ε +1−n))
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A4-10 M. VALENZANO

and so
h2(F (n)) = 0 for every n > ε +1 =−2

that is
h2(F (n)) = 0 for every n >

ε − c1

2
.

Note that in both cases the sheaf F is not locally free, in fact it has λ = 1 in the case of
the line and λ = 2 in the case of the conic. The above examples show that the integers
n ≤ (ε − c1)/2 are the only ones for which it holds the equivalence between 1. and 3. in
Theorem 3.10. For other examples in the case X = P3 see Roggero (1988, Example 2.4).

Now we want to determine a cohomological condition which assures that a rank 2
reflexive sheaf is a split bundle. First we recall the definition of the first relevant level α of
a reflexive sheaf and the splitting criterion given by Madonna (1998).

Definition 3.13. Let F be a rank 2 reflexive sheaf on X . We define the first relevant level
of F as the integer

α = min{l ∈ Z | h0(F (l)) ̸= 0},
i.e., α is the minimum shift for which F has a non zero global section.

Theorem 3.14. Let F be a rank 2 locally free sheaf on X with first Chern class c1 and first
relevant level α . Then F splits if and only if⎧⎨⎩H1

(︂
F

(︂
ε−c1+2

2

)︂)︂
= 0 if c1 + ε is even,

H1
(︂
F

(︂
ε−c1+1

2

)︂)︂
= 0 if c1 + ε is odd,

unless −ε −3 < c1 +2α < ε +5.

Proof. See Madonna (1998, Theorem 7). □

Now we are able to state and prove a splitting criterion for a rank 2 reflexive sheaf on a
threefold X .

Theorem 3.15. Let F be a rank 2 reflexive sheaf on X with first Chern class c1 and first
relevant level α . Assume that does not hold −ε −3 < c1 +2α < ε +5.
If c1 + ε is even we set

n =
ε − c1 −2

2
and m =

ε − c1 +2
2

;

if c1 + ε is odd we set

n =
ε − c1 −1

2
and m =

ε − c1 +1
2

.

Then the following facts are equivalent:
1. F is a split bundle,

2. h2(F (n)) = 0,

3. h2(F (l)) = h1(F (m)) = 0 for some l ≤ (ε − c1)/2,

4. G(l) = h1(F (m)) = 0 for some l ≤ (ε − c1)/2.
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Proof. 1.⇒ 2. Obvious.
2.⇒ 3. In both cases, c1+ε even or odd, it holds m =−n−c1+ε , hence by the hypothesis
it follows by Lemma 3.2(3) that h1(F (m)) = 0. So we have h2(F (l)) = h1(F (m)) = 0
with l = n ≤ (ε − c1)/2.
3.⇒ 4. If h2(F (l)) = 0, then by Lemma 3.2(3) we have G(l) = 0.
4.⇒ 1. The hypothesis G(l) = 0 for some l ≤ (ε − c1)/2 implies by Theorem 3.10 that F
is locally free. Then the other hypothesis h1(F (m)) = 0 implies by Theorem 3.14 that F
splits. □

Remark 3.16. Note that in Theorem 3.15 we have m = n+2 if c1+ε is even, and m = n+1
if c1 + ε is odd.

Theorem 3.17. Let F be a rank 2 reflexive sheaf on X with first Chern class c1 and first
relevant level α . Assume that does not hold −ε −3 < c1 +2α < ε +5. Then F splits if
and only if h2(F (l)) = 0 for some l with α + ε ≤ l ≤ n, where either n = (ε − c1 −2)/2 if
c1 + ε is even or n = (ε − c1 −1)/2 if c1 + ε is odd.

Proof. If F is a split bundle, then h2(F (l)) = 0 for all integer l.
For the converse, assume that h2(F (l)) = 0 for some l such that α + ε ≤ l ≤ n, then
n ≤ (ε − c1)/2 so by Theorem 3.10 F is locally free, i.e., λ = 0 (see Proposition 2.1).
If l = n, then F splits by Theorem 3.15. Now let α + ε ≤ l ≤ n− 1. Suppose F does
not split and let C be a curve corresponding to a global section of F (α) (existing by
Valenzano 2004, Proposition 14). We set p = −l − c1 + ε , so by Proposition 3.5(3) we
have h1(IC(p+α +c1)) = 0 and (p− l)d = 2h0(OC(p+α +c1))−2h0(OC(l+α +c1)),
where d is the degree of C. From the exact sequence 0 → IC → OX → OC → 0 we get in
cohomology

0 → H0(IC(p+α + c1))→ H0(OX (p+α + c1))→ H0(OC(p+α + c1))→ 0

from which
(p− l)d ≤ 2h0(OX (p+α + c1))

where p− l =−c1 + ε −2l ≥ 3, because l ≤ n−1 ≤ (ε − c1 −3)/2, and

p+α + c1 = α + ε − l ≤ 0.

Then 3d ≤ 2, absurd. □

Remark 3.18. Obviously the above Theorem makes sense if α ≤ n− ε , that is if c1 +2α ≤
−ε −2 in the case c1 + ε even or if c1 +2α ≤−ε −1 in the case c1 + ε odd. So if c1 + ε

is even it must exclude the case c1 +2α =−ε −2, while if c1 + ε is odd it must avoid the
case c1 +2α =−ε −1 (if c1 + ε is odd it cannot hold c1 +2α =−ε −2).

Corollary 3.19. Let F be a non split rank 2 reflexive sheaf on X. Set n = (ε − c1 −2)/2 if
c1 + ε is even and n = (ε − c1 −1)/2 if c1 + ε is odd. Then h2(F (l)) ̸= 0 for α + ε +1 ≤
l ≤ n, moreover h2(F (α + ε)) ̸= 0 unless −ε −3 < c1 +2α < ε +5.

Proof. If α+ε+1≤ n, then it does not hold −ε−3< c1+2α < ε+5, so by Theorem 3.17
we have h2(F (l)) ̸= 0 for α + ε +1 ≤ l ≤ n. Moreover we have also h2(F (α + ε)) ̸= 0 if
c1 +2α <−ε −2 (see Remark 3.18). □
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If we interpret the result of Theorem 3.15 in the language of curves we obtain the
following

Proposition 3.20. Let C be an equidimensional, locally Cohen-Macaulay and generically
local complete intersection curve in X. Then C is a complete intersection curve if and only if
there exists an integer a, with a+2α ≤−3 or a+2α ≥ 2ε +5 where α is the first relevant
level of the sheaf corresponding to C, which satisfies the following conditions:

i) ωC(−a) has a global section which generates it almost everywhere;

ii) h1(OC(n)) = h0(OC(a−n)) for some n ≤ a/2;

iii) h1(IC(
a+r

2 )) = 0 where r = 2 if a is even and r = 1 if a is odd.

Proof. If C is a complete intersection, then C is a-subcanonical with a = r+ s+ ε , where r
and s are the degrees of the surfaces that cut C, then by Theorem 3.11 conditions i) and ii)
are satisfied, moreover C is arithmetically Cohen-Macaulay, that is h1(IC(t)) = 0 for all t,
so also condition iii) is verified.
Conversely, assume there exists an integer a which satisfies the hypothesis of the statement.
Conditions i) and ii) imply by Theorem 3.11 that C is a-subcanonical with a = c1+ε , where
c1 is the first Chern class of the reflexive sheaf F which corresponds to C. Set p = n− c1
and q =−p− c1 + ε , where n is the integer of condition ii), then by Proposition 3.5(1)

G(p) = h1(OC(p+ c1))−h0(OC(q+ c1))

= h1(OC(n))−h0(OC(a−n)) = 0

with
p = n− c1 ≤

a
2
− c1 =

ε − c1

2
.

On the other hand from the exact sequence 0 → OX → F → IC(c1)→ 0 it follows, by
condition iii),

h1
(︃

F

(︃
a+ r

2
− c1

)︃)︃
= h1

(︃
IC

(︃
a+ r

2

)︃)︃
= 0

where
a+ r

2
− c1 =

ε − c1 + r
2

with r = 2 if c1 + ε is even and r = 1 if c1 + ε is odd. Moreover

a+2α ≤−3 ⇒ c1 +2α ≤−ε −3
and

a+2α ≥ 2ε +5 ⇒ c1 +2α ≥ ε +5.

Therefore, by Theorem 3.15, F splits and so C is a complete intersection. □
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