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ABSTRACT 

Rock glaciers are slowly flowing mixtures of debris and ice occurring in mountains. They can 

represent a reservoir of water, and melting ice inside them can affect surface water hydrochemistry. 

Investigating the interactions between rock glaciers and water bodies is therefore necessary to better 

understand these mechanisms. With this goal, we elucidate the hydrology and structural setting of a 

rock glacier-marginal pond system, providing new insights into the mechanisms linking active rock 

glaciers and impounded surface waters. This was achieved through the integration of waterborne 

geophysical techniques (ground penetrating radar, electrical resistivity tomography and self-

potentials) and heat tracing. Results of these surveys showed that rock glacier advance has 

progressively filled the valley depression where the pond is located, creating a dam that could have 

modified the level of impounded water. A sub-surface hydrological window connecting the rock glacier 

to the pond was also detected, where an inflow of cold and mineralised underground waters from the 

rock glacier was observed. Here, greater water contribution from the rock glacier occurred following 

intense precipitation events during the ice-free season, with concomitant increasing electrical 

conductivity values. The outflowing dynamic of the pond is dominated by a sub-surface seepage 

where a minor fault zone in bedrock was found, characterised by altered and highly-fractured rocks. 

The applied approach is evaluated here as a suitable technique for investigating logistically-complex 

hydrological settings which could be possibly transferred to wider scales of investigation. 
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1. INTRODUCTION 

Active rock glaciers are widespread in cold mountain regions and contain ice-rich 

permafrost. They are debris covered and slowly flowing mixtures of debris and ice 

which form by processes on a continuum from glacial to periglacial (for a review: 

Haeberli et al., 2006). Active rock glaciers can represent an important water source 

(e.g., Corte, 1976; Azócar and Brenning, 2010; Millar et al., 2013), especially in arid 

areas and during low-flow conditions (e.g., Brenning, 2005; Azócar and Brenning, 

2010; Rangecroft et al., 2015). Their hydrological significance relates to the long-

term storage of frozen water, the seasonal storage and release of water, and the 

interaction with water flowing through or beneath them (Burger et al., 1999). 

Water draining from rock glaciers is usually released at springs near the front, 

mostly as single streams, and sometimes as groundwater (Berger et al., 2004). 

Discharge is usually characterised by strong diurnal and seasonal variations, with 

high peaks associated with snowmelt and rainfall (Krainer and Mostler, 2002). Even 

during strongly varying discharge, water draining from active rock glaciers has been 

reported to be around the freezing point (Krainer et al., 2007; Millar et al., 2013). 

Rock glaciers and hydrologically connected lakes and ponds can create specific 

ecosystems sensitive to climate change. For example, increased electrical 

conductivity and metal concentrations in some lakes of the European Alps were 

attributed to changed solute release from rock glaciers in response to atmospheric 

warming (Thies et al., 2007; Ilyashuk et al., 2014). Other studies reported increased 

electrical conductivity from May to October in the outflow of rock glaciers (Krainer 

and Mostler, 2002; Krainer et al., 2007) due to increasing seasonal contributions of 

concentrated weathering fluxes from groundwater and icemelt (Williams et al., 2006). 
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Hydrological studies on rock glaciers are rare (e.g., Krainer and Mostler, 2002; 

Berger et al., 2004; Krainer et al., 2007). Indeed, the hydrology of rock glaciers is 

complicated because of unknown flow paths, phase change and an irregular 

distribution of frozen material (e.g., Burger et al., 1999). Moreover, hydrological 

research on outflows of active rock glaciers is difficult, because most water drains 

within the debris (Krainer and Mostler, 2002). The presence of multiple and often 

inaccessible springs can further increase uncertainties (Krainer et al., 2012) and 

where rock glaciers terminate in lakes or ponds discharge is difficult to measure. 

In this context, waterborne geophysical methods can map hydrogeological 

information, correlating geophysical parameters to hydrological and geological 

properties (e.g., Befus et al., 2012; Colombero et al., 2014). Waterborne ground 

penetrating radar can be used for mapping bathymetry, deriving hypsographic 

curves, analysing bottom deposit characteristics, and investigating bottom strata 

(e.g., Lachhab et al., 2014; Sambuelli et al., 2015). Waterborne resistivity methods, 

such as electrical resistivity tomography with floating cables, can be also used to 

delineate groundwater-lake interactions (Befus et al., 2012), characterise lacustrine 

sediments (Rucker et al., 2011) and investigate the geological setting (Colombero et 

al., 2014). In shallow water, floating electrodes are preferable over bottom electrodes 

from a logistical point of view even though this causes a partial loss of resolution with 

depth (Loke and Lane, 2004). Moreover, combined acquisition of self-potential data 

can be used for determining upflow (positive anomalies) and downflow (negative 

anomalies) regions in subsurface flow (Ishido and Pritchett, 1999) and mapping 

groundwater-surface water exchange (Grangeia and Matias, 2012). 

Although waterborne geophysical techniques allow definition of hydrogeological 

setting, they cannot discriminate among different water sources. The interactions 
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between surface and sub-surface waters are usually quantified through water 

balance investigations, although those alone cannot distinguish different sub-surface 

components (e.g., Siegel, 2008). Conversely, the use of tracers can be helpful in 

discriminating different contributions (e.g., Anderson, 2005; Langston et al., 2013). 

This includes the use of natural tracers such as heat, as well as artificially introduced 

chemical tracers. Artificial tracers can usually be used for short periods (e.g., 

Anderson, 2005) in remote and harsh environments. Conversely, heat can be used 

efficiently to determine groundwater seepage across streambeds (e.g., Schmidt et 

al., 2007; Constantz, 2008) and at the bottom of lakes (e.g., Langston et al., 2013). 

Waterborne geophysical techniques and natural tracers are rarely used in alpine 

headwater ponds (e.g., Langston et al., 2013) and their integration, despite great 

potential, remains untested in these environments to date. 

The importance of rock glaciers in shaping high-elevation hydrological dynamics, 

specifically in affecting adjacent ponds, is barely known. Here, a local study in a 

pond that is in direct contact with a rock glacier is reported. The hydrological 

connections between the rock glacier and its marginal pond have been studied with 

waterborne ground penetrating radar, electrical resistivity tomography, self-potential 

measurements, and heat as a natural tracer. The research questions that motivated 

this study are: (i) How does the sub-surface structural setting of a rock glacier-pond 

system influence its geomorphological characteristics?; (ii) Which are the main 

processes driving the thermal and hydrological dynamics of a marginal rock glacier 

pond?; and (iii) Can waterborne geophysical techniques and their integration with 

non-invasive hydrological methods be considered powerful tools for investigating 

logistically complex high-elevation hydrological settings? 
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2. STUDY AREA 

The Col d’Olen Rock Glacier Pond (45°52’8.22’’N, 7°51’46.98’’E, WGS84) is in the 

north-western Italian Alps (Fig. 1a and 1b) along the Aosta Valley and Piemonte 

Region border, at an elevation of 2722 m a.s.l. The catchment area is approximately 

206,000 m2 (Fig. 1c). The research site is a node of the Long-Term Ecological 

Research (LTER) network in Europe (http://www.lter-europe.net/). No studies have 

been previously carried out to investigate the periglacial and permafrost 

characteristics in this site.  

The Col d’Olen area is dominated by glacial and periglacial features and it is 

situated on the southern slope of the Monte Rosa massif. It contains bedrock 

outcrops, and typical alpine deposits, landforms and habitat features that include 

talus slopes, snow beds, patterned ground and alpine meadows. Geologically, the 

study area is a significant tectonic intersection between major 

structural/paleogeographic domains of the Alpine orogen, with the presence (from 

North to South) of the Monte Rosa nappe, the “Zermatt-Saas” unit, the “Combin 

Zone” unit, and the Sesia Lanzo Zone (Dal Piaz, 2001; Handy et al., 2010; Gasco et 

al., 2011; Steck et al., 2015). In the Col d’Olen area, the tectonic contact between 

the “Zermatt Sass” unit (Corno Camoscio, 3024 m a.s.l.) and the overlaying “Combin 

Zone” unit is characterised by distinctive structural association of brittle faults and 

fractures whose main systems are approximately 110° and 60° oriented (Bistacchi 

and Massironi, 2000; Bistacchi et al., 2000). 

The Col d’Olen Rock Glacier (“Corno Rosso 2 Rock Glacier” in the Aosta Valley 

rock glacier cadastre, http://www.geonavsct.partout.it) typology is talus-tongue 

shaped (Barsch, 1996) (rock glacier morphometric characteristics in Tab. 1). The 

surface of the rock glacier is covered by clasts (calcschists) varying from pluri-
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decimetric to metric size (several boulders of tens of m3 are also present), with large 

open voids between the fragments resulting in an edge-supported arrangement 

lacking interstitial fine debris. Fine-grained sediments (serpentinites) outcrop at the 

terminus and at the lateral scarps. The rock glacier seems to be active due to limited 

lichen growth, sparse vegetation, microform evidence of recent movement in the 

steep frontal slopes (e.g., small-size rockfalls and associated new deposit apron 

formations), in addition to load fresh and unstable boulders on the upper surface 

(Barsch, 1996; Millar and Westfall, 2008). The rock glacier is also classified as intact 

in the Aosta Valley rock glacier cadastre. The rock glacier shows a main flow 

direction from NE to SW, toward a small valley depression where the studied pond is 

located (Fig. 1d). The rock glacier does not have any surficial outflowing springs or 

streams. 

The pond is situated in front of the rock glacier, on the right-marginal side of the 

tongue (Fig. 1d), showing an elongated shape in NE-SW direction (pond 

morphometric characteristics in Tab. 1). The pond shoreline is surrounded from NE 

to SE by the rock glacier, with the front dipping into the pond, from N to SW by 

weathering deposit slopes (scree accumulations and pedogenised fine-grained 

deposits often associated with alpine meadows) and a small rockfall deposit primarily 

composed of amphibolites, and it is partially bordered on the south by bare bedrock 

outcrop (calcschists). The pond has no stable surficial inflows. Only a tiny ephemeral 

snow melting stream is present, that usually disappears during the ice-free season 

(here defined as period with the pond ice-covered less than 50 % of its surface) in 

July-August. There are no surficial outflows. It is completely ice-covered during the 

winter season. 

 



 

 
This article is protected by copyright. All rights reserved. 

3. DATA AND METHODS 

3.1 Ground Penetrating Radar (GPR) 

Data acquisition 

The GPR survey consisted of 17 profiles acquired using a 200-MHz IDS antenna, 

for a total length of 530 m, and 13 profiles employing a 500-MHz GSSI antenna, for a 

total length of 440 m (Fig. 2a). Both the surveys were carried out with an IDS K2 

GPR unit. To acquire the profiles a flat-bottom plastic boat tracked with an Ublox 

EVK-686 GPS was used with an electric engine to maintain a constant speed. The 

same acquisition parameters were selected both for 200-MHz and 500-MHz 

antennas. The sampling frequency was 4 GHz with 2,048 samples per trace. Boat 

velocity and GPR scan rate, that was driven by the GPS at 3 readings/second, 

resulted in a trace interval equal to 0.02 m, on average. 

 

Data processing 

To understand the GPR pulse parameters (velocity, attenuation, wavelength) in 

pond water, water electromagnetic parameters were estimated. The dominant 

frequency of the pulse was estimated from spectra of reflections from the pond 

bottom. These signals were firstly isolated with a Hanning window (10 ns) centred at 

the maximum amplitude of reflection. Then, for both 200 and 500 MHz surveys, the 

average Fourier spectra were calculated for each profile. The maximum amplitude 

was found for both antennas corresponding to a frequency f = 200 MHz. The water 

electrical conductivity σ was about 50 μS cm-1, based on several randomly located 

measurements in the pond, collected using a conductivity meter HI 98130 (HANNA 

instruments, accuracy at 20 °C of ±2 %, resolution of 10 μS cm-1). At the bottom of 

the pond, pebbles and small blocks generate diffraction hyperbolas. To estimate the 
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velocity of the GPR pulse in water, 56 of these hyperbolas that were particularly 

clear and wide were selected. A mean value of about 340.5 x 10-3 m ns-1 was 

found, resulting in a relative permittivity εr of about 77.82.3 (considering the water 

lossless due to its very low conductivity). The uncertainty on velocity, together with 

that of the time picking (around 1 ns) give an uncertainty in water depth derivation of 

0.05 and 0.20 m for the shallowest and the deepest reflections, respectively. 

Applying the Maxwell equations to the pond water, giving σ, f and εr, an intrinsic 

attenuation at 200 MHz equal to 0.93 dB m-1 and a dominant wavelength λ of about 

0.17 m were calculated (Sambuelli and Bava, 2012). Only few diffraction hyperbolas 

with an average apparent velocity of about 451 x 10-3 m ns-1 were observed in the 

fine bottom sediments. Similar values have been found in the literature (e.g., Arcone 

et al., 2010). Assuming a relative permittivity of the solid mixture equal to 6.5 

(Vaccaneo et al., 2004), and using the CRIM formula (Birchak et al., 1974), a 

porosity of approximately 65 % was obtained, that is likely attributable to a silty 

material. However, given the scarcity of diffraction events, the sediment thickness 

(Fig. 2c) was calculated using the velocity in water. In doing so, the sediment 

thickness was likely underestimated, and it could be from 1.2 to 1.4 times thicker 

than stated, depending on the true pulse velocity within the sediments. 

The raw GPR data were processed with Reflexw software, using the following 

steps: i) spatial resampling of radagrams at equidistant traces of 0.02 m to keep a 

high-spatial resolution; ii) drift removal (zero time correction); iii) dewow to filter out 

low frequencies; iv) removal of average trace to attenuate ringing; v) spherical 

divergence compensation to recover the geometrical attenuation; vi) migration using 

the water velocity; and vii) muting above the pond bottom reflection. Within 

radargrams, fine sediment deposits showed organised parallel lines while pebbles 
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and rocks showed chaotic and waving reflections with broken and discontinuous 

phases due to scattering. The sediment-bottom reflections were picked only where 

the boundaries between ordered and chaotic reflections were clear. After assembling 

all the pickings, the bathymetry of the pond and the fine sediment thickness map 

were obtained (Fig. 2b and 2c). The depth values were gridded with triangular 

interpolation into a 10 cm x 10 cm mesh. From the high resolution DEM of the pond 

bottom, the hypsographic curve was obtained (Fig. 2d), and used for hydrological 

analyses. 

 

3.2 Electrical Resistivity Tomography (ERT) and Self-Potential (SP) 

Data acquisition 

The electrical surveys were conducted with floating equi-spaced electrodes 

stretched across the pond in two different configurations (Fig. 3a): longer arrays 

were used along the main length of the pond (4 profiles with 48 electrodes 1.5-m 

spaced) while shorter arrays were used across the pond (4 profiles with 24 

electrodes at 2-m spacing). Polyethylene foam floaters were used to allow the cables 

to be submerged. Cable takeouts were left directly in contact with water (Fig. 3b), 

obtaining fully submerged floating electrodes, while stainless steel electrodes were 

connected to the cable for measuring points on shore. Each of these last electrodes 

was geo-referenced using an Ublox EVK-686 GPS to record the position of the 

survey line. For both configurations, a Wenner-Schulumberger sequence was 

adopted, with a total of 545 measuring quadrupoles for long arrays and 126 for short 

arrays, to take advantage of both vertical and lateral resolution. A multichannel 

resistivity meter (Syscal Pro - Iris Instruments) was used for data acquisition. 
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The Syscal-Pro also allowed for a contemporary acquisition of SP data which 

were later mapped along the pond. In particular, the SP data were collected along 

the ERT lines 1, 2, 3 and 4 (electrode spacing 1.5 m), which were the longest 

available survey lines along the lake (Fig. 3a). SP potentials were measured for each 

multiple of the electrode spacing obtaining SP values with different separation of 

potential measuring electrodes (1.5, 3, 4.5, 6 m).  

 

Data processing 

ERT data were inverted with the software Res2DInv (Geotomo Software). To 

focus the inversions in both the sediments below the water and in the underlying 

bedrock a strong a-priori constraint was imposed to depth and resistivity of the water 

layer. A constant resistivity was then imposed to the shallower elements of the model 

until an appropriate water depth to reflect the water layer presence. Only the lower 

part of the model was therefore used for the evaluation of the sub-bottom resistivity 

distribution. In this way, the inversion program only iterates on the resistivity of the 

lower part of the model, with a fixed water layer above, to obtain more realistic 

resistivity values for sediments and rocks. For robust inversion in water covered 

environments, the water column resistivity and its geometry must indeed be known 

accurately as a large portion of the electric current may flow through the water layer 

(Loke and Lane, 2004). This can be considered using a distorted finite-element grid 

to calculate apparent resistivity (to be compared with the acquired data) with the 

nodes along the bottom row of the water mesh adjusted to match bathymetry. Water 

resistivity was imposed based on the mean apparent resistivity measured with 

electrodes having the shortest spacing. These raw data showed a consistent and 

spatially homogeneous electrical resistivity as confirmed also by several independent 
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randomly located measurements carried out with the conductivity meter HI 98130. 

The water resistivity was about 200 Ohm·m, with this relatively high value a good 

penetration of current lines in the bottom sediments is allowed. 

The SP data obtained with the potential electrode separation of 3 m have been 

used for mapping. This separation has been chosen to reduce short wavelength 

noise in raw data and to focus on potential anomalies near the bottom of the lake, 

having an electrode separation similar to the maximum water depth. A total of 130 

SP values were mapped after a gridding with triangulation on a 2 m x 2 m mesh, and 

filtered with a Gaussian 3 x 3 square filter to smooth the map and enhance larger 

scale anomalies. 

 

3.3 Lacustrine sediment properties 

Lacustrine sediment probing 

Lacustrine sediments were analysed to support the results obtained from the 

geophysical investigations. Grain size, sulphur concentrations and electrical 

conductivity were analysed to compare the laboratory data with the potential porosity 

value obtained by GPR data processing and resistivity values derived from ERT. To 

do this, two 10-cm-long surficial fine sediment cores were collected from the pond 

bottom using a boat anchored to the pond shores to ensure enough stability during 

the coring activities, and a Beeker vibracore sampler (Eijkelkamp, NL), equipped with 

a polyethylene tube with a diameter of 6 cm and a 2-m steel extension at the top of 

the sampler to reach the bottom of the pond. The core locations (Fig. 2c) were 

selected using the GPR-derived sediment thickness map to identify sites undisturbed 

by boulders and pebbles. 
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Laboratory analyses 

Samples were immediately sealed with a tight stopper to avoid oxygen infiltration 

and stored at 4 °C until laboratory analysis. The presence of sulphidic material was 

observed through the colour response of the matrix after adding some drops of 3 % 

H2O2 and by recording the odour description of each sample (Fanning and Fanning, 

1989; Fanning et al., 2002; McVey et al., 2012). The samples were then air-dried 

and sieved to 2 mm (Balduff, 2007), and sediment particle size distribution was 

determined by pipette method (Gee and Bauder, 1986). A wet subsample of each 

core was aerobically incubated for 16 weeks in 1:1 (w:v) soil:distilled water in order 

to detect the lowering of pH due to acid sulphate weathering oxidation in soil horizon 

which contain reduced sulphides (Bradley and Stolt, 2003; McVey et al., 2012). Total 

S (TS) was quantified by ICP-OES (Ametek, Germany) after aqua regia digestion in 

a Millestone 1200 microwave oven (Vittori Antisari et al., 2011). Finally, electrical 

conductivity measurements were performed using a VWR Multi 340i - WTW 

multimeter (accuracy ±0.5 %, resolution 1 μS cm-1). 

 

3.4 Hydrological regime 

Air temperature, snow height, atmospheric pressure, relative humidity and wind 

speed were measured at the Col d’Olen AWS (automatic weather station, 2900 m 

a.s.l.) located at about 800 m distance from the pond. Rain data were obtained from 

the Gressoney-La-Trinité - Lago Gabiet AWS (2379 m a.s.l.), which is located 2.5 km 

from the pond. Direct short wave radiation data were extracted from the Bocchetta 

delle Pisse meteorological station (2410 m a.s.l.) located ca. 3 km far from the pond. 

Hourly meteorological data were aggregated to daily values and used for the 
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hydrological analyses in the investigated ice-free periods 2014 (July-October) and 

2015 (June-October). 

Water level was measured approximately on weekly basis during the ice-free 

seasons using a hydrometric station with direct observations. The pond watershed 

area (206,000 m2) was delineated using a Digital Terrain Model (DTM, cell size: 2 m 

x 2 m) produced by Regione Autonoma Valle d’Aosta. The surface area of the rock 

glacier contributing to the pond watershed is 21,800 m2 i.e., 10.6% of the whole 

watershed. 

During the two observed years, a clear dominance of liquid precipitation during the 

ice-free seasons was observed. This allowed avoiding the application of a snow-melt 

model in calculating pond inflow during the ice-free periods. This was obtained as 

the difference between the precipitation and the evapotranspiration calculated 

applying the Penman-Monteith method (Penman, 1948; Monteith, 1985) on the 

whole basin. The pond volume fluctuations were computed from bathymetry and 

monitored water level. The ice-free season pond outflow could not be monitored 

directly due to the lack of a surface flow. Instead, it was calculated as the difference 

between ice-free season mean inflows and pond volume fluctuations. 

 

3.5 Water temperature measurements, heat tracers and electrical conductivity 

measurements 

To explore the thermal stratification, temperature profiles were measured using an 

inflatable boat and a hand-held portable thermometer HI 98130 (HANNA 

instruments, accuracy ±0.5 °C, resolution 0.1 °C). Measurements were performed 

twice, on 12 July and 6 September 2015, investigating from the epilimnion to the 

deepest part at 20, 100, 200 and 300 cm depth. 
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Water temperature in the pond was continuously measured during the water 

sampling periods at three sites in the pond (Fig. 2b) defined as RG1-RG2-RG3 (25 

August - 9 October 2014; 9 July - 12 October 2015). Miniature temperature loggers 

Onset HOBO® TidbiT v2 Temp loggers (accuracy ±0.21 °C, resolution 0.02 °C) 

(RG1) and Maxim iButton® DS1922L (accuracy ±0.5 °C, resolution 0.0625 °C) (RG2 

and RG3) were programmed to record every three hours. Loggers were installed at 

the pond bottom about 3-5 m from the shoreline at 1.5 m (RG1 and RG3) and 1.8 m 

(RG2) depth, placed at the sediment-water interface, among blocks (diameter 25-60 

cm) to shield them from direct solar radiation. RG3 was placed in an area into the 

pond showing maximum SP values (potential sub-surface inflow); RG2 was installed 

in an area with minimum SP values (potential sub-surface outflow); RG1 was placed 

far from the rock glacier in order to detect and quantify the thermal influence of a 

potential inflow coming from the rock glacier and affecting the closest sensors (RG2 

and RG3), in an area with SP values close to 0 mV (likely absence of flow). 

The total daily discharge flow into the pond (     
) can be calculated as the sum of 

the rock glacier discharge (      
  and all other possible inputs (effective 

precipitation, run off, sub-surface flow, etc.) (     
  

 

     
      

       
         

 (1) 

 

In this equation, the three terms are unknown. The absence of surface inflows and 

outflows does not allow to derive the rock glacier discharge. In this context, a 

classical water balance approach at daily scale would not help in determining these 

parameters. Conversely, calculation of the pond energy balance using heat tracer 
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allows to obtain more information on the contributions of rock glacier inflow to the 

pond. 

The energy balance of the pond can be written as 

 

       
     

        
     

             
       

 (2) 

 

where    (kg m-3) is the density of water,    (J kg-1 K-1) is the specific heat of water, 

   
 and    

 are RG2 and RG3 temperatures (°C) at the ith day, and    is the 

meltwater temperature of the rock glacier. RG3 and RG2 were chosen because of 

their locations, one in correspondence of strong positive SP values (RG3) and one 

located in an area with strong negative SP values (RG2). The eq. 2 has been used 

for estimating the relative rock glacier discharge with meltwater temperature at -0.5 

°C, +0 °C and +0.5 °C, and assumed constant over time (e.g., Krainer et al., 2007; 

Millar et al., 2013). A negative water temperature was chosen as lower threshold 

considering the accuracy of the sensors deployed in the pond and due to possible 

freezing point depression from dissolved salts (e.g., Banin and Anderson, 1974; 

Davis, 2001). Both    and    are constant and thus can be neglected (Langston et 

al., 2013). 

To solve the problem of the unknown terms      
 and      

,      
 was posed = 1 

for all considered days, deriving the eq. 3 as function of       
 

 

    
    

         
     

      
               

        

 (3) 
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Then,       
 has been obtained as function of    

 and    
. However this 

simplification induces a loss of information. In fact,       
 in the resulting eq. 4 is not 

expressed as daily absolute value of the discharge coming from the rock glacier, but 

it represents the rate of rock glacier discharge on total discharge reaching the RG3 

sensor in ith day. 

 

      
 

        

        

             
     

        
               

     

 (4) 

 

The application of this approach allows to know the periods when the contribute of 

rock glacier is conspicuous. However, in absence of further hydrological balance 

terms such as inflow runoff or pond outflow, that is a common deficiency at all high-

elevated water bodies, this method provides evaluable qualitative information (eq. 4), 

although it is not able to quantify the rock glacier contribution in absolute terms. 

Finally, to characterised the chemical signature of the pond on spatial and 

temporal basis, water samples were collected on weekly basis in correspondence of 

the water temperature measurement sites (RG1-RG2-RG3). Samples were collected 

in 50-ml Falcon tubes, stored in an ice-packed cooler (KERN FRIO Diagnosach) 

during car transport and immediately transferred to the laboratory where they were 

analysed for electrical conductivity (EC) (Crison - Micro CM 2201), used as proxy of 

solute load. 
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4. RESULTS 

4.1 Geophysical evidence 

GPR 

The GPR tracks clearly show a series of dense diffractions along the pond eastern 

bank, parallel to the rock glacier front, characterised by a rough surficial appearance 

(Fig. 4a). The coarse diffractions progressively disappear towards the centre of the 

pond, ending in a bouldery apophysis located at ca. 5-7 m distance from the shore 

(Fig. 4b). In the southeastern corner of the pond, the waterborne GPR profiles 

highlight the presence of surficial coarse diffractions mixed to a generally smooth-

reflecting horizon at shallow depths, indicating the potential presence of a boulder-

rich fine-grained deposit composed by blocks from the rock glacier and fine-grained 

lacustrine sediments (Fig. 4b). 

From the bathymetric and fine-sediment thickness maps (Fig. 2b and 2c), a 

directional depression pattern can be observed in the central and northern parts of 

the pond, showing a N-S preferential elongated orientation, where water depth and 

fine-sediment thickness are greater. This elongated depression can be seen in the 

GPR track shown in Fig. 4c and 4d, which highlights an evident asymmetrical 

structure of this pond section. Slopes are greater along the rock glacier front in the 

East whereas the western portion of the pond is characterised by a shelf area, where 

the bottom surface is nearly horizontal and generally beneath less than 1.2 m of 

water. 

 

ERT and SP 

In Fig. 5 the results of the 2D inversion along some selected lines are reported (for 

line locations see Fig. 3). For all the sections, given the good electric coupling of 
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injecting and measuring electrodes, high quality data were acquired. The resulting 

RMS % difference between measured and calculated apparent resistivities in the 

inverse problem was always below 2.3 %. On each imaged section, bathymetry and 

sediment thickness are shown (Fig. 2b and 2c). Most of the ERT lines resolve an 

underwater layer of sediments with a thickness well matching GPR data. 

Remarkably, this thickness information was not included as a constraint in the 

inversion, therefore, the coherence of the two results is an indication of the goodness 

of the performed inversion. The sediments just below the bottom of the pond have a 

resistivity (about 150 Ohm·m) lower than one of the water layer (200 Ohm·m). 

Laboratory measurements of electrical conductivity of the two surface lacustrine 

sediment samples are coherent with the results obtained from the resistivity surveys. 

Beneath the low-resistivity lacustrine sediment layer, the pond bed does not show 

horizontally constant resistivity values. From the ERT results it is evident that higher 

resistivity values in the sub-sediment zones are in the northern part of the pond 

(1000-4000 Ohm·m), while in the southern zones a strong continuous anomaly 

(3000-5000 Ohm·m) is located at the pond margin and on the shore (Fig. 5). 

Moreover, most survey lines report a wide zone with relatively low resistivity (300-

600 Ohm·m) truncating the two higher resistive areas. For the line nearest to the 

rock glacier (L1, close to the southern shore), this anomaly is concealed (Fig. 5) 

probably due to 3D effects. A 3D fence diagram of the ERT results is also reported in 

Fig. 6; from this representation, it is possible to understand the good correspondence 

of the inverted resistivity values at the lines intersections and the orientation of the 

low resistivity anomaly within the bedrock. From this last representation, a plan view 

of the 2000 Ohm·m isosurface, obtained by 3D interpolation of the resistivity data is 

compared with the SP map (Fig. 7). The SP map shows a remarkable spatial 
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coherency of maxima and minima in NW-SE bands that correspond with the ERT 

results. A good agreement with the minima of SP and the NW-SE band with low 

resistivity values is evident if the volumes with resistivity higher than 2000 Ohm·m 

are plotted (Fig. 7b). In Fig. 7b the low resistivity discontinuity is clearly visible as a 

WNW-ESE elongated band affecting the pond bedrock for a width between 10 and 

15 m. SP results evidence the presence of 4 low potential anomalies indicated by 

negative potentials (-10 to -120 mV), with a similar orientation of the low resistivity 

discontinuity. The SP map has been obtained from L1-L4 SP profiles, showing a 

good alignment of maxima and minima. Thus, giving the unlikely occurrence of a 

replica of the same artefact in all the acquired profiles, we consider this spatial SP 

pattern to be related to the geological structure beneath the pond. One main 

negative band (minimum: -120 mV) was detected along the resistivity anomaly 

identified by the ERT investigations. One main positive anomaly (maximum: 300 mV) 

was found in the northern part of the pond (Fig. 7a). A secondary slightly positive 

anomaly was found on the southern shore of the pond. In this area, the SP data 

were obtained measuring between one electrode in the ground and the other floating 

in water. A different salinity in underground water and pond water could contribute to 

the build-up of this potential. Thus, it is considered as an artefact in this context of 

analysis. 

 

Lacustrine sediment properties 

The granulometric analyses show that the sample n°1 (CL1 in Fig. 2c) is mainly 

composed of silt (82.8 %), sand (9.6 %) and clay (7.6 %). Sample n°2 (CL2 in Fig. 

2c) is similar with silt (82.9 %), sand (11.8 %) and clay (5.3 %). Since sediments are 

mainly composed of silt, the 65 % porosity for the GPR data is reasonable (e.g., Das, 
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2008). The sediments appear dark brown to black coloured with a strong sulphidic 

odour, suggesting the presence of organic sulphur compounds. The evidence of 

sulphidation process was further demonstrated by acidification during aerobic 

incubation (Ferronato et al., 2016), which occurred in both the samples, losing up to 

1.8 pH units. The accumulation of reduced organic S compounds was also confirmed 

by high TS content measured in the two cores (0.6 g kg-1 - CL1 and 0.4 g kg-1 - CL2). 

Furthermore, laboratory measurements of electrical conductivity of the two samples 

reported a mean value of 62 μS cm-1 (i.e., 161 Ohm·m). This value is in accordance 

with the ERT results for the same layer (around 150 Ohm·m). The high silt content 

and the presence of organic material could explain why the overall resistivity within 

the samples is lower than the water (200 Ohm·m) in the resistivity sections. This 

result is similar to some published data (Mitchell et al., 2008; Nyquist et al., 2008; 

Colombero et al., 2014). 

 

4.2 Hydrology 

Hydrological regime 

The liquid precipitation during the ice-free seasons 2014 and 2015 was 478 mm 

and 567 mm (Fig. 8a and 8b). A continuous water level decrease was observed 

during the weekly hydrological observations, reaching the minimum at the end of the 

ice-free season, with almost the same drop of 30 cm in both 2014 and 2015 (Fig. 8c 

and 8d). During the investigated periods, independent from the precipitation amount, 

the pond showed a continuous decrease in water level, suggesting the presence of 

continuous seepage. In fact, water lost during the ice-free periods 2014 and 2015 is -

0.05 L s-1, on average (estimated considering a mean decrease of 30 cm in water 

lever). The ice-free season mean inflow was calculated equal to 7.17 L s-1. 
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Therefore, the outflow is likely (7.22 L s-1) similar to the inflow, indicating that the loss 

of volume is insignificant compared to the incoming and outgoing flows. This, in turn, 

points to sub-surface seepage as a likely outflow mechanism. 

 

Water temperature measurements, heat tracers and conductivity measurements 

The water temperature profiles in the deepest zone of the pond were 

approximately isothermal both on 12 July and 6 September 2015, showing a slight 

temperature decrease toward the bottom (300 cm depth) of 0.9 °C and 0.8 °C (Tab. 

2). Thus, the pond is not thermally stratified during the ice-free season. 

Fig. 9a and 9b show daily air and water temperature trends for RG1, RG2, and 

RG3 during the two ice-free seasons (2014-2015) and Fig. 9c and 9d report 

precipitation. The difference between RG1 and RG2 is low (0.18 °C, on average). 

Conversely, in the same periods the difference between RG3 and RG1-RG2 can 

reach 10 °C.  

The difference between RG2 and RG3 can be used to infer the water coming from 

the rock glacier. Assuming that its temperature is constant, the temperature at RG3 

is the result of a heat balance between heat flow coming from the rock glacier and 

heat stored in the lake (RG2). The cold water flux from the rock glacier, expressed 

as ratio between the discharge of the rock glacier and the total runoff reaching the 

pond, was investigated through heat tracers. Results show that in 2014 the main 

contribution of the rock glacier can be observed from mid-September until mid-

October (Fig. 9e), in 2015 it is one month earlier (mid-August until mid-September) 

(Fig. 9f). In both cases the maximum contribution is observed before the air 

temperature becomes negative or close to 0 °C. It was also observed that highest 
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contributions from the rock glacier detected in the pond were often associated with 

precipitation events. 

Increased electrical conductivity was found to correlate with increasing 

contributions from the rock glacier at RG3. During these periods, electrical 

conductivity values were up to almost twice at RG3 site than at RG1 and RG2 sites 

(Fig. 9g and 9h). 

 

5. DISCUSSION 

5.1. Structural setting 

The GPR tracks show rough diffractions along the eastern bank, parallel to the 

rock glacier front, which were interpreted as the bouldery rock glacier tongue flowing 

into the pond (Fig. 4a). These coarse diffractions progressively disappear towards 

the centre of the pond ending in a bouldery apophysis (Fig. 4b). This represents the 

deep foot of the rock glacier that flows into the pond perimeter. This evidence 

together with the asymmetrical structure of the pond (Fig. 4c and 4d) suggest that 

the advancing movement (creep) of the rock glacier has progressively filled the small 

valley depression in which the pond is located, emphasizing its “V” shape. 

No evidence of deformed features was found in the fine lacustrine sediments 

along the rock glacier front (Fig. 4c and 4d), suggesting that the landform has 

progressively moved down on the slope and buried the lacustrine sediments (and the 

material coming from the rock glacier front) on the eastern side of the pond instead 

of pushing them during its advance. This is in agreement with the description of rock 

glacier movement where material is transported towards and down the rock glacier 

fronts, then incorporated at the bottom of the advancing permafrost body, and finally, 

overridden by it (Kääb and Reichmuth, 2005). 
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The advancing of the rock glacier has also generated a small deposit apron in a 

flat zone of the southeastern area of the pond (Fig. 10). Here the waterborne GPR 

profiles highlight the presence of surficial coarse diffractions mixed to a generally 

smooth-reflecting horizon at shallow depths, indicating the potential presence of a 

boulder-rich fine-grained deposit composed by boulders from the rock glacier and 

fine-grained lacustrine sediments (Fig. 4b). ERT surveys show that in this area a 

body of massive bedrock is present (3000-5000 Ohm•m), partially outcropping 

towards the southwestern side (Fig. 10). Thus, it is assumed that the southern shore 

is composed by bare bedrock in the western portion, and partially by sub-surface 

bedrock with overlaying rock glacier deposits in the southeastern corner. Here, the 

rock glacier apron at the surface lies on the sub-surface bedrock. Thus, it is possible 

to assume that the advancing of the rock glacier might have influenced the evolution 

of the pond, creating a small dam which might have contributed in increasing the 

level of water impounded in the valley depression (Fig. 11a1 and 11a2). 

Lacustrine sediments in the northern part of the pond show a rather continuous 

pattern over the high-resistivity body (Fig. 5, L1-L4); conversely, in the central and 

southern part of the pond sediments show some discontinuities (Fig. 5, L1-L4). This 

structural setting corresponds to a sharp change in the bedrock properties below 

pond sediments. Sharp vertical contacts between bedrock units are aligned with 

discontinuities in the lacustrine sediments. Based on observations of litho-structural 

properties of bedrock units in several outcrops around the Col d’Olen and rock 

glacier area (Fig. 12a and 12b), these vertical structures could correspond to a 

highly-fractured rock mass developed across a shear zone due to a major N100E 

fault. Evidence of tectonic deformations can also useful for understanding 
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hydrogeological properties of bedrock which could constrain inflow and outflow 

dynamics, as discussed in the following sections. 

 

5.2. Seepage 

The ERT data show a wide zone with relatively low resistivity (300-600 Ohm·m) 

truncating two higher resistive areas. This low-resistivity area shows a WNW-ESE 

elongated orientation in the pond bedrock for a width of about 10-15 m (Fig. 5, 6 and 

7b). The orientation of the low resistivity is in accordance with the orientation of 

distinctive structural association of brittle faults and fractures in the area. Indeed, 

Bistacchi and Massironi (2000) and Bistacchi et al. (2000) reported that the 

geological context of the study area is highly affected by WNW-ESE Miocene-to-

Present fault lineaments. The sharp morphology of the low-resistivity anomaly, the 

strong resistivity contrast, and the orientation of this structure considering the 

general structural setting of the area, suggest that this could be related to a minor 

fault zone affecting the bedrock. Within this fault zone resistivities values are lower 

than the surrounding bedrock due to the higher water content of altered and highly 

fractured rocks. This area of weakness could therefore significantly affect the water 

balance through modification of the water circulation from the pond by seepage. 

Remarkably, the main negative SP area was found along the anomaly detected by 

the ERT analyses (Fig. 7a), thus a water seepage from the pond can be assumed to 

occur at this location (Fig. 11b and 11c). This finding supports the hypothesis of a 

continuous seepage throughout the ice-free seasons 2014 and 2015, independent 

from precipitation. The regional character of the fault zone (Bistacchi and Massironi, 

2000; Bistacchi et al., 2000) indicates a possible deep extension of its shear zone. 

Deep-seated fractured bedrock below the pond could deeply absorb outflowing water 
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from the pond, thus preventing local superficial evidence of outflow patterns, which in 

fact were not observed downstream the pond. 

Due to the isothermal conditions of the pond both in July and September 2015, 

the presence of a conspicuous inflow of cold water coming from the rock glacier and 

flowing at the pond bottom can be excluded. Indeed, this should result in a strong 

thermal stratification with cold waters flowing towards the fractured zone at the pond 

bottom, which is inconsistent with the observation of a completely mixed pond. Thus, 

water inflow coming from the rock glacier is assumed to be reduced, as also 

discussed in the following section.  

 

5.3. Inflow 

The pond water level decreased rather continuously throughout the ice-free 

seasons 2014 (Fig. 8c) and 2015 (Fig. 8d), with limited periods of level increase due 

to strong precipitation. Even during warm atmospheric periods, such as mid-August - 

mid-September 2014 and mid-July - early August 2015, water level in the pond 

showed decreasing trends. This evidence preliminarily suggests that the melting of 

internal ice in the rock glacier did not contribute consistently in the hydrological 

regime of the pond during the investigated ice-free seasons. Indeed, an increase in 

air temperature should result in increasing amount of meltwater exported into the 

pond due to enhanced ice melting, leading to increases in water level (Langston et 

al., 2013). Conversely, the observed pattern is in agreement with the results 

obtained by previous studies on rock glacier hydrology (Berger et al., 2004; Krainer 

and Mostler, 2002; Krainer et al., 2007; Geiger et al., 2014). These researches 

reported gradual decline in rock glacier discharge throughout the summer (with the 
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progressive depletion of the snowpack) except during storms, with a minimum 

contribution of icemelt to the total discharge on seasonal basis. 

The SP results show one main positive anomaly located in the northern part of the 

pond, close to the rock glacier (Fig. 7a). The RG3 sensor was placed at this site and 

recorded much lower water temperatures than in other parts of the pond (RG1 and 

RG2). Cold water coming from active rock glaciers has been recorded in previous 

studies and attributed to the effect of direct contact of water to an ice or permafrost 

body, and/or ground ice melting (e.g., Haeberli, 1975; Krainer and Mostler, 2002; 

Berger et al., 2004; Williams et al., 2006; Krainer et al., 2007; Krainer et al., 2012; 

Millar et al., 2013; Carturan et al., 2016). Moreover, the litho-structural setting of the 

slopes in the rock glacier area and sedimentology of the pond suggest that high 

density and persistence of structural discontinuities (N100E and N60E systems) 

make permeable the rock masses in the northern side of the pond, thus limiting 

runoff and preventing surficial flow. The impermeable character of sub-surface high 

resistivity bedrock (Fig. 7b, zone C) and the absence of vertical discontinuities in 

pond sediments (Fig. 5, L1-L4) in its northern side should also impede pond to be 

fed by underground water, which could be absorbed by fractured bedrock along the 

shear zones. For these reasons, the main SP positive anomaly was exclusively 

attributed to the evidence of cold water flowing from the rock glacier into the pond 

(Fig. 11b and 11c). 

Since only RG3 is characterised by cold water, it is possible to assume that the 

pond is well mixed, as also demonstrated by water temperature profiles (Tab. 2), and 

that the cold source located in proximity of RG3 lowers temperature only in its 

proximity (Fig. 9a and 9b). Even if the temperature of the cold source is low (<= +0.5 

°C), its discharge can be reduced. Therefore, the influence of the cold source on 
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RG2 (and RG1) temperatures is negligible. This agrees with previous observations 

of rock glacier outflows, which are characterised by small discharge because debris 

layers protect rock glaciers ice from solar radiation and strongly reduce ablation 

rates (Potter, 1972; Gardner and Bajewsky, 1987; Krainer and Mostler, 2002; Millar 

et al., 2013). 

Heat tracer results show that in 2014, the main contribution of the rock glacier is 

from mid-September to mid-October (Fig. 9e), in 2015 it is one month earlier (mid-

August to mid-September) (Fig. 9f). Warmer air in July-August 2015 (mean: +6.4 °C) 

in comparison to July-August 2014 (mean: +3.4 °C) could have influenced the 

thawing of the rock glacier. Moreover, warmer air in September 2014 (mean: +2.5 

°C) than September 2015 (mean: -0.1 °C) probably contributed to extending the 

thawing season until October 2014. The contribution from the rock glacier reaches 

minimum values when mean air temperature is negative or close to 0 °C for some 

days, as is especially evident in 2015. This marks the end of the rock glacier cold 

water export at the end of the ice-fee season and the cold water source could be 

frozen or characterised by an extremely small discharge (Krainer and Mostler, 2002; 

Krainer et al., 2012; Millar et al., 2013).  

Main contributions from the rock glacier were found to often be associated with 

precipitation during the ice-free season, which increased the export of cold water 

from the landform (Krainer and Mostler, 2002; Berger et al., 2004). This resulted in a 

clear decrease of water temperature at RG3 (Fig. 9a and 9b) due to the greater 

amount of cold water flowing into to the pond (Fig. 11d). 

A correlation between rock glacier contribution peaks and increases of electrical 

conductivity monitored at RG3 on weekly basis was observed (Fig. 9g and 9h). 

These results agree with previous studies, which attributed increases in electrical 
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conductivity to the export of highly-mineralised waters from ice melting and 

groundwater in rock glaciers, especially at the end of the ice-free season (e.g., 

Williams et al., 2006). At the beginning of the ice-free season 2015 (from mid-July to 

mid-August), water temperatures at RG3 were colder (ca. 7 °C on the average) than 

at RG1 and RG2 sites. However, electrical conductivity was not found to be higher at 

RG3, as happened during previously described periods of higher rock glacier 

contributes. This evidence was attributed to the potential presence of long-lasting 

snow patches melting among the boulders of the rock glacier, which contributed in 

exporting cold and chemically-low concentrated water fluxes into the pond (Williams 

et al., 2006). 

Since electrical conductivity peaks chiefly occurred with cold water inflows driven 

by precipitation, it is possible to assume that the infiltration of rain water in the ice-

sediment matrix might be able to increase rock glacier-ice melting, enhancing the 

export of mineralised waters (Fig. 11d). This process must be considered when 

studying the role of rock glaciers in influencing surface water hydrology and 

physiochemistry in high-mountain watersheds. Thus, further in-depth physiochemical 

analyses aimed to understand the processes driving the export of enriched-solute 

fluxes from rock glaciers are required, considering the small number of studies that 

investigated the potential negative effects of rock glacier thawing on surface water in 

mountain regions (Thies et al., 2007; Ilyashuk et al., 2014). 

 

CONCLUSIONS 

The present work provides new insights into the mechanisms linking active rock 

glaciers and impounded surface waters in high-mountain areas through the 

integration of waterborne geophysical techniques and heat tracers.  
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On the basis of the performed surveys we hypothesise that the advancing 

movement of the rock glacier has modified the configuration of the valley depression, 

where the pond is located, which has been progressively filled by the rock glacier. 

Rock glacier advance is also assumed to have modified the level of water 

impounded in the depression, through the creation of a dam. The hydrological 

connection between the rock glacier and the pond is represented by a sub-surface 

hydrological window where an inflow of cold and mineralised underground waters 

released from the rock glacier was observed. Greater water contribution from the 

rock glacier occurred following intense precipitation events during the ice-free 

season, with concomitant increasing electrical conductivity values. The outflow of the 

pond is dominated by a sub-surface seepage within a minor fault zone, characterised 

by the presence of altered and highly-fractured rocks in the bedrock, related to the 

geological history of the area. 

The proposed investigation approach has been demonstrated to be useful for a 

better understanding of the dynamics governing geological and geomorphological 

settings similar to the one studied. Regarding the geophysical methods, successful 

experience has been obtained for the characterisation of wider lakes and for the 

reconstruction of underwater geological environments (Sambuelli et al., 2011; 

Sambuelli and Bava, 2012; Colombero et al., 2014). When lake dimensions 

increase, waterborne ERT can be easily conducted pulling the electric cable by boat 

and acquiring several measurements to be inverted in an unique dataset. Acquisition 

and processing of GPR data follow similar procedures to ones presented in this 

paper. From the acquisition point of view, timing and costs are not an issue since 

several kilometres of both GPR and ERT data can be acquired simultaneously within 

a single working day. To validate the hydrological observations obtained by 



 

 
This article is protected by copyright. All rights reserved. 

geophysical measurements, the application of heat tracers is recommended. Clearly, 

the increase of the investigation areas and water depths requires a subsequent 

increase of monitoring points and usually more complicated analyses have to be 

undertaken to fully understand the flow dynamics, especially when the quantification 

of groundwater discharge is desired (Schmidt et al., 2007; Constantz, 2008; 

Langston et al., 2013). Although further testing of the proposed approach is required, 

it is evaluated here as a suitable technique for investigating logistically-complex 

hydrological settings which could be possibly transferred to wider scales of 

investigation. 
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Rock glacier morphometric characteristics 

 
Minimum elevation of the front 

 
2706 m a.s.l. 

Rooting zone elevation 2816 m a.s.l. 
Maximum length 340 m 
Maximum width 160 m 
Area 37,500 m

2
 

Maximum height of the front 25 m 
Maximum marginal slope 46° 
Mean surface slope angle 18° 
 

Pond morphometric characteristics 

 
Maximum length 60 m 
Maximum width 40 m 
Perimeter 160 m 
Area 1,600 m

2
 

 

Table 1 - Rock glacier and pond morphometric characteristics. The main geomorphological 

characteristics in the watershed were obtained from a digital orthoimage from the year 2012 (source: 

Ministero dell'Ambiente e della Tutela del Territorio e del Mare - Geoportale Nazionale, 

http://www.pcn.minambiente.it/GN) and morphometric analyses were performed using ESRI® 

ArcGISTM v. 10.1 (Spatial Analyst) and a Digital Terrain Model-DTM (cell size: 2 m x 2 m) produced 

by Regione Autonoma Valle d’Aosta. 
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Date (2015) 
Water profile 

depths 
(cm) 

Water profile 
temperatures 

(°C) 

   
12 July 20 10.2 
 100 10.0 
 200 9.7 
 
 

300 9.3 

9 September 20 9.4 
 100 9.3 
 200 9.0 
 300 8.6 

 

Table 2 - Pond water temperature profile on 12 July and 9 September 2015. 
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Figure 1 - (a) Location of the study area in Italy. (b) Digital Terrain Model (cell size 10 m x 10 
m) of the Valle d’Aosta Region and the location of the study area in the Region. (c) Elevation 
map (contour line spacing: 25 m) of the Col d’Olen area showing the watershed, the rock 
glacier, and the pond. (d) Three-dimensional view of the rock glacier and the pond 
(GeoViewer3D Arpa Piemonte, source: http://webgis.arpa.piemonte.it/geoportale). 
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Figure 2 - (a) Tracks of the GPR surveys (red: 200 MHz; black: 500 MHz) and details (thick 
lines) of the four tracks showed in Fig. 4. (b) Pond bathymetry from the triangular 
interpolation of the picked bottom reflections from all the radargrams. Black bordered 
polygons: thermal sensor locations. (c) Fine sediment thickness from the difference between 
the bottom sediment and the bottom pond pickings. Black bordered polygons: locations of 
the fine sediment lacustrine core locations. (d) Pond hypsographic curve at 1 cm-steps of 
water level. 
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Figure 3 - ERT survey: (a) survey lines (the arrows indicate the line directions) and (b) 
picture of the floating electrodes (line 4, SW-NE view). 
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Figure 4 - Pond GPR tracks: (a) track n°7, 500 MHz; (b) track n°6, 200 MHz; (c) track n°2, 
500 MHz; (d) track n°11, 200 MHz. The red line in figures a, b and c highlights the limit of the 
fine-sediment bottom. 
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Figure 5 - Interpreted resistivity sections in the pond. For the location of each survey line 
make reference to Fig. 3a. Blue dotted line: pond bottom from GPR; red dotted line: depth of 
shallow sediments (second reflector in the GPR). A (massive bedrock), B (low resistivity 
anomaly) and C (high resistivity body) in L2 highlight the subsurface structures identified in 
the pond (details in the text). The boundaries of the pond correspond to the presence of 
bathymetry data. 
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Figure 6 - 3D fence diagram of the ERT inversions with evidence of the survey lines (the 
arrows indicate the line directions) and of the pond perimeter. 
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Figure 7 - (a) SP map of survey anomalies (black bordered polygons: thermal sensor 
locations) and (b) SP map superimposed to the 2000 Ohm•m isosurface from the 
interpolation of the acquired lines. A (massive bedrock), B (low resistivity anomaly) and C 
(high resistivity body) (make reference to Fig. 5, L2). 
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Figure 8 - Precipitation (as fresh snow and rain) and mean daily air temperature for 2014 
and 2015 are reported in figures a and b, respectively. Pond relative water level during 2014 
(c) and 2015 (d) (hydrometric observations). 
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Figure 9 - Air and water temperatures during the investigated periods 2014 (a) and 2015 (b). 
Precipitation in 2014 (c) and 2015 (d). Rock glacier contribute at RG3 site calculated with the 
heat tracer approach in 2014 (e) and 2015 (f) assuming meltwater at -0.5, 0, and +0.5 °C. 
Electrical conductivity in 2014 (g) and 2015 (h). 
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Figure 10 - (a) Picture of the rock glacier tongue flowing into the pond and deposit apron in 
the southern bedrock outcrop zone; (b) details of the deposit apron. 
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Figure 11 - (a1-a2) Simplified conceptual model of rock glacier advance and progressive 
filling of the small valley depression. Deposit apron display on southern bedrock outcrop and 
associated potential modification of water level due to dam formation are also represented. 
(b) Hydrological dynamics of the rock glacier-pond system (profile representation - b) 
(planimetric representation - c). (d) Increase in cold water export from the rock glacier after 
rainfall events, with associated augmentation of electrical conductivity values measured at 
RG3 site. 
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Figure 12 - (a) Large-scale structural evidence in the Col d’Olen area (yellow line: main 
trench and fault) (digital orthoimage from the year 2012; source: Ministero dell'Ambiente e 
della Tutela del Territorio e del Mare - Geoportale Nazionale, 
http://www.pcn.minambiente.it/GN). (b) Fine-scale structural evidence in the rock glacier 
area (orange line: minor trench and fault; white dotted line: sub-surface minor fault direction) 
(digital orthoimage from the year 2006; source: Ministero dell'Ambiente e della Tutela del 
Territorio e del Mare - Geoportale Nazionale, http://www.pcn.minambiente.it/GN). The lower-
resolution digital orthoimage 2006 was chosen for showing minor fault directions at fine 
scale because of the complete absence of snow in the analysed area which partially 
conceals the structural setting in the higher-resolution digital orthoimage 2012. 
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Mechanisms linking active rock glaciers and impounded surface water formation in high-

mountain areas 

 

Nicola Colombo*, Luigi Sambuelli, Cesare Comina, Chiara Colombero, Marco Giardino, Stephan 

Gruber, Gaetano Viviano, Livia Vittori Antisari, and Franco Salerno 

 

Rock glacier hydrology and structural setting of a marginal pond are investigated integrating 

waterborne geophysics and heat tracers. Rock glacier movement has modified the pond structure 

and water level. A sub-surface hydrological window connects the rock glacier to the pond. Greater 

water contribution from the landform occurs following intense precipitation, with increasing 

electrical conductivity values. A sub-surface seepage drives the outflowing dynamic of the pond. The 

applied approach could be transferred to wider scales of investigation. 

 

 

 


