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1. Introduction

The embedding of supersymmetric gauge theories in a string framework using systems of
D-branes has been very fruitful and inspiring for many developments. For example, the famous
AdS/CFT correspondence [1] is rooted in the realization of the N = 4 super Yang-Mills (SYM)
theory by means of D3-branes in flat space and in the profile of the supergravity bulk fields they in-
duce in space-time. In less supersymmetric and/or in non-conformal cases (like the N = 2 gauge
theories in four dimensions we will be interested in) the corresponding gravitational profile de-
pends on some transverse directions representing the energy scale thus accounting for the running
of the gauge theory. This fact was explicitly checked long ago [2] -[7] at the perturbative level in
N = 2 SYM theories realized by fractional D3 branes of type IIB at non-isolated singularities, like
for instance the C2/Z2×C orbifold. By studying the emission of closed string fields from such
branes, the corresponding “perturbative” supergravity solutions were constructed and it was found
that a scalar field from the twisted sector, which we will call t, varies logarithmically in the internal
complex direction z transverse to the orbifold, matching precisely the perturbative logarithmic run-
ning of the gauge coupling with the energy scale. However, such perturbative solutions suffer from
singularities at small values of z, i.e. in the IR region of the gauge theory, and have to be modified
by non-perturbative corrections.

It is well-known that in N = 2 gauge theories there is a whole series of non-perturbative
contributions to the low-energy effective action that are due to instantons. In the last two decades
tremendous advances have been made in the study of instanton effects within field theory (for
reviews, see for instance [8, 9]), and more recently also within string theory by means of D-
instantons, i.e. D-branes with Dirichlet boundary conditions in all directions [10]-[13]. In the
seminal papers [14, 15] the exact solutions for the low-energy effective N = 2 theories in the
Coulomb branch, including all instanton corrections, were found using symmetry and duality ar-
guments. In particular it was shown that the effective SYM dynamics in the limit of low energy
and momenta can be exactly encoded in the so-called Seiberg-Witten (SW) curve which describes
the geometry of the moduli space of the SYM vacua. Later these results were rederived from a
microscopic point of view with the help of localization techniques [16, 17] that permit an explicit
evaluation of the integrals over the multi-instanton moduli space. These techniques fit naturally
in the string/D-brane context and indeed have been exploited for interesting generalizations of the
SW results in many different directions.

It is then natural to ask how the infinite tower of instanton effects is encoded in the dual holo-
graphic description of the gauge theory in terms of gravity. To answer this question one possibility
is to exploit symmetry and duality arguments and determine the background geometry that incor-
porates the exact SW solution, like in the M-theory constructions based on configurations of D4
and NS5 branes [18]. Another possibility is to compute directly the multi-instanton corrections to
the profiles of the gravitational bulk fields. This is what we will discuss in this contribution, which
heavily relies on the content of [19, 20, 21] and especially of [22]. In particular we will briefly
review how to derive the exact supergravity profile of the twisted field t emitted by a system of
fractional D3-branes at a Z2-orbifold singularity supporting a N = 2 quiver gauge theory with
unitary groups and bi-fundamental matter, and show how to obtain from it the exact running of the
gauge coupling constant, including the non-perturbative contributions, in perfect agreement with
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N0 N1

Figure 1: The quiver diagram for the orbifold C2/Z2. The branes of type 0 are represented by the blue circle
while the branes of type 1 are represented by the red circle. The oriented lines connecting the two types of
branes represent the hypermultiplets in the bifundamental representations.

the SW solution.

2. The gauge coupling for the SU(2) N f = 4 SYM theory

We study the prototypical case of N = 2 SYM theories that are realized with fractional D3-
branes at the non-isolated orbifold singularity C2/Z2×C. In this orbifold there are two types of
fractional D3-branes, which we call types 0 and 1, corresponding to the two different irreducible
representations of Z2. The most general brane configuration therefore consists of N0 branes of
type 0 and N1 branes of type 1, and corresponds to an N = 2 quiver theory in four dimensions
with gauge group U(N0)×U(N1) and with a matter content given by one hypermultiplet in the bi-
fundamental representation (N0,N1) and one hypermultiplet in the (N0,N1) representation. The
corresponding quiver diagram is represented in Fig. 1. Ignoring the gauge degrees of freedom on
the N1 branes, one obtains an N = 2 U(N0) SYM theory with 2N1 fundamental flavors and U(N1)
as global symmetry group. Furthermore, we will decouple the U(1) factors and concentrate on the
SU(N0)× SU(N1) part of the symmetry group.

In this contribution we focus on the case N0 = N1 = 2, representing an N = 2 SU(2) SYM
theory with N f = 4 flavors, but our results and methods apply to the general case as well [22].
The SU(2) N f = 4 SYM theory has a vanishing β -function but, when the flavors are massive,
the gauge coupling gets renormalized at 1-loop by terms proportional to the mass parameters of
the hypermultiplets. This situation corresponds to placing the fractional D3-branes at different
positions in the transverse plane, i.e. to giving non-vanishing vacuum expectation values to the
adjoint scalars φ0 and φ1 of the vector multiplets on the two types of branes according to

〈φ0〉= diag(a,−a) and 〈φ1〉= diag(m,−m) . (2.1)

Note that this brane configuration implies that the masses of the four flavors are given by

{m1,m2,m3,m4}= {m,−m,m,−m} . (2.2)

In this case one finds that the perturbative part of gauge coupling constant

τ ≡ θYM

π
+ i

8π

g2
YM

(2.3)

is given by

iπτpert = iπt0 + iπ− log16+2log
(

1− m2

a2

)
(2.4)
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where t0 is the bare coupling. Besides these perturbative terms, there are also non-perturbative
corrections due to instantons which can be explicitly computed using localization techniques (see
for instance [22, 23] for details). The first two instanton contributions turn out to be given by

iπτinst = q0

(1
2
+

3m4

2a4

)
+q2

0

(13
64

+
33m4

32a4 −
15m6

8a6 +
105m8

64a8

)
+O(q3

0) (2.5)

where q0 = eπit0 is the instanton counting parameter. The complete effective coupling is therefore
the sum of (2.4) and (2.5). For our future considerations it is convenient to rewrite it in terms of the
gauge invariant quantity

v =
1
2
〈trφ

2
0 〉 (2.6)

which parametrizes the moduli space of the effective theory at the quantum level. Using the multi-
instanton calculus and localization techniques, one can show that v is related to the classical vacuum
expectation value a in the following way [24, 22]

v = a2
(

1+q0
(a2−m2)2

2a4 +q2
0
(a2−m2)(13a6−15a4m2 +7a2m4−5m6)

32a8 +O(q3
0)
)

(2.7)

Inverting this relation and substituting it into (2.4) and (2.5), after some simple algebra we find

iπ τ(v) = logq0 + iπ− log16+2log
(

1− m2

v

)
+ q0

(1
2
− m2

v
+

5m4

2v2

)
+q2

0

(13
64
− 13m2

16v
+

135m4

32v2 −
109m6

16v3 +
269m8

64v4

)
+O(q3

0) . (2.8)

For simplicity, and also for later convenience, we have introduced a notation that explicitly exhibits
only the dependence of τ on the gauge invariant parameter v.

When the flavors are massless, the effective coupling, which we denote by τ0, is related to q0

as follows

iπτ0 = logq0 + iπ− log16+
1
2

q0 +
13
64

q2
0 +

23
192

q3
0 + · · · . (2.9)

It is interesting to observe that the inverse relation can be expressed in terms of modular functions.
Indeed, inverting (2.9) we obtain

q0 =−16
(
eiπτ0 +8e2iπτ0 +44e3iπτ0 + · · ·

)
=−

θ 4
2
(
τ0
)

θ 4
4

(
τ0
) (2.10)

where the θ ’s are the Jacobi θ -functions1. Notice that even in this simple case, t0 and τ0 are
different and represent two different choices of effective couplings for the massless theory (see
also [27]).

1Notice that this same relation can also be written as q0 =−16
η8
(

4τ0

)
η8
(

τ0

) in terms of the Dedekind η-functions. This

expression is amenable of interesting generalizations for superconformal field theories with gauge groups SU(N) with
N > 2 [22]. We also observe that our coupling is related by a T-duality transformation, τ0→ τ0 +1, to the one usually

considered in the literature [25, 26, 23] for which the relation (2.10) takes the form q0 =
θ 4

2

(
τ0

)
θ 4

3

(
τ0

) .
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Let us now consider the same modular function appearing in (2.10), but instead of the massless
coupling τ0 let us use as argument the massive coupling τ(v):

−
θ 4

2
(
τ(v)

)
θ 4

4

(
τ(v)

) ≡ q(v) =−16
(

eiπτ(v)+8e2iπτ(v)+44e3iπτ(v)+ · · ·
)
. (2.11)

Taking the logarithm of q(v), we then get

iπ t(v) ≡ logq(v) (2.12)

= logq0 +2log
(

1− m2

v

)
+ q0

2m4

v2 + q2
0

(2m4

v2 −
4m6

v3 +
3m8

v4

)
+O(q3

0) .

This expression has a very nice interpretation. Indeed, let us consider the SW curve for the SU(2)
N f = 4 SYM which, when the flavor masses are as in (2.2), can be written as [28, 22]

y2 = P2(z)−g2 Q(z) (2.13)

where
P(z) = z2−u , Q(z) = (z2−m2)2 , (2.14)

with
u =

1−q0

1+q0
v+

2q0

1+q0
m2 , g2 =

4q0

(1+q0)2 . (2.15)

The curve (2.13) describes a torus whose complex structure parameter is

τ =
∂aD

∂a
(2.16)

where a and aD are the periods of the SW 1-form differential λ

a =
1

2iπ

∮
γ

λ , aD =
1

2iπ

∮
γ̃

λ (2.17)

computed around a basis of dual cycles (γ, γ̃) normalized in such a way that γ ◦ γ̃ = 1. The SW
differential λ can be written as

λ = zΨ
′(z)dz (2.18)

with

Ψ(z) = log
P(z)+

√
P2(z)−g2Q(z)

µ2 . (2.19)

Using this information, one can compute τ and check that, when it is expanded in powers of q0,
it coincides precisely with the effective gauge coupling (2.8). Other interesting quantities that
characterize the curve (2.13) are the anharmonic ratios of the four roots of the equation y2 = 0. It
is quite easy to see that these roots are

e1 = +

√
u−gm2

1−g
, e2 =−

√
u+gm2

1+g
,

e3 = −

√
u−gm2

1−g
, e4 =+

√
u+gm2

1+g
, (2.20)
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and that a corresponding anharmonic ratio is

ζ ≡ (e3− e2)(e1− e4)

(e1− e2)(e3− e4)
=

v− 2q0
1+q0

m2−
√

(v− 2q0
1+q0

m2)2− 4q0
(1+q0)2 (v−m2)2

v− 2q0
1+q0

m2 +
√

(v− 2q0
1+q0

m2)2− 4q0
(1+q0)2 (v−m2)2

. (2.21)

It is easy to see that the expansion of logζ in powers of q0 perfectly matches the expression found
in (2.12) and thus we are led to the identification

iπt(v) = logζ . (2.22)

This is not surprising since the relation between the anharmonic ratio ζ and the complex structure
parameter τ of a curve like (2.13) is precisely logζ = −θ 4

2 (τ)

θ 4
4 (τ)

, namely the same relation between
t(v) and τ(v) implied by (2.11) and (2.12).

We observe observe that the right hand side of (2.21) can be nicely written in terms of the
polynomials P and Q of the SW curve describing the theory at the so-called “enhançon vacuum”
[22]. This is the specific point of the quantum moduli space corresponding to v= 0 which describes
a classical extended brane configuration resembling that of the enhançon ring [29]. In the enhançon
vacuum we therefore have u = 2q0

1+q0
m2, and the polynomials P and Q become

P̃(z) = z2− 2q0

1+q0
m2 Q̃(z) = (z2−m2)2 . (2.23)

Then, from (2.21) and (2.22) it is easy to realize that

iπ t(v) = log
P̃(z)−

√
P̃2(z)−g2 Q̃(z)

P̃(z)+
√

P̃2(z)−g2 Q̃(z)

∣∣∣∣∣
z2=v

. (2.24)

Using the information encoded in the SW curve it is also possible to compute the exact quan-
tum correlators

〈
tr φ `

0
〉

forming the chiral ring elements of the gauge theory. These correlators are
in fact given by the integral 〈

tr φ
`
0
〉
=
∮

γ

dw
2iπ

w`
Ψ
′(w) . (2.25)

or alternatively, they can be obtained by expanding the generating functional [21]〈
tr

1
z−φ0

〉
= Ψ

′(z) . (2.26)

Integrating (2.26) with respect to z, it is easy to find〈
tr log

z−φ0

µ

〉
= log

P(z)+
√

P(z)2−g2Q(z)
µ2 − log

(
1+
√

1−g2
)
, (2.27)

where the integration constant has been fixed in order to match the O(z0) terms in the expansion
for large z in both sides. With some further straightforward algebra, we can rewrite the right hand
side of (2.27) in the following form〈

tr log
z−φ0

µ

〉
=

1
2

log
P(z)+

√
P(z)2−g2Q(z)

P(z)−
√

P(z)2−g2Q(z)
+

1
2

log
Q(z)
µ4 +

1
2

logq0 . (2.28)

This expression will be essential in the next section to write the exact (i.e. all order in the instanton
expansion) gravitational profile of the twisted scalar field t emitted by the system of fractional D3
branes, and to relate it with the dual gauge theory coupling.

6
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3. The exact t profile emitted by fractional D3-branes and D-instantons

The fractional D3-branes in the Z2 orbifold are gravitational sources for a non-trivial metric
and a 4-form R-R potential from the untwisted sectors, and for two scalars, b and c, from the twisted
NS-NS and R-R sectors respectively (see for instance [3]). While the emitted untwisted fields can
propagate in all six directions transverse to the D3-branes, the twisted scalars only propagate in
the complex plane transverse to the D3-brane world-volume which is not affected by the orbifold
projection and which we parametrize with a complex coordinate x. A system of fractional D3-
branes distributed on this plane therefore generate a non-trivial dependence of the fields b and c on
x. The twisted scalars are conveniently combined in a complex field

t = c+ τ b (3.1)

where here τ stands for the axio-dilaton of the type IIB string theory. For simplicity we assume
that the axion is trivial and that there are no branes other than the fractional D3 branes so that the
dilaton does not run. Thus, in this case we simply have τ = i/gs where gs is the string coupling
constant. The field t is actually part of a chiral bulk superfield T whose structure is schematically
given by

T = t + · · ·+θ
4 ∂ 2

∂x2 t̄ + · · · (3.2)

with dots denoting the supersymmetric descendants of t and t̄ being the complex conjugate of t.
The profile of the twisted scalar t emitted by a system of fractional D3-branes can be derived

by solving the classical field equations that follow from the bulk action containing the kinetic terms
and the source action describing the emission from the fractional D3-branes. At the perturbative
level this profile was obtained long ago in Ref.s [3] -[7] and for a system of N0 branes of type 0 and
N1 branes of type 1 located at the origin is

iπt = iπt0−2(N0−N1) log
x
x0

(3.3)

where t0 = i/(2gs) and x0 is an arbitrary length scale. It is convenient to introduce the quantities

z =
x

2πα ′
and µ =

x0

2πα ′
(3.4)

with mass dimension 1, and rewrite the solution (3.3) as follows

iπt = iπt0−2(N0−N1) log
z
µ

. (3.5)

Note that in the conformal cases (N0 = N1), we simply have

t = t0 . (3.6)

Let us now consider a more general configuration in which the D3-branes are not all at the
origin. This amounts to giving the adjoint scalars non-vanishing vacuum expectation values as in
(2.1) (from now on we focus again only on the case N0 = N1 = 2). Then, one can show that the t
profile corresponding to such a configuration is

iπt = iπt0−2tr log
z−〈φ0〉

µ
+2tr log

z−〈φ1〉
µ

= iπt0 +2log
z2−m2

z2−a2 . (3.7)

7
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It is not difficult to realize that this t field satisfies the following differential equation

� t = 8Jcl δ
2(z) (3.8)

with

Jcl =
∞

∑
`=1

i
` !

(
tr〈φ0〉`− tr〈φ1〉`

)
∂ `

∂ z`
= i trei p̄〈φ0〉− i trei p̄〈φ1〉 (3.9)

where in the second step we introduced the momentum operator conjugate to z, that is p̄ =−i∂/∂ z.
The current Jcl has a nice interpretation in terms of disk diagrams describing the couplings

among the closed string twisted fields and the massless open string excitations of the fractional
D3-branes. Indeed, by considering the interactions of the NS-NS scalar b (whose vertex operator
we denote by Vb) with the scalar φ0 (whose vertex we denote by Vφ0), we find

∞

∑
`=0

1
` !
〈

Vφ0 · · ·Vφ0︸ ︷︷ ︸
`

Vb
〉

D30
=

π

gs

∞

∑
`=0

1
` !

tr〈φ0〉` (i p̄)` b =
π

gs
trei p̄〈φ0〉 b . (3.10)

This result follows by computing the correlation functions of the vertex operators using standard
CFT techniques as discussed for example in [19] and by frozing the scalars to their vacuum expec-
tation values. A completely similar calculation can be performed with the scalar φ1 of the type 1
branes leading to

− π

gs
trei p̄〈φ1〉b . (3.11)

where the extra sign comes from the fact that branes of type 1 have opposite b-charge with respect
of those of type 0. Adding an analogous term describing the interactions of the R-R twisted scalar
c, we can write the total contribution to the effective action as

−iπ
(

trei p̄〈φ0〉− trei p̄〈φ1〉
)

t̄ . (3.12)

Supersymmetry requires that this interaction must be accompanied by other structures (that could
also be computed from string diagrams with extra fermionic insertions) in such a way that the
effective action follows from a holomorphic prepotential. As discussed in [19]-[22] such a prepo-
tential is obtained simply by promoting the bulk and boundary scalars to the corresponding chiral
superfields. Denoting by δT the fluctuation part of T , one finds in particular the following term

δFcl = iπ
(

trei p̄Φ0− trei p̄Φ1
)

δT
p̄2 + · · · (3.13)

where the dots represent interactions of higher orders in δT . The effective action follows upon
integrating the prepotential over d4θ ; when all four θ ’s are taken from δT and the superfields
Φ0 and Φ1 are frozen to their vacuum expectation values, we recover precisely the interaction
(3.12). The classical current (3.9) therefore is associated to a source term for t and is related to the
prepotential (3.13) in the following way

Jcl =
p̄2

π

δFcl

δT

∣∣∣∣∣
Φ→〈Φ〉

. (3.14)

8
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Let us now investigate how the classical profile (3.7) changes when non-perturbative effects
due to gauge instantons are taken into account. In our brane set-up, instantons are introduced by
adding fractional D(–1)-branes. Since we neglect the dynamics on the branes of type 1, we only
consider the effects produced by adding k D-instantons of type 0. The physical excitations of the
open strings with at least one end-point on the D(–1)-branes account for the instanton moduli which
we collectively denote as Mk. They consist of the neutral sector, corresponding to D(–1)/D(–1)
open strings that do not transform under the gauge group, and of the charged and flavored sectors
arising respectively from the D(–1)/D30 and D(–1)/D31 open strings. The complete list of instanton
moduli and their transformation properties can be found in [21, 22]. Here we just recall that among
the neutral moduli we have the bosonic and fermionic Goldstone modes of the supertranslations of
the D3-brane world-volume which are broken by the D-instantons and which are identified with the
superspace coordinates x and θ , and a complex scalar χ transforming in the adjoint representation
of the instanton symmetry group U(k), whose eigenvalues describe the position of the D-instantons
in the un-orbifolded directions transverse to the fractional D3-branes.

In order to find the non-perturbative t profile we first compute the instanton induced prepoten-
tial Fn.p. from which the non-perturbative source current Jn.p. can be derived following a procedure
similar to the one outlined for the classical current Jcl. The non-perturbative prepotential is defined
as

Fn.p. = ∑
k

∫
dM̂k e−Sinst(Mk,Φ,T ) (3.15)

where the integral is performed over the centered moduli M̂k, which include all moduli except
the superspace coordinates x and θ . Here Sinst(Mk,Φ,T ) is the instanton action, describing the
interactions of the instanton moduli with the boundary and bulk superfields. As explained in [21],
such an action is

Sinst(Mk,Φ,T ) =−k iπ t0 +S′inst(Mk,Φ)− iπ tr kei p̄ χ
δT + . . . (3.16)

where S′inst is the part accounting for the interactions of the moduli among themselves and with the
fields in the vector multiplet, and tr k means trace over the U(k) indices. Inserting (3.16) in (3.15),
to linear order in δT we find

δFn.p. = iπ δT ∑
k

qk
0

∫
dM̂k e−S′inst(Mk,Φ) tr kei p̄ χ . (3.17)

The integration over the moduli space can be explicitly performed using localization techniques
and Nekrasov’s approach to the multi-instanton calculus [16, 17]. This amounts to first define the
deformed instanton partition function

Zinst = ∑
k

qk
0

∫
dMk e−S′inst(Mk,Φ;ε1,ε2) (3.18)

where ε1 and ε2 are deformation parameters which in our string set-up can be introduced by putting
the brane system in a graviphoton background [30, 31], and then to compute the prepotential ac-
cording to

Fn.p. =− lim
ε1,ε2→0

ε1ε2 logZinst . (3.19)

9
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The integral appearing in (3.17) is related to the instanton part of the chiral ring elements
〈
tr φ `

0
〉

of the gauge theory on the D3-branes, which can be computed as2

1
`!

〈
trφ

`
0

〉
inst

=− 1
(`−2) !

lim
ε1,ε2→0

ε1ε2

Zinst
∑
k

qk
0

∫
dMk e−S′inst(Mk,Φ;ε1,ε2) tr kχ

`−2 . (3.20)

Notice that the integrals in (3.18) and (3.20) are over all moduli including x and θ , and that in the
limit εi→ 0 the factor ε1ε2 in (3.20) compensates for the volume V ∼ 1

ε1ε2
of the regularized four

dimensional superspace. Plugging (3.20) into (3.17) one gets

δFn.p. = iπ
〈

trei p̄Φ0
〉

inst

δT
p̄2 (3.21)

which is nothing but the instanton completion of (3.13).
Adding the classical and the instanton contributions we obtain the full source current for t:

J =
p̄2

π

δF
δT

∣∣∣∣∣
Φ→〈Φ〉

= i
〈

trei p̄φ0
〉
− trei p̄〈φ1〉 (3.22)

where δF = δFcl +δFn.p.. The field equation satisfied by t is therefore

� t = 8J δ
2(z) = 8

∞

∑
`=0

i
` !

[〈
trφ

`
0
〉
− tr〈φ1〉`

]
∂ `

∂ z`
δ

2(z) (3.23)

which is solved by

iπt = iπt0−2
〈

tr log
z−φ0

µ

〉
+2tr log

z−〈φ1〉
µ

= iπt0−2
〈

tr log
z−φ0

µ

〉
+2log

(z2−m2)

µ2 . (3.24)

This explicit solution shows that all non-trivial information about the t profile is contained in the
ring of chiral correlators of the gauge theory defined on the D3-branes. This chiral ring accounts
therefore for the full tower of D-instanton corrections to the gravity solution.

The chiral correlators
〈
tr φ `

0
〉

can be computed from (3.20) using Nekrasov’s approach to the
multi-instanton calculus. Equivalently (and more efficiently), as we have explained in the previous
section, they can be obtained from the SW curve describing the SYM theory. In fact, inserting
(2.28) in (3.24) and taking into account the explicit definition of Q given in (2.14), we can obtain
the exact expression for the twisted scalar field emitted by the brane system, namely

iπt = log
P(z)−

√
P2(z)−g2Q(z)

P(z)+
√

P2(z)−g2Q(z)
. (3.25)

Our result generalizes the one derived in [32] for the pure SU(N) SYM theories using supergravity
and M-theory considerations, and is also perfectly consistent with the findings of [18] where the
SU(N) SYM theory is realized in type IIA using D4 branes stretched between two NS branes.

We can therefore say that the methods we have developed provide a microscopic derivation of
the supergravity profile for t in which a direct relation with the chiral ring elements of the gauge
theory on the source branes is clearly established and the non-perturbative effects are explicitly
explained in terms of fractional D-instantons.

2For details on the derivation of this formula we refer to [19, 20].
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4. Conclusions

We have considered a fractional D3-brane system in a Z2 orbifold supporting an N = 2 SYM
theory with SU(2) gauge group and N f = 4 flavors. We have considered the scalar field t from the
twisted closed string sector emitted by such a configuration, which, at the tree level, plays the rôle
of the gauge coupling on the D3-branes. As it is well known, the fractional D3-branes act as sources
for t, so that t has a logarithmic profile in the complex direction z transverse to the orbifold; this
profile matches the perturbative running of the gauge coupling if the transverse space is identified
with the Coulomb branch of the gauge theory. We have taken into account the non-perturbative
effects corresponding to the inclusion of (fractional) D-instantons and explicitly shown how they
modify the source for t and hence its profile. The moduli space integrals that determine the non-
perturbative source terms are related to the ones appearing in the computation of the chiral ring
operators of the gauge theory. Through this relation, we can then express the profile of the twisted
scalar as the quantum expectation value of its perturbative expression, see (3.24). This, in turn, can
be written in terms of the SW curve that describes the effective dynamics of the gauge theory on
the Coulomb moduli space, see (3.25).

At the non-perturbative level, the gauge/gravity relation is deeply modified with respect to its
perturbative standing. The twisted scalar t can no longer be simply identified with the effective
gauge coupling. However, if we consider the situation in which the source D3-branes sit at the
“enhançon” vacuum, v= 0, the scalar t(z) is still directly, albeit non-trivially, related to the effective
coupling τ(v) when z2 is identified with the quantum Coulomb space variable v. Indeed, in this
case t(z) is given by (2.24); this expression corresponds, according to (2.22), to the logarithm
of the anharmonic ratio ζ which parametrizes the SW torus. The anharmonic ratio is related to
the complex structure τ , namely to the effective gauge coupling, through the modular function
appearing in (2.11).

In these proceedings we focused on the conformal SU(2) case, but in [22] we showed that a
similar pattern occurs for higher rank conformal gauge theories, and also, after decoupling some
flavors, for asymptotically free cases: the twisted scalar emitted by the branes at the enhançon
vacuum is related in the gauge/gravity correspondence to the low energy effective couplings via
non-trivial modular functions which are generalizations of that appearing in (2.11).
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