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1. Abstract  

 

Cellular therapies are a rapidly evolving approach to treat cancer in the light of their unique 

mechanism of action that potentially overcomes drug resistance and induce durable remissions. 

Modalities of adoptive cell therapy include gene-modified T cells expressing novel T cell receptors 

(TCR) or chimeric antigen receptors (CAR) that modify the immune system to recognize tumor cells 

and carry out potent anti-tumor effector functions. CAR T cells have shown very promising clinical 

results and several trials are being conducted worldwide to establish their role in cancer treatment. Most 

successful results have been observed in lymphoproliferative disorders with the use of CD19-directed 

CAR T cells that led to their commercial approval by FDA. In this review, we provide a comprehensive 

overview of the current role of CAR T cell therapies in hematological malignancies and solid tumors, 

their associated toxicities and potential future developments in the armamentarium for cancer treatment. 

 

2. Introduction 

 

Chimeric antigen receptors (CARs) are genetically constructed hybrid receptors that consists of 

a single-chain variable fragment (scFv) of a monoclonal antibody as the antigen-binding extracellular 

domain, an intracellular CD3ζ chain as the T cell receptor (TCR) signaling domain, and an additional 

co-signaling domain, mainly CD28 and 4-1BB, to deliver co-stimulation (1, 2). Several methods to 

transfer CARs to T cells have been evaluated and the current most commonly used approach is transfer 

by retroviral infection (3). Cytotoxic activity of CAR T cells is determined by antigen-binding to the 

scFv, leading, in turn, to phosphorylation of CD3ζ and additional signaling cascades by co-stimulating 

domains (4). This mechanism reproduces effects similar to signaling following T cell activation through 

the TCR complex. Importantly, CAR T cells recognize target antigens in an MHC-independent fashion. 

Since their first discovery in the late 1980s (5, 6), CAR T cells have undergone major improvements 

and most clinical trials have been carried out in hematological malignancies such as B cell non Hodgkin 

lymphomas (NHL) and acute lymphoblastic leukemias (ALL). CD19 was shown to be an ideal target  

(7-9) given its expression from the early stages of B cell development up to plasma cell differentiation. 

In 2003, Sadelain et al. at the Memorial Sloan Kettering Cancer Center, New York, US, were the first 

to show successful transduction of lymphocytes with CD19 CARs that could lead to tumor reduction 

and even eradication in immunodeficient mouse models with various B cell malignancies (10). CARs 

engineering has dramatically evolved over time resulting in four generations of CAR constructs 

(Figure1).  Second generation CAR T cells carry the costimulatory domains CD28 (11) or 4-1BB (12) 

and have been the most commonly used constructs in clinical studies. The first clinical trial to show 

clinically significant responses was performed by Sadelain and co-workers in 2013 in patients with ALL 

(13). Since then, most research with CAR T cell therapies has been performed in hematological 

malignancies, but CAR T cell technology is being explored in solid tumors, however achieving limited 
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clinical activity thus far. Major toxicities of CAR T cells include cytokine release syndrome and 

neurotoxicity that though reversible can be severe and life-threatening. In this review, we provide a 

comprehensive overview of the current role of CAR T cell therapies in hematological malignancies and 

solid tumors, their associated toxicities and potential future developments in the armamentarium of 

cancer treatment. 

 

3. Anti-CD19 CAR T cells 

 

The constant and stable expression of CD19 on neoplastic cells in most B-cell malignancies 

makes it an ideal target for CAR T cell therapy. CD19 is not expressed on normal tissues besides B cells, 

thus theoretically limiting off-tumor on-target toxicities to B cell aplasia. CAR T cell products against 

CD19 are currently the most advanced in terms of clinical development and results of clinical trials. As 

of November 2018, two anti-CD19 CAR T cell products were approved by US Food and Drug 

Administration (FDA) and by European Medicine Agency (EMA). Other constructs are already in an 

advanced phase of clinical investigation (Table 1). 

 

3.1. Currently approved anti-CD19 CAR T cells 

 

3.1.1. Tisagenlecleucel (CTL019, Kymriah®) 

CTL019 (formerly known as CART19) engineered T cells express a chimeric antigen receptor 

which consists of an extracellular anti-CD19 scFv, a CD8 hinge and transmembrane domain, a CD3ζ 

domain providing T-cell activation, and a 4-1BB (CD137) domain as costimulatory molecule. A high 

degree of in vivo expansion of CTL019 cells that resulted in complete remission (CR) in two children 

with refractory B-cell ALL was initially reported at Children’s Hospital of Philadelphia and at 

University of Pennsylvania (9). In a single-center phase I/IIa study, 25 young patients (age range 5 to 

22 years) and 5 older patients (age range 26 to 60 years) were treated (14). After leukapheresis, interim 

therapy at the discretion of the treating physician was allowed. Morphologic CR at one-month 

assessment was observed in 90% of patients, and 6-month event-free survival (EFS) was 67%. All 

patients developed cytokine release syndrome (CRS), which was severe in 27%, and usually associated 

with a higher disease burden. CRS was effectively managed with supportive measures and the 

administration of anti-cytokine therapy, including the IL-6 receptor antagonist tocilizumab. 

A following phase II multicenter study with tisagenlecleucel was conducted in pediatric and 

young adult patients with CD19+ relapsed or refractory B-cell ALL (15). Before tisagenlecleucel 

infusion, 96% of patients received lymphodepleting chemotherapy, which was omitted at the 

investigator’s discretion in case of leukopenia. Median weight-adjusted dose of transduced viable T cells 

was 3.1x106/kg/body weight. Seventy-five patients received a single infusion of tisagenlecleucel, with 

an overall response rate (ORR) of 81%, including 60% CR and 21% CR with incomplete hematologic 
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recovery. Persistence of tisagenlecleucel in the blood was observed for as long as 20 months. Six-month 

EFS was 73%, and 12-month EFS was 50%. Eight patients underwent allogeneic hematopoietic stem-

cell transplantation (alloHSCT) while in remission. Overall survival (OS) for the whole cohort was 90% 

and 76% at 6 and 12 months after infusion respectively. Seventy-three% of patients developed grade ≥3 

adverse events which were attributable to tisagenlecleucel, mainly occurring within 8 weeks after 

infusion. Most common non-hematologic adverse events of any grade were CRS (77%, 48% treated 

with tocilizumab), pyrexia (40%), decreased appetite (39%), febrile neutropenia (36%), and headache 

(36%). For CRS, median time to onset was 3 days and median duration was 8 days. Neurologic events 

occurred in 40% of patients within 8 weeks after infusion (13% grade 3, no grade 4), and no cerebral 

edema was reported. Two deaths occurred within 30 days after tisagenlecleucel infusion: one patient 

died from cerebral hemorrhage, and one patient from progressive B-cell ALL.  

CTL019 was also evaluated in the setting of CD19+ B-cell lymphomas. A trial conduced at the 

University of Pennsylvania enrolled patients with relapsed/refractory diffuse large B-cell lymphoma 

(DLBCL) or follicular lymphoma (FL) (16). Bridging therapy was allowed and lymphodepleting 

regimen was at the investigator’s discretion. Twenty-eight patients were infused (DLBCL n=14, FL 

n=14), with a median CTL019 cell dose of 5.79x106 /kg/body weight. T-cell manufacturing was 

unsuccessful for 5 patients. ORR at 3 months was 64%, 50% for DLBCL and 79% for FL respectively. 

CR at 6 months was observed in 57% of patients (43% DLBCL, 71% FL). At a median follow-up of 

28.6 months, 57% of patients were progression-free (43% DLBCL, 70% FL). Among 16 patients in CR, 

14 had consistently detectable levels of CTL019 DNA between 6 and 24 months after infusion. Severe 

CRS was observed in 5 patients with no CRS-related deaths, one patient was treated with tocilizumab, 

no patients received glucocorticoids. Neurologic toxic effects were reported in 11 patients, and 3 had 

grade ≥3 encephalopathy. 

A following multicenter phase II trial (JULIET) enrolled adult patients with relapsed/refractory 

DLBCL (17). The apheresis product was cryopreserved, and bridging chemotherapy was allowed 

(eventually given to 90% of patients). As lymphodepleting chemotherapy, patients received fludarabine 

25 mg/m2 and cyclophosphamide 250 mg/m2 for 3 days, or bendamustine 90 mg/m2 for 2 days. 

Preliminary results on 81 patients showed an ORR of 53.1%, with 39.5% CR and 13.6% partial 

responses (PR). Three-month CR rate was 32%, and 6-month CR rate was 30% (for 46 evaluable 

patients). At 6 months, the probability of OS was 64.5%. Grade 3 or 4 adverse events were observed in 

86% of patients, and no deaths were attributed to CTL019. CRS occurred in 58% of patients (15% grade 

3, 8% grade 4), 15% of whom received tocilizumab, and 11% corticosteroids. Neurologic adverse events 

were reported in 12% of patients.  

Tisagenlecleucel is currently approved in the US and in Europe for the treatment of patients up 

to 25 years of age with refractory B-cell precursor ALL, in second relapse or beyond, and for adult 

patients with relapsed or refractory large B-cell lymphoma (including DLBCL, high grade B-cell 

lymphoma and DLBCL arising from FL) after two or more lines of systemic therapy.  
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Other CD19+ lymphoproliferative diseases can also be targeted by CTL019. As previously 

described, the pivotal trial at the University of Pennsylvania evaluated its efficacy in patients with 

relapsed/refractory FL with encouraging response rates (16). A multicenter study is expected to start 

recruitment soon (NCT03568461). Fourteen patients with heavily pretreated chronic lymphocytic 

leukemia (CLL) were administered CTL019 in a single center pilot study (18). ORR was 57%, with a 

CR rate of 29%. Patients in CR showed persistent responses with a median duration of 40 months. Nine 

patients developed CRS, and 5 showed concurrent neurologic symptoms. In multiple myeloma (MM), 

the combination of CTL019 with high-dose melphalan and autologous stem cell transplantation (ASCT) 

in 10 patients, who had previously undergone ASCT with poor response, was investigated (19). The 

regimen was defined safe and feasible, with most toxicity attributable to ASCT without severe CRS. 

Two patients showed significantly longer progression-free survival (PFS) compared with that obtained 

after ASCT. Tisagenlecleucel is currently under evaluation in pediatric NHL patients (NCT03610724), 

and in combination with anti-PD-1 monoclonal antibody pembrolizumab for the treatment of 

relapsed/refractory DLBCL (NCT03630159). In the B-cell ALL setting, the OBERON study 

(NCT03628053) will compare tisagenlecleucel with blinatumomab or inotuzumab in adult patients. 

 

3.1.2. Axicabtagene Ciloleucel (KTE-C19, Yescarta®) 

KTE-C19 construct, developed at the National Cancer Institute, consists of an extracellular anti-

CD19 scFv, a CD28 hinge, transmembrane and costimulatory domain, and CD3ζ. The initial study 

showed its feasibility in patients with refractory DLBCL and indolent B-cell malignancies with a 

response in 12/15 patients, of whom 8 reached CR (20). A following trial on 22 patients with advanced-

stage lymphoma demonstrated the feasibility of a reduced dose of lymphodepleting chemotherapy 

(cyclophosphamide 300 or 500 mg/ m2 + fludarabine 30 mg/m2 both for 3 days vs cyclophosphamide 

120 or 60 mg/kg + fludarabine 25 mg/m2 for 5 days) (21). The possibility of centralized manufacturing 

of the product led to the design of multicenter trials. Feasibility and safety were demonstrated in the 

phase I ZUMA-1 trial, where 4/7 patients with heavily pre-treated refractory DLBCL achieved CR at 1 

month (22). The phase II portion of the ZUMA-1 trial enrolled patients with refractory DLBCL (cohort 

1) and primary mediastinal B-cell lymphoma or transformed FL (cohort 2) (23). CAR T cells 

manufacturing was successful in 99% of patients. The conditioning chemotherapy consisted of 

fludarabine 30 mg/m2 + cyclophosphamide 500 mg/m2 on days −5, −4, and −3 before the CAR T cell 

administration, and systemic bridging chemotherapy was not allowed. Target dose of CAR T cells was 

2x106/kg/body weight. Axicabtagene ciloleucel was administered to 101 patients, with an objective 

response rate of 82% and a 54% CR rate which was consistent across major covariates. Responses were 

durable: among patients with a ≥ 1-year follow up (n=108), 42% maintained the response at the data 

cutoff, including 40% with CR. Of note, 3 patients on the phase I study had an ongoing CR at 24 months. 

Ninety-five% of patients developed grade ≥3 adverse events, including grade ≥3 neutropenia in 78%, 

grade ≥3 anemia in 43%, and grade ≥3 thrombocytopenia in 38%. CRS occurred in 93% of patients, 
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mostly of low grade (grade 1 37%, grade 2 44%, grade ≥3 13%, including one death related to 

hemophagocytic lymphohistiocytosis). Another patient who developed CRS died from a cardiac arrest, 

and a third one died of pulmonary embolism. Neurologic adverse effects were reported in 64% of 

patients, 28% being grade ≥3. Tocilizumab was given to 43% of patients and glucocorticoids to 27%. 

Axicabtagene ciloleucel is currently approved in the US for the treatment of adult patients with 

relapsed/refractory large B-cell lymphoma after two or more lines of systemic therapy (including 

DLBCL not otherwise specified, primary mediastinal large B-cell lymphoma, high grade B-cell 

lymphoma, and DLBCL arising from FL), and in Europe for adult patients with relapsed or refractory 

DLBCL and primary mediastinal large B-cell lymphoma. 

Other CD19+ lymphoproliferative histologies were included in the initial studies with KTE-

C19. Axicabtagene ciloleucel is currently under investigation for the treatment of mantle cell lymphoma 

(NCT02601313), CLL (NCT03624036), and other indolent NHL (NCT03105336). Additionally, the 

combination of axicabtagene ciloleucel with the anti-PD-L1 monoclonal antibody atezolizumab 

(NCT02926833) and with the anti-4-1BB monoclonal antibody utomilumab (NCT03704298) are under 

evaluation in refractory large B-cell lymphoma. As part of the development program, KTE-C19 is also 

under investigation for the treatment of B-cell ALL. The phase I/II ZUMA-3 trial (NCT02614066) is 

evaluating KTE-C19 in adult patients with relapsed/refractory B-precursor ALL. KTE-C19 are infused 

after a lymphodepletion consisting of fudarabine 25 mg/m2 for 3 days and cyclophosphamide 900 mg/m2 

for one day. Sixteen patients were treated and one experienced a grade 5 event of CRS. Grade ≥3 CRS 

and neurologic events were reported in 25% and 63% of patients, respectively. Eleven patients were 

evaluable for efficacy, with an ORR of 82% (73% CR or CR with partial hematopoietic recovery) (24). 

KTE-C19 also is under evaluation in pediatric/adolescent patients with relapsed/refractory B-cell ALL 

in the phase I/II ZUMA-4 trial (NCT02625480). 

 

3.2. Other anti-CD19 CAR T cell products under development 

 

3.2.1. Lisocabtagene Maraleucel (JCAR017) 

JCAR017 construct was developed at the Fred Hutchinson Cancer Research Center. It is 

composed by an extracellular anti-CD19 scFv, a IgG4 hinge domain, a CD28 transmembrane domain, 

a CD3ζ activation domain, and a 4-1BB costimulatory domain. 

Based on preclinical work in a mouse model showing that different T cell subsets are transduced 

efficiently but differ in their effector functions, and that CAR T products composed of defined T-cell 

subsets can have an increased potency (25), investigators led a phase I clinical trial using a predefined 

1:1 CD4:CD8 T cell ratio for the treatment of CD19+ B cell malignancies (with an enrichment of CD8+ 

central memory T cells, when feasible). Thirty-two patients with different relapsed/refractory B-cell 

NHL (mainly DLBCL and transformed large cell lymphoma), including patients relapsed after ASCT 

or alloHSCT, were treated (26). Different lymphodepleting regimens were allowed, and cells were 

https://clinicaltrials.gov/ct2/show/NCT02614066
https://clinicaltrials.gov/ct2/show/NCT02625480
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infused at a dose of 2x105 /kg, 2x106/kg, or 2x107/kg. ORR was 63%, with a CR rate of 33%. CRS was 

detected in 13% of patients, and 28% had grade ≥3 neurotoxicity. Thirty patients with relapsed or 

refractory CD19+ B-cell ALL were also treated with the same regimen, and 93% achieved a bone 

marrow remission, as determined by flow cytometry (27). Eighty-three% of patients developed CRS, 

and 50% had severe neurotoxicity. There were 2 deaths due to toxicity, one related to CRS, and the 

second to neurotoxicity. The TRANSCEND-001 multicenter trial is testing JCAR017 in 

relapsed/refractory B cell lymphomas, including DLBCL, transformed FL, grade 3B FL, mantle cell 

lymphoma, and primary mediastinal B cell lymphoma (28). Bridging therapy is allowed, 

lymphodepleting chemotherapy consists of fludarabine 30 mg/m2 and cyclophosphamide 300 mg/m2 for 

3 days, and different dose levels of infused cells are tested. Preliminary data from the DLBCL cohort 

(n=69) showed ORR of 49% and 40% at 3 and 6 months, respectively, with 40% and 37% CR at 3 and 

6 months, respectively. CRS was reported in 30% of patients, with a single grade 4 event. Neurotoxicity 

developed in 20% of patients, including 14% with grade 3-4 events. No deaths were attributable to CRS 

or neurotoxicity. A randomized phase III trial will evaluate JCAR017 compared to standard of care in 

adult patients with high-risk transplant-eligible relapsed/refractory aggressive B-cell NHL 

(NCT03575351). The PLATFORM trial will evaluate JCAR017 in relapsed/refractory aggressive B-

cell lymphomas, in combination with different agents such as anti-PD-L1 monoclonal antibody 

durvalumab, or the new generation immunomodulatory drug CC-122 (NCT03310619). JCAR017 is also 

currently under evaluation for the treatment of patients with relapsed/refractory CLL (NCT03331198). 

 

3.2.2. UCART19 

In the attempt to overcome manufacturing issues, particularly occurring in heavily pre-treated 

patients, universal anti-CD19 CAR T products, derived from healthy donor cells, are currently under 

development. UCART19 express an anti-CD19 scFv-4-1BB-CD3ζ molecule, and is also modified to 

lack both CD52 expression (in order to render these cells resistant to anti-CD52 monoclonal antibody 

alemtzumab) and the endogenous TRAC locus (to prevent UCART exhaustion), and to include a RQR8 

“safety switch” (allowing targeted elimination through anti-CD20 monoclonal antibody rituximab) (29). 

After the initial results reported in two young patients with B-cell ALL who achieved molecular 

remissions ahead of alloHSCT (29), a phase I trial in pediatric patients with high risk relapsed refractory 

CD19+ B-cell ALL was initiated. Patients receive a lymphodepleting treatment consisting of 

cyclophosphamide and fludarabine with or without alemtuzumab, following the infusion of 2x107 total 

cells, with the aim of achieving molecular remission and proceeding to alloHSCT. All the first 5 children 

who were treated achieved CR with incomplete blood count recovery, and were able to proceed to 

alloHSCT, and 2 of them remain in molecular remission 2 and 2.5 months post-transplant (30). All 

patients experienced reversible CRS, 2 patients presented mild neurological symptoms that recovered 

without treatment, and grade 1 acute skin graft-versus-host disease was reported in 2 patients. UCART19 
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is also currently under investigation for the treatment of adult patients with relapsed/refractory B-cell 

ALL (NCT02746952). 

 

4. Alternative targets for CAR T cells 

 

4.1. Novel T-cell targets for B-cell malignancies 

 

Although highly and uniformly expressed on B cell malignancies, CD19 may be downregulated 

or mutated in tumor cells (31), and antigen loss variants have been reported as responsible of the majority 

(70%) of relapses in ALL (32). Alternative surface molecules, including CD20, CD22 and the 

immunoglobulin light chain are also frequently expressed in B cell tumors and CARs targeting these 

alternative lymphoma-associated antigens are currently under development for the treatment of B-cell 

malignancies (Table 2). Successful results obtained with anti-CD20 monoclonal antibodies, have 

formally supported the development and clinical testing of anti-CD20 CAR-T cell therapy. CD20 has 

been targeted with a third generation CD28/4-1BB/CD3ζ CAR and transient responses were observed 

in 3 of 4 patients (33). Inclusion of dual costimulatory domains (CD28 and 4-1BB) enhanced anti-CD20 

CAR T cells persistence in patients with indolent B cell and mantle cell lymphoma (34). In this study, 

anti-CD20 CAR T cells could be detected up to one year post transfer, and 2/3 patients treated had a 

PFS at 24-month follow up. Based on preclinical results showing their antitumor efficacy, anti-CD22 

CAR T cells are currently under evaluation in early-phase clinical trials. Results from a phase I trial 

testing anti-CD22 CAR T cells in 21 children and adults with B-cell ALL, including 15 patients 

previously treated with anti-CD19 CAR T cells, showed a dose-dependent anti-leukemic activity, with 

CR obtained in 73% (11/15) of patients - including 5 of 5 patients with CD19dim or CD19- B-ALL - and 

a median remission duration of 6 months (35).The immunglobulin kappa (k) light chain antigen is 

another attractive target because its expression on k-restricted B-cell lymphomas, and not on non-

malignant B cells, may avoid complete B-cell aplasia and minimize humoral immunity impairment. In 

a phase I clinical trial, 16 patients with relapsed or refractory k+ NHL/CLL or MM were treated with 

autologous T cells genetically modified to express a CAR specific for the k light chain (36). Overall, of 

9 patients with relapsed NHL or CLL, 2 achieved a CR remission and one a PR. Of 7 patients with MM, 

4 had stable disease (SD) lasting 2–17 months. No toxicities attributable to anti-k-light chain CAR T 

cells were observed. Another potential tumor antigen is the receptor tyrosine kinase-like orphan receptor 

(ROR1), a transmembrane glycoprotein expressed on embryonal tissue and aberrantly on many adult 

malignant tissues, such as B-cell tumors (e.g. CLL, mantle cell lymphoma, B-cell ALL) and numerous 

types of solid tumors (37-40). Due to its high-level surface expression as well as to its crucial role in 

tumor cell proliferation, survival, and metastasis, a number of pharmacological agents targeting ROR1 

are under development, such as humanized monoclonal antibodies, small molecule inhibitors, bispecific 

T-cell engagers (BiTE) and anti-ROR1 CAR T cells (41-43). ROR1-targeted T cells have demonstrated 
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to generate cytotoxicity against human ROR1 positive B cell malignancies in preclinical studies (39), 

without causing overt cytotoxicity in non-human primates (44). 

 

4.2. T-cell targets for multiple myeloma 

 

Novel cell therapies and several potential targets for CAR T cells are under investigation in MM 

(45, 46) (Table 2). Anti-CD38 and anti-SLAMF7 CAR T cells showed anti-MM effects in preclinical 

models (47, 48), but the expression of both target antigens on other normal tissues including 

hematopoietic lineages and immune effector cells may cause off-tumor toxic effects limiting their long-

term clinical use. Being expressed on plasma cells of all MM patients but not on normal tissues, BCMA 

- a member of the TNF receptor family - is at present the most promising target in this disease setting. 

A first in-human phase I clinical trial conducted at the National Cancer Institute in heavily pre-treated 

MM patients demonstrated the safety and efficacy of adoptively transferred autologous T cells 

transduced with a retroviral vector incorporating an anti-BCMA scFv, a CD28 costimulatory domain, 

and the CD3ζ T-cell activation domain. Updated results from this study showed an ORR of 81%, with 

63% very good partial response or CR, and a median EFS of 31 weeks (49). Another phase I study, 

conducted at the University of Pennsylvania, is currently exploring a different CAR, developed in 

collaboration with Novartis and consisting of a fully human anti-BCMA scFv with a 4-1BB 

costimulatory domain that was packaged in a lentiviral vector (50). Three cohorts have been enrolled 

sequentially, with the aim of collecting preliminary data about safety, efficacy, and kinetics of expansion 

- both with and without lymphodepleting chemotherapy. Preliminary results presented at 2017 ASH 

meeting showed that, based on  IMWG criteria, in cohort 1 (CAR T cells alone at a dose of 1-5x108 

cells, n=9) 6/9 pts responded, with 1 ongoing sCR at 21 months, and other responses lasting 1.5 to 5 

months. In cohort 2 (cyclophosphamide 1.5 g/m2 with 1-5x107 CAR T cells, n=5), 2/5 pts responded but 

progressed at 4 and 2 months, respectively. In cohort 3 (cyclophosphamide 1.5 g/m2 with 1-5x108 CAR 

T cells, n=10), the incorporation of cyclophosphamide with the higher dose of CAR T cells led to a 

disease response in 5/6 patients, and one was not yet evaluable at the time of data submission. Berdeja 

et al. reported updated data about the dose-escalation portion of a third BCMA CAR T-cell trial 

(NCT02658929) at the 2017 ASH meeting (51). This was a multicenter study sponsored by Bluebird 

Bio, which used a second-generation CAR called bb2121 that contained a murine anti-BCMA scFv (the 

same one used in the National Cancer Institute trial), a 4-1BB costimulatory domain, transduced by a 

lentiviral vector. Preliminary data from this phase I study showed that 89% of patients treated with 

bb2121 responded to treatment with 8 ongoing clinical responses at 6 months, and one patient 

demonstrating a sustained response beyond one year. Based on these promising results, two phase II 

multicenter studies evaluating the efficacy and safety of bb2121 in subjects with relapsed/refractory 

MM are currently ongoing in the US and in Europe (NCT03361748 and NCT03601078). Of note, 

BCMA is also expressed in a substantial number of lymphoma samples, as well as primary CLL B cells. 
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Preclinical data have shown that treatment with bb2121 results in rapid and sustained elimination of the 

tumors and 100% survival in NOD/SCID gamma mouse models of human lymphomas, thus supporting 

the further development of anti-BCMA CAR T cells as a potential treatment for not only MM but also 

some lymphomas (52). Preliminary results from a fourth anti-BCMA CAR T cells trial, conducted by 

Nanjing Legend Biotech in China in relapsed/refractory MM patients, were reported at the 2017 

American Society of Clinical Oncology Annual Meeting (53). This CAR, called LCAR-B38M, uses a 

novel antigen-binding domain that binds BCMA at two separate epitopes. At the time of presentation, 

100% (19/19) of patients experienced a response, including 74% with a CR. During a median follow-

up time of 6 months, no patient with CR experienced relapse. Toxicity was modest: 83% developed 

CRS, but only 6% had grade 3 CRS and no grade 3-4 neurotoxicity was seen. Several additional antigens 

are currently under investigation in MM as potential targets for CAR T cell therapies, including CD44v6 

(54), Lewis Y (55), NKG2D ligands (56), CD229 (57), and integrin β7 (58). 

 

4.3. T-cell targets for non-B-cell lymphoproliferative disorders 

 

Broadening of CAR T cells to treat T-cell malignancies has proven challenging, mainly because 

many targetable antigens are also expressed on normal T lymphocytes. This shared antigenicity can 

cause fratricide in CAR T cells, inhibiting their proliferation and viability, and leading to normal T cells 

depletion and deep impairment of host immunity. To avoid this drawback, an anti-CD5 CAR transduced 

into a human NK cell line was tested (59). This approach showed potent anti-tumor activity against a 

variety of T-cell leukemia and lymphoma cell lines as well as primary tumor cells, and was able to 

demonstrate significant inhibition of disease progression in xenograft mouse models of T-cell ALL. 

Recent data reported by Gomes-Silva et al. showed that targeted disruption of the CD7 gene using 

clustered, regularly interspaced short palindromic repeats (CRISPR)/Cas9 prior to CAR expression 

minimizes fratricide in T cells and allows the expansion of the CD7-knockout (CD7KO) anti-CD7 CAR 

T cells with robust antitumor properties in preclinical models (60). An alternative strategy to limit 

fratricide is to employ T cells transduced with a CAR specific for the T-cell receptor (TCR) β chain 

constant region expressed by the malignant cells (i.e. TCRBC1 or TCRBC2), thus sparing the normal T 

cells that express the alternative TCRBC chain. Recent data demonstrated that ex vivo selected 

TCRBC2-positive T cells transfected with a CD28/OX40/CD3ζ anti-TCRBC1 CAR specifically 

recognized TCRBC1-positive T cell leukemia and lymphoma cells in vitro and in xenograft murine 

models (61).  

Promising results and limited toxicities obtained with toxin-conjugated CD30-specific 

monoclonal antibodies (such as brentuximab vedotin) (62, 63) have encouraged the development and 

clinical testing of CD30-directed CAR T cell therapies in Hodgkin lymphoma (HL) and anaplastic large 

cell lymphoma (ALCL) (Table 2). The clinical efficacy of this approach in relapsed or refractory HL 

patients was first demonstrated by results obtained in a phase I study conducted in China, which tested 
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the adoptive transfer of autologous T cells transfected with a lentiviral vector encoding for a second 

generation CAR containing an anti-CD30 scFv combined with a 4-1BB costimulatory domain (64). 

Within this study, CART-30 cell infusion was well tolerated, with grade ≥3 toxicities occurring only in 

2 of 18 patients, and effective, with 7 patients achieving PR and 6 achieving SD. Promising results were 

obtained by a second phase I dose-escalation study evaluating the safety of autologous T cells gene-

modified with a retroviral vector to express an anti-CD30 CAR combined with the CD28 costimulatory 

domain (65). In this study, of 7 patients with relapsed HL, one entered CR lasting more than 2.5 years 

after the second infusion of anti-CD30 CAR T cells, one remained in continued CR for almost 2 years, 

and 3 had transient SD. Of 2 patients with ALCL, one had a CR that persisted 9 months after the fourth 

infusion of anti-CD30 CAR T cells. No toxicities were observed and even though CD30 may also be 

expressed by normal activated T cells, no patients developed impaired virus-specific immunity. These 

studies demonstrate that targeting CD30 with CAR T cells is safe and can have antitumor activity in 

CD30+ malignancies. 

 

4.4. CAR T cells for myeloid diseases 

 

Despite the increasing availability of new targeted molecules, including IDH, FLT3 and BCL2 

inhibitors, the prognosis of relapsed and refractory acute myeloid leukemia (AML) remains dismal. 

AlloHSCT is the only realistic curative option but it is not feasible in many patients and results are 

unsatisfactory in this setting, especially if a good quality remission is not achieved before transplantation 

(66). Despite considerable efforts, the development of CAR T cells in AML represents a major challenge 

mainly due to the absence of a leukemia-specific surface antigen (67) (Table 2). First, the co-expression 

of AML antigens on extra-hematopoietic tissues (e.g. CD33 in hepatic Kupffer cells, CD123 on 

endothelial cells) poses important safety concerns. Besides, currently known AML surface targets are 

also expressed on normal hematopoietic stem and progenitor cells (HPSCs), leading to a very high risk 

of severe hematologic toxicities. Given that a long-term pan-myeloablation following AML-directed 

CAR T cells infusion may not be tolerable, unlike B cell aplasia due to CD19-targeted therapy, different 

solutions are being tested (68). AlloHSCT represents the logical rescue strategy, but the persistence of 

even a few CAR T cells after transplantation could lead to graft rejection (67). Therefore, some groups 

explored the possibility of developing short-term living CAR T cells as a “bridge to transplant”. The 

University of Pennsylvania employed for this purpose CAR mRNA electroporation, in order to allow 

transient expression of their anti-CD123 CAR as opposed to the stability obtained by viral delivery (69). 

Unfortunately, this strategy was unsuccessful, since none of the 7 patients enrolled in the clinical trial 

showed a response, likely due to the lack of CAR T cells persistence (70). As a matter of fact, a 

prolonged CAR T cells expansion is essential to obtain a sustained remission (15), and finding the right 

balance between the benefits of CAR persistence and the risks of long-term myelosuppresion is one of 

the major challenge in AML-directed CAR T cells development. Alternative ways of CAR T cells 
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termination, including the use of antibodies against both artificially expressed and constitutively present 

surface antigens (71), inducible suicide genes (72) and on-off switch strategies (73) are being explored 

and could permit to promptly induce CAR T cells exhaustion when needed.  

The University of Pennsylvania group recently presented another innovative way to prevent the risk of 

prolonged myelotoxicity and graft rejection due the lack of specificity of CARs in AML. The 

investigators generated CD33-deficient human HSPCs and demonstrated prolonged engraftment and 

normal differentiation in mouse and macaque models. CD33-deficient cells were unaffected by anti-

CD33 CAR T cells, thus allowing for effective anti-leukemic activity without myelotoxicity (74).  

With the aim of identifying new specific antigens, Perna et al. performed an exploratory study by 

combining proteomics and transcriptomics analysis from malignant and normal tissues. Albeit no 

antigen with characteristics as favorable as CD19 was found, some promising targets, namely ADGRE2, 

CCR1, CD70, and LILRB2, were identified (75). Besides, a recent proof-of-concept publication showed 

that also intracellular peptides can be targeted and that the efficacy of CAR T cells can be boosted by 

vaccination. The authors developed a CAR specific to a WT1/human leukocyte antigen (HLA)-A 

complex, and vaccination with dendritic cells loaded with the corresponding antigen led to CAR T cells 

expansion and activation, thus enhancing anti-leukemic activity in a xenograft model (76).  

An alternative approach to prevent antigen escape-mediated relapses and off target side effects, is the 

development of CAR T cells targeting two different antigens on the leukemic cells (77). These 

constructs appear of particular interest in AML, due to the impressive clonal heterogeneity and the 

lack of highly specific antigens, and in this context  leukemia stem cells markers are particularly 

attractive as potential co-targets (78).  

Some groups are also testing small molecules with the aim of improving CAR T cells efficacy. Jetani 

and colleagues recently reported that the FLT3 inhibitor crenolanib had a synergist activity with FLT3-

directed CAR T cells in a FLT3-ITD AML model, at least in part by increasing FLT3 surface expression 

(79) and similar results were also presented for midostaurin (80). Besides, it was recently reported that 

PI3K inhibition can enhance CD33-directed CAR T cells durability, thus improving antitumor activity 

(81). Despite many in vitro and in vivo preclinical studies and the significant number of clinical trials 

currently enrolling worldwide, only a few data of AML patients treated with CAR T cells have been so 

far reported. The first published clinical trial employed a second generation CAR targeting the Lewis Y 

antigen, an oligosaccharide overexpressed by some epithelial and hematological malignancies: signs of 

clinical activity and good tolerability were shown in the 4 treated patients, but responses were short-

lived and CAR T cells persistence was limited (82). CD33 is an obvious target in AML, due to its very 

frequent expression on leukemic blasts, and several efforts are ongoing to increase anti-leukemia 

efficacy of CD33-directed constructs, including the optimization of co-stimulatory molecules (83). So 

far Chinese investigators reported only on one heavily pretreated patient who experienced a short-lasting 

partial response and moderate toxicity after CD33-CAR T cell treatment (84). Despite the disappointing 

results obtained with the adoptive transfer of T cells transiently modified by mRNA electroporation to 
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express a CD123 specific CAR (70), preliminary clinical data on lentivirally transduced CD123-CARs 

are promising. One case report from China showed some clinical activity (85) and more recently the 

City of Hope group reported encouraging results on 6 AML patients, 3 of whom experienced a clinical 

meaningful response and, interestingly, no significant myelosuppression after anti-CD123 CAR T cell 

infusion. One patient with refractory blastic plasomocytoid dendritic cell neoplasm responded as well, 

obtaining a CR. CRS was observed, but it was manageable and always of grade 1 or 2 (86). Preclinical 

results of this construct were also reported in high risk MDS (87).  

Universal allogeneic CAR T cells are of particular interest in AML, giving the increased manufacturing 

problems often faced with autologous CARs in this disease (88). Unfortunately, a phase I study of 

UCAR123 (i.e. allogenic anti-CD123 CART T cells) was temporarily halted due to unacceptable 

toxicity in the first two patients treated, including one fatal case, and data on further development of this 

construct are awaited (68). NKG2D-expressing CAR T cells (89) were tested in a phase I trial including 

6 patients with MDS or AML, but poor CAR T cell persistence, no CRS and very limited clinical activity 

were shown (56). However, a relapsed AML patient enrolled in a trial testing multiple infusions of 

NKG2D-bearing CAR T cells obtained marrow leukemia free status at day 28 post infusion and was 

later successfully allografted (90). Recently, preliminary results of a compound CAR simultaneously 

targeting two different AML antigens, CLL1 and CD33, have been reported. After demonstrating 

significant activity of the construct in vitro and in a mouse model, and after proving the efficacy of 

alemtuzumab as safety switch, Liu and colleagues presented the results of the first patient treated, who 

achieved a minimal residual disease (MRD)-negative CR and could be successfully bridged to alloHSCT 

(91). Other AML targets have been studied in preclinical models with encouraging results, including 

folate receptor ß (92), CD7 (93), CD44v6 (54), CD38 (94), CLL1 (95), FLT3 (96), and LILRB4 (97), 

but CAR T cells directed toward these antigens have not entered clinical development or are tested in 

early trials whose results are not available yet. 

 

4.5. CAR T cells for solid tumors 

 

The development of CAR T cells in solid tumors has yielded limited results, since unique 

challenges come in addition to those faced in hematological malignancies (98) (Table 2). Likewise in 

AML, important safety concerns derive from the lack of highly specific target antigens, and severe and 

sometimes fatal toxicities due to on-target off-tumor effects on normal tissues occurred in some trials 

(99-102). Besides, the tumor microenvironment represents a unique obstacle which significantly limits 

CAR T cells efficacy in solid cancers, due to the presence of environmental barriers (e.g. extracellular 

matrix), chronic inflammation and the presence of immunosuppressive molecules and immune cells. 

Furthermore, high tumor heterogeneity can facilitate antigen escape and in vivo CAR T cells expansion 

is significantly less pronounced than in patients with hematologic malignancies (103, 104). In order to 

prevent potentially lethal toxicities, safety switch strategies are being tested (98) and the University of 
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Pennsylvania group demonstrated the feasibility, although with limited efficacy, of administering 

mRNA electroporated mesothelin-specific CAR T cells in pancreatic adenocarcinoma patients (105). 

Other groups are exploring the possibility of local delivery, to enhance tumor killing and to reduce 

toxicity. Indeed, it has been shown that regional administration of anti-AFP or anti-CEA CAR T cells 

was equally effective or even superior to a systemic administration in xenograft models of peritoneal 

carcinomatosis (106, 107), and the delivery of CAR T cells through percutaneous hepatic artery 

infusions has shown to be safe and clinically active in patients with CEA-expressing liver metastases 

(108). A different approach to favor the localization into the tumor site consists in the administration of 

CAR T cells overexpressing tumor-specific chemokine receptors enhancing their capacity of reaching 

the tumor tissues (109).  

In order to overcome antigen escape risk and inter-patient variability, CARs co-targeting two or 

even three antigens are being developed in several solid malignancies, including breast, pancreatic and 

brain tumors (110-113). Conversely, other investigators are testing dual constructs requiring both targets 

to be expressed on tumor cells in order to exert their cytotoxic activity (114) and inhibitory CARs able 

to redirect T cells activity from healthy tissues (115), with the aim of increasing CAR specificity and of 

preventing off-tumor side effects. Furthermore, many efforts are being made to optimize co-stimulatory 

molecules and to improve the structure of CARs (116), and new constructs able to locally deliver 

immune-modulating cytokines (117-120), bearing modified cytokine receptors (121) or targeting tumor 

matrix components (122, 123) are being developed to overcome environmental barriers. Some groups 

are also exploring the possibility of combing CAR T cells with oncolitic viruses (124) or with checkpoint 

inhibitors (125-127). Indeed, targeting the PD-1/PD-L1 axis is of particular interest for CAR-T cells 

development in solid tumors (128), and investigators are testing constructs which are able to deliver 

anti-PD-1 molecules (129, 130) and strategies of cell-intrinsic PD-1 inhibition and inactivation (126, 

131, 132), with the aim of improving the efficacy of CAR T cells also reducing the systemic side effects 

of checkpoint inhibitors. Despite these challenges, basic and clinical research on CAR T cells in solid 

malignancies is constantly expanding, with more and more clinical trials opening worldwide (133) and 

many new data being presented. In sarcoma, anti HER2-CAR T cells showed a reassuring safety profile 

(134) and led to CR in one case (135) while anti-GD2 constructs demonstrated significant clinical 

activity in 5 out of 11 patients with active neuroblastoma, including 3 CR (136). Signs of activity were 

also shown in recent studies involving epithelial tumors (137-140). The concept of the central nervous 

system (CNS) as an immune privileged site has been overturned in recent years, since T cells can 

penetrate the blood-brain barrier and infiltrate the brain in a diffuse manner (141); as a matter of fact, 

one of the most promising field of CAR T cells development in solid malignancies are CNS tumors. In 

glioblastoma patients, the University of Pennsylvania group showed that EGFRvIII-directed CAR T 

cells effectively trafficked to regions of active tumor after systemic infusion (142) and Ahmed and 

colleagues reported clinically significant activity of HER2-specific CAR T cells in 8 out of 17 cases, 

including one PR and 7 persistent SD (143). Besides, local delivery showed encouraging results in this 
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setting: in xenograft models, investigators demonstrated robust antitumor efficacy of anti-HER2 CAR 

T cells against medulloblastoma (144) and brain metastases of breast cancer (145) and anti-GD2 

constructs were effective against midline gliomas (146). In addition, Brown and colleagues reported 

that IL-13Rα2–directed CAR T cells delivered via an implanted reservoir/catheter system exert a 

significant clinical activity in glioblastoma patients (147), including one CR (148). 

 

5. CAR-T cells related toxicities 

 

The two most relevant toxicities resulting from CAR T cell adoptive therapy are CRS and 

neurotoxicity. Both are potentially life-threatening conditions and their prompt recognition and safe 

management are essential. Recent observations in pre-clinical models are revealing some aspects of their 

obscure pathophysiology and new potential pathways that could be targetable. 

 

5.1. Cytokine release syndrome 

 

CRS is an acute inflammatory process that commonly occurs within the first days after CAR-T 

cell infusion. Closely related to the macrophage activation syndrome, it is characterized by non-specific 

constitutional symptoms with transient elevations of serum cytokines and other biomarkers. The delayed 

onset of clinical symptoms suggests an on-target, antigen-driven T-cell activation process. Mild CRS is 

a self-limiting clinical syndrome of low-grade fever, arthralgias and myalgias and is usually managed 

with minimal intervention. However, in a small number of patients it can progress to a dramatic 

syndrome of multi-organ dysfunction, requiring aggressive intervention and intensive life-support. 

Severe CRS is characterized by the development of a capillary leak syndrome with third spacing and 

hypotension, insufficient renal blood flow and pulmonary edema leading to hypoxia. Neurological 

symptoms may also occur during CRS though they generally do not follow the same time course as 

systemic CRS symptoms.  

Though the pivotal role played by IL-6 in severe CRS is well known (9, 14), new intriguing 

observations correlate severe CRS with the host macrophage/monocyte system rather than the CAR-T 

cells induced cytokine milieu (149). This observation may reveal a novel scenario where the cross-talk 

between CAR T cells and host myeloid cells is essential for the recruitment of macrophages which, in 

turn, are responsible for the release of IL-6. Furthermore, the demonstration of the involvement of 

inducible nitric oxide synthase (iNOS) in CRS patho-physiology recognizes a role for IL-1, a strong 

iNOS inducer. In a mouse model, the administration of an IL-1 receptor antagonist prevented severe 

CRS while sparing anti-tumor efficacy (150).  

Severe CRS treatment is based upon direct cytokine inhibition, corticosteroids and intensive life 

support. The IL-6 receptor antagonist tocilizumab has often been used and has resulted in rapid 

improvement of clinical symptoms without affective potential anti-tumor activity (9, 14, 151). The use 
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of tocilizumab was approved by the Food and Drugs Administration in August 2017. A currently 

ongoing clinical trial (NCT02906371) may contribute to establish the role of tocilizumab as prophylaxis 

of CRS in anti-CD19 CAR-T cells recipients. Corticosteroids have also been used as first-line treatment 

for severe CRS due to their well-known ability to blunt activated T-cells. However, given their potential 

risk of compromising CAR-T cells efficacy in vivo, their use is commonly limited to life-threatening 

CRS unresponsive to cytokine inhibition. Intensive care treatment may be required in case of refractory 

severe CRS with unstable blood pressure and/or ventilator-requiring hypoxia.  

 

5.2. Neurotoxicity 

 

CAR T-related neurologic adverse events include a wide spectrum of clinical symptoms that 

may develop with or without CRS. They are generally of mild-moderate intensity and reversible while 

only a minority of patients require specific treatment. Reported incidence ranges from 7% to 63% (15, 

23, 24, 152).  

The initial hypothesis of a brain-located CD19 acting as a powerful stimulus for an antigen-

driven CAR-T infiltration appeared not consistent. The recent development of a pre-clinical model of 

neurotoxicity through the transfer of autologous CD20-specific CAR T cells showed the association of 

neurotoxicity with pro-inflammatory cytokines in the cerebrospinal fluid (CSF) determined by a CAR 

T cell mediated meningeal inflammation (153). It was demonstrated that CAR T cells accumulate in 

CSF and brain parenchyma along with measurable CSF levels of multiple molecules such as IL-6, IL-

2, granulocyte-macrophage colony stimulating factor, and vascular endothelial growth factor. 

Disruption of central nervous system vascular integrity and disregulation of the platelet-von Willebrand 

factor axis along with high serum levels of endothelial activation biomarkers appear to play a major role 

during acute neurologic toxicity. The blood-brain barrier (BBB) of patients with acute neurotoxicity 

does not prevent massive cytokine penetration into CSF, that, in turn, induces brain vascular pericyte 

stress and secretion of cytokines further increasing BBB permeability in a cyclic process (154). Common 

neurologic symptoms include delirium, confusion, disorientation, headache, decreased level of 

consciousness, hallucinations and tremor, while cranial nerve damage, seizures and focal deficits have 

been infrequently observed. The occurrence of fatal cerebral edema has also been reported in the Kite 

Pharma trial and by Gust et al. (154, 155). Heavy disease burden, fludarabine-based preparative 

regimens and higher infused CAR-T cell doses have been associated with higher incidence of neurologic 

events. Higher serum levels of IL-6 and of monocyte chemo-attractant protein-1 within the first 36 hours 

after infusion appear to predict a higher risk of developing grade ≥4 neurotoxicity (27). Most patients 

with severe neurotoxic events had previously been diagnosed with grade ≥2 CRS but the physio-

pathologic relationship between the two morbid processes is currently unknown. 

Patients who develop at least grade 2 neurologic toxicity after CAR T infusion should be 

managed by the neurology consult service. Brain magnetic resonance, electroencephalogram and 
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examination of CSF could help to rule out other causes. Events of mild intensity are almost universally 

self-limited and do not need intervention. Severe neurotoxicity is treated with systemic corticosteroids 

with dexamethasone being the first choice given its excellent BBB penetration, and, in absence of 

prompt response, with tocilizumab although clear evidence of its efficacy is lacking. Given the inability 

of tocilizumab to cross the BBB, it was also suggested that it may increase IL-6 levels in CSF and 

worsen neurotoxicity. Thus the IL-6 antagonist siltuximab may be a valid alternative (156). A recent 

published observation showed that in a mouse model of CAR T-induced neurotoxicity, the use of IL-1 

receptor antagonist anakinra abolished neurologic symptoms, whereas tocilizumab failed to treat them 

(150).  

 

6. Alternative sources and off-the-shelf carriers for CARs 

 

Despite stunning clinical results, autologous CAR T cells present some issues. First, advanced 

stage disease and previous multiple chemotherapies may affect T cell collections, both in quantity and 

quality. Second, patients are at risk of disease progression from the time of T cell harvest to the complete 

manufacturing process and shipment of the final autologous CAR-T products for patient infusion. 

Moreover, single manufacturing generates a product dedicated to a single patient resulting in 

significantly high costs. The high costs associated with de-centralized manufacturing place a burden on 

health care systems and restrict broad patient access to these novel therapies. Thus, the promising 

clinical results of engineered T cell therapies will be further amplified and broadened if potent and histo-

compatible T cells become readily available off-the-shelf. Major barriers to overcome are the risks of 

graft-versus-host disease (GVHD), caused by the reaction of manipulated donor cells against recipient 

tissues, and cell rejection, due to the recipient immune system acting against the infused donor cells. 

Herein, we report the preliminary clinical experiences on the use of other than autologous CAR T cells 

in hematological malignancies.  

 

6.1. Post-allogeneic stem cell transplant CAR T cells 

 

Disease relapse post allo-HSCT is at least theoretically the easiest setting for allogeneic donor 

CAR T cells. Unmanipulated donor lymphocyte infusion (DLI) is commonly used to treat patients with 

disease recurrence after allo-HSCT (157-159) though the risks of GVHD and lack of disease response 

remain an issue. The use of engineered donor-derived T cells to enhance graft-versus-leukemia effects 

and to limit the risk of GVHD is fascinating.  

Most trials evaluated donor-derived CAR T cells against the B-cell antigen CD19 as target 

antigen. T cells were harvested from donors (160-163) or from engrafted recipients after allo-HSCT. In 

the latter case, all studies reported low rate of GVHD as CAR T cells were generated from tolerized 

cells (14, 27, 151, 164, 165). Life-threatening viral infections with pathogens such as Epstein-Barr virus, 
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cytomegalovirus, and adenoviruses after alloHSCT can be treated without toxicity (including GVHD) 

by infusing ex vivo–expanded, donor-derived, virus-specific cytotoxic T cells (VST) (166-169), which 

are also capable of persisting several years after infusion (170). Donor-derived VST genetically 

modified to express a CD19-specific CAR (CD19.CAR-VST) have therefore been investigated in 

patients with B-cell malignancies who have either disease relapse or are at high risk of disease relapse 

after alloHSCT with the hypothesis that CAR-VSTs would be activated by endogenous viral antigens, 

increasing their expansion and persistence irrespective of the presence of CD19-expressing normal or 

malignant B cells. Eight patients received CD19.CAR-VST 3 months to 13 years after alloHSCT. There 

were no infusion-related toxicities. Objective antitumor activity was evident in 2 of 6 patients with 

relapsed disease during the period of CD19.CAR-VST persistence, whereas 2 patients who received 

cells while in remission remain disease free. Of note, in 2 of 3 patients with viral reactivation, donor 

CD19.CAR-VSTs expanded concomitantly with VSTs (160). Twenty patients with hematological 

malignancy that persisted after alloHSCT and standard DLI received infusion of T cells, obtained from 

each patient’s alloHSCT donor, genetically modified to express a CAR targeting CD19. Eight of 20 

responded (6 CR and 2 PR). The response rate was highest for ALL, with 4/5 patients obtaining MRD-

negative remission. Responses also occurred in CLL and NHL. The longest ongoing CR was more than 

30 months in a patient with CLL. No new-onset acute GVHD after CAR-T infusion developed. 

Toxicities included fever, tachycardia, and hypotension. Peak blood CAR-T levels were higher in 

patients who obtained remissions than in those who did not (162, 171). 

 

6.2. Off-the-shelf allogeneic CAR T cells 

 

As stated above, the promising clinical results of engineered T cell therapy could be further 

amplified and broadened if potent and histocompatible T cells were readily available, instead of being 

collected and manufactured on demand. T cells can be easily harvested from healthy donor, but their 

use is compromised by the high allo-reactive potential. TCR are naturally prone to react against non-

autologous tissues, recognizing either allogeneic HLA molecules or other polymorphic gene products 

(minor antigens) (172). Recent advances in gene editing technology allow the manufacture of CAR-T 

cells from healthy donor leukapheresis where quantity and quality of T cells can be pre-selected. 

However, the use of these CAR T cells requires gene editing technology to prevent expression of 

endogenous TCR in order to minimize the potential to cause GVHD in non-HLA matched recipients. 

TCR is a heterodimer and both α and β chains need to be present for it to be expressed. A single gene 

codes for the α chain (TRAC), whereas there are 2 genes coding for the β chain, and TRAC loci knocked 

out using nucleases is the choice strategy for removing TCR expression. Initially, procedures in two 

steps were used: the CAR was introduced with a viral vector and the TRAC loci disrupted using a 

nuclease. Zinc finger nucleases (ZFN) (173), transcription activator-like effector nucleases (TALEN) 

and megaTAL nucleases (174-176), and CRISPR/Cas9 systems (177) have all been applied to modify 
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T cells (178-180). As previously mentioned, Qasim et al. reported the clinical use of UCART19s, 

generated by lentiviral transduction of donor cells and simultaneous TALEN-mediated gene editing of 

TRAC and CD52 gene loci (29). More recently, a one step only procedure was introduced: the CAR-

encoding DNA was directly inserted into the TRAC locus using CRISPR/Cas9 technology together with 

an adeno-associated virus (AAV) vector repair matrix, simultaneously generating a TCR-negative CAR-

positive T cell (181). These cells were shown to be more potent than conventional lentivirally transduced 

CAR T cells because of a more physiological, TCR-like regulation of CAR expression. Although TCR-

negative off-the-shelf CAR T cells are able to reduce the risk of GVHD, they may still be subjected to 

killing by the patient’s own T cells that recognize non-self HLA if there is mismatch, causing rejection 

and subsequently leading to short-lasting responses. To solve this issue, it has been proposed to eliminate 

the HLA molecules from CAR T cells using gene-editing technologies like ZFN (182). 

Another way to protect allogeneic CAR T cells from rejection included the knockout of the β2-

microglobulin gene combined with TCR knockout. In the absence of β2-microglobulin (β chain), class 

I HLA molecules do not form stable heterodimer on the cell surface (183). However, while the absence 

of HLA-I on the surface of CAR T cells significantly reduces rejection through HLA-mismatched CD8 

T cells (class-I restricted), it can result in increased destruction by recipients' NK cells, due to “missing 

self” recognition.  To prevent activation of recipient's NK cells through this mechanism, different way 

have been tested, such as the enforced expression of non-classical HLA molecules (e.g. HLA-E and 

HLA-G) (182, 184), and the overexpression of Siglec-7 and -9 ligands (185). Furthermore, the use of 

HLA homozygous donors to generate a bank of universal CAR T products may represent an additional 

strategy to avoid rejection. It was calculated that with limited numbers of donors homozygous for HLA-

A/B/DRB1, it would be possible to generate compatible products to cover the majority of the population 

(186).  

 

6.3. Alternative off-the-shelf CAR carriers 

 

Additional immune cells are on studies as potential off-the-shelf CAR carriers, although the 

safety, efficacy and persistence in the clinical setting require more investigations. Natural killer (NK) 

cells belong to the lymphoid branch of the immune system and account for up to 6% of circulating 

lymphocytes. NK cells do not express rearranged receptors and can be easily transferred across HLA 

barriers without causing GVHD, thus they became attractive as allogeneic effector cells (187, 188). At 

least three different sources of NK cells are currently available: NK cell line (189), peripheral blood NK 

cells (189), and  induced pluripotent stem cells (iPSC) NK cells (190). In clinical studies of post-

alloHSCT, NK cell infusion demonstrated the safety of using such an approach in an off-the-shelf fashion 

(191). CAR expression in NK cells could increase their specificity and enhanced their anti-tumor 

activity. NK cells have been utilized to evaluate several different antigens as CAR target. In pre-clinical 
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studies, potent antitumor activity has been demonstrated using CAR NK cells generated from NK cell 

lines as well as NK cells derived from patients (192).  

Gammadelta T cells (γδ T cells) are less prone to alloreactivity compare to other T cells. 

Immunotherapy with γδ T cells requires their activation and expansion as they represent only a small 

amount of circulating T cells. Aminobisphosphonates are the most efficient reagents to grow γδ T cells 

ex vivo. Afterward, the same technique have been transitioned to the clinic for investigational treatments 

of cancer and HIV (193, 194).  In the alloHSCT setting γδ T cells exert anti-tumor activities and 

contribute to host defense against different pathogens, whereas their role in GVHD management remains 

unclear (195, 196). For this reason, γδ T cells have been evaluated in the setting of  T cell-depleted 

alloHSCT  (195, 196). Given their inherent potential for antitumor effects and their apparent lack of 

alloreactivity the combination of  γδ T cells with CAR is appealing (197-199), however, although initial 

clinical trial with CAR γδ T cells are ongoing, far more data are needed to assess if preclinical findings 

translate into powerfull and pesistent anti-tumor activity with acceptable toxicity.  

NKT cells constitute a relatively uncommon circulating immune cell population (0.1-0.5% of T 

cells) that co-expresses αβTCR and NK cell markers. In mice models, was found an inverse correlation 

of recovery of NKT cells and GVHD after alloHSCT while preserving a graft-versus-tumor response 

(200). NKT cells can also be expanded in vitro and can be genetically modified to express CAR (201, 

202). Thanks to limited TCR alloreactivity and emerging technology to obtain large numbers, NKT cells 

represent another attractive source to generate off-the-shelf CAR+ immune cells. 

 

7. Conclusion and Perspectives 

 

The ultimate goal of adoptive cell therapies is to create a personalized cellular product directed 

against the malignancy with minimal side effects. CAR-engineered T cells represent an important 

breakthrough in personalized medicine. Future directions to improve efficacy and safety include 

potential combinations with immunomodulatory drugs, checkpoint inhibitors, or other CAR T cells 

engineered to contain suicide genes or switches (i.e. iCasp9) which are currently being evaluated in 

preclinical and clinical studies. In summary, CAR T cells represent a personalized immunotherapeutic 

approach that has developed very rapidly in recent years. Great successes have been observed in 

lymphoproliferative disorders. However, further optimization of this promising cell therapies is still 

needed to enhance anti-tumor effects and reduce associated toxicities. As of November 2018, more than 

100 clinical trials are currently recruiting. Moreover, advances in the field of CAR T cell biology over 

the coming years in terms of safety, reliability and efficacy against non-hematopoietic cancers will 

ultimately determine the role of adoptive T cell therapy in the fight against cancer.  
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Figure legend 

Figure 1. Schematic structure of chimeric antigen receptor (CAR). First generation CAR contains 

the single chain variable region (scFv) derived from a monoclonal antibody, the T cell receptor 

transmembrane domain, and an intracellular signaling domain of CD3 zeta chain. Second generation 

CAR contains a single co-stimulatory domain (CD28 or 4-1BB), whereas the third generation CAR 

contains two or more co-stimulatory domains (e.g. CD28 and 4-1BB). The fourth generation CAR is 

modified to express a molecule enhancing T cell function (e.g. cytokines or immunomodulatory 

molecules) or a controllable on-off switch (armored CAR). 
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Table 1. Anti-CD19 CAR T constructs. 

 Tisagenlecleucel 

(CTL019, 

Kymriah®) 

Axicabtagene 

Ciloleucel  

(KTE-C19, 

Yescarta®) 

Lisocabtagene  

Maraleucel 

(JCAR017) 

UCART19 

Construct Extracellular: anti-

CD19 scFv 

Hinge: CD8 

Transmembrane 

domain: CD8 

Activation domain: 

CD3ζ 

Costimulatory 

domain: 4-1BB 

Extracellular: anti-

CD19 scFv 

Hinge: CD28 

Transmembrane 

domain: CD28 

Activation domain: 

CD3ζ 

Costimulatory 

domain: CD28 

Extracellular: anti-

CD19 scFv 

Hinge: IgG4 

Transmembrane 

domain: CD28 

Activation domain: 

CD3ζ 

Costimulatory 

domain: 4-1BB 

Extracellular: anti-

CD19 scFv 

Activation domain: 

CD3ζ 

Costimulatory 

domain: 4-1BB 

Modified to lack 

CD52 expression 

and the endogenous 

TRAC locus, and to 

include a RQR8 

“safety switch”  

N.B. expressed on 

healthy donor cells 
Current 

status 

Approved 

(US/Europe):  

- refractory B-cell 

precursor ALL in 

second relapse or 

beyond (≤ 25 years) 

- large B-cell 

lymphoma R/R to 

≥2 lines of therapy 

(adults)  

Approved 

(US/Europe): 

- large B-cell 

lymphoma R/R to 

≥2 lines of therapy 

(adults) *  

 

 

Under development Under development 

Main 

clinical 

references 

- Phase II, R/R B-

cell ALL 

(pediatric/young 

adults). ORR 81%, 

CR 60%, CRi 21% 

(15). 

- Phase II, R/R 

DLBCL and FL. 3-

month ORR 64%, 

6-month CR 57% 

(16). 

- Multicenter phase 

II, R/R DLBCL 

(JULIET). ORR 

53%, CR 39%, CRi 

14% (17). 

- Phase I, R/R CLL. 

ORR 57%, CR29% 

(18). 

- Phase II, R/R 

DLBCL, PMBCL, 

and transformed FL 

(ZUMA-1). ORR 

82%, CR 54% (23). 

- Phase I/II , R/R 

B-precursor ALL 

(ZUMA-3). ORR 

82%, CR or CRi 

73% (24). 

- Phase I, R/R B 

cell lymphomas 

(TRANSCEND-

001). DLBCL 

cohort 3-month 

ORR 49%, 3-month 

CR 40% (28).   

- Phase I, high risk 

R/R B-cell ALL 

(pediatric). CR/CRi 

5/5 (30).  

* including in US DLBCL not otherwise specified, PMBCL, high grade B-cell lymphoma, and DLBCL 

arising from FL, in whereas in Europe only DLBCL and PMBCL. 

Abbreviations: 

ALL: acute lymphoblastic leukemia; CLL: chronic lymphocytic leukemia; CR: complete response; CRi: CR with incomplete 

hematologic recovery; DLBCL: diffuse large B-cell lymphoma; FL: follicular lymphoma; ORR: overall response rate; 

PMBCL: primary mediastinal B-cell lymphoma; PR: partial response; R/R: relapsed or refractory. 
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Table 2. Alternative targets for CAR T cells. 

Target Construct details Patient population Results  Location NCT identifier Reference 

CD20 
CD28/4-1BB/CD3ζ, 

plasmid electroporation  

R/R CD20+ indolent 

B-cell NHL or MCL 

9 patients treated (8 FL and 

1 MCL): 2 NED, 1 PR, 6 

SD (2 PR) 

Fred Hutchinson Cancer Research 

Center, Seattle, USA 
NCT00012207 (33) 

CD20 
CD28/4-1BB/CD3ζ, 

plasmid electroporation  

R/R CD20+ indolent 

B-cell NHL or MCL 

4 patients treated (3 MCL 

and 1 FL): 1 PR, 2 SD (CR) 

Fred Hutchinson Cancer Research 

Center, Seattle, USA 
NCT00621452 (34) 

CD22 
4-1BB/CD3ζ, lentiviral 

vector 
R/R B-cell ALL 

21 patients treated: 12 CR; 

median DOR 6 months 

National Institutes of Health, 

Bethesda, USA 
NCT02315612 (35) 

k light chain 
CD28/CD3ζ, retroviral 

vector 

R/R NHL/CLL or 

MM 

16 patients: 2/9 CR and 1/9 

PR in NHL/CLL; 4/7 SD in 

MM 

Baylor College of Medicine, 

Houston Methodist Hospital and 

Texas Children’s Hospital, 

Houston, USA 

NCT00881920 (36) 

BCMA 
CD28/CD3ζ, retroviral 

vector 
R/R MM 

16 patients: 81% ORR, 63% 

VGPR or CR 

National Institutes of Health, 

Bethesda, USA 
NCT02215967 (49) 

BCMA 
4-1BB/CD3ζ, lentiviral 

vector 
Refractory MM 

21 treated patients: 13/20 

ORR (8/20 PR or better) 
University of Pennsylvania, USA NCT02546167 (50) 

BCMA 
4-1BB/CD3ζ, lentiviral 

vector 
R/R MM 

21 patients treated (18 

evaluable for response): 

ORR 89% 

National Institutes of Health 

Clinical Center, Bethesda, MD 
NCT02658929 (51) 

CD30 
4-1BB/CD3ζ, lentiviral 

vector 
R/R HL 

18 patients treated: 7 PR 

and 6 SD 

Chinese PLA General Hospital, 

Beijing, China 
NCT02259556 (64) 

CD30 
CD28/CD3ζ, retroviral 

vector 
R/R HL or ALCL 

7 patients treated with HL: 2 

CR and 3 transient SD;  

2 patients treated with 

ALCL: 1 CR 

Baylor College of Medicine, 

Houston, Texas, USA. 
NCT01316146 (65) 

CD123 
 CD28-CD3ζ, lentiviral 

vector 
R/R AML, BPDCN 

7 patient treated: 3 CR, 1 

MLFS, 2 PR, 1 PD 
City of Hope, Duarte, USA NCT02159495  (86) 

CD123 
TCR/4-1BB, electroporated 

RNA 
R/R AML 

5 patients treated: no 

response 
University of Pennsylvania, USA NCT02623582 (70) 

CD123 

CD28/CD137/CD27/CD3fi

Casp9  

(4th generation) 

R/R AML 1 patient treated: PR 
The First Affiliated Hospital of 

Zhejiang University, China 
NCT03125577 (85) 
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CD33 4-1BB-CD3ζ R/R AML 
1 patient treated: short 

lasting PR 
PLA Hospital, Beijing, China NCT01864902 (84) 

LeY CD28-CD3ζ R/R AML 
4 patients treated: short 

lasting PR/SD 

Peter MacCallum Cancer 

Centre, Melbourne, Australia 
NCT01716364 (82) 

NKG2D CD3ζ plus DAP10 signal 
R/R AML, MDS, 

MM 

6 R/R AML or MDS  

treated: no response 

Dana-Farber Cancer Institute, 

Boston, USA 
NCT02203825 (56) 

NKG2D CD3ζ plus DAP10 signal 
R/R AML, MM, 

epitelial cancers 
1 AML treated: CR 

Multiple sites in Belgium and 

USA  
NCT 03018405 (90) 

CLL1-CD33 NA R/R AML or MDS 1 AML treated: CR 
The General Hospital of Western 

Theater Command, China 
NCT03795779 (91) 

CEA 
CD28-CD3ζ (intra-arterial 

administration) 

Colorectal 

carcinoma 
6 patients treated: 1 SD  

Roger Williams Medical Center, 

Providence, USA 
NCT00673322 (108) 

CEA CD28-CD3ζ  
Colorectal 

carcinoma 
10 patients treated: 7 SD 

Southwest Hospital, Third 

Military Medical University, 

China 

 NCT03267173 (137) 

CEA CD3ζ  
CEA positve 

malignancies 
No response 

The Christie NHS Foundation 

Trust, Manchester, UK 
NCT01212887 (101) 

HER-2 CD28-CD3ζ  Sarcomas 

17 patients treated: 4 SD. 

After lymphodepletion,6 

patients treated: 1 CR 

Baylor College of Medicine, 

Houston, USA 
NCT00902044 (134, 135) 

HER-2  4-1BB-CD28-CD3ζ 
Colorectal 

carcinoma 
Fatal CRS in 1 patient 

National Cancer Institute, 

Bethesda, USA 
NA (99) 

HER-2 
CD28-CD3ζ plus IL-4 

chimeric receptor 
HNSCC 

13 patients treated: disease 

control in 9 

Guy's and St Thomas' Hospitals, 

London, UK 
NCT01818323 (140) 

HER-2 CD28-CD3ζ  Glioblastoma 
17 patients treated: 1 PR, 7 

SD 

Baylor College of Medicine, 

Houston, USA 
NCT01109095 (143) 

CAIX NA 
Renal cell 

carcinoma 
No response 

Erasmus University Medical 

Center, The Netherlands 
NA (100) 

Mesothelin 
 4-1BB-CD3ζ, 

electroporated RNA 
Pancreatic cancer 6 patients treated: 2 SD University of Pennsylvania, USA NCT03323944 (105) 

GD-2  CD28-CD3ζ-OX40 Neuroblastoma 11 patients treated: 3 CR 
Baylor College of Medicine, 

Huston, USA 
NCT00085930 (136) 

GPC3 NA 
Hepatocellular 

carcinoma 

13 patients treated: 1 PR, 3 

SD 

Shanghai Jiaotong University, 

China 
NCT02395250 (138) 
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CD133 CD137-CD3ζ 
Epithelial 

malignacies 

23 treated patients: 3 PR, 14 

SD 

PLA General Hospital, Beijing, 

China. 
NCT02541370 (139) 

EGFRvII  4-1BB-CD3ζ Glioblastoma 
10 patients treated: 1 

persistent SD 
University of Pennsylvania, USA NCT02209376 (142) 

IL-13Rα2 
 4-1BB-CD3ζ  (intra-

cranial admnistration) 
Glioblastoma 

Of the first 3 patients 

treated: 2 PR, then 1 CR 

reported  

City of Hope, Duarte, USA 
NCT00730613/

NCT02208362 
(147, 148) 

 

Abbreviations: 

CLL: chronic lymphocytic leukemia; MM: multiple myeloma; HL: Hodgkin lymphoma; ALCL: anaplastic large cell lymphoma; ALL: acute lymphoblastic leukemia; AML: acute myeloid 

leukemia; BPDCN: blastic plasmacytoid dendritic cell neoplasm; CR: complete response; CRS: cytokine release syndrome; DOR: duration of response; FL: follicular lymphoma; HL; Hodgkin 

lymphoma; HNSCC: head and neck squamous-cell carcinoma; MCL mantle cell lymphoma; MDS: myelodysplastic syndromes; MM: multiple myeloma; MLFS: morphologic leukemia free 

status; NED: no evidence of disease progression; NHL: non Hodgkin lymphoma; PD: progressive disease; R/R: relapsed or refractory PR: partial response; SD: stable disease; VGPR: very good 

partial response. 

 

 


