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ABSTRACT

In this paper, we study factor-based subordinated Lévy processes in their variance
gamma (VG) and normal inverse Gaussian (NIG) specifications, and focus on their
ability to price multivariate exotic derivatives. Both model specifications, calibrated
to a data set of multivariate barrier reverse convertibles listed at the Swiss market,
demonstrate good ability in capturing smile patterns and recovering empirical corre-
lations. We show how the range of correlations spanned by each model is linked to
the process marginal distributions. Our analysis finds that a trade-off exists between
marginal and correlation fit. A sensitivity analysis is performed, showing how a prod-
uct’s characteristics and a model’s features affect multibarrier reverse convertibles
prices. Market and model prices are analyzed, and discrepancies are highlighted and
explained.
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1 INTRODUCTION

Multi-asset derivative pricing is still an active field of research in financial modeling,
calling for multivariate stochastic models that reproduce well-known stylized facts
such as skewness and excess kurtosis of marginal return distributions. In this paper,
we focus on a class of multivariate subordinated Lévy processes, namely, the �˛mod-
els introduced by Luciano and Semeraro (2010). Among non-Gaussian multivariate
processes, Lévy models are appealing in that they preserve analytical tractability.

An interesting testing ground for multivariate models is represented by the barrier
reverse convertible on multiple assets, one of the most successful instruments on the
Swiss market for structured financial products. The product consists specifically of
a long position on a coupon bond and a short position on a worst-of down-and-in
European put option. The worst-of feature requires a pricing model that can capture
downside risk and the correlation between assets.

A study on a large data set of multibarrier reverse convertibles (MBRCs) has been
conducted by Wallmeier and Diethelm (2012). They considered two multivariate Lévy
processes with variance gamma (VG) marginal specifications: the model introduced
by Leoni and Schoutens (2008) and the ˛VG model created by Semeraro (2008).
Both models were shown to be able to capture option smile patterns, but they exhibit
limitations in their ability to match empirically observed correlations. The �˛ models
extend the˛VG model by considering different marginal specifications and improving
the correlation flexibility. In particular, two marginal specifications are considered
in this work: VG and normal inverse Gaussian (NIG), which, being closed under
convolution, allow for straightforward pricing simulation procedures.

The purpose of this paper is twofold. First, we investigate marginal distributions
and correlation structure in the �˛ models. This analytical study shows how the range
of the correlation spanned by the model is linked to the process marginal distributions.
By calibrating the model, we empirically confirm a trade-off between marginal and
correlation fit, as observed in Guillaume (2012) and Luciano et al (2016). In particular,
a joint calibration of the marginal distributions and the correlation structure may be
required to obtain an accurate overall fit.

Second, we examine the pricing performance of �˛ models with regard to barrier
reverse convertibles, one of the most popular segments of the Swiss market. A sensi-
tivity analysis quantifies the impact of model parameters on prices and allows us to
assess the relative importance of the dependence structure and the marginal processes,
given the characteristics in terms of barrier and maturity of contract. Accordingly, the
joint calibration procedure can then be fine-tuned to the specific contract’s features.
Market and model prices are analyzed, and any discrepancies are highlighted and
explained.
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The structure of this paper is as follows. In Section 2, we describe the structure and
characteristics of a typical (multi)barrier reverse convertible as well as the pricing
model. Sections 3 and 4 present the theoretical multivariate model and its specifica-
tions in terms of the VG and NIG subclasses. The data set is described in Section 5.
Section 6 is devoted to model calibration. Section 7 presents a sensitivity analysis,
while Section 8 shows the empirical results. Section 9 concludes.

2 MULTIBARRIER REVERSE CONVERTIBLE: MARKET AND
FEATURES

The Swiss market for structured financial products is one of the largest in the world,
providing us with the opportunity to study complex financial products. Very popular
structured products on the Swiss market are MBRCs. Each day, about 4000 MBRCs
are listed on the SIX Swiss Exchange, the principal Swiss stock exchange. Among
the main issuers are Bank Julius Bär, Bank Vontobel, Banque Cantonale Vaudoise,
Credit Suisse, Leonteq Securities, Notenstein La Roche Privatbank, Union Bank of
Switzerland (UBS) and Zürcher Kantonalbank.

MBRCs are yield-enhancing products. The investor gives up the capital protection
in exchange for high coupons. More specifically, MBRCs offer the investor a high
coupon rate during their lifetime, while, according to the price evolution of a basket
of underlying assets, we may see different scenarios at maturity. If none of the prices
of the underlying assets has hit a downside barrier, or if all the final prices are above
their initial fixed levels, the investor will receive 100% of the principal. Otherwise,
the investor will receive a given number of shares from the worst-performing stock.
The conversion ratio is calculated such that the product of the initial fixing level of
any underlying and the conversion ratio is equal to 100. The payoff is illustrated in
Figure 1.

Let S D fS .t/; t > 0g be a price process with n components. Suppose that
Sj .0/ D S.0/ D 100 for all j D 1; : : : ; n (this assumption is consistent with the
conversion feature explained above), and that B D .B1; B2; : : : ; Bn/ is a vector of
barrier levels. Define Sj .T / D inffSj .t/; 0 6 t 6 T g and let A be the event that
none of the barriers have been broken, that is,

A D

n\
jD1

fSj .T / > Bj g:

Then, the payoff at maturity T can be written in compact form as

100 � 100

�
1 �min

j

�
Sj .T /

S.0/

��C
1fAcg; (2.1)
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FIGURE 1 MBRC payoff at maturity.
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has not been triggered.

where Ac is the complement of A. From (2.1), it is easy to see that the product can be
represented as a portfolio consisting of a long position in a bond and a short position
in a worst-of European put with down-and-in feature.

3 FACTOR-BASED SUBORDINATED BROWNIAN MOTIONS

This section recalls the �˛ models introduced in Luciano and Semeraro (2010). Their
specifications with the VG and NIG marginal processes are summarized in the online
appendix.

The �˛ models are factor-based subordinated Brownian motions constructed as
the sum of two independent subordinated Brownian motions. The first has indepen-
dent components, while the second is a Brownian motion with correlated marginal
processes that are subordinated by a common subordinator.

Formally, let B be an n-dimensional Brownian motion with independent compo-
nents and a Lévy triplet .�; ˙; 0/:

˙ D diag.�21 ; : : : ; �
2
n / WD

0
B@�

2
1 0 � � � 0

0 �22 � � � 0

0 0 � � � �2n

1
CA ; � D .�1; : : : ; �n/:
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Let B� be a correlated n-dimensional Brownian motion, with correlations �ij ,
marginal drifts �� D .�1˛1; : : : ; �n˛n/ and diffusion matrix

˙� WD

0
BBBB@

�21˛1 �12�1�2
p
˛1
p
˛2 � � � �1n�1�n

p
˛1
p
˛n

�12�1�2
p
˛1
p
˛2 �22˛2 � � � �2n�2�n

p
˛2
p
˛n

:::
:::

: : :
:::

�1n�1�n
p
˛1
p
˛n �2n�2�n

p
˛2
p
˛n � � � �2n˛n

1
CCCCA :

(3.1)
The R

n-valued subordinated process Y D fY .t/; t > 0g, defined by

Y .t/ D

0
B@B1.X1.t//C B

�
1 .Z.t//

: : :

Bn.Xn.t//C B
�
n.Z.t//

1
CA ; (3.2)

is a factor-based subordinated Brownian motion, also indicated as the �˛ model. We
assume that Xj and Z are independent subordinators, which are also independent of
B and B�.

Obviously, whenever all the parameters �ij collapse to 0 across the different com-
ponents (that is, �ij D 0 for i ¤ j , and �ij D 1 for i D j ), we have a version of the
model in which the Brownian motions are independent. This version was introduced
in Semeraro (2008) and is named the ˛ model.

Luciano and Semeraro (2010, Theorem 5.1) proved that each marginal return j
is a Brownian motion with parameters �j and �j subordinated by the j th marginal
process Gj .t/ of a factor-based subordinator G .t/. A multidimensional factor-based
subordinator fG .t/; t > 0g is defined as follows:

G .t/ D .X1.t/C ˛1Z.t/; : : : ; Xn.t/C ˛nZ.t//; j̨ > 0; j D 1; : : : ; n;

where X.t/ D f.X1.t/; : : : ; Xn.t//; t > 0g and fZ.t/; t > 0g are independent
subordinators with zero drift, andX.t/ has independent components. They represent
both the idiosyncratic and common factors of trading activity. Indeed, the following
equality in law holds:

L.Yj .t// D L.�jGj .t/C �jW.Gj .t///:

The marginal laws of Y .t/ are, therefore, one-dimensional subordinated Brownian
motions. Correlations in the �˛ models are given by

�Y .i; j / D
Cov.B�i ; B

�
j /E.Z/CE.B

�
i /E.B

�
j /V .Z/p

V.Yi /V .Yj /

D
�ij�i�j

p
˛i
p

j̨E.Z/C �i�j˛i j̨V.Z/p
V.Yi /V .Yj /

:
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The following equation shows that correlation in these models is higher than in the ˛
models, ie, the submodels with independent Brownian motions:

�Y .i; j / D
�ij�i�j

p
˛i
p

j̨E.Z/p
V.Yi /V .Yj /

C �Y˛ .i; j /;

where �Y˛ .i; j / are the correlations of the ˛ models. They are independent of time
and increasing in ˛i ; j̨ . In particular, if ˛M D maxj2fi;:::;ngf j̨ g, it holds that

�Y .i; j / 6
˛M�i�jE.Z/C ˛

2
M�i�jV.Z/p

V.Yi /V .Yj /
:

This is true in general. However, the convolution conditions required to recover
VG and NIG marginal distributions link the weight parameters j̨ with the common
subordinator parameters, thus changing the role of j̨ . Section 4 discusses the role of

j̨ for each of the two model specifications with VG and NIG marginal distributions
(both of which are introduced in the online appendix).

4 CORRELATION STRUCTURE

In this section, we discuss the correlation structures of the VG and NIG marginal
specifications. These are obtained using subordinators with different distributions, as
is recalled in the online appendix.

4.1 Variance gamma marginal distributions

We now discuss the correlation structure of the VG specification, �˛VG.�;˛; � ;
a;�/. Linear correlations are

�Y .i; j / D
.�i˛i�j j̨ C �ij�i

p
˛i�j
p

j̨ /q
.�2i C �

2
i ˛i /.�

2
j C �

2
j j̨ /

a:

They are increasing in a, which satisfies the constraint

0 < a < min
j

�
1

j̨

�
:

This, depending on ˛M D maxj2f1;:::;ngf j̨ g, provides a bound for admissible corre-
lations, as shown below:

�Y .i; j / <
�i�j˛i j̨ C �ij�i�j

p
˛i
p

j̨q
.�2i C �

2
i ˛i /.�

2
j C �

2
j j̨ /

1

˛M
:

Journal of Computational Finance www.risk.net/journals



Pricing multivariate barrier reverse convertibles 103

Remark 4.1 Suppose j̨ D ˛ for all j (as discussed in Leoni and Schoutens
(2008)). The inequality in (4.1) becomes

�Y .i; j / <
�i�j˛ C �ij�i�jq

.�2i C �
2
i ˛/.�

2
j C �

2
j ˛/

:

It can be shown that the upper bound for �Y .i; j / depends on ˛ and, in particular, it
is increasing in ˛ if

˛ >
�i�j .�ij�

2
i �
2
j � 2�i�j�i�j C �ij�

2
j �

2
i /

�3i �j�
2
j � 2�ij�

2
i �

2
j �i�j C �i�

3
j �

2
i

;

and decreasing otherwise.

The parameter j̨ is linked with kurtosis kYj of process Yj and kurtosis kGj of
subordinator Gj . Further, the latter is dominated by the former, being

kYj D 3.1C 2 j̨ � j̨�
4
j .�

2
j C j̨�

2
j /
�2/ < 3.1C 2 j̨ / D kGj :

As a consequence, the asset with the highest j̨ drives the maximum correlation
achievable. This implies a trade-off between the fit of marginal kurtosis and the range
of model-admissible correlations.

If we consider the symmetric case by setting �i D �j D 0, we obtain

�Y .i; j / < �ij

r
˛i

˛M

r
j̨

˛M
:

We note that, in this case, the bound does not depend on the kurtosis level, but rather
on the range spanned by the kurtosis coefficients of different marginal distributions.
More generally, we conclude that the upper bound for the correlation coefficients
depends crucially not only on the maximum kurtosis level, but also on the kurtosis
range.

The VG process has a gamma subordinator G.t/ that satisfies the assumption
EŒG.t/� D t ; this lets stochastic time pass like real time in mean. We preserve
this assumption for each marginal subordinator in the construction above. By doing
so, we impose a constraint on the subordinator parameters. Since the VG process is
the only process to have this restriction, we now remove this assumption to see if the
trade-off between marginal kurtosis and correlation still remains.

Let j̨ ; �j 2 R
C and let a be such that 0 < a < �j . Let L.Xj / D � .�j �a; 1= j̨ /

and L.Z/ D � .a; 1/, and assume that Xj , j D 1; : : : ; n, and Z are independent
random variables. Then, the random vectorW , defined as

W D .W1; W2; : : : ; Wn/
T D .X1 C ˛1Z;X2 C ˛2Z; : : : ; Xn C ˛nZ/

T;
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satisfies L.Wj / D � .�j ; 1= j̨ /, j D 1; : : : ; n. Further, the Lévy process G D
fG .t/; t > 0g associated with the distribution ofW ,

L.Gj .t// D �

�
�j t;

1

j̨

�
; j D 1; : : : ; n;

is a multivariate subordinator with marginal gamma distributions. Since the kurtosis
of Gj is equal to 3.1C 2��1j /, parameter �j drives the subordinator’s kurtosis. With
this specification of G , the process Y is of VG type, with marginal processes of VG
type and four parameters .�j ; �j ; j̨ ; �j /.

Return correlations become

�Y .i; j / D
�ij�i�j

p
˛i
p

j̨ C �i�j˛i j̨q
�2j �j j̨ C �

2
j ˛

2
j �j

q
�2i �i˛i C �

2
i ˛
2
i �i

a:

In this case, the convolution condition implies that the bound for a is given by a < �m,
where �m D minj2f1;:::;ngf�j g. The following inequality holds:

�Y .i; j / <
�ij�i�j

p
˛i
p

j̨ C �i�j˛i j̨q
�2j �j j̨ C �

2
j ˛

2
j �j

q
�2i �i˛i C �

2
i ˛
2
i �i

�m

6
�ij�i�j

p
˛i
p

j̨ C �i�j˛i j̨q
�2j j̨ C �

2
j ˛

2
j

q
�2i ˛i C �

2
i ˛
2
i

�m

�
ij
m

;

where �ijm D minf�i ; �j g. With these assumptions, the correlation bound depends on
the new parameters �j . The parameters �j play a role similar to that of 1= j̨ in the
traditional VG specification. In fact, they are linked with the marginal kurtosis of the
subordinator and the processes Yj , since

3.1C 2��1j � �
�1
j �4j . j̨�

2
j C �

2
j /
�2/ 6 3.1C 2��1j / D kGj :

Therefore, one asset displaying much higher marginal kurtosis than other assets in the
same portfolio implies that �m � �

ij
m. This highlights a trade-off between marginal

kurtosis and model correlation. To have high marginal kurtosis, the idiosyncratic
component must have low �j ; however, the correlation parameter a is bounded by
the minimum �j . Thus, it emerges that the trade-off depends on the convolution
condition that provides a bound for the common parameter a. This bound depends
on the marginal kurtosis parameters and not on the common component weights j̨ .
Since the trade-off between marginals and correlation still remains, we decide to use
the traditional VG in our application.
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4.2 Normal inverse Gaussian marginal distributions

The linear correlations in the �˛NIG specification, �˛NIG.�;ˇ; ı; a;�/, are

�Y .i; j / D
ˇi .ı

2
i =�

2
i / ǰ .ı

2
j =�

2
j /C �ij .ıi=�i /.ıj =�j /q

.	2i ıi .	
2
i � ˇ

2
i /
�3=2/.	2j ıj .	

2
j � ˇ

2
j /
�3=2/

a;

where �j D ıj
q
	2j � ˇ

2
j . They are increasing in a and must satisfy the constraint

0 < a < min
j
�j :

Thus,

�Y .i; j / <
.ˇi .ı

2
i =�

2
i / ǰ .ı

2
j =�

2
j /C �ij .ıi=�i /.ıj =�j //q

.	2i ıi .	
2
i � ˇ

2
i /
�3=2/.	2j ıj .	

2
j � ˇ

2
j /
�3=2/

�m; (4.1)

where �m D minj �j .

Remark 4.2 Supposing �j D � for all j , (4.1) becomes

�Y .i; j / <
ˇi ǰ ı

2
i ı
2
j

	i	j
C
�ij ıiıj �

2

	i	j
;

that is, increasing in �.

Since ˇ2 6 	2 and 1=
p

j̨ D �j , the kurtosis of Yj .t/ is bounded by the kurtosis
of the subordinator Gj as follows:

kYj D 3

�
1C

	2j C 4ˇ
2
j

ıj 	
2
j

q
	2j � ˇ

2

�
6 3

�
1C

5

�j

�
D kGj :

As in the VG case, the asset with the highest �j drives the maximum correlation
achievable, implying a trade-off between the fit of the marginal kurtosis and the range
of admissible model correlations.

If we consider the symmetric case, by setting ıi D ıj D 0, we get

�Y .i; j / < �ij

s
�m

�i

s
�m

�j
:

As in the VG model, in this case, the bound does not depend on the kurtosis level,
but rather on the range spanned by the kurtosis coefficients of the different marginal
distributions.Again, we conclude that, also for the NIG specification, the upper bound
for the correlation coefficients crucially depends not only on the maximum kurtosis
level, but also on the kurtosis range.
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5 DATA

As Lindauer and Seiz (2008) pointed out, in the primary market we typically observe
significant overpricing, while in the secondary market overpricing tends to decrease
and/or disappear; in these markets, other factors seem to be decisive in the valuation
of the product. For this reason, in our work we use data coming from the secondary
market of MBRCs. From the list of the full 3298 MBRCs that traded on the SIX
Swiss Exchange on April 10, 2015, we consider only 1205 products whose underly-
ings are major Swiss stocks for which Eurex options are available. Implied volatility
quotes for Eurex stock options are collected from Bloomberg. The underlyings consid-
ered are ABB, Credit Suisse Group, Holcim, Nestlé, Novartis, Compagnie Financière
(CF) Richemont, Roche Holding, Swatch, Swisscom, SwissLife, SwissRE, Syngenta
and Zurich Financial Services. After that, we require the time to maturity to range
from 0.9 to 2.2 years, reducing the number of products to 536. For simplicity and
comparability with previous works, we exclude from our data set any MBRC prod-
uct with early redemption features; this leaves us with 119 products. The maturity
range has been divided into four maturity buckets (in years) MB1 WD Œ0:90; 1:06�,
MB2 WD Œ1:06; 1:43�, MB3 WD Œ1:43; 1:93� and MB4 WD Œ1:93; 2:20� for calibration
purposes, as discussed in the next section. Further, we drop another seven products,
due to the dearth of option quotes for all underlyings in the specific product’s maturity
bucket.1 The final data set consists of 112 MBRCs, with thirty-nine different underly-
ing baskets, and four different maturity buckets. The composition of the baskets and
their average historical correlations are presented in Table 1. In our data set, 25% of
the products belong to the first maturity bucket, 26% to the second, 46% to the third
and 3% to the final maturity bucket. The number of underlyings ranges from two to
four, with the majority of products linked to three underlyings. Product characteris-
tics are collected from their term sheets. All the MBRCs included in the data set are
without any collateral pledge. The issuers are Bank Julius Bär, J. Safra Sarasin, Bank
Vontobel, Banque Cantonale Vaudoise, Credit Suisse, Leonteq Securities, Notenstein
La Roche Privatbank, UBS and Zürcher Kantonalbank. Barriers range from 38.65%
to 84.56% of stock prices at issuance. The underlying price has crossed the barrier
for six out of 112 products before April 10, 2015. Coupon payments are annual or
semiannual. The annual coupon rate ranges from 3.00% to 11.30% of the nominal.
In Figure 2, we provide detailed data set information about the distance-to-barrier
(with respect to the initial barrier) and time-to-maturity distributions as well as the
spot prices and dividend yields. These spot prices and dividend yields are taken from
Bloomberg.

1 We require the availability of at least five quotes.
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TABLE 1 Composition of the baskets and their average sample correlations.

Average sample
Basket Asset 1 Asset 2 Asset 3 Asset 4 correlation

1 ABB CS RocheGS 0.54
2 ABB Nestlé RocheGS 0.57
3 ABB Nestlé Swatch 0.59
4 ABB RocheGS Swatch SwissRe 0.51
5 ABB RocheGS Swatch 0.54
6 ABB RocheGS Zurich 0.54
7 ABB Swatch Syngenta 0.61
8 CS Holcim RocheGS 0.55
9 CS Nestlé RocheGS 0.54

10 CS Nestlé Swatch 0.56
11 CS Novartis Richemont 0.57
12 CS Richemont RocheGS 0.54
13 CS Swisscom Syngenta 0.29
14 Holcim ABB Syngenta 0.60
15 Holcim Nestlé SwissRE ABB 0.56
16 Holcim Novartis RocheGS 0.61
17 Holcim Swisscom Swatch 0.34
18 Nestlé Novartis RocheGS 0.67
19 Nestlé Novartis Swisscom ABB 0.44
20 Nestlé Novartis Zurich RocheGS 0.65
21 Nestlé Richemont RocheGS 0.62
22 Nestlé Richemont Swatch 0.70
23 Nestlé Richemont SwissLife 0.61
24 Nestlé RocheGS Syngenta 0.57
25 Nestlé Swatch Syngenta 0.63
26 Nestlé SwissLife Swisscom Syngenta 0.41
27 Nestlé Zurich RocheGS 0.63
28 Novartis RocheGS 0.69
29 Richemont ABB Swatch 0.68
30 Richemont ABB Syngenta 0.62
31 RocheGS Swatch Zurich 0.54
32 Swisscom ABB Swatch 0.31
33 Swisscom Swatch Syngenta 0.30
34 Swisscom Swatch 0.14
35 SwissLife SwissRE Swisscom 0.36
36 SwissLife SwissRe Zurich Swatch 0.37
37 SwissRE ABB RocheGS 0.54
38 SwissRE ABB Syngenta Swatch 0.50
39 SwissRE RocheGS Swatch 0.48

0.53
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FIGURE 2 The (a) distance-to-barrier distribution, (b) initial time-to-maturity distribution
and (c) spot prices and dividend yields used.
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6 CALIBRATION

Define an n-dimensional price process, S D fS .t/; t > 0g, by

S .t/ D S .0/ exp.ct C Y .t//; c 2 R
n;

where c is the compensator and Y .t/ is one of the Lévy specifications introduced
above.

It is well known that the dependence structure is not necessarily the same under both
risk-neutral and historical probability measures; indeed, historical correlations are
imperfect proxies for risk-neutral ones, especially during market downturns. Ideally,
factor-based Lévy processes should be calibrated to the market prices of MBRCs.
However, since closed-form pricing formulas are unlikely to be available for multi-
asset exotic derivatives, this is not a feasible approach in practice. Further, other liquid
multivariate derivative quotes are not available for our baskets. Thus, we calibrate the
correlation structure to historical correlations, as in Luciano and Schoutens (2006)
and Leoni and Schoutens (2008).

The �˛ models allow for a two-step calibration. First, we fit marginal parameters
to the univariate volatility curves of relevant underlyings for each maturity bucket.
Second, we fit common parameters to the sample correlations of the underlying basket.
Although this procedure is very appealing, the bound on the common parameter a can
restrict the admissible correlation range for theVG and NIG specifications. Therefore,
in the spirit of Guillaume (2012), we introduce a joint calibration procedure for each
basket of underlyings to enhance the goodness-of-fit of the correlation structure.

6.1 Two-step calibration procedure

Marginal calibration is performed on Eurex settlement data, matching model and
market-implied volatilities for each maturity bucket. The total number of calibrations
for each model will be 39 baskets�4 maturity bucketsD 156. Since option quotes are
not available for all buckets and underlyings, we are left with thirty-nine calibrations
on maturity buckets one and two, twenty calibrations for maturity bucket three, and
eight calibrations only for bucket four. For each maturity bucket, we consider only out-
of-the-money option quotes with moneyness, defined as logS.0/=K, between �0:60
and 0.60, with a price greater than CHF 0.1. Following Hafner and Wallmeier (2001),
for any given underlying, we estimate a smile function for each maturity bucket by
cubic interpolation. This procedure allows us to fine-tune the model calibration to
the maturity dates of the MBRCs. Risk-free rates are linearly interpolated from the
overnight indexed swap (OIS) curve in the corresponding currency. We assume a
credit spread of 25 basis points (bps) for issuers whose credit spread is not available
in the product’s term sheet. Historical correlations, reported in Table 2, are computed
on daily log returns over the previous year.

www.risk.net/journals Journal of Computational Finance



110 M. Marena et al

TA
B

L
E

2
S

am
pl

e
co

rr
el

at
io

n
m

at
rix

of
da

ily
lo

g
re

tu
rn

s
on

un
de

rly
in

g
as

se
ts

fr
om

A
pr

il
10

,2
00

9
to

A
pr

il
10

,2
01

0.

A
B

B
C

S
H

o
lc

im
N

es
tl

é
N

ov
ar

ti
s

R
ic

h
em

o
n

t
R

o
ch

eG
S

S
w

at
ch

S
w

is
sc

o
m

S
w

is
sL

if
e

S
w

is
sR

E
S

yn
g

en
ta

Z
u

ri
ch

A
B

B
1.

00
0

C
S

0.
62

2
1.

00
0

H
o

lc
im

0.
63

0
0.

62
9

1.
00

0
N

es
tl

é
0.

57
9

0.
51

3
0.

58
2

1.
00

0
N

ov
ar

ti
s

0.
59

3
0.

52
5

0.
58

8
0.

71
2

1.
00

0
R

ic
h

em
o

n
t

0.
62

1
0.

55
8

0.
64

4
0.

65
6

0.
63

4
1.

00
0

R
o

ch
eG

S
0.

51
0

0.
48

4
0.

53
8

0.
61

2
0.

69
0

0.
58

4
1.

00
0

S
w

at
ch

0.
59

1
0.

55
6

0.
63

2
0.

61
4

0.
62

9
0.

81
7

0.
53

3
1.

00
0

S
w

is
sc

o
m

0.
21

0
0.

22
7

0.
26

0
0.

33
1

0.
24

3
0.

14
0

0.
20

7
0.

13
5

1.
00

0
S

w
is

sL
if

e
0.

56
8

0.
60

5
0.

63
5

0.
59

8
0.

62
1

0.
56

1
0.

43
3

0.
54

6
0.

28
9

1.
00

0
S

w
is

sR
E

0.
51

7
0.

46
3

0.
54

7
0.

50
1

0.
55

2
0.

49
9

0.
45

6
0.

44
8

0.
24

6
0.

53
7

1.
00

0
S

yn
g

en
ta

0.
57

9
0.

55
3

0.
60

2
0.

61
3

0.
61

1
0.

65
2

0.
49

2
0.

66
1

0.
09

0
0.

53
6

0.
40

9
1.

00
0

Z
u

ri
ch

0.
56

4
0.

47
9

0.
57

6
0.

71
5

0.
62

7
0.

60
9

0.
55

0
0.

54
6

0.
29

6
0.

58
6

0.
51

0
0.

53
0

1.
00

0

Journal of Computational Finance www.risk.net/journals



Pricing multivariate barrier reverse convertibles 111

Calibration is achieved by minimizing the root mean square error (RMSE) between
the model and market implied volatilities, as follows:

RMSE D

vuut 1

N

NX
iD1

.IVmkt � IVmodel/2:

We apply the Carr–Madan pricing formula to obtain model prices, and we compute
model-implied volatilities by inverting the Black–Scholes formula. We also report the
average absolute error (AAE) as an additional goodness-of-fit measure.2 Thereafter,
we calibrate the dependence structure for each basket by minimizing the RMSE
between the empirical and the �˛ model return correlations. This yields an estimate
of the common parameter a and the Brownian correlations �ij for each basket.

6.2 Joint calibration procedure

In this section, we introduce a joint calibration procedure. Setting a given tolerance
on the maximum absolute error (MAE) in matching asset correlations, we fit the
univariate volatility curves of the underlyings of each basket together. In particular,
for each basket of n underlyings, we numerically solve the following problem:

min
f�;a;�g

nX
iD1

RMSEi

such that max j�emp
Y
.j; k/ � �Y .j; k/j 6 "; j ¤ k; (6.1)

where � is the vector of all marginal parameters, � D f�ij ; i D 1; : : : ; n;

j D 2; : : : ; ng are the correlation coefficients between the Brownian components
collected in B�, and �emp

Y
.i; j / and �Y .i; j / are the sample and model return cor-

relations, respectively. The threshold " represents the maximum acceptable level of
correlation errors. Setting " small (at 0.01 or 0.05, for example) ensures an almost
perfect replication of the correlation structure, but larger errors in the calibration
of the marginal distributions can arise. The relative importance of marginal versus
correlation fit can then be fine-tuned through the threshold ".

6.3 Calibration results

Table 3 shows errors and calibrated marginal parameters for each model, with detailed
outputs for the first maturity bucket and summary results for the others. As we can

2

AAE D
NX
iD1

jIVmkt � IVmodelj

N
:
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see, VG and NIG provide a remarkably good fit to the volatility smile. Figure 3 shows
volatility goodness-of-fit for maturity bucket one (MB1) and for models VG and NIG
for basket eighteen, composed of the three most recurrent underlyings in our data set
(see Table 1). The good calibration performance observed is due to the ability of the
VG and NIG models to capture skewness and excess kurtosis, yielding a satisfying
smile replication for all maturity buckets, with a better fit for the maturity buckets
with shorter maturities.

Figure 4 shows the correlation error distribution for the VG and NIG models across
all buckets. The correlation error is lower than 0.01 for 53% of baskets in the VG
model and 37% of baskets in the NIG model. However, the correlation error is higher
than 0.1 for 19% of baskets in the VG model and 41% of baskets in the NIG model.

This result empirically supports the link between the marginal processes and the
correlation structure of the multivariate process discussed in Section 4. For both model
specifications, the bound on the pairwise correlation depends on the marginal kurtosis
of the subordinators obtained in the first step of the calibration. The joint calibration
procedure is performed by setting the threshold " on the correlation fit equal to 0:1
in (6.2) for the baskets that failed to meet this condition in the two-step procedure.
Tables 4 and 5 show the ranges of calibrated marginal parameters in the�˛model spec-
ifications for the joint calibration. Marginal fit slightly worsens in the joint calibration
procedure with respect to the two-step one. The joint calibration procedure yields an
average RMSE of 0.007 for MB1 (compared with the average RMSE of the two-step
procedure on the same calibrated underlyings of 0.004), 0.007 for MB2 (compared
with 0.009), 0.008 for MB3 (compared with 0.009) and 0.010 for MB4 (compared
with 0.010) in theVG case. In the NIG case, the joint calibration procedure yields aver-
age RMSEs of 0.005 (compared with 0.005) for MB1, 0.005 (compared with 0.008)
for MB2, 0.009 (compared with 0.010) for MB3 and 0.012 (compared with 0.013)
for MB4 in the NIG case. While the numerical optimization procedure is straight-
forward in the VG specification, depending on the kurtosis of the subordinators on
parameters j̨ only, in the NIG case, the bound depends on �j D ıj

q
	2j � ˇ

2
j . In other

words, it relies on the interaction of all marginal parameters. How marginal parameters
interplay in the multivariate process is examined in more detail in the next section.

7 SENSITIVITY ANALYSIS

In this section, we perform a sensitivity analysis, examining how model parameters
affect the value of MBRC products. We consider an MBRC product with two underly-
ings and typical features: barrier levels are set to 70% of the price of each underlying
at issuance, the risk-free rate is 0.25%, the credit spread is 42bps and the dividend
yield is 0. We examine two different maturities, six months and one year, and three
correlation scenarios, setting the correlation coefficient to 0, 0.25 and 0.75. We define
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FIGURE 3 Marginal calibration fit on Nestlé, Novartis and RocheGS.
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The following cases are depicted: (a) Nestlé with the VG model; (b) Novartis with the VG model; (c) RocheGS with
the VG model; (d) Nestlé with the NIG model; (e) Novartis with the NIG model; (f) RocheGS with the NIG model.

a base case, assuming the same marginal distributions for both assets, with parame-
ters chosen consistently with the calibration results of Section 6. Different cases are
obtained by either halving or doubling each parameter of the base case. Put prices are
expressed as percentages of the base put price. Our analysis shows that the movement
of MBRC prices is consistent with changes in the moments of marginal distributions.
Below, we discuss put price variations due to changes in marginal moments and cor-
relation. While marginal moments are directly linked with marginal parameters in the
VG case, this is not true for the NIG case.

In Table 6, the VG model is considered.3 The marginal parameters of the base case
are � D 0:230, ˛ D 0:377 and � D 0 for both marginal processes. We find that the

3 For Table 6, the marginal parameters are as follows: f�L; �; �Hg D f0:115; 0:230; 0:460g,
f˛L; ˛; ˛Hg D f0:188; 0:377; 0:754g, f�L; �; �Hg D f�0:252; 0; 0:252g. In addition, an aster-
isk indicates that the correlation level cannot be reached. The base put prices are reported in the
top-left corner of panels (a)–(c) and (e)–(f). In each column, we change one marginal parameter
of one process, while in each row we change one marginal parameter of the other process. On the
main diagonal, the two marginal distributions are identical. The marginal moments corresponding
to different parameter sets are shown in panels (d) and (h) of the table.
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FIGURE 4 Distribution of the maximum absolute correlation error under the (a) VG and
(b) NIG models in the two-step calibration procedure.
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put value increases with the marginal parameter � , which drives the variance of the
marginal distribution. More specifically, if the variance of one marginal distribution
increases, the put value is almost insensitive to the variance level of the other marginal,
due to the worst-of feature of the product. The effect of the sign of the skewness can
be read through the parameter �. When the skewness parameter moves to negative
values, the put price increases (and vice versa). The effect of marginal kurtosis on
option prices depends on the time to maturity. We find a direct relationship between
kurtosis and the option value for short maturities, and an inverse relationship with long
maturities, as observed in Wallmeier and Diethelm (2012). This is one interpretation
that may be drawn from Figure 5, which shows the distribution of the minimum for the
two scenarios of time to maturity. When parameter ˛, which mainly controls kurtosis
in the VG model, changes from its original level of 0.377 to ˛L D ˛=2 D 0:188,
both marginal distributions of log returns present six-month kurtosis of 4.1310. In the
case of ˛H D 2˛ D 0:754, six-month kurtosis raises to 7.5238. However, this implies
kurtosis levels for the one-year distributions of 3.5655 and 5.2619. In this analysis, we
keep the barrier level constant for both time-to-maturity scenarios. This implies a shift
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TABLE 6 Sensitivity to marginal parameter changes: VG model. [Table continues on next
page.]

(a) Put price, 2.0345; T D 0.5, �Y D 0

.�; ˛;�/ .�L; ˛;�/ .�H; ˛;�/ .�; ˛L; �/ .�; ˛H; �/ .�; ˛;�L/ .�; ˛;�H/

.�; ˛;�/ 100.00

.�L; ˛;�/ 54.34 3.28

.�H; ˛;�/ 375.34 334.17 620.74

.�; ˛L; �/ 103.39 51.17 372.56 94.50

.�; ˛H; �/ 105.31 60.23 386.53 104.57 110.88

.�; ˛;�L/ 189.25 145.40 448.30 185.59 196.14 281.59

.�; ˛;�H/ 80.41 31.72 363.05 76.48 84.02 172.91 53.75

(b) Put price, 1.9730; T D 0.5, �Y D 0.25

.�; ˛;�/ .�L; ˛;�/ .�H; ˛;�/ .�; ˛L; �/ .�; ˛H; �/ .�; ˛;�L/ .�; ˛;�H/

.�; ˛;�/ 100.00

.�L; ˛;�/ 54.98 2.83

.�H; ˛;�/ 373.13 349.81 576.90

.�; ˛L; �/ 99.72 51.70 379.87 97.94

.�; ˛H; �/ 103.63 56.68 379.64 100.12 106.28

.�; ˛;�L/ 182.76 148.82 422.09 184.69 182.25 265.01

.�; ˛;�H/ 76.62 31.98 357.59 74.33 83.30 165.63 54.75

(c) Put price, 1.6097; T D 0.5, �Y D 0.75

.�; ˛;�/ .�L; ˛;�/ .�H; ˛;�/ .�; ˛L; �/ .�; ˛H; �/ .�; ˛;�L/ .�; ˛;�H/

.�; ˛;�/ 100.00

.�L; ˛;�/ 66.69 3.60

.�H; ˛;�/ 427.57 422.64 586.70

.�; ˛L; �/ 100.18* 61.32* 436.30* 98.44

.�; ˛H; �/ 110.37* 73.45* 426.89* 122.11* 113.84

.�; ˛;�L/ 187.28 174.55 459.97 209.82* 199.20* 254.95

.�; ˛;�H/ 82.65 35.15 421.94 77.13* 92.05* 189.86* 56.40

(d) Marginal moments, T D 0.5

.�; ˛;�/ .�L; ˛;�/ .�H; ˛;�/ .�; ˛L; �/ .�; ˛H; �/ .�; ˛;�L/ .�; ˛;�H/

Var.Y / 0.0284 0.0071 0.1134 0.0284 0.0284 0.0403 0.0403
Skew.Y / 0.0000 0.0000 0.0000 0.0000 0.0000 �1.2789 1.2789
Kurt.Y / 5.2619 5.2619 5.2619 4.1310 7.5238 6.4056 6.4056
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TABLE 6 Continued.

(e) Put price, 6.8241; T D 1, �Y D 0

.�; ˛;�/ .�L; ˛;�/ .�H; ˛;�/ .�; ˛L; �/ .�; ˛H; �/ .�; ˛;�L/ .�; ˛;�H/

.�; ˛;�/ 100.00

.�L; ˛;�/ 53.14 5.35

.�H; ˛;�/ 250.49 218.38 376.15

.�; ˛L; �/ 102.69 57.92 255.26 103.12

.�; ˛H; �/ 95.72 50.26 250.75 98.79 91.65

.�; ˛;�L/ 140.58 98.64 284.49 141.41 137.28 175.17

.�; ˛;�H/ 107.30 65.96 259.97 113.40 105.20 148.25 120.99

(f) Put price, 6.0863; T D 1, �Y D 0.25

.�; ˛;�/ .�L; ˛;�/ .�H; ˛;�/ .�; ˛L; �/ .�; ˛H; �/ .�; ˛;�L/ .�; ˛;�H/

.�; ˛;�/ 100.00

.�L; ˛;�/ 60.86 6.21

.�H; ˛;�/ 272.94 243.99 385.26

.�; ˛L; �/ 106.47 64.67 273.41 111.08

.�; ˛H; �/ 98.90 55.99 267.70 103.29 92.66

.�; ˛;�L/ 140.66 110.45 294.48 147.81 137.92 182.11

.�; ˛;�H/ 116.41 73.02 277.59 118.92 113.98 152.96 129.97

(g) Put price, 5.1856; T D 1, �Y D 0.75

.�; ˛;�/ .�L; ˛;�/ .�H; ˛;�/ .�; ˛L; �/ .�; ˛H; �/ .�; ˛;�L/ .�; ˛;�H/

.�; ˛;�/ 100.00

.�L; ˛;�/ 66.47 6.20

.�H; ˛;�/ 293.43 280.18 379.43

.�; ˛L; �/ 107.59* 74.25* 298.61* 108.95

.�; ˛H; �/ 97.83* 64.56* 288.90* 114.62* 89.75

.�; ˛;�L/ 135.16 127.00 308.76 156.31* 145.55* 173.06

.�; ˛;�H/ 113.31 81.99 293.19 124.94* 119.06* 171.56* 128.44

(h) Marginal moments, T D 1

.�; ˛;�/ .�L; ˛;�/ .�H; ˛;�/ .�; ˛L; �/ .�; ˛H; �/ .�; ˛;�L/ .�; ˛;�H/

Var.Y / 0.0567 0.0142 0.2268 0.0567 0.0567 0.0806 0.0806
Skew.Y / 0.0000 0.0000 0.0000 0.0000 0.0000 �0.9043 0.9043
Kurt.Y / 4.1310 4.1310 4.1310 3.5655 5.2619 4.7028 4.7028
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in the distribution of the minimum of the two assets at maturity without a shift in the
barrier; thus, the probability of hitting the barrier changes by construction.As one may
observe in Figure 5, the probability of hitting the barrier is very similar in Figures 5(a),
5(c) and 5(e), with a slightly higher probability in the case of high kurtosis. On the
contrary, in the case with one-year maturity, the probability of hitting the barrier is
higher when the kurtosis is lower, as in Figures 5(b), 5(d) and 5(f). We then observe
different effects of the marginal distributions kurtosis, depending on the combination
of barrier levels and the maturity of the product. In particular, the more significantly
the barrier level differs from the strike price, the more significantly a direct relation
between kurtosis and put value is magnified. This is because the hitting event will
depend increasingly on the heaviness of the left tail of the distribution. Barriers very
close to the strike price, however, increase the probability of the hitting event in the
case of more platykurtic marginal distributions. Of course, a strong positive correlation
implies lower put values for both short and long maturities. In our simulation, the VG
model can recover a correlation level of 0.75 among the marginal processes in nine
cases out of twenty-one possible combinations of marginal parameters.

Table 7 shows sensitivity results for the NIG model.4 The base case has marginal
parameters 	 D 7:15, ˇ D 0 and ı D 0:378. We note that the option value in the
case of independence between marginal processes and short maturity is very similar
to the VG price, since the marginal processes present almost identical moments up
to the fourth one. The moments of the NIG process cannot be moved by changing a
single parameter, which is in direct contrast to the VG setting. In the symmetric case,
however, we can overcome this limitation by moving along the main diagonal of each
panel, that is, by considering processes with the same marginal distribution. In fact,
we can find a certain parameter combination that allows us to move only one moment
at a time.5 From Table 7, it emerges that the effect on the put value of a change in

4 In Table 7, the marginal parameters used in the sensitivity analysis are as follows:

f	L; 	; 	Hg D f3:575; 7:150; 14:300g;

fˇL; ˇ; ˇHg D f�2:500; 0:000; 2:500g;

fıL; ı; ıHg D f0:189; 0:378; 0:756g:

In addition, an asterisk indicates that the correlation level cannot be reached. The base put prices
are reported in the top-left corner of panels (a)–(c) and (e)–(f). In each column, we change one
marginal parameter of one process, while in each row we change one marginal parameter of the
other process. On the main diagonal, the two marginal distributions are identical. The marginal
moments corresponding to different parameter sets are shown in panels (d) and (h) of the table.
5 For instance, compare two different cases along the main diagonal: .0; 2	; ı/ and .0; 	; 2ı/ for both
marginal processes. They have different marginal variances, and the same skewness and kurtosis.
In fact, we have V.Y / D ı=.2	/ in the first case and V.Y / D 2ı=	 in the second, while kurtosis
is kY D 3.1 C 1=2ı	/ in both cases. The same applies for .0; 	=2; ı/ and .0; 	; ı=2/. To have
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FIGURE 5 Distribution of the minimum of log returns at maturity with the VG model.

(a) (b)

(c) (d)

(e) (f)
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Barrier

(a) Six months, �Y D 0. (b) One year, �Y D 0. (c) Six months, �Y D 0.25. (d) One year, �Y D 0.25. (e) Six months,
�Y D 0.75. (f) One year, �Y D 0.75.

the marginal variances depends on the kurtosis levels of the marginal distributions.
Further, we observe the same relationship between kurtosis and option value as in
the VG model. As with � in the VG economy, changing the ˇ parameter has a direct
effect on the skewness of marginal distributions, with an inverse relation with respect
to the worst-of put value. A correlation level of 0.75 can be recovered in six out of
twenty-one possible combinations of marginal parameters.

Finally, Figure 6 shows the sensitivity of put prices to different correlation levels
for our base case.

8 PRICING

Since no analytical pricing formula is available, we price the MBRCs of our data set
via Monte Carlo simulation, with daily time steps and 217 paths. The time-change

different marginal kurtosis and the same variances and skewness, we may consider, for instance,
.0; 2	; ı/ and .0; 	; ı=2/ for both marginal processes.
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TABLE 7 Sensitivity to marginal parameter changes: NIG model. [Table continues on next
page.]

(a) Put price, 2.0356; T D 0.5, �Y D 0

.�; ˇ; ı/ .�L; ˇ; ı/ .�H; ˇ; ı/ .�; ˇL; ı/ .�; ˇH; ı/ .�; ˇ; ıL/ .�; ˇ; ıH/

.�; ˇ; ı/ 100.00

.�L; ˇ; ı/ 188.16 269.71

.�H; ˇ; ı/ 56.42 143.31 17.34

.�; ˇL; ı/ 145.78 225.28 99.61 194.38

.�; ˇH; ı/ 81.46 170.89 42.26 132.98 71.31

.�; ˇ; ıL/ 64.27 150.40 24.66 109.99 52.19 29.04

.�; ˇ; ıH/ 208.78 285.65 173.43 254.49 198.17 179.41 311.18

(b) Put price 1.8406; T D 0.5, �Y D 0.25

.�; ˇ; ı/ .�L; ˇ; ı/ .�H; ˇ; ı/ .�; ˇL; ı/ .�; ˇH; ı/ .�; ˇ; ıL/ .�; ˇ; ıH/

.�; ˇ; ı/ 100.00

.�L; ˇ; ı/ 196.75 271.40

.�H; ˇ; ı/ 61.22 157.71 17.77

.�; ˇL; ı/ 146.64 236.04 108.04 188.68

.�; ˇH; ı/ 92.82 177.46 50.33 132.88 73.15

.�; ˇ; ıL/ 63.98 162.27 24.67 118.44 56.22 33.30

.�; ˇ; ıH/ 215.83 303.89 188.98 257.50 207.85 188.19 325.53

(c) Put price 1.5166; T D 0.5, �Y D 0.75

.�; ˇ; ı/ .�L; ˇ; ı/ .�H; ˇ; ı/ .�; ˇL; ı/ .�; ˇH; ı/ .�; ˇ; ıL/ .�; ˇ; ıH/

.�; ˇ; ı/ 100.00

.�L; ˇ; ı/ 68.01* 270.20

.�H; ˇ; ı/ 12.15* 11.94* 17.44

.�; ˇL; ı/ 142.99 128.89* 11.44 186.98

.�; ˇH; ı/ 90.59 46.35* 10.18* 135.38 76.09

.�; ˇ; ıL/ 67.75* 188.90 11.75* 132.24* 48.26* 30.50

.�; ˇ; ıH/ 209.19* 216.71* 221.84 220.71* 224.16* 209.07* 330.53

(d) Marginal moments, T D 0.5

.�; ˇ; ı/ .�L; ˇ; ı/ .�H; ˇ; ı/ .�; ˇL; ı/ .�; ˇH; ı/ .�; ˇ; ıL/ .�; ˇ; ıH/

Var.Y / 0.0264 0.0529 0.0132 0.0321 0.0321 0.0132 0.0529
Skew.Y / 0.0000 0.0000 0.0000 �0.9322 0.9322 0.0000 0.0000
Kurt.Y / 5.2200 7.4400 4.1100 6.5283 6.5283 7.4400 4.1100
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TABLE 7 Continued.

(e) Put price 6.5146; T D 1, �Y D 0

.�; ˇ; ı/ .�L; ˇ; ı/ .�H; ˇ; ı/ .�; ˇL; ı/ .�; ˇH; ı/ .�; ˇ; ıL/ .�; ˇ; ıH/

.�; ˇ; ı/ 100.00

.�L; ˇ; ı/ 149.97 205.14

.�H; ˇ; ı/ 64.38 122.64 27.73

.�; ˇL; ı/ 117.43 177.87 86.02 140.51

.�; ˇH; ı/ 100.37 158.16 65.78 121.92 102.42

.�; ˇ; ıL/ 64.75 125.55 30.04 86.63 66.30 30.56

.�; ˇ; ıH/ 169.43 220.00 144.28 191.18 173.07 143.49 236.56

(f) Put price 5.8367; T D 1, �Y D 0.25

.�; ˇ; ı/ .�L; ˇ; ı/ .�H; ˇ; ı/ .�; ˇL; ı/ .�; ˇH; ı/ .�; ˇ; ıL/ .�; ˇ; ıH/

.�; ˇ; ı/ 100.00

.�L; ˇ; ı/ 160.05 208.01

.�H; ˇ; ı/ 67.51 132.20 30.50

.�; ˇL; ı/ 122.32 177.40 93.11 145.26

.�; ˇH; ı/ 104.75 164.02 74.60 124.42 112.21

.�; ˇ; ıL/ 68.43 133.61 31.30 93.06 74.44 30.98

.�; ˇ; ıH/ 179.98 230.71 154.59 196.11 184.00 153.66 242.81

(g) Put price 4.8473; T D 1, �Y D 0.75

.�; ˇ; ı/ .�L; ˇ; ı/ .�H; ˇ; ı/ .�; ˇL; ı/ .�; ˇH; ı/ .�; ˇ; ıL/ .�; ˇ; ıH/

.�; ˇ; ı/ 100.00

.�L; ˇ; ı/ 66.36* 207.65

.�H; ˇ; ı/ 19.00* 18.45* 28.54

.�; ˇL; ı/ 120.82 100.56* 19.35 140.84

.�; ˇH; ı/ 104.39 70.95* 19.24 122.04 111.52

.�; ˇ; ıL/ 68.94* 148.81 19.38* 101.56* 71.38* 31.24

.�; ˇ; ıH/ 172.06* 173.55* 177.34 171.11* 172.43* 171.19* 240.77

(h) Marginal moments, T D 1

.�; ˇ; ı/ .�L; ˇ; ı/ .�H; ˇ; ı/ .�; ˇL; ı/ .�; ˇH; ı/ .�; ˇ; ıL/ .�; ˇ; ıH/

Var.Y / 0.0529 0.1057 0.0264 0.0643 0.0643 0.0264 0.1057
Skew.Y / 0.0000 0.0000 0.0000 �0.6592 0.6592 0.0000 0.0000
Kurt.Y / 4.1100 5.2200 3.5550 4.7642 4.7642 5.2200 3.5550
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FIGURE 6 Sensitivity to correlation changes.
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(a) Put prices under the VG model. (b) Put prices under the NIG model.

representation of the �˛ models allows for a straightforward simulation procedure.
For the Gaussian model, we observe an average Monte Carlo standard error of 0.011
with a maximum error of 0.018. For the VG model, we observe an average Monte
Carlo standard error of 0.041 with a maximum error of 0.064. Finally, for the NIG
model we observe an average Monte Carlo standard error of 0.041 with a maximum
error of 0.064.

Figure 7 compares bid–ask market prices with model prices when the �˛ models
are calibrated according to the joint calibration procedure and the two-step calibra-
tion procedure yields a maximum absolute correlation error that is higher than the
threshold, which we set to 0.1. Further, we set the common parameters to match
two alternative correlation scenarios: maximum pairwise correlations and indepen-
dence. This allows us to understand how model prices react to different correlation
assumptions that are consistent with the marginal parameters. Hence, Figure 7 also
shows model prices that correspond with our correlation scenarios. In Figures 7(a),
7(c) and 7(e), MBRCs are ordered depending on the time to issue, as indicated on the
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horizontal axis of each graph. In general, the lower the time to issue, the higher the
time to maturity of the product. In Figures 7(b), 7(d) and 7(f), MBRCs are ordered
depending on the time to maturity, as indicated on the horizontal axis of each graph.
Figures 7(a) and 7(b), 7(c) and 7(d), and 7(e) and 7(f) show prices under the G, VG
and NIG specifications, respectively. The difference between G and VG prices ranges
from 0 to 4.78 with an average of 1.48, while the difference between G and NIG
prices ranges from 0 to 4.53, with an average of 1.50. Finally, the difference between
VG and NIG prices ranges from �0:28 to 0.30, with an average of 0.02.

Model prices lie beneath bid market prices for just-issued products in the VG and
NIG specifications. This confirms the findings of Wallmeier and Diethelm (2009),
who report an overpricing that typically ranges between 3% and 6%. Overpricing
disappears for short-dated products: see Figures 7(b), 7(d) and 7(f). In fact, there
is a slight underpricing for products with a short time to maturity in both the VG
and NIG models. The difference in terms of MBRC value between independent and
highly positively correlated processes (ie, the effect of correlation) is decreasing as the
time to maturity decreases for all three specifications. Hence, correlation flexibility
is crucial in pricing long-term products.

Figure 8 provides a deeper insight into the two calibration approaches, focusing
on the basket with Nestlé, Novartis and RocheGS as underlyings. The two-step cal-
ibration procedure provides a good smile replication (in terms of the marginals) but
underestimates correlations. In fact, the two-step procedure provides an MAE equal
to 26% for the VG model and 29% for the NIG one, while the joint procedure gen-
erates a 10% MAE for both models. This implies a systematic overestimation of the
put component of the MBRC for just-issued products, corresponding to an underesti-
mation of the price of the overall product. As soon as the role of correlation dies out,
prices are replicated using this calibration approach.

Lévy models, in theirVG and NIG specifications, provide a good, comparable fit for
plain vanilla markets. However, as pointed out by Schoutens et al (2004), it is difficult
to draw conclusions on exotic option-pricing performance, since the mispricing of
exotic options may originate from the dynamic properties of the model (as well as
from the calibration procedure) in terms of calibration instruments, objective function
and optimization procedure.

9 CONCLUSIONS

Our aim is to investigate the model flexibility in the risk-neutral setting of a class
of multivariate Lévy models. We study MBRCs for two reasons. First, they are the
most liquid multivariate products. Second, Wallmeier and Diethelm (2012) already
examined a subclass of such models and found them to have less flexible dependence
structures. Even though the use of Lévy models (and their calibration to vanilla options
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FIGURE 7 MBRC prices (full data set).
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Observed bid–ask prices are represented by squares and triangles, respectively. Solid lines represent model prices,
with common parameters calibrated to historical correlations. Dashed lines are model prices with common param-
eters set to reproduce maximum pairwise correlations (upper dashed lines) and independence between marginal
processes (lower dashed lines). MBRCs are ordered depending on time to issue in parts (a), (c) and (e), as indicated
on the horizontal axis of each graph. MBRCs are ordered depending on time to maturity in parts (b), (d) and (f), as
indicated on the horizontal axis of each graph. Parts (a) and (b) depict MBRC prices under the G model. Parts (c)
and (d) show MBRC prices under the VG model. Parts (e) and (f) show MBRC prices under the NIG model.

in this framework) does not fully account for the dynamic evolution of the implied
volatility smile, it still outperforms the Gaussian model, being able to reproduce the
skewness and kurtosis embedded in the distribution of the underlying at maturity,
especially for short maturity products. Our aim is to explore the models’ ability to
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FIGURE 8 MBRC prices for the Nestlé–Novartis–RocheGS basket only.
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(a) MBRC prices under the G model. (b),(c) MBRC prices under the VG model with joint calibration and two-step
calibration, respectively. (d),(e) MBRC prices under the NIG model with joint calibration and two-step calibration,
respectively.

account for correlation (as well as the aforementioned factors) in a risk-neutral setting.
The extension of this class of models to more flexible marginal specifications is on the
agenda for our future research. In more detail, we explore the pricing performance
of the VG and NIG specifications of the Lévy �˛ model introduced by Luciano
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and Semeraro (2010) for multi-asset products traded in a liquid market. We extend
the study of Wallmeier and Diethelm (2012), who considered the ˛VG model and
the model introduced in Leoni and Schoutens (2008). We empirically investigate
the trade-off between marginal and correlation fit by calibrating the model with two
different approaches. In the former, marginal parameters are calibrated on single-
asset options, and then common parameters are calibrated on the observed correlation
matrix (this constitutes the two-step calibration). In the latter approach, the whole set
of model parameters is calibrated at the same time for each basket of underlyings (joint
calibration). The second approach allows for a better fit of the correlation structure,
slightly worsening the marginal fit. The joint calibration improves the overall fit of
the model and also affects the pricing performance.

We analyze critical factors affecting the price of MBRCs in terms of contract fea-
tures and model parameters. Path dependency and worst-of features strongly influence
MBRC prices. In particular, the price of an MBRC decreases with its time to maturity.
It depends negatively on the variance and positively on the skewness of one under-
lying (almost independently of the others). Correlation levels are negatively related
to MBRC prices. Finally, prices depend in a nonlinear way on the kurtosis of the
marginal distributions.

For just-issued products, we observe a significant overpricing in both VG and NIG
specifications. This stylized fact tends to decrease throughout the life of the product
for all models.

This study shows that the class of �˛ models is well suited to pricing multi-asset
derivatives. With our joint calibration approach, we are able to exploit the trade-off
between marginal distributions and correlation fit, which is particularly useful if we
need to enhance the goodness-of-fit of the correlation structure.
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