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Abstract

Among the different dynamical systems which have been considered in psy-

chology, those modeling the dynamics of learning and teaching interaction are

particularly important. In this paper we consider a well known model of proxi-

mal development and analyze some of its mathematical properties. The dynam-

ical system we study belongs to a class of 2D noninvertible piecewise smooth

maps characterized by vanishing denominators in both components. We deter-

mine focal points, among which the origin is particular since its prefocal set

contains this point itself. We also find fixed points of the map and investigate

their stability properties. Finally, we consider map dynamics for two sample

parameter sets, providing plots of basins of attraction for coexisting attractors

in the phase plane. We emphasize that in the first example there exists a set

of initial conditions of non-zero measure, whose orbits asymptotically approach

the focal point at the origin.
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1. Introduction

The application of dynamical systems in the social and behavioral sciences

[1], developmental psychology [2] although being a relatively new approach, has

provided interesting contributions. In particular, a promising line of research

has examined changing interaction between the learner (the child or student)5

and the helper (the teacher or tutor). In fact, provided that an adult or more

competent peer has given a particular form of help, guidance or collaboration,

and that a certain amount of change has occurred in the learner’s actual level

(e. g., it has moved a little bit towards the objective or goal level in terms of

his independent performance), the next help, guidance or assistance given must10

reckon with this change, because they must be adaptive to the changed actual

level of the learner. Hence, the level of help that lead to optimal change in

the learner, must be a different one than the preceding level of help. And this

means that change not only occurs in the learner, but that it also occurs in the

helper, and that the helper must be capable of adequately adapting the level of15

help according to the actual level of learner. That is to say, there is not only

developmental or learning change in the person receiving help, but there is also

change in the level of the help given. Help that exceeds the current capabilities

of learning and understanding of the learner or that remains too close to the

learner’s current level of independent performance, will greatly hamper learning20

or development. The helper must therefore find the level of help, relative to

the learner’s current level of independent performance, that results in maximal

learning given the learner’s possibilities. In this sense, the process of socially

mediated learning is a process of co-adaptation [3].

It is quite natural to formalize developmental processes as dynamical systems25

[4, 5] given the importance of time in any psychological process. As a matter

of fact, important pioneers in Mathematical Psychology claimed that “[t]he

observation that psychological processes occur in time is trite” in [6, p.231].
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In this paper we consider a version of the model of proximal development

presented in [4, 7, 3, 8]. This model is inspired by ideas and principles of30

L. S. Vygotsky [9], in particular, his well-known zone of proximal development.

By definition this zone represents the range between a learner’s performance on

his/her actual developmental level (where the learner can do without dedicated

help) and the level of the learner’s performance under conditions of adequate

help from the teacher, referred to as potential developmental level. Another35

keynote concept forming the basis of the model studied below is the principle

of scaffolding. The widespread use of this term started with an article [10], in

which the authors presented a model of effective helping that was consistent with

the Vygotskyan approach, although the article makes no mention of Vygotsky’s

work. The main idea of the scaffolding principle is as follows: only those forms40

of help or assistance that the learner can understand as being functional are

actually effective in causing learning to occur (see [7] for details and a dynamic

model). Both mentioned approaches suggest that the crucial dynamic aspect

of the learning process is existence of optimal distance between the learner’s

actual developmental level and the level of performance with help and assistance45

(potential developmental level). And this optimal distance results in an optimal

learning effect under the current help and assistance given.

The resulting model is represented by a 2D noninvertible piecewise smooth

map, both components of which have the form of a rational function. This

implies that the map is not defined in the whole space possessing the set of50

nondefinition being the locus of points in which at least one denominator van-

ishes. Maps of such kind are called maps with vanishing denominator and have

been extensively investigated by many researchers. See, for instance, the tri-

ology [11, 12, 13] and references therein, for a detailed description of peculiar

properties of such maps, related to particular bifurcations and changes in struc-55

ture of the phase space. One may also refer to [14, 15], where the authors

survey several models coming from economics, biology and ecology defined by

maps with vanishing denominator and investigate the global properties of their

dynamics.
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Two distinguishing concepts related to maps with vanishing denominator60

are notions of a prefocal set and a focal point. Roughly speaking a prefocal set is

a locus of points that is mapped (or often said “is focalized”) into a single point

(focal point) by one of the map inverses. In a certain sense, the focal point can

be considered as the preimage of the prefocal set with using a particular inverse

of the map. At the focal point at least one component of the map takes the65

form of uncertainty 0/0, and hence, the focal point can be derived as a root of a

2D system of algebraic equations. If it is a simple root, the focal point is called

simple.

Presence of focal points and prefocal curves has an important influence on the

global dynamics of the map. There may occur certain global bifurcations related70

to contacts of prefocal sets with invariant sets (such as basin boundaries) or

critical curves. Such bifurcations usually lead to qualitative changes in structure

of attracting sets or basins of attraction. In particular, one may observe creation

of basin structures specific to maps with denominator, called lobes and crescents,

sometimes resembling feather fans centered at focal points.75

For the map investigated in the current paper we determine focal points and

their prefocal sets. We show that among three focal points only one is simple.

Moreover, a focal point at the origin denoted SP0 is rather particular, since

its prefocal set coincides with the set of nondefinition including the point SP0

itself. In a certain sense the focal point SP0 plays a role similar to that of a80

fixed point of the map. After analyzing focal points, we examine fixed points

of the map and derive analytic expressions for their computation. Some fixed

points can be obtained in explicit form, while the others are identified by finding

the roots of certain cubic equations. We also investigate stability properties of

the fixed points and for some of them derive conditions for their stability in85

form of analytic expressions. Finally, we consider map dynamics for two sample

parameter sets, providing plots of basins of attraction for coexisting attractors

in the phase plane. Noteworthy, in one of the examples there exists a set of

initial conditions of non-zero measure, whose orbits asymptotically approach

the focal point at the origin.90
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The paper is organized as follows. Section 2 presents a brief description of

the main concepts, the terms and the model. Section 3 concerns determining

focal points and the associated prefocal sets. In Section 4 we discuss some

preliminary analytical results concerning the map and find all possible fixed

points. In Section 5 we study their stability and in Section 6 two numerical95

examples of map dynamics are provided. Section 7 concludes.

2. A Model of Learning and Teaching Coupling

When modeling an educational process one usually distinguishes three main

objects involved: a person to be educated (a student), a person who imparts

specific knowledge or skills (a teacher or tutor), and the final educational goal.100

Formally speaking, the educational goal can be considered as a stock of informa-

tion and skills K, which is a real positive parameter (as shown below, it is not

restrictive to fix K = 1). Moreover, the information can be ordered according to

its level of intricacy and has to be expounded complying with this order. For in-

stance, it is useless to explain methods for solving a system of linear equations to105

a person (e. g., a child) who does not have any idea about neither numbers nor

arithmetic operations. The latter concepts have to be learned before mastering

more complex things.

Formally speaking, a student can be also represented by a certain amount of

knowledge (information and skills) A that he has already picked up, and that110

can be expressed in perspective to the educational goal to be attained, specified

by the level K. Now, the process of learning can be considered as a flow from

the goal stock, K, to the individual stock, A, that is, can be modeled by a

dynamic equation over the variable A. The speed of knowledge assimilation or

skill learning depends on a variety of different factors, for instance how much115

effort the student makes to learn, as well as on his individual flairs and abilities.

However, it suffices to specify this speed or rate by a single parameter, without

reference to the host of factors that form its psychological basis. Note that this

is only a formal representation of the process, which is not intended to serve as
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some sort of picture of the psychological processes that take place. Depending on120

personal capabilities and actual developmental or learning level, A, the teacher

must foresee what new information or which new performance the student can

comprehend, that is, the teacher must foresee what the nature of the appropriate

help will be, at any moment in the teaching-learning process. That is to say,

the teacher continuously estimates the student’s potential level of development,125

P . As the student is learning, i. e. is progressing towards the educational goal

level represented by K, the teacher must adapt the complexity of the help and

assistance given, which in practice means that the level of help and assistance is

progressively coming closer to K. The rate with which the teacher adapts this

level of help and assistance given, contingent upon any progress in the student’s130

learning, i. e. contingent upon any change in the level A, is a teacher-specific

parameter.

According to [16] the dynamical system approach has emerged as one of

the most prevalent and dominant in developmental psychology both in terms

of the number of proponents and volume of direct empirical tests. In par-

ticular, the interaction between the actual and potential developmental levels

has been modeled in [17, 4] as a two-dimensional map and has inspired sev-

eral other contributions: for example, see [18] for a dynamical system study-

ing second language acquisition and [19, 20] for empirical analyses of mediated

learning experience and the role of zone of proximal development in terms of

peer interaction, respectively. However, despite its importance, an analysis of

the mathematical properties of the model proposed in [4] is missing. Below

we perform first steps towards understanding dynamics of the aforementioned

model from theoretical viewpoint. For this we consider the two-dimensional

map Φ : (A,P ) ∈ R2 → (A′, P ′) ∈ R2 defined by
A′ = A

[
1 +Ra(A,P )

(
1− A

P

)]
def
= Φ1(A,P ) ,

P ′ = P

[
1 +Rp(A,P )

(
1− P

K

)]
def
= Φ2(A,P ) ,

(1)

where functions Ra(A,P ) and Rp(A,P ) (change rates of the actual and the
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potential developmental levels, respectively) are given by

Ra(A,P )
def
= Ra = ra −

∣∣∣∣PA −Oa
∣∣∣∣ ba(1− A

K

)
, (2a)

Rp(A,P )
def
= Rp = rp −

(
P

A
−Op

)
bp

(
1− P

K

)
. (2b)

Here parameter ra > 0 denotes the so-called maximum individual rate of learn-

ing that differs among students. The parameter Oa > 0 reflects the optimal

distance (also individual for a student) between the actual, A, and the poten-135

tial, P , developmental levels. If there is P/A = Oa, then the growth rate Ra

attains its maximum (ra) and the learning proceeds the fastest. The value ba is a

student-dependent damping/moderating parameter. For instance, with ba � 1,

even if the current ratio P/A differs essentially from the optimal distance Oa,

it does not influence much the learning rate. On the contrary, for values ba > 1140

the student’s degree of comprehension is rather sensitive to the deviation of P/A

from its optimal.

As for the change rate Rp, the argument is different. The constant growth

factor rp > 0 corresponds to what one may call a ‘default property’ of a teacher

(like teaching manner, training methods, character traits, etc.). The actual rate145

of change of P can be greater or smaller than this default (or habitual) value rp.

Indeed, optimum of Rp cannot be considered as only a teacher-specific property

but is also influenced by the learner. Namely, the rate of change Rp is optimal if

it guarantees that P/A equals Oa. Clearly, such an optimum cannot be defined

uniquely and usually changes with changing A and/or P . The meaning of the150

remaining two parameters is as follows. The parameter Op > 0 represents the

teacher’s estimation for the optimal value of the ratio P/A, and hence, also

depends on him/her. In general, the value Op may differ from Oa, but the

closer they are, the more efficient the educational process is. And bp > 0 is the

damping/moderating parameter, whose influence is similar to that of ba.155

We remark that due to modulus function in the expression for Ra the map

(1) is piecewise smooth.1 Hence, the phase space is divided into two regions;

1For the detailed overview of piecewise smooth maps occurring in different applications
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namely, D+ for that P/A > Oa and D− for that P/A < Oa (see Figs. 1). The

lines P = OaA and A = 0 constitute the switching set. Recall that the switching

set is a locus of points where the map changes its definition, that is, on either160

side of the switching set the map is defined by different functions.

Figure 1: Schematic representation of the phase space (A,P ). Switching set given by P = OaA

and A = 0 separates the phase space into regions D− (pink) and D+ (blue). Green line marks

the boundaries of the feasible domain DF . For Oa > 1 as in (a) the feasible domain DF has

intersections with both D− and D+. For Oa ≤ 1 as in (b) DF ⊂ D+.

Let us consider for sake of shortness the set of all parameters as a point in

a 7-dimensional space

µ = (ra, rp, ba, bp, Oa, Op,K) ∈ R7
+ (3)

with R+ denoting the positive semi-axis of real numbers. For a certain repre-

sentative of the map family (1) we then use the notation Φµ.

Recall that from the application viewpoint, A is the actual developmental

level of the student, P is the potential developmental level, and K is the final

educational goal. It follows that the inequalities

A ≤ K, P ≤ K, A ≤ P (4)

and associated dynamical peculiarities see, for instance, [21, 22] and references therein.
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confine the feasible domain DF (outlined green in Figs. 1) for the states of the

system (1). The boundary of DF is denoted ∂DF . Notice that if Oa > 1, then165

the feasible domain DF is divided into two parts, that is, DF = (DF ∩D−) ∪

(DF ∩D+) (see Fig. 1a). Otherwise, it is completely contained inside D+ (see

Fig. 1b).

The domain DF constitutes quite a limited area in the R2 space, and more-

over, DF is not invariant under Φµ. It is important then to distinguish between170

feasible orbits, which completely belong to DF , and nonfeasible ones, which

eventually leave the feasible domain. Although from applied context we have

to restrict our studies to the orbits located completely inside DF , we consider

larger part of the phase space. The main reason is that, in general, dynamic

phenomena occurring outside DF may influence also the feasible part of the175

phase space. For example, suppose that some homoclinic bifurcation occurs

outside DF and this changes the complete structure of basins, including those

related to attractors belonging to DF . In other words, considering orbits that

are located outside DF may shed light on the feasible dynamics of map (1).

And this way we also obtain a better understanding of the map dynamics in180

cases in which some of the conditions in (4) are relaxed.

It seems that conditions (4) must always hold in reality, though in some

cases their violation can be explained in applied context. Let us suppose, for

instance, that A > P . It means that the actual student’s developmental level

is greater than the potential developmental level estimated by the teacher, that185

is, the student already knows what he is expected to learn. Generally speaking,

in the real learning process this may happen. For instance, if the current level

of the student’s knowledge is evaluated incorrectly. As a matter of fact, this

may happen when evaluating gifted-children, as the definition of giftedness has

a multifaced-nature [23] and identification process is not immediate [24] and190

often poses some problems [25]. In such cases the potential level P has to be

updated accordingly (so that P > A is restored) before the student gets bored

by the training. With respect to dynamics of (1), it means that transient states

are allowed to fall below the line P = A, but eventually an orbit must come
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back in the interior of DF and stay there forever. Similarly, violation of other195

inequalities in (4) may be the result of incorrect decisions made by the teacher.

One may certainly argue that a qualified and experienced teacher will never put

the estimated level P greater than the final educational goal K. However, reality

suggests that not all teachers are qualified or experienced enough, and hence, it

may happen that P > K. As for A > K, it may mean that the student is rather200

smart. Theoretically, in such cases the learning process has to be stopped, since

the final goal has been achieved. Though in reality it might not happen, as it

is well known that evaluating and measuring the potential of a student, as well

as his/her actual mastering level, is a complex task that involves using several

assessment tools [26, 27].205

An alternative interpretation of the inequalities inverse to (4), namely, A >

P , P > K, A > K, is that they represent a case where a person has to unlearn

something, for instance, a bad or unhealthy or unwanted habit. This is a sort

of situation we find as typical clinical settings, or clinical-educational settings,

such as children who are overly aggressive, where the goal is to reduce the level210

of aggressiveness to normal proportions.

In the following, as parameter K denotes the final educational goal repre-

sented by the stock of information and skills, it is not restrictive to normalize K

to unity (or assume any other positive value). Mathematically it can be achieved

by showing topological conjugacy between any two maps from the family (1),

Φµ1
and Φµ2

, with two different values K1 and K2, respectively, and the other

parameters being identical. The related homeomorphism is given by

h(A,P ) =

(
K1

K2
A,

K1

K2
P

)
,

so that

Φµ1 ◦ h = h ◦ Φµ2 .

Without loss of generality we can assume that the set of parameters belongs to

the six-dimensional hyperplane µ ∈ R6
+ × {K = 1}.
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3. Focal Points

As has been already mentioned in the Introduction, one of the particular

characteristics of the map Φµ is that both its components assume the form of a

rational function. Indeed, (1) can be rewritten in the following form:

A′ =
N1(A,P )

D1(A,P )
=
A(|A|P + (ra|A| − |OaA− P |ba(1−A))(P −A))

|A|P
, (5a)

P ′ =
N2(A,P )

D2(A,P )
=
P (A+ (rpA− (P −OpA)bp(1− P ))(1− P ))

A
. (5b)

Clearly, at points belonging to the set δs
def
= {(A,P ) : A = 0}∪{(A,P ) : P = 0},215

at least one of the denominators D1(A,P ) or D2(A,P ) vanishes. Hence, the

set δs represents the set of nondefinition of Φµ. Maps of similar kind are called

maps with vanishing denominator and have been studied by many researchers

(see, e. g., [11, 12, 13, 14, 15] to cite a few). Particular feature of such maps

is possibility of having focal points and associated prefocal sets/curves. Due to220

contact between phase curves and these prefocal sets or a set of nondefinition,

certain bifurcations can occur, which are peculiar for maps with denominator.

Recall that a point Q(A0, P0) is called a focal point if

(i) at least one component of Φµ takes the form of uncertainty zero over zero

at Q, that is, Ni(A0, P0) = Di(A0, P0) = 0 for i = 1 or i = 2;225

(ii) there exist smooth simple arcs γ(τ) with γ(0) = Q such that limτ→0 Φµ(γ(τ))

is finite.

The set of all such finite values, obtained by taking different arcs γ(τ) through

Q, is called the prefocal set δQ. Note that not every point at which Φµ takes

the form 0/0 is a focal point.230

Suppose that Φi(A,P ), i = 1, 2, takes the form 0/0 at the focal point Q.

The point Q is called simple if NiADiP − NiPDiA 6= 0, where NiA, NiP , DiA

and DiP are the respective partial derivatives over A and P . Otherwise, Q is

called nonsimple.

For any smooth simple arc γ(τ) = (γ1(τ), γ2(τ)) its both components can

11



be represented as Taylor series:

γ1(τ) = ξ0 + ξ1τ + ξ2τ
2 + . . . , (6a)

γ2(τ) = η0 + η1τ + η2τ
2 + . . . (6b)

If a focal point is simple, then there exists a one-to-one correspondence between235

the slope m = η1/ξ1 of a curve γ(τ) at this focal point and the limit point

limτ→0 Φµ(γ(τ)). In case of a nonsimple focal point this generically does not

hold.

At first, we consider the points with A = 0 and arbitrary P and consider

arcs γ(τ) through this point implying ξ0 = 0, η0 = P . The function Φ1(0, P )240

assumes uncertainty 0/0, while Φ2(0, P ) = −P 2bp(1− P )2/0. If P 6= 0, 1, the

limit of Φµ(γ(τ)) with τ → 0 is (−baP sgn(P ),∞), where ∞ means either +∞

or −∞ depending on whether limit is taken from the left or from the right,

respectively. Hence, the point (0, P ), P 6= 0, 1, is not a focal point.

Let us check whether SP0 = SP0(0, 0) and SP1 = SP1(0, 1) are the focal

points. Note that now also the function Φ2(0, P ) assumes uncertainty 0/0. For

SP0, clearly, ξ0 = η0 = 0. First, we suppose that ξ1 6= 0 and η1 6= 0. The limit

is then limτ→0 Φµ(γ(τ)) = (0, 0) regardless of the arc γ(τ). It means that the

focal point SP0 belongs to its prefocal set δSP0 . It also implies that whatever

is the slope m = η1/ξ1 of γ(τ) at SP0, the image Φµ(γ(τ)) always intersects

δSP0
at the same point, namely, SP0 itself. In a certain sense the focal point

SP0 plays a role similar to that of a fixed point of Φµ. However, the set δSP0

contains also other points. Indeed, if we put ξ1 = 0, η1 6= 0 then

lim
τ→0

Φµ(γ(τ)) =

(
0,−η

2
1bp
ξ2

)
,

while if η1 = 0, ξ1 6= 0 then

lim
τ→0

Φµ(γ(τ)) =

(
±ξ21(ra ±Oaba)

η2
, 0

)
,

where ‘+’ and ‘−’ are chosen depending on the signs of A and (P−OaA). Hence,

prefocal set

δSP0
= {(A,P ) : A = 0} ∪ {(A,P ) : P = 0},

12



which coincides with the set of nondefinition δs. Note that, NiA = NiP = DiP =245

D1A = 0, i = 1, 2, D2A = 1, and therefore, the focal point SP0 is nonsimple.

Similarly, we get that the prefocal set of SP1 is

δSP1 = {(A,P ) : A = −ba}.

For SP1 there holds NiP = DiP = 0, i = 1, 2, and this focal point is nonsimple

as well.

Finally, Φ1(A,P ) also assumes uncertainty 0/0, if A = 1 − ra/(Oaba) and

P = 0, while Φ2(A,P ) is finite. The prefocal set of the focal point SPa =

SPa(1− ra/(Oaba), 0) is the line

δSPa
= {(A,P ) : P = 0} ⊂ δs.

The point SPa is simple provided that ra 6= Oaba. If ra = Oaba then SPa ≡ SP0.

The point SPa belongs to its prefocal set δSPa , similarly to SP0. However, there250

exists only one slope m = η1/ξ1 for which the image Φµ(γ(τ)) intersects δSPa

at SPa, since SPa is simple.

4. Fixed Points

The system equations are not only polynomials of the variables A and P

but the latter also appear in denominators, therefore evaluating fixed points

seems not so trivial at the first sight. Fixed points can be defined by solving

the following equations:
A = A

(
1 +Ra ·

(
1− A

P

))
,

P = P (1 +Rp · (1− P )) .

(7)

This is equivalent to 
f1(A,P )

def
= ARa ·

(
1− A

P

)
= 0 ,

f2(A,P )
def
= PRp · (1− P ) = 0 .

(8a)

(8b)
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Each of the equations (8) defines a geometrical locus of points in the (A,P )-

plane. Every intersection of the two loci of points is a (potential) fixed point255

of (1). We use the word ‘potential’ here because some of intersections may

correspond to focal points, as for instance, the point SP0(0, 0).

4.1. Locus of points f1(A,P ) = 0

From (8a) the function f1 of the two variables A and P equals zero when

one of the following holds:

P = A, ARa(A,P ) = 0. (9)

The values A = 0 are omitted since they correspond to the set of nondefinition

δs as seen above. Let us solve the remaining equation Ra(A,P ) = 0. Expanding

the modulus we get two different equations:

P

A
−Oa =

ra
ba(1−A)

and
P

A
−Oa = − ra

ba(1−A)
,

where one has to require A < 1. This implies the following two functions

P =
−ra −Oaba + baOaA

ba(1−A)
A =

A2 −BIA

A− 1
Oa

def
= PI(A), (10a)

P =
−ra +Oaba − baOaA

ba(1−A)
A =

A2 −BIIA

A− 1
Oa

def
= PII(A) (10b)

with

BI = 1 +
ra
Oaba

, BII = 1− ra
Oaba

. (11)

In general, both equations (10a) and (10b) define curves in the (A,P )-plane

consisting of two branches each (one for A < 1 and the other for A > 1):260

PL
I , P

R
I and PL

II , P
R
II (see Fig. 2). However, only branches PL

I and PL
II reduce

Ra(A,P ) to zero.

Note that the curve P = PL
I (A) is strictly increasing and have two asymp-

totes: A = 1 and P = OaA− ra/ba. As for P = PL
II(A), it has a local maximum

at

A = 1−
√

ra
baOa

def
= Amax

II , PII(A
max
II ) = Oa · (Amax

II )2. (12)
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Obviously, Amax
II < 1 for any parameter values. Additionally, if ra < baOa

then Amax
II > 0, otherwise Amax

II < 0. The function P = PL
II(A) also has two

asymptotes: A = 1 and P = OaA+ ra/ba.265

For sake of shortness, we omit the upper indices L writing simply PI(A) and

PII(A), except for the cases where it is necessary to distinguish between the two

different branches.

Figure 2: The functions P = PI(A) and P = PII(A). The branches PL
I (solid orange curve)

and PL
II (solid red curve) reduce Ra(A,P ) to zero, while the branches PR

I and PR
II (dashed

curves of respective colors) do not. Green line marks the feasible domain DF . The parameters

are ra = 0.098, rp = 0.09, ba = bp = 0.1, Oa = 0.2, Op = 0.11.

4.2. Locus of points f2(A,P ) = 0

From (8b) the function f2 equals zero when one of the following holds:

P = 0, P = 1, Rp(A,P ) = 0, (13)

where the first line P = 0 belongs to the set of nondefinition δs as discussed

above. The last equation of (13) is equivalent to

P =
1 +OpA±

√
(1−OpA)2 − 4A

rp
bp

2

def
= P±(A), A 6= 0. (14)
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Notice that the curves P±(A) are defined only for those values of A which

guarantee positive discriminant

(1−OpA)2 − 4A
rp
bp
≥ 0.

Solving this inequality gives

A < AL
lim or A > AR

lim

with

AL
lim =

bpOp + 2rp − 2
√
bpOprp + r2p

bpO2
p

, (15a)

AR
lim =

bpOp + 2rp + 2
√
bpOprp + r2p

bpO2
p

. (15b)

Both AL
lim, AR

lim are always positive and may be less or greater than one.270

Further, each curve P−(A) and P+(A) consists of two branches, one defined

for A ≤ AL
lim (denoted PL

−(A) and PL
+(A), resp.) and the other for A ≥ AR

lim

(PR
− (A) and PR

+ (A), resp.). Both curves have also two asymptotes (see Fig. 3):

L1 =

{
(A,P ) : P = 1 +

rp
bpOp

}
, (16)

L2 =

{
(A,P ) : P = OpA−

rp
bpOp

}
. (17)

4.3. Intersection of the two loci

Finally we find the fixed points of the map Φµ as intersections of f1(A,P ) =

0 (8a) and f2(A,P ) = 0 (8b). Figures 4 show the (A,P )-plane with the two

corresponding geometrical loci of points. The curves along each of that f1

becomes zero are plotted dark-red, while the branches reducing f2 to zero are275

plotted blue. Left and right panels show different parameter sets.

As one can deduce from the figure, the branches of f1(A,P ) = 0 and

f2(A,P ) = 0 cross at several points, whose number may change depending

on the parameter values. And they always intersect at the point SP0(0, 0),

which is a focal point.280
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Figure 3: The functions P = P−(A) (light-blue curve) and P = P+(A) (dark-blue curve) and

their asymptotes L1 and L2 (dash-dot lines). Green line marks the feasible domain DF . The

parameters are ra = 0.03, rp = 0.01, ba = bp = 0.1, Oa = 1.5, Op = 3.

The detailed analysis of different intersections is reported in Appendix A.

We can see that, the map Φµ can have from 2 to 11 coexisting fixed points.

Namely, the two points FP1(1, 1) = {P = A} ∩ {P ≡ 1} (the application target

fixed point) and FP2(A−I,1, 1) = {P = PI(A)} ∩ {P ≡ 1} (with A−I,1 given in

(A.2)) always exist, the point FP5(Ad, Ad) = {P = A} ∩ {P = P±(A)} (with285

Ad defined in (A.11)) exists for almost any parameter values except for the

set of measure zero given in (A.24). The pair FP3(A−II,1, 1) and FP4(A+
II,1, 1)

(with A−II,1, A+
II,1 given in (A.5)), being the intersection of P = PII(A) and

P ≡ 1, appears due to the fold bifurcation at ra = ba
(
1−
√
Oa
)2

if Oa >

1 and exists for ra < ba
(
1−
√
Oa
)2

. Finally, existence of the triples FP6,290

FP7, FP8 (intersections of P = PI(A) with P = P±(A)) and FP9, FP10,

FP11 (intersections of P = PII(A) with P = P±(A)) depends on the sign of

discriminant of the related cubic equation (see Appendix A, Eqs. (A.16) and

(A.17), (A.20)) and whether the roots of this equation are less or greater than

one.295
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Figure 4: Loci of points reducing f1(A,P ) (dark-red) and f2(A,P ) (blue) to zero. The

parameters are (a) ra = 0.03, rp = 0.01, ba = bp = 0.1, Oa = 3, Op = 1.5; (b) ra = 0.098,

rp = 0.09, ba = bp = 0.1, Oa = 0.2, Op = 0.11.

5. Fixed Points Stability

Since the map Φµ is piecewise smooth, the Jacobian matrix for an arbitrary

point (A,P ) is defined differently depending on whether (A,P ) ∈ D− (P/A <

Oa) or (A,P ) ∈ D+ (P/A > Oa). However, in particular cases these two

matrices coincide.300

5.1. FP1

The Jacobian matrix for the fixed point FP1 is defined as

J(FP1) =

1− ra ra

0 1− rp

 (18)

regardless of whether FP1 ∈ D− or FP1 ∈ D+ (which depends on Oa). Eigen-

values of J(FP1) are ν1(FP1) = 1− ra and ν2(FP1) = 1− rp. The correspond-

ing eigenvectors are v1 = (1, 0) and v2 = (ra/(ra − rp), 1). Clearly, whenever

0 < ra, rp < 2, the point FP1 is asymptotically stable. Both eigenvalues are305

real and ra, rp are strictly positive. Thus, the only bifurcation due to that FP1

can lose its stability is the flip bifurcation (at ra = 2 or rp = 2).
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We remark, that the singularity arises when ra = rp. In this case there

is only one eigenvector v1 related to the eigenvalue ν1 of the multiplicity 2.

This implies that if the fixed point FP1 is stable, namely, ra ∈ (0, 2), then310

every orbit attracted to FP1 is asymptotically tangent to the line P = 1 in the

neighborhood of FP1.

5.2. FP2

The fixed point FP2(A−I,1, 1) is always located inside D+, that is, 1/A−I,1 >

Oa. Indeed,

1 = PI(A
−
I,1) =

(
A−I,1

)2
−BIA

−
I,1

A−I,1 − 1
Oa > OaA

−
I,1 ⇔

(
A−I,1

)2
−BIA

−
I,1 <

(
A−I,1

)2
−A−I,1 ⇔ − ra

baOa
A−I,1 < 0

and the latter inequality is always true (recall that 0 < A−I,1 < 1). The related

Jacobian matrix is then computed as

J(FP2) =

J11 J12

0 1− rp

 , (19)

where

J11 =
(
ba(1−Oa) + ra

)
A−I,1 − ba(1−Oa) + ra + 1,

J12 = −baOa
(
A−I,1

)3
+ (baOa + ra)

(
A−I,1

)2
+ baA

−
I,1 − ba.

(20)

The eigenvalues of FP2 are

ν1(FP2) = J11, ν2(FP2) = 1− rp. (21)

The related eigenvectors are

v1 = (1, 0), v2 =

(
J12

1− rp − J11
, 1

)
. (22)

Both eigenvalues of FP2 are real and the second is also strictly less than one.

Hence, the only possible bifurcation in the direction v2 is the flip bifurcation (at315

rp = 2). It can be further shown that the other eigenvalue is always ν1 = J11 >
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1. Hence, the point FP2 is either the saddle or the unstable node. If it is the

saddle, then it becomes the unstable node when rp = 2 giving rise to a saddle

2-cycle with one point located above the line P = 1 and the other point below

this line. Moreover, this flip bifurcation is the only local bifurcation that FP2320

can undergo.

5.3. FP3,4

Let us show that the fixed points FP3(A−II,1, 1) and FP4(A+
II,1, 1) are always

located in D−. Recall that these two points exist when either (A.8a) or (A.8b)

holds. If (A.8a) is true, then Amax
II > 0 and

dPII

dA

∣∣∣∣
A=0

= Oa −
ra
ba

⇒ 1 <
dPII

dA

∣∣∣∣
A=0

< Oa.

The derivative dPII(A)/dA clearly decreases to zero on the interval [0, Amax
II ]

and then becomes negative on (Amax
II , 1). It means that

PII(A) < OaA for 0 < A < 1 ⇒ FP3,4 ∈ D−.

On the other hand, if (A.8b) holds, then

dPII

dA

∣∣∣∣
A=0

= Oa −
ra
ba

< −2
√
Oa − 1 < 0.

This implies that

A±II,1 < 0 ⇒ FP3,4 ∈ D−.

The Jacobi matrix for FP3 is

J(FP3) =

J11 J12

0 1− rp

 , (23)

where

J11 = −3baOa

(
A−II,1

)2
+ (4baOa + 2ba − 2ra)A−II,1 − 2ba − baOa + ra + 1,

J12 = baOa

(
A−II,1

)3
+ (ra − baOa)

(
A−II,1

)2
− baA−II,1 + ba.

(24)
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For obtaining similar expressions for FP4 one has to replace A−II,1 with A+
II,1

in (24). The eigenvalues of FP3 (and similarly of FP4) are

ν1(FP3) = J11, ν2(FP3) = 1− rp. (25)

The related eigenvectors are

v1 = (1, 0), v2 =

(
J12

1− rp − J11
, 1

)
. (26)

Let us check which bifurcations can appear in the direction v1. For that we

make certain transformations in the expression for J11:

J11 − 1 =

(
BII +

1

Oa
− 2

)√(
BII +

1

Oa

)2

− 4

Oa
−
(
BII +

1

Oa

)2

− 4

Oa
.

The latter equals zero if
(
BII +

1

Oa

)2

− 4

Oa
= 0,

(
BII +

1

Oa
− 2

)2

=

(
BII +

1

Oa

)2

− 4

Oa
,

⇔


ra
ba

=
(
1±
√
Oa
)2
,

ra
baOa

= 0.

Notice that for ra/ba =
(
1−
√
Oa
)2

with 0 < Oa < 1 the branch P = PL
II(A)

is tangent to the line P = 1, and hence, the points FP3,4 do not exist. Conse-

quently,

ν1(FP3) = J11 = 1 ⇔




ra
ba

=
(
1−
√
Oa
)2
,

Oa > 1,

ra
ba

=
(
1 +
√
Oa
)2
.

(27)

When (27) holds, the point FP3 (together with FP4) appears due to the fold

bifurcation. Moreover, for
ra
ba

<
(
1−
√
Oa
)2
,

Oa > 1

or
ra
ba

>
(

1 +
√
Oa

)2
the eigenvalues are

ν1(FP3) < 1 and ν1(FP4) > 1.
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If additionally rp < 2, then FP3 is the stable node, while FP4 is the saddle.

Otherwise, FP3 is the saddle and FP4 is the unstable node. It can be also

shown that there is always ν1(FP3) > −1. Thus, FP3 cannot undergo a flip325

bifurcation in the v1 direction.

The second eigenvalue for both points is always ν2 < 1, and the only possible

bifurcation in the direction v2 is the flip bifurcation (at rp = 2). Notice that

this bifurcation occurs for both points simultaneously.

5.4. FP5330

As for the fixed point FP5(Ad, Ad), it is located inside D− (D+) if Oa > 1

(Oa < 1). In both cases its Jacobi matrix has in general all four non-zero

elements:

J±(FP5) =

1− ra ± rpba(Oa−1)
bp(Op−1) ra ∓ rpba(Oa−1)

bp(Op−1)
r2p

bp(Op−1)2 1 + rp +
r2p(Op−2)
bp(Op−1)2

 . (28)

The eigenvalues of J±(FP5) may be complex numbers. It happens when(
2− ra ±

rpba(Oa − 1)

bp(Op − 1)
+ rp +

r2p(Op − 2)

bp(Op − 1)2

)2

− 4 detJ±(FP5) < 0. (29)

In such a case it is possible for this point to undergo a Neimark-Sacker bifurca-

tion. However, the left-hand side of (29) is too cumbersome to study analytically

how different parameters influence its sign.

5.5. FPi, i = 6, 11

The expressions for FPi, i = 6, 11, are also too complicated to study their335

stability properties analytically.

6. Sample Dynamics

This section presents two examples of phase plane of the map Φµ for differ-

ent parameter sets. Both examples show the complexity of the dynamics and,

even when restricting the phase plane to values relevant for the application,340

coexistence of different attractors.
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6.1. Example 1

Let us fix the parameter point µ1 with ra = 0.03, rp = 0.01, ba = bp =

0.1, Oa = 3, Op = 1.5. For such parameter values, the application target fixed

point FP1 is a stable node (see Sec. 5.1). Fig. 5a shows a phase plane of the345

map Φµ1 , where different colors correspond to attractors of different period

or divergence. Namely, some orbits are attracted to a fixed point (light-blue

region), some to an 8-cycle O8 (violet region), some converge to a 35-cycle O35

(orange region), while the others are divergent (gray region). The cycles O8 and

O35 are located outside the feasible domain DF . Hence, the orbits having initial350

conditions inside the respective regions are nonfeasible and should be excluded

from consideration in the applied context.

Let us consider the orbits convergent to the fixed point in more detail. We

notice that for the mentioned parameter values there exist seven fixed points:

FPi, i = 1, . . . , 6, and i = 9. All these fixed points, except for FP5, belong355

to the feasible domain (to its interior or its boundary ∂DF ). The points FP1

and FP3 are stable nodes, the points FP2, FP4, FP5, and FP9 are saddles, the

point FP6 is an unstable node. In Fig. 5b basins of attraction of FP1 and FP3

are shown by pink and brown colors, respectively, and some of their boundaries

are marked by blue curves, which are stable sets of the four saddles.360

The intersection of the basin of attraction of the application target point FP1

and the feasible domain DF is relatively small for the chosen parameter values.

However, from the form of the immediate basin of FP1 one can conclude that for

the learning process to be effective, the initial value of the actual developmental

level A must be sufficiently high regardless of the initial potential developmental365

level P . As has been already mentioned in Sec 2, evaluation of the current

learner’s knowledge level is a complicated task often requiring time and usage

of multiple techniques. Therefore, in reality it can sometimes happen that

the potential developmental level is estimated incorrectly and there is P < A.

Though if initial A is large enough, the orbit eventually enters the feasible370

domain DF converging to the desired point FP1. In Fig. 5b two orbits with

different initial conditions, one being outside and the other one located inside
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Figure 5: Phase space of Φµ1 revealing basins of different attractors. (a) Light-blue region

corresponds to initial values whose orbits are attracted to a fixed point; violet region corre-

sponds to the basin of O8; orange points constitute the basin of O35; gray color is related

to divergent orbits. The rectangles mark the areas shown enlarged in the panels b and c.

(b), (c) Basins of attraction of the stable nodes FP1 (pink) and FP3 (brown) and the fo-

cal point SP0 (yellow). The other colors have the same meaning as in (a). Parameters are

ra = 0.03, rp = 0.01, ba = 0.1, bp = 0.1, Oa = 3, Op = 1.5.

DF , are shown by cyan and black lines, respectively.

As for the orbits whose initial points are located in the yellow region, they

asymptotically approach the focal point SP0. Recall from Sec. 3 that SP0375
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belongs to its prefocal set δSP0 . Moreover, if coefficients ξ1 and η1 in Taylor

series (6) are different from zero, the image of the respective arc γ(τ) intersects

δSP0
exactly at SP0 regardless of the slope m = η1/ξ1. And hence, SP0 may

play a role similar to that of an attracting fixed point. The basin of attraction

of SP0 contains elements characteristic for maps with denominator, as one can380

see in Fig. 5c. In particular, let us consider the part of this basin with three

vertices in the points Q1, Q2 and SP0, denoted as B0. The points Q1 and Q2 are

the intersections of the respective basin boundaries with the prefocal set δSP1
,

and hence, are both focalized into SP1 by one of the inverses of Φµ1 . Due to

this there exists a crescent between the two focal points, SP0 and SP1, denoted385

as B−10,1 in Fig. 5c, such that Φµ1
(B−10,1) = B0. Clearly there also exist an infinite

sequence of preimages of B−10,1, each having a form of crescent between SP0 and

a respective preimage of SP1. For instance, one can notice the region B−20,1,1

between SP0 and SP−11,1 , where Φµ1
(SP−11,1 ) = SP1 and Φµ1

(B−20,1,1) = B−10,1.

For further details on characteristic basin structures occurring for maps with390

vanishing denominator see [11, 12, 13].

6.2. Example 2

In this example we fix the parameter point µ2 with ra = 0.098, rp = 0.09,

ba = bp = 0.1, Oa = 0.2, Op = 0.11. All in all, there are seven fixed points:

two stable nodes FP1 and FP5, four saddles FP2, FP7,8,9, and an unstable395

node FP6. In addition, there are two non-periodic invariant sets. Fig. 6 shows

basins of different attractors in the (A,P ) phase plane. Blue points correspond

to initial conditions whose orbits are attracted to FP1, the basin of FP5 (which

is nonfeasible though) is plotted brown, orange region is related to the chaotic

attractor Q located at the line P = 1, and the points colored pink have orbits400

ending up at the invariant closed curve Γ (shown violet). Grey region corre-

sponds to divergence.

We remark further that the basin of FP1 is separated from the others by

the stable set of the saddle FP2. Note that in comparison with the previous

example, for the current parameter set the part of basin of FP1 located inside405
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Figure 6: Phase space of Φµ2 revealing basins of four different attractors: the stable node

FP1 (light-blue), the stable node FP5 (brown), the chaotic attractor Q ⊂ {(A,P ) : P = 1}

(orange), and the closed curve Γ (pink). Gray region is related to divergent orbits. Parameters

are ra = 0.098, rp = 0.09, ba = 0.1, bp = 0.1, Oa = 0.2, Op = 0.11.

the feasible domain DF is essentially larger. However, the initial actual devel-

opmental level A again must not fall below a certain value in order to achieve

the final educational goal K = 1. In case when the initial A is too small, or

the original evaluation of the current learner’s knowledge level is too far from

the reality, that is, initial P is too far below the initial A, the learning is not410

effective. Indeed, such an orbit either eventually leaves the feasible domain DF

or is attracted to an invariant curve Γ. This curve Γ can be interpreted as a

cyclic learning process in which the student achieving a certain developmental

level gives up (for instance, gets bored of the subject) and gradually loses the

skills acquired. At some point he/she starts fighting the educational goal anew,415

but eventually gives up again.

Note also that the focal points SP0 and SP1 are involved as well into forma-

tion of the basin structures, typical for maps with vanishing denominator, such

as lobes and crescents. For example, the basin of Q consists of multiple lobes
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issuing from SP0, forming a structure which resembles a fan centered at SP0.420

And the parts of the basin of infinity (divergent orbits) located between these

lobes have form of crescents.

Finally, the points FP7,8,9 are located in the third quadrant of the plane and

fall outside both, the feasible domain DF and the area plotted in Fig. 6.

7. Conclusion425

Models of education, such as the model described in this article, often imply

processes of co-adaptation between a helper and a learner. That is, they imply a

coupling of systems over time. The details of this coupling are described in the

theoretical assumptions of the underlying model, such as a model of the zone of

proximal development, a model of scaffolding, or one that combines both. In the430

current article, we have investigated a mathematical formalization of the latter

type of model in the form of a 2D difference equation system. The resulting map

is noninvertible, piecewise smooth and both its components assume the form of

rational functions. This implies that in the phase space there exists a set of

nondefinition, where at least one of denominators vanishes. It is not surprising435

that the map dynamics turns out to be rather complex and interesting.

In the current work we have made the first step in studying the mathematical

model described and analyzed some of its properties. In particular, we have

derived analytic expressions for finding fixed points of the map and obtained

conditions for their stability. We have also determined focal points, at which at440

least one of the map components assumes the uncertainty zero over zero, and

computed the related prefocal sets. Noteworthy, the focal point at the origin

denoted SP0 is rather peculiar, since its prefocal set coincides with the set of

nondefinition. Moreover, there exist a family of smooth curves γm(τ) passing

through SP0 with a slope m, such that the image of γm(τ) intersects the related445

prefocal set δSP0
at the point SP0 itself, regardless the value of m. This implies

that SP0 can play a role similar to that of a fixed point.

Finally, we have also examined the phase plane of the map for two different
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parameter sets. In both cases we have observed coexistence of several attractors,

as well as complex basin structures having multiple lobes and crescents, which450

is a specific feature of maps with vanishing denominator. Another intriguing

phenomenon has been revealed in the first example, where one of the attractors

was the focal point at the origin.

It is important to note that the discovered structure and complexity [28]

directly result from the map dynamics themselves. That is to say, the complex-455

ity is a genuine result of the nature of the processes that the model describes.

Complexity [29] must not be added to the model, for instance, by invoking a

host of additional variables, the dynamics of which are not controlled by the

educational model as such and which thus serve as independent or error vari-

ables. The notion that such complexity is added from outside is quite typical460

of standard models in the educational sciences, for instance, regression models

or structural equation models. Intuitively, or based on verbal reasoning alone,

models that imply some sort of interaction between the participants in an edu-

cational process, are implicitly believed to be relatively simple, with the desired

educational result, plus or minus random variation, as the standard outcome.465

However, if such models are expressed in the form of difference equation sys-

tems describing changes in their relevant variables, a thorough study of their

map dynamics reveals their hidden intrinsic complexity. Recently, several works

have discussed application of dynamical system approach to developmental pro-

cesses and related contributions and challenges, see [16, 30, 31, 32, 33]. Our470

analysis supports the idea “that cognition and development take place, not in

the head, but in the interactions between the mind and the environment” [31,

p. 282] and provides a step to move away from the metatheoretical aspects of

the dynamical system approach in developmental psychology (discussed in [34])

towards meeting the demands of those asking for quantitative rigor [31].475

It goes without saying that the study of the map dynamics of a particular

educational model is an investigation into the properties of the model, that is to

say, an investigation into the range of possible observations one could make if the

model provides a correct description of reality. But even if the model is correct,
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it still provides a rather radical idealization and simplification of that same480

reality. For instance, the model we have studied in this article is a deterministic

model, but it is highly unlikely that real educational interactions of the type

described by the model are indeed deterministic. It might be interesting to

study how the map dynamics behave if it is subject to stochastic influences,

perturbations or shocks from outside.485

Finally, the model presented here is but one of a family of models of learning

and development based on principles of co-adaptation between a developing or

learning person and material or social environment that continuously adapts to

this person’s developing or learning needs. We have tried to formulate a model

that is as general as possible, in terms of its underlying theoretical assumptions.490

Nevertheless, future research could focus on variations and further specifications

of this general model, and investigate whether the resulting map dynamics have

certain properties in common that are not only interesting from a mathemat-

ical and theoretical point of view, but that might also offer new insights into

empirical data on learning and development.495
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where BI is defined in (11), gives two solutions

A±I,1 =
1

2

BI +
1

Oa
±

√(
BI +

1

Oa

)2

− 4

Oa

 . (A.2)

They are real whenever the discriminant ∆ is not negative:

∆ =

(
BI +

1

Oa

)2

− 4

Oa
≥ 0.

Adding the term ±4ra/baO
2
a to the left-hand side of the last inequality

gives

1 +
r2a
b2aO

2
a

+
1

O2
a

+
2ra
baOa

+
2

Oa
+

2ra
baO2

a

± 4ra
baO2

a

=

(
1 +

ra
baOa

− 1

Oa

)2

+
4ra
baO2

a

≥ 0.

The latter always holds since ra > 0, ba > 0. Moreover, the inequality is

always strict. It means that the two solutions A±I,1 are always real and

A−I,1 < 1, A+
I,1 > 1.

Clearly A−I,1 is the intersection point of P = PL
I (A) and P = 1, while A+

I,1

is the intersection of P = PR
I (A) and P = 1. Hence, only A−I,1 is related

to the fixed point, since only branch PL
I reduces Ra(A,P ) to zero. We

additionally remark that A−I,1 > 0 because P = PI(A) is increasing and

PI(0) = 0, lim
A→1−

PI(A) =∞.

Let us denote

FP2 = FP2(A−I,1, 1). (A.3)

Clearly, FP2 ∈ DF , or more precisely, FP2 ∈ ∂DF .

• P = PII(A) with P ≡ 1: Similarly, from

PII(A) =
A2 −BIIA

A− 1
Oa = 1, (A.4)
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where BII is given in (11) two following solutions are obtained:

A±II,1 =
1

2

BII +
1

Oa
±

√(
BII +

1

Oa

)2

− 4

Oa

 . (A.5)

Let us denote

FP3 = FP3(A−II,1, 1), FP4 = FP4(A+
II,1, 1). (A.6)

Again, the solutions A±II,1 are real whenever the discriminant

∆ =

(
BII +

1

Oa

)2

− 4

Oa
≥ 0,

but in contrast to the case of PI(A) = 1, now the opposite inequality

(∆ < 0) is possible. This happens when(
1−

√
Oa

)2
<
ra
ba

<
(

1 +
√
Oa

)2
. (A.7)

For the related parameter values both A±II,1 are complex, and FP3,4 do

not exist. When ∆ is positive, A±II,1 are distinct real numbers. However,615

it does not immediately imply that the fixed points FP3,4 exist. Indeed,

recall that the expression (10b) defines two branches: PL
II(A) for A < 1

and PR
II (A) for A > 1, but the right branch PR

II does not reduce f1(A,P )

to zero. Formally, if A±II,1 > 1, then the points FP3,4 are intersections

of P = PR
II (A) and P = 1, but they are not fixed points of Φµ. In case620

where A±II,1 < 1 the fixed points FP3,4 are intersections of P = PL
II(A) and

P = 1.

To derive the region of parameter values for that the points FP3,4 exist,

we recall that PII(A) has a local maximum

max
A

PII(A) =

(√
ra
ba
−
√
Oa

)2
def
= Pmax

II

attained at Amax
II given in (12). Then we have to require that

(1) the opposite to (A.7) holds (∆ > 0) and

(2) Pmax
II > 1.625
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The condition (1) is nothing else but

ra
ba

<
(

1−
√
Oa

)2
or

ra
ba

>
(

1 +
√
Oa

)2
.

The condition (2) is equivalent to


√
ra
ba

<
√
Oa − 1,√

ra
ba

>
√
Oa + 1

⇔




ra
ba

< (
√
Oa − 1)2,

Oa > 1,

ra
ba

> (
√
Oa + 1)2.

Combining both conditions together implies
ra
ba

<
(
1−
√
Oa
)2
,

Oa > 1.
(A.8a)

or
ra
ba

>
(

1 +
√
Oa

)2
(A.8b)

Notice that if (A.8a) holds, the point of maximum Amax
II > 0, while for

the parameters satisfying (A.8b) there is Amax
II < 0. In case of equality

ra
ba

=
(
1−
√
Oa
)2
,

Oa > 1.
or

ra
ba

=
(

1 +
√
Oa

)2
(A.9)

the curve P = PL
II(A) is tangent to the line P = 1, and the two fixed points

coincide FP3 ≡ FP4. As shown in Sec. 5.3, this is exactly the condition

for the fold bifurcation.

Appendix A.2. Intersection of f1 = 0 and P = P−(A)

• P = A with P = P−(A): Solving

P−(A) =
1 +OpA−

√
(1−OpA)2 − 4A

rp
bp

2
= A (A.10)

is equivalent to

1 +OpA− 2A =

√
(1−OpA)2 − 4A

rp
bp
.
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This gives two solutions

A0 = 0 and Ad = 1 +
rp

bp(Op − 1)
. (A.11)

The solution A0 (corresponding to the focal point SP0) always exists,

while Ad exists only provided that

∆|Ad
= (1−OpAd)2 − 4Ad

rp
bp
≥ 0, (A.12)

1 +OpAd − 2Ad ≥ 0. (A.13)

The first inequality (A.12) can be rewritten as

∆|Ad
=

(
Op − 2

Op − 1
· rp
bp

+Op − 1

)2

≥ 0,

which is always true. The second inequality (A.13) is equivalent to
Op − 2

Op − 1
< 0,

rp ≤
bp(Op − 1)2

2−Op

or


Op − 2

Op − 1
> 0,

rp ≥
bp(Op − 1)2

2−Op

or Op = 2.

(A.14)

Notice that if Op < 1, the value Ad is the intersection point of P = A and

P = PL
−(A), while if Op > 1, it is the intersection point of P = A and

P = PR
− (A). Finally,

lim
Op→1−

Ad = −∞, lim
Op→1+

Ad =∞.

Let us emphasize the particular case when the equality rp =
bp(Op−1)2

2−Op
630

holds. It immediately implies that 0 < Op < 2, since for Op ≥ 2 the value

of rp either falls outside the considered region for parameters or is infinite

(for Op = 2). Moreover,

1. for 0 < Op < 1 the solution of (A.10) is Ad = AL
lim (defined in (15a)),

2. for 1 < Op < 2 the solution of (A.10) is Ad = AR
lim (defined in (15b)),635

Let us denote FP5 = FP5(Ad, Ad).
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• P = PI(A) with P = P−(A): The equality

PI(A) = P−(A) ⇔

1 +OpA− 2

(
−ra
ba
−Oa +OaA

)
A

A− 1
=

√
(1−OpA)2 − 4A

rp
bp
(A.15)

immediately separates into A = A0 = 0 and the cubic polynomial of A:

a1A
3 + a2A

2 + a3A+ a4 = 0 (A.16)

with

a1 = Oa(Oa −Op),

a2 =
rp
bp

+ 2Oa(Op −Oa) +Op −Oa +
ra
ba

(Op − 2Oa),

a3 = Oa(Oa −Op) + 2(Oa −Op) +
ra
ba

(2Oa −Op) +
ra
ba

(
1 +

ra
ba

)
− 2

rp
bp
,

a4 = Op −Oa +
rp
bp
− ra
ba
.

(A.17)

The polynomial (A.16) with coefficients as in (A.17) always has three roots

denoted as A1
I,cub, A2

I,cub, A3
I,cub. Among them there can be at least one

real root and at most three real roots. Suppose that A1
I,cub is always real.

Although AiI,cub, i = 1, 2, 3, can be obtained in explicit form by Cardano640

formulae (see Appendix B), the expressions are quite complicated, which

hampers analytic investigation of the related fixed points.

We also remark that for raising to the square both sides of (A.15) one has

to guarantee that

1 +OpA− 2

(
−ra
ba
−Oa +OaA

)
A

A− 1
≥ 0. (A.18)

Thus, every AiI,cub also has to satisfy (A.18).

Let us denote FP6 = FP6(A1
I,cub, P

1
I,cub), FP7 = FP7(A2

I,cub, P
2
I,cub),

FP8 = FP8(A3
I,cub, P

3
I,cub). The terms P iI,cub, i = 1, 2, 3, are values of645

PI(A) at the points AiI,cub. Note that even if the cubic equation (A.16)
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always has at least one real root A1
I,cub, it does not imply that FP6 always

exists. Indeed, if A1
I,cub > 1, then the point (A1

I,cub, P
1
I,cub) is the intersec-

tion of P = PR
I (A) and P = P−(A), and hence, it is not a fixed point of

Φµ, since only branch PL
II reduces Ra(A,P ) to zero.650

• P = PII(A) with P = P−(A): Similarly to the previous case, the equality

PII(A) = P−(A) ⇔

1 +OpA− 2

(
ra
ba
−Oa +OaA

)
A

A− 1
=

√
(1−OpA)2 − 4A

rp
bp
(A.19)

immediately separates into A = A0 = 0 and the cubic polynomial of the

form (A.16) but with coefficients slightly different from (A.17):

a1 = Oa(Oa −Op),

a2 =
rp
bp

+ 2Oa(Op −Oa) +Op −Oa +
ra
ba

(2Oa −Op),

a3 = Oa(Oa −Op) + 2(Oa −Op) +
ra
ba

(Op − 2Oa) +
ra
ba

(
ra
ba
− 1

)
− 2

rp
bp
,

a4 = Op −Oa +
rp
bp

+
ra
ba
.

(A.20)

The roots of the polynomial again can be obtained by Cardano formulae

(see Appendix B) and are referred to as AiII,cub, i = 1, 2, 3, with sup-

posing that A1
II,cub is always real. The related fixed points are denoted

as FP9 = FP9(A1
II,cub, P

1
II,cub), FP10 = FP10(A2

II,cub, P
2
II,cub), FP11 =

FP11(A3
II,cub, P

3
II,cub).655

Similarly to the previous case, every solution AiII,cub, i = 1, 2, 3, of the

cubic equation (A.16) with coefficients as in (A.20) has to satisfy the

inequality

1 +OpA− 2

(
ra
ba
−Oa +OaA

)
A

A− 1
≥ 0. (A.21)

so that to guarantee validity of raising to square (A.19). Again the fixed

point FP9 exists provided that A1
II,cub < 1 by the same reason as for FP6.
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Appendix A.3. Intersection of f1 = 0 and P = P+(A)

• P = A with P = P+(A): Solving

P+(A) =
1 +OpA+

√
(1−OpA)2 − 4A

rp
bp

2
= A

gives the only solution A = Ad defined in (A.11). Though Ad has to

satisfy

2Ad − 1−OpAd > 0, (A.22)

which is different from (A.13). The inequality (A.22) is equivalent to
2−Op

bp(Op − 1)
< 0,

rp ≤
bp(Op − 1)2

2−Op

or


2−Op

bp(Op − 1)
> 0,

rp ≥
bp(Op − 1)2

2−Op
.

(A.23)

Notice that the first inequalities in (A.23) have opposite signs to those of

(A.14). This means that the two conditions (A.23) and (A.14) are in some

sense complementary. Hence, the fixed point FP5 exists for any parameter

values, except for the set{
µ : rp =

bp(Op − 1)2

2−Op
, Op ≥ 2

}
∪ {µ : Op = 1} . (A.24)

However, FP5 is located on either P = P−(A) or P = P+(A), which

depends on the parameters.660

• P = PI(A) with P = P+(A): The intersection points of PI(A) with P+(A)

are obtained from the cubic equation (A.16) with coefficients defined in

(A.17) (the same equation as for the intersection of PI(A) with P−(A)).

The only difference is that now every solution of (A.16) has to satisfy the

inequality

1 +OpA− 2

(
−ra
ba
−Oa +OaA

)
A

A− 1
≤ 0 (A.25)

(opposite sign to that in (A.18)). The same fixed points FP6,7,8 are ob-

tained. Thus, the points FP6,7,8 are defined as intersections of PI(A) with

P−(A) if (A.18) holds or as intersections of PI(A) with P+(A) if (A.25) is

true.
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• P = PII(A) with P = P+(A): Similarly, equating PII(A) to P+(A) implies

the same cubic polynomial as equating PII(A) to P−(A) giving the roots

AiII,cub, i = 1, 2, 3. However, now they have to satisfy inequality opposite

to (A.21), that is,

1 +OpA− 2

(
ra
ba
−Oa +OaA

)
A

A− 1
≤ 0. (A.26)

Consequently, depending on whether (A.21) or (A.26) holds, the fixed665

points FP9,10,11 are intersections of PII(A) with P−(A) or PII(A) with

P+(A), respectively.

Appendix B. Solving cubic equation: Cardano formulae

Reduce (A.16) to the canonical form

z3 + pz + q = 0 (B.1)

with

p =
3a1a3 − a22

3a21
, q =

2a32 − 9a1a2a3 + 27a21a4
27a31

, z = A+
a2
3a1

. (B.2)

Depending on the sign of the discriminant

∆ =
q2

4
+
p3

27

equation (B.1) can have different number of real roots and also complex conju-

gate roots.670

If ∆ < 0, there are 3 real roots

zi = 2

√
−p

3
cos

(
φ+ 2π(i− 1)

3

)
, i = 1, 2, 3,

with

φ = arctan
(
− 2
q

√
−∆

)
if q < 0,

φ = arctan
(
− 2
q

√
−∆

)
+ π if q > 0,

φ = π
2 if q = 0.
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If ∆ > 0 there is 1 real root and 2 complex conjugate ones

z1 = − 3

√
q
2 −
√

∆− 3

√
q
2 +
√

∆,

z2 = 1
2

(
3

√
q
2 −
√

∆ + 3

√
q
2 +
√

∆

)
+ i
√
3
2

(
3

√
q
2 −
√

∆− 3

√
q
2 +
√

∆

)
,

z3 = 1
2

(
3

√
q
2 −
√

∆ + 3

√
q
2 +
√

∆

)
− i
√
3
2

(
3

√
q
2 −
√

∆− 3

√
q
2 +
√

∆

)
.

If ∆ = 0 there are 2 real roots

z1 = −2 3

√
q

2
, z2 = 3

√
q

2
.

The roots of the original equation (A.16) are obtained by

Ai = zi −
a2
3a1

, i = 1, 2, 3.
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