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Abstract 

The aim of this work is to develop, from a high resolution climate analysis, a quality control 

standard methodology applied to manual snow cover (HS) series managed by the Snow Survey 

Database in New Brunswick (Canada). The database collected snow depth data biweekly starting at 

the end of January until the end of April. A thirty-year (1981-2010) analysis of 60 weather stations 

belonging to two independent meteorological networks was performed. A quality control of the 

climatic series was performed to evaluate the homogeneity. Three snow depth climatic areas were 

defined by means of two geostatistical methods (Kriging and Cluster analyses) applied on monthly 

snow depth, precipitation and temperature data series. Then, for each cluster, the climatological 

thresholds that characterise a snow fall event during the cold months were detected. Subsequently, a 

quality control on the daily snow depth series recorded during the January to April period was 

performed. For each daily series, outlier values were identified by checking both the sudden day-to-

day changes and extreme thresholds (95th percentile). The quality control was then carried out to 

the manual series and the observed doubtful events were compared with the snow depth values 

recorded in the nearby stations. The results show that for the daily snow depth series, the highest 

number of suspect events was recorded during the months of March and April, and the analysis also 

shows that there are rain-on-snow events. As for the manual records, questionable snow depth 

errors randomly distributed in the series were highlighted. Finally, in order to improve the spatial 

distribution of stations located in the Canadian territory, the results give evidence that, thanks to the 

high resolution climatic analysis, the proposed approach provides all the benchmarks required to 

conduct a quality control of snow depth series in absence of other auxiliary variables.  
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1 Introduction 

The ―cryosphere" includes all the frozen portions of the Earth system where water is present in a 

solid form, such as sea ice, lake and river ice, glaciers, frozen ground (including permafrost), and 

snow cover (Armstrong and Brun, 2008). Snow cover is one of the main indicators of climate 

change and is mostly used in order to study the relationship between climate and cryosphere 

(Mudryk et al., 2017). In the last three decades, the polar and cold regions have experienced the 

most rapid warming on Earth, especially in the northern hemisphere (Kim et al., 2018). The quick 

increase of temperature in these regions is part of global warming, with regional amplifications due 

to the relationships established between land surface temperature, oceanic circulation, glacier 

fluctuations, snow cover extent and duration as well as atmospheric patterns (Juřicová and Fratianni 

(2018), Serreze and Barry (2011), Pithan and Mauritsen (2014), and Ballinger et al. (2018) showed 

that Canada, like many other northern and cold regions, experienced a rapid warming with a 

temperature increase of approximately 1.5 °C over the 1950-2010 period and also a significant 

statistical decrease in the number of ice days in the 1974-2013 period (Fortin et al., 2017). These 

changes in Canada‘s temperature also affected many other climatic variables, such as precipitation 

(Mekis and Vincent, 2011) and snow cover (Brown and Braaten, 1998; Brown, 2000). The last 

Intergovernmental Panel on Climate Change (IPCC, 2014) gave evidence that since the mid-20th 

century, the snow depth in Canada has decreased by 1.6% per decade. This is significant because 

changes in the spatial and temporal variability of snow cover in Canada during the winter months 

can seriously affect water resources in terms of quantity and quality (Serreze et al., 2002; Yang et 

al., 2003; Chapin et al., 2005; Allard and Lemay, 2012; Warren and Lemmen, 2014).  

Anomalies in the spatial distribution of snow depth over Canada are partially attributed to human 

activities, such as the increase in the concentration of atmospheric greenhouse gases (Rupp et al., 

2013), but several studies also highlight links between oceanic and atmospheric variability and the 

Canadian climate. For example, Brown (1998) and Shabbar and Khandekar (1996) found a 

relationship between the El Niño–Southern Oscillation (ENSO) positive mode, the reduction of 

snow cover, and warmer winter temperatures in central and southern Canada. Wang et al. (2006) 

also observed that positive phases of the North Atlantic Oscillation (NAO) caused a reduction of 

winter snow storms which affected the snow cover spatial distribution in the provinces of Quebec 

and New Brunswick. 

It is critical to better understand the relationship between snow depth distribution and climate, 

especially when it comes to the seasonal snow cover, which plays a complex role in the ecosystem 

and the ecosphere. New Brunswick is a useful area to study because it is a place where air masses 

converge, and the large-scale oscillations mentioned above have a considerable and observable 
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impact on climate trends including snow distribution and duration (Ballinger et al., 2018). The 

climate of the province is influenced simultaneously by slow-moving and large disturbances and by 

smaller and intense depressions (cyclones), it is especially the latter that bring instability and 

storms. Some of the slow-moving or stationary systems are located in the western part of the 

country. A high pressure ridge along a north-south axis is often located above the Western 

Cordillera or the Eastern Pacific. In eastern Canada there is a through (low pressure) located 

between Hudson Bay, the Great Lakes and the Atlantic Coast. However, for cyclones Conrad 

(2008) reported in his study that the Maritime regions are mainly affected by four different low 

pressure systems: Mackenzie Low, Alberta Low, Colorado Low, and Gulf Low. New Brunswick is 

particularly affected by the Colorado Low, which passes over the North American Great Lakes, 

bringing heavy snowfall during the winter season to the northern part of the region. Fortin and Hétu 

(2014) also evidenced that two other low pressure systems can occasionally affect the Atlantic 

coastal area: Hatteras Low and Great Lakes Low. Due to the formation of a strong gradient, they 

can cause severe winter conditions (snowstorms and blizzards). In this area also, the combined 

effect of either low or high pressure systems can induce winter rain-on-snow events and 

temperatures above the freezing point. Another factor which affects the snow cover variability and 

trends is the synchrony of the phases of several teleconnection patterns (ENSO, NAO, AO, etc.). In 

fact, if one is in a negative phase and the others are in a positive phase, this can reduce or cancel the 

effect of the others. For instance, in North America changes in ENSO which brought to 

precipitation anomalies, is linked with the alternate phase of the Pacific Decadal Oscillation (PDO). 

In fact, during the positive phase of the PDO, El Nĩno events determined a dry condition in winter 

(Enfield et al., 2001). Identifying trends in snow depth can be a challenge when data series are 

limited (Kunkel et al., 2016). In the literature, several authors have studied the spatial and temporal 

evolution of snow cover over Canada (Mekis and Brown, 2010; Vincent et al., 2002; Vincent and 

Mekis, 2006; Brown and Robinson, 2011; Vincent et al., 2012; Milewska and Vincent, 2016), but in 

most of these studies, only a few stations from the province of New Brunswick (NB) were included.   

This study is a contribution to the analysis of the temporal and spatial distribution of winter 

temperatures, precipitation, and snow cover using NB as a case study. Several studies around the 

globe express a very high variability in snow depth spatial distribution (Irannezhad et al., 2017; 

Marcolini et al., 2017; Tedesche et al., 2017; Zhong et al., 2018). This variability depends on many 

factors such as air temperature and the presence of rainfall before, during, and immediately after a 

snowfall event. The environment (open field or forested area) can also be a very important factor 

modifying snow accumulation and redistribution. At the local level, snow deposition and 

accumulation may further be related to elevation (Mott et al., 2015). Blöschl et al. (1999) show also 
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that local winds influence snow depth and they can induce process of relocation and influence the 

energy exchange and mass exchange over snow. The availability of high quality observations, 

checked and corrected by errors, is an aspect of fundamental importance for applications in the 

fields of hydrology and engineering, and in the prevention of natural hazards. Large-scale 

monitoring and quantifying of snow cover is crucial for assessing climate change and its 

representation in climate models and for analysing cryosphere–climate feedbacks (e.g., Wegmann et 

al., 2017). Often, validation of general circulation model (GCM) simulations of snow cover have 

been hampered by a lack of reliable validation data, particularly snow water equivalent (SWE), 

which is the main snow cover output generated by GCMs. In New Brunswick in particular, it is 

fundamental to better calibrate and validate the nival accumulation model and to have a more 

accurate knowledge of the hydrological balance of the Saint John River, which is subjected to 

flooding due to ice jams. River ice is present in all Canadian rivers and the period ranges between a 

few days and several months. The interaction of the ice with the river flow impacts the economy 

and the ecosystem in different ways. Ice jams form in rivers during the freeze-up and break-up 

period when the movement of the ice is interrupted by congestion or obstacles. The break-up of the 

ice can result in extreme events that can determinate floods episodes which damage properties and 

infrastructure, and disrupt navigation and hydropower production (Olthof, 2017). Every year in 

New Brunswick, the ice jams cause one third of the floods events, and they are more destructive 

than open-water floods because they score two thirds of all flood damage. Most of the damage 

occurs along the Saint John River and its tributaries, where the estimated annual average cost is 60 

million US dollars (Beltaos and Burrel, 2002). 

In this study we propose, from automatic daily snow depth series (National Climate Data Archive 

[NCDA] ), a standard methodology of quality control applied to manual snow cover series (Snow 

Survey Database [SSD]) that are not recorded at daily scale. In fact, because snow depth records 

can be affected by systematic and random errors due to instrumentation, station relocation, 

measurement errors (e.g., time of measurement, units of measurement), patchy snow conditions, 

and so on, several studies were conducted to develop daily snow depth quality control (Brown and 

Braaten, 1998; Estilow et al., 2015; Acquaotta et al., 2015). In this case, we used biweekly snow 

depth (SSD) records (taken once per month for January and February and twice per month for 

March and April), observed by stations located in proximity to the automatic network. This study 

aims to provide support for the manual validation of nivometric data through the development of a 

methodology for the identification of suspect data, such as abrupt changes in the thickness of the 

snowpack, outliers, or improbable values given the seasonality of snowfall. Furthermore, in order to 

minimise the uncertainty of snow spatial distribution, it is essential to have a high density of snow 
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depth records spread all over the study area, in order to improve the density of weather stations on 

the ground. For this reason, in this paper we collected climatological data from two different 

meteorological networks (the National Climate Data Archive [NCDA] of Environment Canada and 

the Snow Survey Database [SSD]).  

2 Study area 

The study area analysed in this case is NB, one of the four Canadian Atlantic provinces (Figure 1). 

NB is lined on the north by the province of Quebec, and on the east by the Gulf of Saint Lawrence 

and the Northumberland Strait. In the south-east, the Isthmus of Chignecto connects it to Nova 

Scotia, and in the west, it is bounded by the state of Maine, in the United States. The province‘s 

surface area is about 73,400 km
2 

and is made up of two main geomorphological areas: mountains 

and plains. The Appalachian mountain range stretches across the north-central part of the province 

and the highest elevation is Mount Carleton at 817 m asl. The south-central part of NB is mostly a 

plateau covered by forests, and this area is cut in every direction by an extensive river system. The 

Saint John River is the longest river in NB and flows 673 km, draining, along with its numerous 

tributaries, the entire north-western, central, and south-central parts of the province. The south-

eastern corner of NB is a lowland plain bounded by the Bay of Fundy, which features the world‘s 

highest tides. Southern NB has a temperate climate and the pluvio-thermal characteristics are 

mostly affected by influxes of moist Atlantic air that moderate climatic extremes. In contrast, the 

northern part has a continental climate with long periods of snow cover in the winter due to the cold 

continental air flow (Sabine et al., 2002; El-Jabi et al., 2016; Mallet et al., 2017).  

3 Dataset and preliminary control 

In this study, we analysed snow depth, temperature, and precipitation series recorded at elevations 

between 100 and 400 m asl by 60 ground stations belonging to two independent meteorological 

networks (Figure 1). These series belong to: 

● the National Climate Data Archive (NCDA) of Environment Canada: this database consists 

of over 450 daily liquid precipitation, temperature, and snow depth historical series, 

recorded across Canada since the 1900s. Prior to the 1960s, stations were concentrated along 

the border with the US, and on the west coast of British Columbia. After 1960, the sites 

were better distributed, including all the stations located in the far northern regions. These 

records are still quality controlled and they are integrated with a number of statistical 

analyses and metadata in order to highlight inhomogeneities in the series such as changes in 

instrumentation and station relocations (Groleau et al., 2007; Wang et al., 2017). As 
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concerns snow depth records, they were recorded in inches prior to 1975, and in centimetres 

after that date. 

● the Snow Survey Database (SSD): this data archive is managed by the department of 

Environment and Local Government of New Brunswick. The snow survey information is 

used in the forecasting of Saint John River flood events due to snow melt. For this reason, 

most of the stations are found in the Saint John River Basin. The network consists of 

approximately 116 sites monitoring snow depth and water equivalent in the provinces of 

New Brunswick and Quebec and the state of Maine. The collection process is based on a 

federal sampler. The measurement points are selected on well-drained and totally open or 

forest (no combinations) exposures. For each measurement point, five or six samples are 

taken and averaged, in order to have one value for each site. The surveys are done at the end 

of January, and then every two weeks until the snow melts. The obtained dataset is 

composed of snow depth values collected six times per year (31 January, 15 February, 28 

February, 15 March, 31 March and 15 April) since the beginning of 1954. These data were 

not subjected to a previous quality control. 

In order to have the highest density of ground stations and to create a complete and homogeneous 

database, the chosen common study period is from 1 January 1981 to 31 December 2010. It was not 

possible to use the maximum length of records available because starting from the 2010s in New 

Brunswick, several ground stations were neglected. Afterwards, a preliminary analysis was 

conducted on the whole dataset, and in this regard, only climatic series with less than 20% of gaps, 

calculated over the whole period, and no more than 6 consecutive days without records were 

analysed (Göktürk et al., 2008; Acquaotta and Fratianni 2014). Subsequently, the snow depth values 

recorded by the NCDA and the SSD were analysed to remove incorrect data, such as snow data < 0 

cm (Nigrelli et al., 2018; Fortin and Hétu, 2014). Daily snow depth values inferior to 1 cm were 

deleted in order to prevent any errors due to the sensitivity of the instrumentation (Wang et al., 

2010). In addition, the continuity of the selected daily series was checked and the monthly snow 

depths were calculated, and months with fewer than 80% of records were deleted (Isotta et al., 

2014; Giaccone et al., 2015). Subsequently, daily series of temperature and rain were checked. For 

this reason, errors due to data processing such as negative daily liquid precipitation amounts were 

deleted and both daily maximum and minimum temperatures were set for missing values when the 

maximum daily temperature is equal to or less than the minimum temperature. Next, temperature 

and precipitation outliers where identified and flagged. Rainfall record anomalies were observed, 

for example when the weekly accumulation is transcribed as the value of one day (Acquaotta et al., 

2018; Murara et al., 2018). Temperature outliers were observed by means of the standard deviation 
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thresholds, and all of the daily temperature data greater or lesser than the +/- fourth standard 

deviation were considered as potential outliers. The flagged outliers were compared with 

precipitation and temperature series from neighbouring stations (Klein Tank et al., 2009; Guenzi et 

al., 2017). A visual control was then performed, and daily precipitation and maximum and 

minimum temperatures were plotted. The analysis of these plots highlighted outliers and the 

variance of data (Aguilar et al., 2005). Moreover, daily precipitation values inferior to 1 mm in the 

series were deleted to prevent a set of small values that reflected changes in the measuring precision 

from influencing the recording (Wang et al., 2010).  

The data obtained is composed of 60 weather series from 1 January 1981 to 31 December 2010. The 

preliminary control, carried out on selected stations, evidenced that no negative snow depth values 

were observed for the SSD and NCDA networks. Thereafter for the NCDA the quality control has 

highlighted for each series made of 10857 days of record, an average of 2 days with maximum 

temperature below minimum and less than a day with negative rainfall. The series also showed 

continuity for all the climatic variables and over the 1981-2010 period an average of 9% of gaps 

was observed for the automatic network, while 15% of snow depth gaps has been detected for the 

manual network. 

4 Materials and methods 

4.1 Spatial distribution  

In order to study the spatial and temporal distribution of precipitation, temperature, and snow depth, 

a geostatistical approach was adopted. First, for the annual precipitation, mean temperature, and 

monthly snow depths, a spatial interpolation with a 200 m resolution was performed on a regular 

grid, which had the following vertices, expressed in cartographic coordinates: WGS84 UTM-19N: 

North 5358768 and South 4935492, East 386699 and West 1146613 (Boisvert and Deutsch, 2011). 

Since the topography is smooth and the sample of points is dense, and the elevation is between 100 

and 400 m asl, the ordinary kriging (OK) method was adopted using the Automap package written 

in R language (Hiemstra and Hiemstra, 2013). We used OK in this study to estimate the liquid 

precipitation, temperature, and snow depth amounts in unknown points, based on the spatial 

relationships among the surrounding stations (Ahmed et al., 2017; Bernhardt et al., 2017).  

4.2 Cluster analysis  

In order to perform the quality control of snow data, the province was divided into three sub-

climatic areas (or clusters) by a cluster analysis (CA). This approach classifies objects with the 

same characteristics in the same cluster, while dissimilar objects are assigned to different groups. In 

literature are described two different type of clustering: hierarchical and non-hierarchical. In the 

present study, a hierarchical agglomerative cluster analysis was performed for the monthly rain, 
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temperature, and snow depth using the Ward.D2 method in the R pvclust package (Baronetti et al., 

2018). Ünal et al., (2003) evidenced that the hierarchical clustering is more suitable for 

climatological data, where their distribution is not a priori assumed. In fact, this approach starts with 

N cluster, the minimal distance between the groups is calculated and the two nearest clusters are 

merged. Subsequently, this step is repeated until only one cluster remains. The R pvclust package 

described in Suzuki and Shimodaira (2015), tests the significance of each group; in fact, the cluster 

analysis output is a dendrogram with a confidence P-value at each node expressed in percentage. 

The P-values ranges between 0% and 100% and for clusters with p-values above 0.95, the 

hypothesis that "the cluster does not exist" is rejected with a significance level of 0.05. In this 

regard, all groups with a p-value above 95% are considered clusters. The climatic analysis was then 

performed for each area, in which the annual range of liquid precipitation, temperature, and snow 

depth for the cold season months was calculated. The number of rainy days with precipitation ≥ 1 

mm, the liquid precipitation density, and the number of snowing days with snow ≥ 1 cm were also 

detected. In order to perform the quality control, the threshold of daily maximum and minimum 

temperatures and rain amounts that characterise a snowfall event were calculated for each winter 

month (Terzago et al., 2012; Fratianni et al., 2015). 

4.3 Quality control 

Finally, the quality control on the daily snow depth series recorded during the January to April 

period was performed for each climate area. For each cluster, the daily snow depth thresholds that 

characterise potential snow depth outliers were identified. The thresholds by percentile were 

calculated on a daily scale and the outliers were individuated. In this regard, all the daily values 

above the 95th percentile were considered outliers (Acquaotta et al., 2016). Then, once the daily 

thresholds were calculated, the extreme events recorded in each series were detected, and in order to 

establish if these detected events were suspicious or wrong data, the maximum and minimum 

temperatures and rainfall observed during the analysed events were compared with daily 

precipitation and temperature thresholds observed during a snowfall event, as previously defined 

(Fortin, 2010). Afterwards, since snow has a high variability, sudden day-to-day changes in snow 

depth (ΔHS) between the questionable event and the previous day were also checked. The highest 

annual snow depth record observed during the 1981-2010 period was analysed for each snow series, 

and a ΔHS threshold of 45 cm was established (Kelly et al., 2003; Durre et al., 2010). Finally, the 

detected daily snow depth threshold (95
th

 percentile) was applied to the manual SSD snow depth 

series in order to check for any systematic and random errors, and the outliers were highlighted. 

Moreover, the under control snow depths were compared with snow depths observed in the nearby 

stations, and a 30 cm threshold was established (Goodison et al., 1978; Hiemstra et al., 2006).  
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A second step of quality control was carried out on the manual series, comparing the temperature 

and liquid precipitation values recorded in the surrounding stations during the analysed events with 

daily precipitation and temperature thresholds characterising a snowfall episode. In this study, the 

selection of the nearby stations was based on four parameters: the difference in elevation (<200 m), 

the distance (20 km), the same exposure, and the same position area (open, mixed or forest, 

Biancotti et al., 2005; Acquaotta et al., 2016). Due to the difficulty of snow cover accuracy 

measurement, solid precipitation data are still beset with significant errors. Within the Canadian 

literature, the studies of Folland, (1988), Yang et al. (1999), Mekis and Vincent (2011), and 

Rasmussen et al. (2012) found an underestimation of daily snow depth records in wintertime 

because of the deflection of snowflake trajectories by effect of the airflow. In this study, we 

associated a percentage of underestimation to the daily snow depth threshold. This was calculated 

for each cluster as the maximum difference between the cleaned snow depth values recorded in the 

automatic series and the amount of snow depth observed in the surrounding corrected manual 

stations. 

A flowchart of the methodology is provided in the supporting information section (Figure S1)  

5 Results  

5.1 Spatial distribution 

The spatial interpolation of annual rain and mean temperature (Figure 2) during the cold season 

months of the 1981-2010 period shows that the climate of New Brunswick is mostly influenced by 

two different air masses, and a clear north to south gradient was observed in liquid precipitation, 

temperature, and snow depth (figure 3). The climate of the south-west central and coastal area is 

mitigated by the effects of the moist and mild Atlantic air; this area is the warmest and the rainiest 

with winter precipitation over 350 mm and mean annual temperature between -3 °C and -1 °C. 

Furthermore, a dry and cold area exists in the north-western part of the region, near the border with 

the province of Quebec and the state of Maine. Here, the climate is mostly influenced by dry and 

cold continental air masses, and recorded annual winter precipitation 100 mm below that of the 

southern region, while the mean temperature is below -5 °C. A central and transitional area in the 

central north-east forested plateau of NB is also evident. Annual winter precipitation amounts are of 

250-300 mm and the mean temperature is between -5 °C and -3 °C. 

The spatial snow depth interpolation developed for each cold period month indicates a high 

correlation with precipitation and temperature distribution, featuring a north to south gradient 

(Figure 3). Figure 3a indicates that in January, similar values of snow depth (45-50 cm) are 

observed for all the regions, although slightly higher amounts are recorded in a few stations in the 
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north-western region (50-55 cm). During February (Figure 3b) and March (Figure 3c), the greatest 

amounts of snow depth are reached, and three different areas are then well defined: 50-65 cm in 

February and 45-55 cm in March are recorded in the driest and coldest part of the north-west. 

Meanwhile, 35-40 cm are observed in February and 15-25 cm in March are observed in the warmest 

and wettest part of the south-east. Between the south and north areas, a transitional zone is detected 

and 40-50 cm of snow depth is observed in February and 25-40 cm in March. The spatial 

distribution during April (Figure 3d) shows a decrease of snow depth to less than 10 cm in southern 

NB while at the same time, in the northern part, the snow depth was much more considerable at 20-

30 cm. 

5.2 Cluster analysis 

The spatial distribution of rainfall, temperature, and snow depth was improved through the cluster 

analysis (Figure 4). The application of this method delineated the three most significant climatic 

areas in NB. The climate analysis shows that the rainiest and warmest area is CA2 (Table 1), which 

includes the stations located in the south-central. This area is mostly influenced by air masses from 

the North Atlantic Ocean and the annual maximum temperature observed during the cold period is 

1.8 °C while the minimum is -8.5 °C. The annual winter precipitation is between 464.2 mm and 

329.0 mm with an annual precipitation density of 9.5 mm/day, and the snow depth is between 12.6 

cm and 25.8 cm. The number of snowy days recorded during the cold months is reported in Table 1; 

the analysis indicates that in January and February, six days are observed, compared to five in 

March and two in April. Table 2 shows that in CA2, a snowfall event is characterised by a daily 

maximum temperature between -1.5 °C and -6.5 °C in January and between -1.0 °C and -4.5 °C in 

February, and the observed precipitation is solid. In fact, no rainfall was recorded during these two 

months. Considering that in March and April, the maximum temperatures recorded during a 

snowfall are above zero (Table 2), a snow melt due to the presence of liquid precipitation could 

occur. 

The driest and coldest area, CA1 (Table 1), is located near the mountain chain in the north-west; the 

annual winter precipitation is between 389.8 mm and 234.7 mm and the annual precipitation density 

is 7.7 mm/day. In this area, the highest amounts of snow depth are recorded, and they are between 

60.3 cm and 70.9 cm. The climatic characterisation also shows that the number of snowy days is 

eight in January, decreasing to six in February, and five in March. The lowest values are recorded in 

April, with three days (Table 1). The annual cold period maximum temperature recorded in this area 

is -1.1 °C and the minimum is -12.3 °C. In the coldest area, the climate analysis also demonstrated 

that daily snowfall events are characterised by maximum temperatures below zero during January (-
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6.7 °C and -13.0 °C), February (-4.0 °C and -9.0 °C), and March (-2.3 °C and -3.5 °C), while in 

April, the temperature is slightly under or above the freezing point (1.5 °C and -1.3 °C).  

Just as in CA2, rain was absent throughout all the months (Table 2). The CA3 (Table 1) covers the 

Central Highlands and the results are between those of CA1 and CA2. Rainfall amounts between 

331.3 mm and 251.0 mm are recorded, and the annual precipitation density is 9 mm/day, while the 

snow depths are between 20.5 cm and 60.5 cm. The number of snowy days in the transitional area is 

seven days in January, five days for both February and March, and three days in April. The cold 

season maximum temperature recorded in this area is 0.1 °C, while the minimum is -10.8 °C. The 

climate analysis also highlighted that in CA3, daily snowfall events are characterised by maximum 

temperatures below zero in January (-3.6 °C and -8.2 °C), February (-2.0 °C and -8.0 °C), and 

March (-0.3 °C and -3.0 °C), while in April, the maximum temperature is above zero (3.0 °C and 

0.0 °C). Like for CA2, no rain was recorded during this period (Table 2).  

5.3 Quality control  

Table 2 presents the daily snow depth thresholds for extreme events (95
th

) observed for each cold 

season in the three areas. For the daily automatic snow depth, the quality control indicates no 

outliers in January and February, but in March, 40% of the observed outliers were flagged as 

suspicious events for CA2 and 23% for CA3. This value increased in April, with 33.7% of outliers 

flagged as suspicious in CA2 and 22.7% in CA3.  

The quality control performed on the manual series highlighted that the analysed episodes could be 

due to random errors in the measurement and they were flagged and replaced with NA. In fact, in 

January, no outliers were detected in the south-eastern (CA2) and north-western zones (CA1), but 

25% of all the outliers were replaced with NA in the central transitional area (CA3). On the other 

hand, in February, 30% of the outliers were flagged in the CA1. In March, the 21% of the observed 

outliers were flagged as errors in CA1 and 16% in CA3. Finally, the quality control performed in 

April in CA3 has led to 10% of outliers being replaced with NA. 

5.3.1 Study case 

The quality control by means of percentiles was applied to all sets of weather stations, but we 

decided to give a detailed report of the results of one automatic station and one manual station 

located in CA3. The selected automatic station is Woodstock (611932, 5113957 WGS84 UTM-

19N). The station presents all the required features for the application of the quality control. Indeed, 

it is situated in Carleton County, in a homogeneous area along the border with the forest on the right 

bank of Saint John River, at 153 m asl, and it is surrounded by both automatic and manual 

neighbouring stations. The first step of quality control indicates that no snow depth values below 

zero were observed, and the series shows continuity in the snow depth amounts over several years 
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with a 6% of gaps. The quality control carried out in January shows that for the CA3 in New 

Brunswick, the snow depth threshold that characterises a possible outlier is 85 cm (Table 2). For the 

Woodstock station, the application of the snow depth threshold highlighted four outliers in January. 

The results of the quality control showed that these episodes are extreme events and they were not 

flagged. In fact, Table 3 highlighted that for all the episodes, the observed climatic conditions 

suggested that these events are correct, in fact both maximum and minimum temperatures recorded 

during the extreme events are in the daily range that describes a snowfall event, the liquid 

precipitation is zero and the ΔHS is below the threshold of 45 cm. As concerns the quality control 

performed in February, the detected threshold for an outlier event recorded in CA3 is 90 cm (Table 

2) and three events are observed for the Woodstock station. The results of the quality control show 

that no one of the highlighted episodes has been flagged as error. The quality check applied in 

March demonstrates that the snow depth daily threshold recorded in CA3 is 85 cm and four outliers 

are detected in the Woodstock snow cover series (Table 2). The quality control indicates that one of 

the four outliers is a dubious snow depth event which is recorded 9 March 2003. Unlike in January 

and February, the climatic conditions recorded during this episode diverge from what is recorded 

during a snowfall event. In fact, a liquid precipitation of 2 mm was recorded (Table 3) and the 

maximum temperature of 3.0 °C is above the temperature range threshold (-0.3 °C and -3.0 °C, 

Table 2) was observed. Specifically, the presence of a maximum temperature above 0 °C supposes a 

melting process in the snow cover, which had increased by 2 cm (ΔHS). Finally, for April in CA3, 

the detected daily snow depth threshold is 55 cm, and for the Woodstock station, there are three 

outliers, and one of which was t flagged as suspicious. In fact, for the 1 April 2008, the climatic 

conditions recorded diverge from what is observed during a snowfall event (Table 3). 

Consequently, during this event, a liquid precipitation of 9.5 mm was recorded and the maximum 

temperature reached was 8.5°C, which is 5.5 °C above the temperature range of a snowfall event 

(Table 2). The event was flagged suspicious, because even if the maximum temperature observed 

the previous day was above 0 °C (Table 2) and a snow cover melt was assumed, an increase of 

snow depth of 8 cm was recorded.  

Subsequently, the quality control of a manual series was performed. The selected station is 

Becaguimec (631080, 5121354 WGS84 UTM-19N). It is located in proximity to the previously 

quality controlled Woodstock station, in a homogeneous area of Carleton County, in the forest on 

the right side of Saint John River, at 137 m asl. The quality control of this station was carried out by 

means of the observation of three nearby stations: Woodstock, Gibson Millstream, and Mapleton. 

Table 4 reports the characteristics of each station and shows that all the stations have the same 

exposure, the difference of elevation (80 m) is below the fixed threshold of 200 m, and the distance 
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to Becaguimec is below 20 km. Also, all the stations are situated in the forest of Carleton County on 

the right side of the Saint John River. The quality control on the manual series was carried out, 

identifying the suspect events with the application of the daily snow depth thresholds previously 

detected. In January, two outliers were highlighted. The quality control gives evidence that no of 

them were flagged as error. Indeed, the snow depth difference with the nearby stations is below the 

threshold of 30 cm (Table 5), and the values of liquid precipitation and temperature recorded by the 

two automatic stations (Woodstock and Mapleton) suggest that a snowfall event was recorded 

(Table 6). Similarly to January, no outliers were flagged as error in February and March. In April, 

the quality control highlighted four outliers, and two of them were marked as error and replaced 

with NA: 14 April 1995 with 69.6 cm and 14 April 2008 with 73.7 cm. Indeed, the comparison of 

the snow depth values recorded during the two episodes with those of the surrounding stations 

(Table 5) expresses a difference in snow depth of more than 30 cm. On 14 January 1995, the 

observed event was 69.6 cm, but in Woodstock, Mapleton, and Gibson Millstream, 0 cm, 5 cm and 

30.1 cm were recorded, respectively. The climatic conditions observed in Table 6 also show that 

during the detected episode, in the two automatic series (Woodstock and Mapleton), maximum and 

minimum temperatures were above the daily snowfall threshold in March (Table 2). For instance, 

on 14 April 1995 in Woodstock, a maximum temperature of 4.5 °C was recorded instead of the 

fixed threshold (Table 1) and a minimum temperature of 2.7 °C above the calculated range was 

observed (Table 2). Also, in both the automatic stations, a liquid precipitation of 13.6-13.2 mm was 

individuated. The detection of the two errors did not influence the snow depth trend (-0.007), but 

led to changes in the monthly snow depth amount, affecting the results of the climatic analysis. In 

fact, before the QC in April, 27.4 cm were recorded, as opposed to 24.5 cm after the QC. 

Once the quality control was performed on all the dataset, the percentage error associated to the 

automatic station for each climatic area was calculated. The results of this study confirmed the north 

to south gradient, and as concerns the transitional area (CA3), the results highlighted that 32% of 

error in the measurement of extreme events could be applied to the fixed threshold. For instance, for 

Woodstock, the comparison with the surrounding stations indicates that with Becaguimec, the 

maximum percentage error is recorded on 15 March 1994 with 25.1%. The highest error is recorded 

in the northern area (CA1) with 35%, and the lowest is recorded in the southern part (CA2) with 

15%. These results suggest a strong relation between the two different air masses that affect the 

study area. In particular, the cold and dry continental airflow determined the highest uncertainty in 

the record of snow depth values. 

6 Discussion 
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In this study, a quality control approach for snow depth data was performed, and the results indicate 

that the proposed quality control is mostly based on a high-resolution climate analysis. The spatial 

and temporal distribution of rainfall, temperature, and snow depth during the cold months was 

analysed and the daily conditions that characterise a snowfall event were estimated and used as 

thresholds. From the spatial analysis, as observed by Vincent et al. (2015) and El-Jabi et al. (2016) 

for all the Canadian territory, a north to south climatic gradient was displayed due to two airflows: 

continental and Atlantic. Those effects determined the detection of three different climatic sub-

areas. First, there is the south-central area, which according to the Groenewoud classification (1984) 

is the south-central territory of New Brunswick, and corresponds to the east coast and the Southern 

Uplands. This is the warmest and rainiest sector of all New Brunswick, and low values of snow 

depth observed are probably linked to the positive mode of the North Atlantic Oscillation (NAO) 

that affects the greater part of southern Canada (Bonsal et al., 2001; Brown, 2010). As for the 

northern area (CA1), it is influenced by the dry and cold continental air mass and it is characterised 

by low temperature and liquid precipitation rates. In this area, the highest amount of snow depth 

was observed. In fact, Zhang et al. (2007), Min et al. (2008), Brown (2010) and Fortin and Hétu 

(2014) found an increase of snow cover in areas around the 55°N, which is linked to NAO‘s 

negative mode. The climatic characterisation also demonstrates that even if different amounts of 

snow depth in the three climatic areas are recorded, the number of snowy days recorded in the three 

clusters are almost the same. In particular, the snow fall events are more frequent during January 

and February, while the lowest amounts are observed in April.  

In the literature, several methods of quality check of snow cover values are described. For instance, 

Hantel et al. (2000), Laternser and Schneebeli (2003), Fazzini et al. (2004) and Castebrunet et al. 

(2012) developed different quality controls for the daily snow cover series located respectively in 

Austria, Switzerland, Italy, and France. All the methodologies are established in order to detect any 

error and homogeneities in the daily snow depth series without the observation of other 

climatological variables, detecting several skiability thresholds. As concerns Canada, Brown and 

Braaten (1998) developed, from daily snow depth series, a procedure of quality control at daily and 

monthly scales which is actually used by the Canadian government. The method is based on the 

daily comparison of snow cover values and the observation of other climatic variables. Unlike from 

what is observed in the literature, our proposed methodology of quality control from daily snow 

depth series permits to check the goodness of manual snow cover series with few records per year. 

The application of the procedure of quality control carried out on the daily snow depth values 

highlighted the importance of previously developed climatic characterisation. In fact, the 

application of the daily snow depth thresholds gives evidence of several outliers, but the 
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comparison of liquid precipitation and temperature observed during the episodes with the daily 

climatic thresholds detected during a snowfall event was useful to observe that in January and 

February, none of them were flagged as suspicious and they were considered as extreme episodes. 

In fact, in January, the detailed analysis of the monthly snow cover distribution shows that in all of 

the New Brunswick territory, the same snow depth values were reached. In their studies, Fortin 

(2010) and Sospedra-Alfonso et al. (2014) explained that this phenomenon is linked with the snow 

cover formation, because seasonal snow covers normally start to settle down in January from a 

series of winter storms poor in liquid precipitation occurring over the whole area, but the spatial 

distribution is modified in the following months by the action of several climatic events, such as 

freeze-thaw cycles, heavy snowfalls or rain-on-snow events that can alter the results in different 

areas. As concerns March and April, the analysis indicates that all the highlighted episodes could 

not be considered as errors. In fact, we assume that they were snow mixed with rain events coherent 

with the measurements recorded in the neighbouring stations, that apparently could be considered 

outliers. In this regard, they were flagged as doubtful. In the literature, Diro et al. (2018) explains 

the link between snow mixed with rain episodes and negative ENSO values as detected by the 

Climate Prediction Centre (CPC) in 1982, 1995, 2001, and 2008. According to the international 

literature (Compo et al., 2001; Eichler and Higgins, 2006; Zhang et al., 2014; Liu et al., 2017), these 

periods are characterised by high snow depth values due to the effects of La Niña, and the presence 

of rain during snowfall events can produce snow melt and ice jams during the months of March and 

April (Lee et al., 2018). The quality control performed on the manual series, due to the application 

of previously observed daily snow depth thresholds and the comparison with the values recorded in 

the surrounding stations, highlighted that the developed approach was able to detect random errors 

in the manual series with few records per year. Unlike what was observed for the automatic series, 

the detected episodes were flagged as errors and they were replaced with NA (missing). This 

hypothesis was further confirmed by the ―Modeled Snow Depth Forecast‖ developed by the 

National Operational Hydrologic Remote Sensing Center 

(https://www.nohrsc.noaa.gov/interactive/html/map.html), that did not record extreme snow depth 

episodes in the detected days. These episodes are also not coherent with the snow depth values 

recorded by the surrounding stations. Finally, as shown in this study, the measurement of snow data 

depends on the different techniques adopted. Solid precipitation is particularly difficult to measure 

accurately, in fact several authors have analysed the problem of the underestimation of automatic 

stations in Canada. Goodison (1978) found an underestimation of 30% over all of Canada, while 

Wang et al. (2017) documented how Environment and Climate Change Canada developed the 

adjusted daily rainfall and snowfall dataset. The adjustment of daily snowfall data consists in the 
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conversion of snowfall to its water equivalent using a previously detected snow water equivalent 

ratio map for Canada. As observed in our study, results show that the highest underestimation was 

observed in the northern part of Canada (more than 25%), against less than 10-15% in the south of 

Canada.  

Conclusion 

Among the national and international papers focused on the quality control of daily snow data series 

using the comparison with several variables such as temperature, precipitation, and wind, this study 

proposes to develop and test a new procedure that permits to check the goodness of snow depth 

series collected at different time scales. Due to the lack of snow cover information and the low 

density of ground stations in New Brunswick, the application of this method makes it possible to 

not only use the quality checked daily values managed by Environment and Climate Change 

Canada, but also analyse snow depth series located in remote areas. In fact, the application of the 

described methodology, through the detection of sub-climatic areas, allows us to identify suspicious 

snow depth events without a high density of nearby stations. The described procedure also permits 

to increase the spatial resolution of snow depth values with the observation of snow cover data 

collected not only by the network managed by Environment and Climate Change Canada, but also 

by public and private networks, such as the Snow Survey Database, with few records per year. The 

results also demonstrate that this methodology is more suitable for the regions as the Appalachian 

mountain chain in North America, the Scandinavian Mountains, the Ural Mountains in Russia, and 

the Cambrian Mountains in Scotland with low elevation ranges and smooth surface. The benefits of 

this study are numerous. For example, in New Brunswick, a better understanding of the snow 

distribution is important for the management of water resources, whether it be for the forecasting of 

spring floods or for the hydropower production. The proposed method is also easily transferable to 

neighbouring provinces (Nova Scotia, Prince Edward Island, Quebec) or elsewhere, especially 

where measurement networks are well established. 

Future work will also go into testing this methodology for European study areas such as the Alps 

mountain range, where a dense automatic network managed by public and private authorities is 

available. Performing this methodology in these areas, which are largely devoted to winter tourism 

due to the high presence of ski resorts, can contribute to a better understanding of spatial and 

temporal evolution of snow cover as an indicator of climate change.  
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Figure 1:Study area and location of the meteorological stations used in this study in the New Brunswick 
region (Canada). The selected stations belong to the Snow Survey Database (SSD) and National Climate 

Data Archive (NCDA). SSD are represented as triangle and they are 30, while NCDA station are 30 and they 
are shown as black rhombus. The Digital Elevation Model ranges between 0-900 m a.s.l. 
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Figure 2: Spatial interpolation of 30 NCDA (triangles) and 30 SSD (rhombus) stations during the 1981-2010 
reference period. a) Annual rainfall ranging between ≤250 - 400 mm (b) Annual mean temperature ranging 

between ≤-5 and -1°C. 
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Figure 3: Spatial interpolation of 30 NCDA (triangles) and 30 SSD (rhombus) stations of annual snow depth 
in (a) January, (b) February, (c) March, (d) April recorded during the 1981-2010 reference period. Snow 

depth ranges between ≤10 - 65 cm. 
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Figure 4: Classification of the New Brunswick province into three different sub-climatic areas: CA1 located at 
the north sector (triangles) consists of 12 stations; CA2 in the south sector (circles) composed by 18 

stations; CA3 the transitional sector (pentagons) made up of 30 stations. The Digital Elevation Model ranges 
between 0-900 m a.s.l. 
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Table 1: Climatic areas features: for each group the maximum and minimum rain, rainfall density, 

maximum and minimum temperature and snow depth, number of days with precipitation >1 mm and 

snow depth trends are reported. The statistical significance of monthly snow depth trends was also 

highlighted. A p = 5% significance level was used for the Mann-Kendall test. In bold are reported the 

monthly snow depth trend statistically significant.

 CA1 CA2 CA3

Rain max (mm) 389.8 464.2 331.3

Rain min (mm) 234.7 329.0 251.0

Rain density (mm/day) 7.7 9.5 9.0

Tmax (°C) -1.1 1.8 0.1

Tmin (°C) -12.3 -8.5 -10.8

Snow depth max (cm) 60.3 25.8 60.5

Snow depth min (cm) 70.9 12.6 20.5

n. snowy days January 8 6 7

n. snowy days February 6 6 5

n. snowy days March 5 5 5

n. snowy days April 3 2 3
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Table 2: Daily snow depth threshold (HS) that characterise a suspicious event (95th), and the daily 

maximum (Tmax), minimum (Tmin) and rainfall (Rain) range that characterise a snow fall event 

during the cold season months (January-February) for each climatic area

  Tmax (°C) Tmin (°C)

  

HS (cm)

Max Min Max Min

Rain (mm)

January 108.7 -6.7 -13.0 -16.8 -26.5 0

February 137.4 -4.0 -9.0 -12.0 -16.8 0

March 160.0 -2.3 -3.5 -13.0 -14.0 0

CA1

April 144.7 1.5 -1.3 -5.2 -8.3 0

January 46.0 -1.5 -6.5 -10.0 -19.0 0

February 67.1 -1.0 -4.5 -6.0 -14.4 0

March 70.0 2.8 -0.7 -1.9 -6.5 0

CA2

April 47.8 4.0 1.0 -2.0 -3.8 0

January 85.0 -3.6 -8.2 -13.0 -21.5 0

February 90.0 -2.0 -8.0 -7.5 -15.5 0

March 85.0 -0.3 -3.0 -3.8 -10.0 0

CA3

April 55.0 3.0 0.0 -0.7 -6.1 0
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Table 3: Extreme events climatic features recorded in the quality controlled automatic station in CA3: 

Woodstock. Tmax= maximum temperature (°C), Tmin= minimum temperature (°C) and Prec= liquid 

precipitation (mm), HS= snow depth (cm) and ΔHS= daily snow depth difference (cm). In light grey 

are the suspicious episodes.

  Tmax Tmin Prec HS ΔHS

01/24/1981 -2.5 -12.0 0 90 5

01/06/1986 -7.0 -14.0 0 105 25

01/19/1987 -6.0 -21.5 0 89 12

January

01/18/1994 -5.5 -17.0 0 92 44

02/10/1982 -5.5 -9.5 0 95 10

02/01/1987 -5.5 -16.0 0 96 11

February

02/24/2009 -4.0 -8.5 0 120 30

03/06/2003 -7.5 -12.0 0 87 25

03/09/2003 3.0 -7.0 2 86 2

03/02/2008 -4.5 -8.5 0 90 22

03/13/2008 -5.5 -13.5 0 89 9

March

03/20/2008 -2.0 -4.0 2 87 2

04/08/1982 -3.5 -7.5 0 65 20

04/01/2001 0.0 -6.0 0 72 27

April

04/01/2008 8.5 -1.0 9.4 78 8
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Table 4: Characteristics of the selected stations in CA3, Becaguimec (BECB3) is the quality 

controlled manual station. Mapleton (6197), Woodstock (6286) and Gibson Millstream (GIBB3) are 

the nearby stations. ID= code of the station, E= elevation expressed in meters, Asp= Aspect, D= 

distance of the nearby station to Becaguimec expressed in kilometres and L= location.

. 

 ID Type E (m) Asp D (Km) L

Becaguimenc BECB3 Manual 137 S 0 Forest

Mapleton 6197 Automatic 167.6 S 8 Forest

Woodstock 6286 Automatic 153 SE 18 Along the forest

Gibson 

Millstream GIBB3 Manual 90 SE 20 Forest
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Table 5: Snow depth values recorded in the nine observed extreme events in Becaguimec (BECB3), 

and the neighbouring stations: Mapleton (6197), Woodstock (6286) and Gibson Millstream (GIBB3). 

DHS=difference of snow depth (in cm) observed in the extreme event with the one recorded in the 

surrounding station. Highlighted in light grey are the outliers.

Snow Depth Values BECB3 6197 6286 GIBB3

01/31/1981 84.6

DHS

NA

NA

80

4.6

63

21.6

January

01/31/1998
87.1

DHS

79

8.1

100

12.9

72.1

15

February 02/28/1982
106.1

DHS

NA

NA

120

14

89.9

16.2

03/15/1994 85.9

DHS

70

15.9

64

21.9

77.7

8.2

March

03/31/2008
85.1

DHS

NA

NA

80

5.1

71.1

14.8

04/14/1982 56.9

DHS

35

21.9

28

28.9

59.7

2.8

04/14/1995 69.6

DHS

5

64.6

0

64.6

30.1

49.5

April

04/14/2008
73.7

DHS

NA

NA

22

51.7

40.8

32.9
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Table 6: Extreme events climatic features observed in the two automatic stations Mapleton (6197) 

and Woodstock (6286). Tmax= maximum temperature (°C), Tmin= minimum temperature (°C) and 

Prec= liquid precipitation (mm).

January February March April

 01/31/1981 01/31/1998 28/02/1982 03/15/1994 03/31/2008 04/14/1982 04/14/1995 04/14/2008

 6197 6286 6197 6286 6197 6286 6197 6286 6197 6286 6197 6286 6197 6286 6197 6286

Tmax -7.5 -6 -2 -0.5 -2 -6 3 -1 NA -5 0 4.5 3 4.5 NA 6

Tmin -18 -24 -5 -8 -8 -13.5 0 1.8 NA -17.5 -3 -1 2 2 NA -1.5

Prec 0 0 0 0 0 0 0 0 NA 0 0 0 13.6 13.2 NA 0
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