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Anharmonic Vibrational States of Solids from DFT Calculations.
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2 avenue du Président Angot, 64053 PAU CEDEX 9, Pau, France
(Dated: April 26, 2019)

Two methods are implemented in the Crystal program for the calculation of anharmonic vibra-
tional states of solids: the vibrational self-consistent field (VSCF) and the vibrational configuration-
interaction (VCI). While the former is a mean-field approach, where each vibrational mode interacts
with the average potential of the others, the latter allows for an explicit and complete account of
mode-mode correlation. Both schemes are based on the representation of the adiabatic potential
energy surface (PES) discussed in Part I, where the PES is expanded in a Taylor’s series so as
to include up to cubic and quartic terms. The VSCF and VCI methods are formally presented
and their numerical parameters discussed. In particular, the convergence of computed anharmonic
vibrational states, within the VCI method, is investigated as a function of the truncation of the
expansion of the nuclear wavefunction. The correctness and effectiveness of the implementation is
discussed by comparing with available theoretical and experimental data on both molecular and
periodic systems. The effect of the adopted basis set and exchange-correlation functional in the
description of the PES on computed anharmonic vibrational states is also addressed.

I. INTRODUCTION

A reliable quantum-mechanical characterization of vi-
brational states of both molecular and solid systems is
relevant to a correct description of a variety of properties:
from their vibrational infrared and Raman spectroscopic
fingerprint to their thermodynamic features, from their
mechanical response to their non-linear optical proper-
ties, etc.1 In the context of first principles quantum-
mechanical simulations, when ab initio molecular dynam-
ics (AIMD) is not used because of its high computa-
tional cost and its lack of vibration mode resolution, the
description of the nuclear dynamics usually starts from
the use of the harmonic approximation,2–6 according to
which the nuclear potential assumes a quadratic form
with respect to atomic displacements and the atomic mo-
tion can be modeled in terms of a set of M indepen-
dent quantum harmonic oscillators vibrating at frequen-
cies ωi with normal coordinates Qi (with i = 1, · · · ,M).
Harmonic frequencies and corresponding normal modes
are nowadays routinely computed by most programs for
molecular and periodic quantum-mechanical simulations.

Within the Born-Oppenheimer approximation, in the
basis of normal coordinates, vibrational states are deter-
mined by solving the nuclear Schrödinger equation:

HΨs(Q) = EsΨs(Q) , (1)

where Ψs(Q) is the vibrational wavefunction of the s-th
vibrational state and Es the corresponding energy. By
setting the rotational angular momentum to zero and by
neglecting rotational coupling effects (note that while for
solids there are no rotational contributions to the vibra-
tional states, this assumption results in an approximation
for molecules, where Coriolis coupling is neglected,7–9 for

instance), the vibrational Hamiltonian operator in Eq.
(1) reduces to:

H =

M∑
i=1

−1

2

∂2

∂Q2
i

+ V (Q) , (2)

where V (Q) is the Born-Oppenheimer potential energy
surface (PES) in the basis of normal coordinates that we
have discussed at length in Part I of the paper.10 When
higher order terms are included in the potential, the de-
scription of vibrational states becomes more problematic
as vibrational modes couple together and therefore the
differential Schrödinger equation above is no longer sep-
arable in the normal coordinates.

Different approaches (of increasing complexity and ac-
curacy) can be used to solve it numerically. In partic-
ular, several methods have been developed to progres-
sively take into account the correlation among vibration
modes, through mode-mode couplings, which are for-
mally analogous to the hierarchy of wavefunction-based
methods in electronic structure theory.11,12 The vibra-
tional analog of the Hartree-Fock (HF) method is known
as vibrational self-consistent field (VSCF) approach: a
mean-field scheme where each vibrational degree of free-
dom interacts with an average potential over the other
modes.13–15 In analogy to the definition of dynamical
electron correlation, the vibrational correlation among
modes is defined as the difference between the exact vi-
brational states and VSCF ones. In electronic struc-
ture theory, the HF solution can be used as a starting
point to improve the description of the electronic wave-
function, passing from a single-determinantal to a multi-
determinantal representation by using either perturba-
tive (MP2, MP4, etc.) or variational (CC, CI, etc.) ap-
proaches. In the vibration theory, starting from the ref-
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erence VSCF state, the analog of the electronic Møller-
Plesset perturbation theory is known as vibrational per-
turbation theory truncated at n-th order (VPTn),16–18
the analog of the coupled-cluster family of methods is
the vibrational coupled-cluster approach (VCC),19,20 and
the analog of the configuration-interaction methodology
is the vibrational configuration-interaction (VCI), where
mode-mode couplings are treated exactly (at least in the
full-VCI limit).21–30

In this paper, we present the implementation in the
Crystal program31,32 of the VSCF and VCI methods
for both molecules and solids. In particular, this is the
first implementation of VCI for periodic systems. The
two methods are first illustrated from a formal point of
view and are then used to describe the vibrational states
of three simple molecular systems (water, methane and
formaldehyde) and two solids (the MgH2 magnesium hy-
dride and the low-temperature proton-ordered phase of
water ice, ice-XI). The effect of several parameters and
different strategies on the convergence of VCI results with
respect to the truncation of the VCI expansion of the
nuclear wavefunction is critically addressed. The effect
of the exchange-correlation functional of the DFT and
the basis set used in the description of the PES on the
computed anharmonic vibrational states of molecules and
solids is explicitly discussed. Finally, comparisons with
previously reported theoretical and experimental data
are discussed.

II. METHODOLOGICAL ASPECTS

In this Section, we present into some detail the formal-
ism of the VSCF and VCI methods for the calculation of
anharmonic vibrational states of molecules and solids.
As introduced in Part I,10 we consider a system with M
vibrational degrees of freedom (i.e. modes). Harmonic
normal modes are represented in terms of normal coordi-
nates Q1, Q2, · · · , QM . We note that normal coordinates
are perfectly defined even in cases where the harmonic
approximation does not provide a satisfactory descrip-
tion of the nuclear dynamics of the system. Atomic units
are used throughout the paper.

A. The Vibrational Self-Consistent Field (VSCF)
Method

The vibrational self-consistent-field (VSCF) method is
the vibrational analogue of the Hartree theory of elec-
tronic structure. At variance with electrons, vibrational
modes are distinguishable so that theM -mode wavefunc-
tion of a given vibrational configuration n does not need
to be antisymmetrized and can be written as a Hartree
product of one-mode functions (modals):

Φn(Q1, Q2, · · · , QM ) ≡ Φn(Q) =

M∏
i=1

φnii (Qi) , (3)

where n = (n1, n2, · · · , ni, · · · , nM ) is the vibrational
configuration vector of the quantum numbers of the M
one-mode functions. For each given vibrational state n,
the VSCF method consists in looking for the variation-
ally best form of the corresponding M one-mode func-
tions. This is achieved by requiring that the expectation
value of the full Hamiltonian,

En = 〈Φn|H|Φn〉 (4)

is stationary with respect to small variations in each of
the modals with the orthonormality constraint on the
modals:

〈φnii |φ
mj
j 〉 = δijδnm .

The Hamiltonian operator in Eq. (4) reads:

H =

M∑
i=1

Ti + V (Q) , (5)

where Ti = −1/2(∂2/∂Q2
i ) is the one-mode kinetic energy

operator, and where V (Q) is the Born-Oppenheimer po-
tential energy surface (PES) that we have discussed into
detail in Part I. In particular, we recall that the PES is
expanded in a Taylor’s series, centered at the equilibrium
nuclear configuration, in terms of atomic displacements
along normal coordinates. It proves useful to express the
Hamiltonian in the following way:

H =

M∑
i=1

hi + Vc(Q) , (6)

where hi constitutes the separable part of the full Hamil-
tonian for the i-th mode:

hi = −1

2

∂2

∂Q2
i

+
1

2
ω2
iQ

2
i +

1

6
ηiiiQ

3
i +

1

24
ηiiiiQ

4
i + · · · , (7)

and Vc(Q) is the coupling potential with all of those
terms of the PES involving high-order (cubic, quartic,
etc.) mixed energy derivatives with respect to two or
more modes.

From the variational procedure mentioned above, for
each vibrational state n, the optimal VSCF modal func-
tions can be obtained as eigenfunctions of the set of ef-
fective one-mode eigenvalue equations:

hneff,iφ
ni
i (Qi) = εnii φ

ni
i (Qi) for i = 1, · · · ,M (8)

where the one-mode effective Hamiltonian hneff,i is given
by:

hneff,i = hi + V n
eff,i(Qi)

= hi +

〈
M∏
j 6=i

φ
nj
j

∣∣∣∣∣∣Vc(Q)

∣∣∣∣∣∣
M∏
j 6=i

φ
nj
j

〉
. (9)

The effective potential V n
eff,i(Qi) above is clearly a func-

tion of just Qi because the coupling potential is av-
eraged over the modal wavefunctions of the remaining
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M − 1 modes. These are simple one-dimensional eigen-
value equations, which, however, are coupled because the
effective potential for any mode depends on the other
modal eigenfunctions. These coupled equations can be
solved with an iterative procedure starting from guess
modal functions, used to evaluate the effective poten-
tials. The eigenvalue equations are then solved and new
modal eigenfunctions and eigenvalues obtained. The pro-
cess goes on until convergence is reached.

The energy of the vibrational state n can then be ob-
tained as the expectation value of the converged wave-
function, which yields:

En = 〈Φn|H|Φn〉 =

M∑
i=1

εnii − (M − 1)〈Φn|Vc(Q)|Φn〉 .

In analogy with the Roothan linearization of the Hartree
equations, each of the one-mode eigenvalue equations in
Eq. (8) can be solved by matrix diagonalization by ex-
pressing the modals as a linear combination of basis func-
tions:

φnii (Qi) =

Nlev∑
ν=1

Cν,niψ
ν
i (Qi) . (10)

In our implementation, Nlev = 10 (as this ensures a
good description of all those vibrational states where each
mode hosts few quanta of excitation) and the basis func-
tions for the modals of the i-th mode are the eigenfunc-
tions of the corresponding harmonic oscillator (HO):

ψνi (Qi) =

( √
ωi√

π2νν!

) 1
2

Hν(ξi)e
− ξ

2
i
2 , (11)

whose corresponding eigenvalues are:

εν,i =

(
1

2
+ ν

)
ωi ,

and where the Hν(ξi) are Hermite polynomials of order ν
in terms of the frequency-scaled coordinate ξi = Qi

√
ωi.

The eigenfunctions of each harmonic oscillator are or-
thonormal and therefore satisfy the following condition:

〈ψνi |ψ
µ
i 〉 ≡

∫
ψνi (Qi)ψ

µ
i (Qi)dQi = δνµ . (12)

From the linearization in Eq. (10), the eigenvalue equa-
tion for each mode i in Eq. (8) can be expressed in the
following matrix form:

Hn
eff,iCi = CiEi ,

where Ei is the diagonal matrix of the eigenvalues
εn1
i , ε

n2
i , · · · , ε

nN
i , Ci is the matrix of the eigenvectors,

and Hn
eff,i is the effective Hamiltonian matrix whose ele-

ments are:(
Hn

eff,i
)
νµ

=

∫
ψνi (Qi)h

n
eff,iψ

µ
i (Qi)dQi

≡ 〈ψνi |hneff,i|ψ
µ
i 〉 . (13)

1. Evaluation of the Effective Potential

Let us discuss how the effective Hamiltonian matrix
elements in Eq. (13) can be evaluated. To do so, the
calculation of the effective potential V n

eff,i(Qi) in Eq. (9)
has to be discussed. Having this purpose in mind, let us
express the coupling potential Vc(Q) (i.e. the sum of all
mixed terms in the Taylor’s expansion of the PES; see
Part I) with the following compact notation:

Vc(Q) =
∑
t

ηt
∏
j

Q
ptj
j , (14)

where each term t of the PES has a Taylor coefficient ηt
and a product of normal coordinates of different modes
to different powers, under the constraint that for cubic
terms

∑
j ptj = 3, for quartic terms

∑
j ptj = 4, and so

on. The effective potential for the i-th mode can thus be
written as:

V n
eff,i(Qi) =

〈∏
j 6=i

φ
nj
j

∣∣∣∣∣∣Vc(Q)

∣∣∣∣∣∣
∏
j 6=i

φ
nj
j

〉

=
∑
t

ηt

〈∏
j 6=i

φ
nj
j

∣∣∣∣∣∣
∏
j

Q
ptj
j

∣∣∣∣∣∣
∏
j 6=i

φ
nj
j

〉

=
∑
t

ηtQ
pti
i

〈∏
j 6=i

φ
nj
j

∣∣∣∣∣∣
∏
j 6=i

Q
ptj
j

∣∣∣∣∣∣
∏
j 6=i

φ
nj
j

〉

=
∑
t

ηtQ
pti
i

∏
j 6=i

〈
φ
nj
j

∣∣Qptjj ∣∣φnjj 〉
=
∑
t

ηtQ
pti
i

∏
j 6=i

∑
ν,µ

Cν,njCµ,nj
〈
ψνj
∣∣Qptjj ∣∣ψµj 〉(15)

=
∑
t

XtQ
pti
i , (16)

where in the third passage the coordinate Qi has been ex-
tracted from the integral as the integration is performed
over the other M −1 coordinates and in the fifth passage
the expansion of the modal functions in terms of corre-
sponding harmonic eigenfunctions, as in Eq. (10), has
been exploited. The mono-modal integrals in the right
hand side of Eq. (15) can be calculated analytically as
discussed below in Section IIA 2.

In the end, from Eq. (16) we see that the effective
potential V n

eff,i(Qi) of the i-th mode is a sum of terms
with coefficients Xt of powers of the normal coordinate
Qi. The effective Hamiltonian of Eq. (9) can then be
written as:

hneff,i = hi +
∑
t

XtQ
pti
i ,

which, by recalling Eq. (7), can be given the following
compact expression:

hneff,i = −1

2

∂2

∂Q2
i

+
∑
r

XrQ
pri
i , (17)
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where the sum now runs over all the terms of the poten-
tial (diagonal and coupled). The effective Hamiltonian
matrix elements in Eq. (13) can thus be expressed as:

〈ψνi |hneff,i|ψ
µ
i 〉 = 〈ψνi |Ti|ψ

µ
i 〉+

∑
r

Xr〈ψνi |Q
pri
i |ψ

µ
i 〉 , (18)

where Ti is the kinetic energy operator and where the
mono-modal integrals in the last term are the same as
the ones in Eq. (15) and can be computed analytically
as discussed below.

2. Analytical Evaluation of Mono-modal Integrals

Let us discuss how the mono-modal integrals of Eq.
(18) can be computed analytically. We start by consid-
ering the integrals related to the potential energy terms.
Let us write them explicitly by recalling the expression
in Eq. (11) for the eigenfunctions of the harmonic oscil-

lator and by dropping the mode index i as here we only
consider mono-mode integrals:

〈ψν |Qp|ψµ〉 =
1

ω
p+1
2

( √
ω√

π2νν!

)1/2( √
ω√

π2µµ!

)1/2

×
∫ +∞

−∞
e−ξ

2

Hν(ξ)ξpHµ(ξ)dξ . (19)

These integrals can be easily calculated by exploiting the
following recursion property of Hermite polynomials:

Hν+1(ξ) = 2ξHν(ξ)− 2νHν−1(ξ) , (20)

and their ortho-normalization property:∫ +∞

−∞
Hν(ξ)Hµ(ξ)e−ξ

2

dξ =
√
π2νν! δνµ . (21)

As an example, we consider the case p = 1. From the
recursion relation of Eq. (20) we get (here we drop the
dependence on ξ of the Hermite polynomials for brevity):

〈ψν |Q|ψµ〉 =
1√
ωπ

(
1

2νν!2µµ!

)1/2 ∫ +∞

−∞
e−ξ

2

HνξHµdξ

=
1√
ωπ

(
1

2νν!2µµ!

)1/2 ∫ +∞

−∞
e−ξ

2

(
νHν−1 +

1

2
Hν+1

)
Hµdξ =

√
ν

2ω
δµ,ν−1 +

√
ν + 1

2ω
δµ,ν+1 , (22)

where in the last step we have exploited the orthogonality
condition of Eq. (21). It follows that only if µ = ν ± 1
these integrals are not null:

〈
ψν
∣∣Q∣∣ψν−1

〉
=

√
ν

2ω
;

〈
ψν
∣∣Q∣∣ψν+1

〉
=

√
ν + 1

2ω
.

By following the same strategy, analogous expressions
can be derived for different values of the power p of Q.
In particular, for p = 2 one gets that the only non-null
integrals are:

〈
ψν
∣∣Q2
∣∣ψν−2

〉
=

1

2ω

√
ν(ν − 1) ;〈

ψν
∣∣Q2
∣∣ψν〉 =

1

ω

(
ν +

1

2

)
;〈

ψν
∣∣Q2
∣∣ψν+2

〉
=

1

2ω

√
(ν + 1)(ν + 2) .

Because of the virial theorem, these last integrals for the
potential energy terms with p = 2 are particularly useful
as they also describe the only non-null kinetic energy

integrals in Eq. (18):〈
ψν
∣∣T ∣∣ψν−2

〉
≡ −1

2

〈
ψν
∣∣Q2
∣∣ψν−2

〉
;

〈ψν |T |ψν〉 ≡ 1

2

〈
ψν
∣∣Q2
∣∣ψν〉 ;〈

ψν
∣∣T ∣∣ψν+2

〉
≡ −1

2

〈
ψν
∣∣Q2
∣∣ψν+2

〉
.

B. The Vibrational Configuration Interaction
(VCI) Method

In analogy with the CI approach in electronic structure
theory, in the VCI method, the wave-function of each vi-
brational state s is written as a linear combination of
M -mode wave-functions of different vibrational configu-
rations in the form of Hartree products of modals as in
Eq. (3):

Ψs(Q) =

Nconf∑
n=1

An,sΦ
n(Q) , (23)

where the sum runs over Nconf configurations, each char-
acterized by a vibrational configuration vector n of the
quantum numbers of the M one-mode functions. We are
going to discuss later how the Nconf configurations are se-
lected (i.e. how the CI expansion is truncated). For each
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vibrational state s, the corresponding VCI wave-function
and energy are obtained by solving the corresponding
Schrödinger equation:

HΨs = EsΨs . (24)

The VCI method can be expressed in matrix form as
follows:

HA = AE , (25)

where A is the squared matrix containing, column-wise,
the coefficients An,s of the eigenvectors, E is the diagonal
matrix of the eigenvalues and H is the VCI Hamiltonian
matrix (of size Nconf ×Nconf), whose elements are:

Hm,n = 〈Φm|H|Φn〉 . (26)

The VCI method therefore reduces to the construction
and diagonalization of the VCI Hamiltonian matrix from
which all vibrational states are simultaneously deter-
mined. Let us now discuss how the VCI Hamiltonian
matrix is built. By expressing the Hamiltonian operator
as in Eq. (6), we have:

Hm,n =

〈
Φm

∣∣∣∣∣∑
i

hi

∣∣∣∣∣Φn

〉
+ 〈Φm|Vc|Φn〉 . (27)

Let us analyze the two terms in the rhs of the expression
above separately. By recalling the expansion in Eq. (3)
of the vibrational configuration wave-functions in terms
of modals, the first term becomes:〈

Φm

∣∣∣∣∣∑
i

hi

∣∣∣∣∣Φn

〉
=

〈∏
i

φmii

∣∣∣∣∣∑
i

hi

∣∣∣∣∣∏
i

φnii

〉

=
∑
i

〈∏
i

φmii

∣∣∣∣∣hi
∣∣∣∣∣∏
i

φnii

〉
=
∑
i

〈φmii |hi |φ
ni
i 〉
∏
j 6=i

〈φmjj |φ
nj
j 〉 .(28)

By recalling the expression (14) for the coupling potential
Vc(Q), the second term on the rhs of Eq. (27) can be
written as:

〈Φm |Vc|Φn〉 =

〈∏
i

φmii

∣∣∣∣∣∑
t

ηt
∏
i

Qptii

∣∣∣∣∣∏
i

φnii

〉
=
∑
t

ηt
∏

i (pti 6=0)

〈φmii |Q
pti
i |φ

ni
i 〉

∏
j (ptj=0)

〈
φ
mj
j |φ

nj
j

〉
,(29)

where in the last expression, for each term t of the cou-
pling potential, the first product runs over those modes i
whose powers pti differ from zero, and the second product
runs over those modes j whose powers ptj are zero.

Different choices are possible for the functions used
to describe the modals φnii . The convergence of the
computed vibrational states with respect to the number
of configurations Nconf used in the CI expansion of the

wave-function in Eq. (23) depends on this choice. This
aspect of the VCI method will be illustrated into detail in
Section IV. In this respect, the two most common choices
(both ensuring the orthogonality of the basis functions)
are the following:

1. Modals are taken to coincide with the correspond-
ing HO wave-functions given in Eq. (11):

φnii (Qi) = ψν=ni
i (Qi) . (30)

The resulting approach is often referred to as
VCI@HO.

2. Modals are taken to coincide with the solutions of
a previous VSCF calculation for a reference con-
figuration and are therefore expressed as a linear
combination of HO wave-functions as in Eq. (10):

φnii (Qi) =

Nlev∑
ν=1

Cν,niψ
ν
i (Qi) , (31)

where the coefficients Cν,ni are those obtained from
a converged VSCF calculation on the reference con-
figuration (typically chosen to be the ground state
configuration). The resulting approach is often re-
ferred to as VCI@VSCF.

Within the VCI@HO approach, the integrals in Eqs. (28)
and (29) reduce to:

〈φmii |hi |φ
ni
i 〉 ≡ 〈ψ

mi
i |hi |ψ

ni
i 〉 ; (32)

〈φmii |Q
pti
i |φ

ni
i 〉 ≡ 〈ψ

mi
i |Q

pti
i |ψ

ni
i 〉 ; (33)

〈φmjj |φ
nj
j 〉 ≡ 〈ψ

mj
j |ψ

nj
j 〉 = δmj ,nj , (34)

where the overlap integrals over HO functions in Eq. (34)
are Kronecker’s delta from the orthogonality condition in
Eq. (12), and where the mono-modal integrals in Eqs.
(32) and (33) can be computed by following the proce-
dure described in Section IIA 2.

In the VCI@VSCF approach, the integrals in Eqs. (28)
and (29) are evaluated as follows:

〈φmii |hi |φ
ni
i 〉 ≡

Nlev∑
ν,µ=1

Cµ,miCν,ni 〈ψ
µ
i |hi |ψ

ν
i 〉 ;(35)

〈φmii |Q
pti
i |φ

ni
i 〉 ≡

Nlev∑
ν,µ=1

Cµ,miCν,ni 〈ψ
µ
i |Q

pti
i |ψ

ν
i 〉 ;(36)

〈φmjj |φ
nj
j 〉 ≡

Nlev∑
ν,µ=1

Cµ,mjCν,nj 〈ψ
µ
j |ψ

ν
j 〉︸ ︷︷ ︸

δµ,ν

=

Nlev∑
ν=1

Cν,mjCν,nj ,(37)

where the mono-modal integrals on the rhs of Eqs. (35)
and (36) are the same needed in the VCI@HO approach
and are computed as discussed in Section IIA 2, and
where the overlap integrals in Eq. (37) reduce to sums
of products of appropriate VSCF coefficients.
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1. The Truncation of the CI Expansion

The VCI method relies on the expansion of the wave-
function of each vibrational state in terms of Nconf
Hartree product functions describing different vibrational
configurations, as introduced in Eq. (23). The number
Nconf of functions used in the VCI expansion is of critical
importance with regard to both the accuracy and compu-
tational cost of the method. Indeed, the larger Nconf the
better the description of the vibrational state but also
the larger the size of the VCI Hamiltonian matrix in Eq.
(27) to be diagonalized. In particular, this latter aspect
is the main limiting factor to the application of standard
VCI to the study of those systems where more than just
a few vibration modes need to be coupled.

Therefore, it is crucial to devise effective schemes to
reduce as much as possible the configurational space
used in the VCI expansion. We are going to intro-
duce two such schemes below, and to illustrate their ef-
fectiveness in reducing Nconf. Let us recall that each
vibrational configuration used in the VCI expansion is
characterized by a vibrational configuration vector n =
(n1, n2, · · · , ni, · · · , nM ), where the ni are the vibrational
quantum numbers of each of theM modes of the system.
The following strategies can be used:

1. The first strategy for the truncation of the VCI
expansion consists in including only those vibra-
tional configurations where there are a maximum
of Nquanta excitation quanta involved. Formally,
we can express this strategy as follows to say that
only those configurations satisfying the next condi-
tion are included in the expansion:

M∑
i=1

ni ≤ Nquanta ; (38)

2. A second strategy that we use to truncate the VCI
expansion consists in setting a maximum number
of modes Nmodes that can be simultaneously ex-
cited in a given configuration. In other words, only
those vibrational configurations where there are a
maximum of Nmodes with ni 6= 0 are used.

The effect of these two schemes on the truncation of
the VCI expansion is documented in Figure 1 for three
values of M (i.e. of the number of vibration modes of
the system). The figure reports the number of vibra-
tional configurations used, Nconf, as a function of the
two criteria for truncation introduced above: Nquanta
and Nmodes. It is seen that, while the number of con-
figurations remains very low (never exceeding 120 in the
explored range) for M = 3 (such as in molecular wa-
ter), Nconf can already become quite large for M = 9
(such as in molecular methane) depending on the trun-
cation of the expansion. Indeed, in this case, Nquanta = 7
and Nmodes = 5 imply Nconf > 10000. For M = 12,
the number of configurations increases further and, for

FIG. 1. Number of vibrational configurations Nconf used in
the VCI expansion of Eq. (23) as a function of the two cri-
teria of truncation introduced in Section II B 1: Nquanta and
Nmodes. The three panels correspond to three different values
for M (i.e. for the total number of vibration modes).

Nquanta = 7 and Nmodes = 4, gets to Nconf > 20000,
which leads to a VCI Hamiltonian matrix that becomes
problematic to be stored in memory and diagonalized.

Figure 1 clearly shows how crucial it is to truncate the
VCI expansion according to relatively low values of the
two criteria Nquanta and Nmodes. We are going to discuss
the explicit convergence of VCI vibrational states as a
function of Nquanta in Section IV. As regards Nmodes, let
us anticipate that, when working in terms of 2M4T or
3M4T representations of the PES, the VCI description is
converged for Nmodes = 3 and Nmodes = 4, respectively.

Apart from the aforementioned ways of truncating the
VCI expansion, we also anticipate that expressing the
modals in terms of functions obtained from a previous
VSCF calculation (as done in the VCI@VSCF approach)
allows to significantly reduce the size of the configura-
tional space compared to the expansion of modals in
terms of HO functions (as done in the VCI@HO ap-
proach). We are going to illustrate into detail this latter
aspect in Section IV.

III. COMPUTATIONAL DETAILS

All calculations are performed with a developmen-
tal version of the Crystal17 program, where the
methodologies formally presented in Section II have
been implemented.31 Five systems are considered: three
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molecules (water, H2O, methane, CH4, and formalde-
hyde, CH2O) and two solids (the MgH2 magnesium
hydride and the low-temperature proton-ordered phase
of water ice, Ice-XI). Apart from the formaldehyde
molecule, the other systems are the same studied in Part
I and therefore we refer to it for the description of the
adopted basis sets and computational parameters.10 For
formaldehyde, the same 6-31G∗ basis set used for the
other two molecules is adopted. We recall that, while all
vibration modes are considered for the three molecular
systems (i.e. M = 3 for water, M = 6 for formalde-
hyde, and M = 9 for methane in the construction of the
PES and in the VSCF and VCI calculation of the an-
harmonic vibrational states), a subset of modes is used
for the two solids, selected so as to span the whole spec-
trum of lattice vibrations. In particular, for MgH2, ten
vibration modes (M = 10) are considered (the smallest
having a harmonic vibration frequency of 210 cm−1 and
the largest of 1295 cm−1), and for Ice-XI, twelve modes
(M = 12) are selected (the smallest having a harmonic
vibration frequency of 274 cm−1 and the largest of 3226
cm−1).

In order to check the effect of the adopted basis set
on the description of the vibrational anharmonicity, we
have repeated all calculations for the three molecules with
an augmented correlation-consistent triple-zeta basis set:
aug-cc-pvtz.33,34 We have also repeated all calculations
for Ice-XI by using a triple-zeta basis set.35 When not
explicitly said otherwise, all calculations are performed
by using the hybrid B3LYP functional of the DFT.36 We
also investigate the effect of the adopted Hamiltonian
on the description of the anharmonicity of the systems
by using the Hartree-Fock (HF) method and different
functionals of the DFT (namely, PBE37 and PBE038).

The effect of those computational parameters that are
specific to the adopted anharmonic methodologies illus-
trated in Section II is explicitly addressed in Section IV.

IV. RESULTS AND DISCUSSION

Here we discuss several aspects of the methodologies il-
lustrated in Section II for the description of anharmonic
vibration states in molecules and solids: i) the conver-
gence of the computed vibrational states within the VCI
method as a function of the truncation of its expansion;
ii) the correctness of the current implementation of VCI
by comparison with previous molecular implementations;
iii) the effect of the quantum-mechanical methodology
and basis set used in the calculation of the potential
on the description of the vibrational anharmonicity of
molecular and extended systems; iv) the comparison be-
tween the VSCF and VCI description of anharmonicity;
v) the comparison between computed anharmonic states
and experimental data.

We start by discussing the convergence of VCI states
as a function of the truncation of the VCI expansion in
Eq. (23) according to the criteria introduced in Section

FIG. 2. Convergence of fundamental transition frequencies
(ni = 0 → 1) as a function of the truncation of the VCI ex-
pansion. The four panels correspond to four different systems
(from top: water molecule, methane molecule, solid Ice-XI,
solid MgH2). See text for an exact definition of all reported
quantities.

II B 1. Several factors affecting the VCI convergence are
explicitly discussed: i) the use of modals from a previous
VSCF reference calculation versus the use of harmonic os-
cillator eigenfunctions as modals (i.e. VCI@VSCF versus
VCI@HO); ii) the inclusion of up to two-mode or three-
mode terms in the potential (i.e. a 2M4T versus a 3M4T
description of the PES, as discussed in Part I); iii) the
nature of the vibrational state relative to the vibrational
ground state (fundamental transition involving one quan-
tum of excitation, first-overtone involving two quanta of
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excitation, second-overtone involving three quanta of ex-
citation, combination bands, etc.).

Figure 2 shows the convergence with respect to the
truncation of the VCI expansion of fundamental transi-
tions of the type ni = 0 → 1 (i.e. of the vibrational
ground state and of those vibrational states characterized
by a single quantum of excitation) for the M considered
modes of four systems: the water and methane molecules
and the Ice-XI and MgH2 crystals. The VCI expansion
is truncated according to the two quantities Nquanta and
Nmodes introduced in Section II B 1. Here, Nmodes is al-
ways set to 3 when the 2M4T representation of the po-
tential is used and to 4 when the 3M4T representation
is adopted, while the effect of Nquanta on the computed
states is explicitly reported in the figure. The total num-
ber of configurations Nconf included in the VCI expansion
as a function of Nquanta (for Nmodes = 4) is also given on
the top of each panel. This latter quantity corresponds to
the size of the VCI Hamiltonian matrix that needs to be
diagonalized. We note in passing that for those systems
(such as water and Ice-XI) that belong to Abelian sym-
metry point groups, we factorize the VCI matrix into
diagonal sub-blocks specific to distinct irreducible rep-
resentations (the exploitation of point-symmetry in the
treatment of anharmonic states of molecules and solids
in our implementation will be discussed into detail in a
forthcoming paper). For each line of Figure 2, the quan-
tity reported is the mean absolute deviation (in %) of
the fundamental transition frequencies ωi with respect to
fully converged ones (i.e. those obtained forNquanta = 8):

|∆|(%) =
1

M

M∑
i=1

∣∣∣ωNquanta
i − ωNquanta=8

i

∣∣∣∣∣∣ωNquanta=8
i

∣∣∣ × 100 . (39)

In each panel of the figure (i.e. for each considered sys-
tem), we report four data-sets: empty symbols refer to a
2M4T representation of the potential while filled symbols
to a 3M4T representation; red symbols correspond to
data obtained from the VCI@VSCF approach while blue
symbols to data obtained from the VCI@HO method.
Several considerations can be made: i) the computed an-
harmonic fundamental transitions of all systems, molec-
ular and crystalline, show a very regular convergence as
a function of the truncation of the VCI expansion; ii)
the singly-excited vibrational states are still far from be-
ing converged when the expansion is truncated accord-
ing to Nquanta = 3 (with mean deviations as large as 6%
for Ice-XI) while the convergence is much improved for
Nquanta = 4 with deviations dropping below 0.5% in all
cases; iii) in all cases, the inclusion of three-mode terms
in the PES (i.e. force constants of type ηijk and ηiijk
discussed in Part I) results in larger deviations at small
Nquanta and thus in a slightly slower convergence with re-
spect to a two-mode potential (compare filled to empty
symbols in the figure, particularly so for methane and
MgH2); iv) smaller deviations and thus a slightly faster
convergence of the computed anharmonic states are ob-

FIG. 3. Convergence as a function of the truncation of
the VCI expansion of fundamental transitions (involving one
quantum of excitation, 1Q), first and second overtones (in-
volving two and three quanta of excitation, 2Q and 3Q, re-
spectively), and combination bands with 2Q. The two panels
correspond to water molecule (top) and solid Ice-XI (bottom).
Reported quantities as in Figure 2. All values are computed
with the VCI@VSCF approach. Filled and empty symbols
correspond to 3M4T and 2M4T representations of the PES,
respectively.

tained when using the VCI@VSCF approach compared
to the VCI@HO approach (see red versus blue symbols).

So far, we have discussed the convergence, with respect
to the truncation of the VCI expansion, of vibrational
states characterized by either zero quanta of excitation
(i.e. the vibrational ground state) or a single quantum
of excitation, 1Q. Now, we address the convergence of
vibrational states characterized by a higher number of
excitation quanta: first overtones (ni = 0 → 2), two-
quanta combination states (ni = 0 → 1 and simultane-
ously nj = 0 → 1), and second overtones (ni = 0 → 3).
The convergence of these states is illustrated in the two
panels of Figure 3 for the water molecule (upper panel)
and solid Ice-XI (lower panel). The structure of Fig-
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TABLE I. Effect of basis set and Hamiltonian on computed
harmonic and anharmonic vibration frequencies (in cm−1) of
water, methane and formaldehyde. Two basis sets are used:
a 6-31G∗ (BSa) and an aug-cc-pvtz (BSb). The Hartree-Fock
(HF) method is used along with three exchange-correlation
functionals of the DFT: PBE, PBE0 and B3LYP. When the
effect of the Hamiltonian is investigated, the BSa is adopted.
For each system, the harmonic (HA) values are reported
along with the anharmonic correction (∆) obtained with the
VCI@VSCF method on a 3M4T representation of the PES.

B3LYP PBE0 PBE HF
BSa BSb

HA ∆ HA ∆ HA ∆ HA ∆ HA ∆

Water
ω1 1662 -74 1627 -79 1668 -75 1632 -72 1770 -77
ω2 3801 -147 3795 -140 3878 -145 3703 -136 4153 -137
ω3 3917 -182 3897 -171 3999 -179 3823 -173 4270 -167

Methane
ω1 1354 -44 1338 -47 1345 -43 1303 -44 1469 -46
ω2 1576 -45 1556 -44 1575 -44 1532 -45 1685 -46
ω3 3046 -119 3025 -115 3067 -117 2992 -123 3175 -104
ω4 3161 -145 3126 -141 3200 -145 3119 -151 3286 -120

Formaldehyde
ω1 1200 -41 1198 -39 1206 -40 1153 -40 1335 -36
ω2 1273 -33 1262 -28 1276 -32 1232 -33 1376 -28
ω3 1552 -47 1529 -42 1554 -46 1507 -47 1668 -42
ω4 1848 -28 1812 -26 1881 -27 1798 -28 2029 -27
ω5 2896 -149 2882 -146 2926 -148 2808 -156 3121 -130
ω6 2952 -132 2937 -133 2986 -136 2850 -128 3196 -121

ure 3 is very similar to that of Figure 2 and reports the
mean absolute deviation of the energies of the vibrational
states with respect to fully converged values, as a func-
tion of Nquanta. All values reported in the figure are
computed with the VCI@VSCF approach. Filled and
empty symbols correspond to 3M4T and 2M4T repre-
sentations of the PES, respectively. We observe that: i)
all vibrational states converge as a function of the VCI
truncation; ii) vibrational states characterized by an in-
creasing number of excitation quanta (1Q, 2Q, 3Q) show
a slower convergence with Nquanta: fundamental transi-
tions (with 1Q) almost perfectly converge at Nquanta = 4,
first overtones and two-quanta combination states (with
2Q) almost converge at Nquanta = 5 and second over-
tones (with 3Q) almost converge at Nquanta = 6; iii) as
already discussed for fundamental transitions in Figure
2, the inclusion of three-mode terms in the PES makes
the convergence generally slower, and even more so for
highly excited vibrational states.

Now, we discuss the effect of the adopted basis set

and exchange-correlation functional in the description of
the PES on the anharmonic correction to the harmonic
vibration frequencies. Both molecular and solid systems
are considered. The effect of the basis set is investigated
as follows: for molecular systems (water, methane and
formaldehyde), a 6-31G∗ and a aug-cc-pvtz basis sets are
used, while for solid ice-XI a 8-411G∗ and a POB-TZVP
basis sets are used. Different methods and exchange-
correlation functionals are also explored: Hartree-Fock
(HF), PBE, PBE0 and B3LYP for molecules, and LDA,
PBE, PBE0 and B3LYP for solids.

Table I documents the effect of the basis set and Hamil-
tonian on the harmonic and anharmonic vibration fre-
quencies of three molecular systems: water, methane
and formaldehyde. The computed values of the har-
monic (HA) frequencies are reported, along with the cor-
responding anharmonic correction (∆ = ωanharm−ωharm)
obtained from VCI@VSCF calculations on a 3M4T rep-
resentation of the PES. We see that, while the computed
absolute values of the harmonic frequencies vary signif-
icantly as a function of the adopted basis set and es-
pecially of the Hamiltonian used, the anharmonic cor-
rection ∆ is way less sensitive to the description of the
potential. This is particularly true within the DFT but
surprisingly holds also when the simple HF method is
used to describe the potential. As an example, let us
consider the ω2 frequency of water: while the computed
harmonic value changes from 3703 cm−1 of PBE to 4153
cm−1 of HF (a difference of 450 cm−1 on the absolute
harmonic value), the anharmonic correction ∆ is very
similar in all cases, and only differs by 1 cm−1 between
PBE and HF. Therefore, Table I has a computationally
interesting implication: for these type of molecular sys-
tems (without inter-molecular interactions), while an ac-
curate (and generally more expensive) description of the
quadratic terms of the potential is needed to get accurate
absolute harmonic values, the anharmonic correction can
be estimated in terms of a less computationally expen-
sive description of the higher order terms of the PES.
This aspect has already been extensively discussed in the
molecular literature on anharmonicity.39–43

The effect of different basis sets and exchange-
correlation functionals on the description of the PES and
therefore of the anharmonic vibrational states of the low-
temperature, proton-ordered phase of solid water, ice-
XI,44–46 is shown in Table II. A subset of twelve modes is
considered that have been selected so as to span the whole
vibrational spectrum. Modes 1-4 correspond to molecu-
lar “translations” where the water molecules of the lattice
are rigidly translating with respect to one another, modes
5-7 correspond to “librations” where the water molecules
are rigidly rotating with respect to one another, modes
8-9 correspond to the “bending” of water molecules and,
finally, modes 10-12 correspond to the “stretching” of wa-
ter molecules.

Table II reports the computed anharmonic frequencies
(as obtained with the VCI@VSCF method on a 2M4T
representation of the PES) as well as the anharmonic
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TABLE II. Effect of basis set and Hamiltonian on computed
harmonic and anharmonic vibration frequencies (in cm−1) of
ice-XI. Two basis sets are used: a 8-411G∗ (BSa) and a POB-
TZVP (BSb). Four exchange-correlation functionals of the
DFT are used: LDA, PBE, PBE0 and B3LYP. The anhar-
monic (VCI) values of twelve selected frequencies are reported
along with the anharmonic correction (∆ = ωanharm−ωharm).
The VCI@VSCF method is used on a 2M4T representation
of the PES. For those frequencies that correspond to intense
IR or Raman spectral features, experimental values are also
given.47,48

BSa BSb Exp.
LDA PBE PBE0 B3LYP B3LYP

VCI ∆ VCI ∆ VCI ∆ VCI ∆ VCI ∆

Translations
ω1 362 -11 292 -1 285 1 273 -1 270 -4 283
ω2 447 14 315 5 299 6 281 4 281 0 283
ω3 558 16 408 4 392 5 371 3 375 -1 -
ω4 561 10 409 1 393 2 371 1 373 -5 -
Librations
ω5 1251 9 1045 -3 1028 1 993 3 986 -19 985
ω6 1332 10 1116 4 1094 8 1045 -2 1039 -20 1020
ω7 1535 14 1289 -1 1249 3 1196 -1 1182 -17 -
Bending
ω8 1454 -96 1565 -41 1624 -37 1615 -38 1608 -45 1600
ω9 1691 -37 1690 -37 1734 -33 1716 -35 1707 -42 -
Stretching
ω10 1567 -464 2653 -111 2941 -134 2983 -128 2992 -140 -
ω11 1760 -403 2718 -164 3059 -134 3100 -124 3112 -129 3087
ω12 1739 -424 2710 -174 3053 -142 3093 -133 3103 -143 3087

correction ∆ defined as the difference between anhar-
monic and harmonic values. It can be seen that, as
expected, stretching modes are more anharmonic than
bending modes that are in turn more anharmonic than
librations and translations.

At variance with the simple molecular cases discussed
above, ice-XI is characterized by a complex interplay of
intra- and inter-molecular interactions, which makes its
vibrational states more dependent on the description of
the potential. Four different functionals are used in Table
II: LDA, PBE, PBE0 and B3LYP, belonging to differ-
ent classes (LDA, GGA and hybrids). Also in this case,
the use of different functionals results in very different
absolute values of the computed frequencies. In this re-
spect, comparison with available experimental data47,48
(for those modes, among the selected twelve, that corre-
spond to intense IR or Raman spectral features) shows
that hybrid functionals (either PBE0 or B3LYP) provide
an excellent description of the absolute values of the com-
puted frequencies, upon correction for anharmonicity.

From the analysis of the ∆ in Table II, we see that the
anharmonic corrections computed from PBE, PBE0 and
B3LYP calculations, performed with the same basis set
BSa, are rather consistent apart from the overestimation
of the anharmonicity of stretching modes by PBE. The
description of the nuclear PES and therefore of the vi-

TABLE III. Harmonic (HA) and anharmonic vibration fre-
quencies (in cm−1) for fundamental transitions, first overtones
and two-quanta combination states of formaldehyde (CH2O).
Computed values (B3LYP functional with aug-cc-pVTZ basis
set) are obtained by using the VSCF and VCI approaches on
both a 2M4T and 3M4T representation of the PES. Experi-
mental results are from Ref. 49. Previous results from Seidler
et al.50 are also reported as obtained from a VCI approach on
a 4M4T representation of the PES. The quantity ∆∆ is the
difference between those previously computed frequencies and
our VCI ones on the 3M4T PES.

This Study Ref. 50 Exp.
HA VSCF VCI VCI ∆∆

2M4T 3M4T 2M4T 3M4T 4M4T
ω1 1198 1163 1163 1159 1159 1162 3 1167
ω2 1262 1241 1241 1239 1234 1234 0 1249
ω3 1529 1498 1498 1494 1487 1491 5 1500
ω4 1812 1789 1788 1787 1786 1786 0 1746
ω5 2882 2774 2774 2741 2736 2743 7 2782
ω6 2937 2783 2781 2760 2804 2795 -9 2843

2ω1 2396 2334 2334 2314 2314 2320 6 2327
2ω2 2524 2489 2488 2476 2465 2464 -1 2493
2ω4 3624 3561 3559 3558 3557 3555 -2 3472

ω1+ω3 2727 2662 2662 2668 2646 2652 6 2656
ω1+ω4 3010 2946 2945 2955 2939 2941 2 2905
ω2+ω4 3074 3027 3026 3038 3026 3019 -7 3000
ω3+ω4 3341 3284 3283 3291 3265 3270 5 3238

brational states provided by the LDA is unsatisfactory
both on absolute values and on the anharmonic correc-
tion. The effect of the adopted basis set is illustrated
for the B3LYP functional and is seen to be significant,
particularly so in the description of low-frequency trans-
lational and librational modes. In all cases, the use of a
richer basis set produces a larger anharmonic correction
to the computed harmonic frequencies.

Now, we report a comparative study to document how
different descriptions of the PES (2M4T versus 3M4T
representations) and different methodologies to treat the
anharmonicity of the PES (VSCF versus VCI) affect com-
puted vibrational states. To do so, we consider two sim-
ple systems (the methane and formaldehyde molecules)
for which accurate reference values are available from ex-
periments or previous calculations.

Table III reports computed harmonic and anharmonic
energies of several vibrational states (fundamental transi-
tions, first overtones and two-quanta combination states)
of formaldehyde, as well as a comparison with experi-
mental values49 and previously computed values.50 Our
calculations are performed with the B3LYP hybrid func-
tional and by using the aug-cc-pVTZ basis set: same
conditions as in the previous theoretical investigation by
Seidler et al. for sake of comparison and validation of our
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TABLE IV. Harmonic (HA) and anharmonic vibration fre-
quencies for fundamental transitions of methane. Experimen-
tal frequencies51 are given in absolute value while for com-
puted quantities, the difference ∆ with respect to the exper-
iment is given. Calculations are performed with the B3LYP
hybrid functional and the 6-31G∗ basis set. All data are in
cm−1.

∆ Exp.
HA VSCF VSCF VCI VCI

(2M4T) (3M4T) (2M4T) (3M4T)
ω1 48 15 15 13 4 1306
ω2 42 1 1 0 -3 1534
ω3 129 68 68 22 11 2917
ω4 142 51 51 41 -2 3019

implementation.50 Several considerations can be made: i)
for a given representation of the PES, computed VCI fre-
quencies for fundamental transitions and first overtones
are systematically smaller than computed VSCF frequen-
cies (i.e. a more explicit account of mode-mode couplings
results in a larger anharmonic correction); ii) mode-mode
couplings have the opposite effect on combination states,
where the use of VCI results in higher frequencies than
VSCF; iii) the inclusion of three-mode terms in the PES
(i.e. passing from the 2M4T to the 3M4T representation
of the PES) produces almost no change in the computed
VSCF frequencies while it affects more VCI computed
frequencies, particularly so for ω3, ω5, ω6 and combina-
tion states; iv) the quantity ∆∆ is the difference between
previously computed VCI frequencies and our VCI ones:
given that the numerical evaluation of second-, third-,
and fourth-order terms of the PES is different in the two
implementations, the agreement on the absolute value of
computed anharmonic frequencies is rather impressive,
which confirms the correctness of our implementation; v)
interestingly, most computed values of anharmonic fre-
quencies compare very satisfactorily with experimental
values, not just for fundamental transitions but also for
overtones and combination bands.

The case of the methane molecule is documented in Ta-
ble IV, where harmonic and anharmonic computed values
for the frequencies of fundamental transitions are com-
pared with experimental data.51 For computed quanti-
ties, their difference ∆ with respect to experimental val-
ues is reported. The table shows the effect of treating the
anharmonicity with both the VSCF and VCI approaches
and of describing the PES with both a 2M4T and a 3M4T
representation. All calculations are performed with the
B3LYP hybrid functional and the 6-31G∗ basis set. From
the table, we see that the harmonic approximation (HA)
overestimates the value of the four frequencies, by about
40-50 cm−1 for ω1 and ω2, and by about 130-140 cm−1

for ω3 and ω4. The VSCF method is seen to be able
to account for a significant fraction of anharmonicity (∆
decreases), particularly so for the ω2 mode, which turns

out not to benefit from a more explicit account of mode-
mode couplings. At the same time, the limitations of
VSCF are quite evident when comparing results obtained
from a 2M4T PES with those from a 3M4T PES: three-
mode terms of the potential have no impact whatsoever
on VSCF computed anharmonic energies. The explicit
treatment of mode-mode couplings provided by VCI re-
sults in the further reduction of the ∆, particularly so
for the stretching modes ω3 and ω4. Furthermore, the
VCI approach is able to take into account three-mode
terms of the PES, with a significant effect on ω1, ω3,
and, especially, on ω4. Finally, the agreement of the com-
puted anharmonic frequencies (as obtained with the best
methodology: VCI on a 3M4T PES) with experimen-
tal ones is rather satisfactory, with deviations generally
smaller than 10 cm−1. A similar result is obtained for
formaldehyde in Table III, which seems to suggest that
the combined use of the B3LYP hybrid functional and
basis sets of triple-zeta quality provide a “lucky” cancella-
tion of errors resulting in a good description of harmonic
frequencies and thus of the absolute values of anharmonic
ones.

V. CONCLUSIONS AND PERSPECTIVES

We have implemented the vibrational self-consistent
field (VSCF) method and the vibrational configuration
interaction (VCI) method in the public Crystal pro-
gram to compute anharmonic vibrational states of solids.
We have reviewed the main formal aspects of the two
methodologies and introduced all their relevant computa-
tional parameters. While VSCF is a mean-field approach
where each vibration mode interacts with an average po-
tential over all the other modes, VCI allows for an explicit
account of mode-mode coupling.

We have discussed different strategies to effectively
truncate the VCI expansion of the nuclear wavefunction.
In order to allow for a more computationally efficient
truncation of the VCI expansion, we have implemented a
VCI@VSCF version of the VCI method where the modals
used in the expansion of the vibrational wavefunction are
obtained from a previous VSCF calculation on a reference
vibrational state. The convergence of computed vibra-
tional states (involving one or two quanta of excitation)
with respect to the truncation of the VCI expansion has
been illustrated on both molecular and solid systems.

The effect of the adopted basis sets and exchange-
correlation functionals in the description of the adiabatic
potential energy surface on the computed vibrational
states (both at the harmonic and anharmonic level) has
been documented on selected systems. Computed anhar-
monic values for vibrational transitions have been com-
pared to available experimental and computational data
to validate the implementation and the approach.

From a computational point of view, the bottleneck of
the current implementation is represented by the memory
allocation of the VCI Hamiltonian matrix. In the context
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of parallel computing, a future development will be the
distribution of such matrix over multiple processes so as
to decrease the memory footprint of the implementation.

As a perspective, we also plan on extending the cur-
rent module of the Crystal program for the calculation
of anharmonic vibrational states of solids to the VPT2
methodology, and to the calculation of anharmonic in-
frared and Raman intensities at VSCF and VCI level.
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