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Abstract: We consider d = 3, N = 2 gauge theories arising on membranes sitting at

the apex of an arbitrary toric Calabi-Yau 4-fold cone singularity that are then further

compactified on a Riemann surface, Σg, with a topological twist that preserves two super-

symmetries. If the theories flow to a superconformal quantum mechanics in the infrared,

then they have a D = 11 supergravity dual of the form AdS2 × Y9, with electric four-form

flux and where Y9 is topologically a fibration of a Sasakian Y7 over Σg. These D = 11

solutions are also expected to arise as the near horizon limit of magnetically charged black

holes in AdS4×Y7, with a Sasaki-Einstein metric on Y7. We show that an off-shell entropy

function for the dual AdS2 solutions may be computed using the toric data and Kähler

class parameters of the Calabi-Yau 4-fold, that are encoded in a master volume, as well as

a set of integers that determine the fibration of Y7 over Σg and a Kähler class parameter

for Σg. We also discuss the class of supersymmetric AdS3 × Y7 solutions of type IIB su-

pergravity with five-form flux only in the case that Y7 is toric, and show how the off-shell

central charge of the dual field theory can be obtained from the toric data. We illustrate

with several examples, finding agreement both with explicit supergravity solutions as well

as with some known field theory results concerning I-extremization.
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1 Introduction

A common feature of supersymmetric conformal field theories (SCFTs) with an abelian

R-symmetry is that the R-symmetry, and hence important physical observables, can be

obtained, in rather general circumstances and in various spacetime dimensions, via an

extremization principle. In N = 1 SCFTs in d = 4, for example, the R-symmetry can be

obtained via the procedure of a-maximization [2], while for N = (0, 2) SCFTs in d = 2
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it can be obtained via c-extremization [3]. In each of these cases one constructs a trial

central charge, determined by the ’t Hooft anomalies of the theory, which is a function of

the possible candidate R-symmetries. After extremizing the trial central charge one obtains

the R-symmetry, and when the trial central charge is evaluated at the extremal point one

gets the exact a central charge and the right moving central charge, cR, for the d = 4 and

d = 2 SCFTs, respectively.

Next, for N = 2 SCFTs in d = 3, one can use F -extremization [4]. The key quantity

now is the free energy of the theory defined on a round three sphere, FS3 . After extremizing

a trial FS3 , again calculated as a function of the possible R-symmetries, one finds both the

R-symmetry and the free energy at the extremal point. Turning to SCFTs in d= 1 with

two supercharges and an abelian R symmetry, there is not, as far as we know, an analogous

general field theory proposal concerning F -extremization, although one has been recently

discussed in the context of holography [5], as we recall below. On the other hand there is a

proposed “I-extremization” procedure [6] for the class of such d=1 SCFTs that arise after

compactifying an N =2 SCFT in d=3 on a Riemann surface, Σg, of genus1 g. For this class

one considers the topologically twisted index I for the d = 3 theory on Σg×S1 as a function

of the twist parameters and chemical potentials for the flavour symmetries. After extrem-

ization one obtains the index, which is expected to be the same as the logarithm of the par-

tition function of the d = 1 SCFT. While significant evidence for I-extremization has been

obtained, it does not yet have the same status as the a-, c- and F - extremization principles.

For the special subclass of these SCFTs that also have a large N holographic dual, we

can investigate the various extremization principles from a geometric point of view. To do

this one first needs to find a precise way of taking the supergravity solutions off-shell in

order to set up an appropriate extremization problem. A guiding principle, that has been

effectively utilised in several different situations, is to identify a suitable class of supersym-

metric geometries in which one demands the existence of certain types of Killing spinors,

but without imposing the full equations of motion. The best understood examples are

those associated with Sasaki-Einstein (SE) geometry, specifically the class of AdS5 × SE5

solutions of type IIB and the AdS4×SE7 solutions of D = 11 supergravity that are dual to

N = 1 SCFTs in d = 4 and N = 2 SCFTs in d = 3, respectively. Here one goes off-shell by

relaxing the Einstein condition and considering the space of Sasaki metrics. It was shown

in [10, 11] that the Reeb Killing vector field for the Sasaki-Einstein metric, dual to the

R-symmetry in the field theory, can be obtained by extremizing the normalized volume of

the Sasaki geometry as a function of the possible Reeb vector fields on the Sasaki geometry.

Interestingly, while this geometric extremization problem is essentially the same for SE5

and SE7, and indeed is applicable for arbitrary SE2n+1, it is associated with the different

physical phenomena of a-maximization and F -extremization in the d = 4 and d = 3 dual

field theories, respectively (although see [12]).

In a recent paper [5] an analogous story was presented for the class of AdS3 × Y7

solutions of type IIB with non-vanishing five-form flux only [13] and the class of AdS2×Y9

solutions of D = 11 supergravity with purely electric four-form flux [14], that are dual

1The genus g = 0 case was discussed in [6]; generalizing to g 6= 0 was discussed in [7] and noted in

footnote 5 of [8], building on [1, 9].
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to N = (0, 2) SCFTs in d = 2 and N = 2 SCFTs in d = 1, respectively. The geometry

associated with these solutions was clarified in [15] where it was also shown that they are

examples of an infinite family of “GK geometries” Y2n+1. As explained in [5], one can take

these GK geometries off-shell in such a way to obtain a class of supersymmetric geometries

for which, importantly, one can still impose appropriate flux quantization conditions. These

supersymmetric geometries have an R-symmetry vector which foliates the geometry with

a transverse Kähler metric. Furthermore, a supersymmetric action can be constructed

which is a function of the R-symmetry vector on Y2n+1 as well as the basic cohomology

class of the transverse Kähler form. Extremizing this supersymmetric action over the space

of possible R-symmetry vectors, for the case of Y7, then gives the R-symmetry vector of

the dual (0, 2) SCFT as well as the central charge, after a suitable normalization. For the

case of Y9, it was similarly shown that the on-shell supersymmetric action, again suitably

normalized, corresponds to the logarithm of the partition function of the dual d = 1 SCFT.

This is the holographic version of an F -extremization principle for such d = 1 SCFTs that

we mentioned above, whose field theory formulation remains to be uncovered.

In [16] we further developed this formalism for the class of AdS3×Y7 solutions in which

Y7 arises as a fibration of a toric Y5 over Σg. From a dual point of view such solutions

can arise by starting with a quiver gauge theory dual to AdS5×Y5, with a Sasaki-Einstein

metric on Y5, and then compactifying on Σg with a topological twist. Using the toric data

of Y5, succinct formulas were presented for how to implement the geometric version of c-

extremization for the dual d = 2 SCFT. A key technical step was to derive a master volume

formula for toric Y5 as a function of an R-symmetry vector and an arbitrary transverse

Kähler class. Based on various examples, it was conjectured in [16] that there is an off-shell

agreement between the geometric and field theory versions of c-extremization and this was

then proven for the case of toric Y5 in [17].

In this paper, we extend the results of [16] in two main ways. First, we generalise

the formalism to the class of AdS3 × Y7 solutions where Y7 itself is toric. This requires

generalizing the master volume formula for toric Y5 that was presented in [16] to toric

Y7. These results provide a general framework for implementing the geometric dual of c-

extremization that applies to d = 2, (0, 2) SCFTs that do not have any obvious connection

with a compactification of a d = 4, N = 1 SCFT dual to AdS5 × SE5. In a certain sense

these results provide an AdS3 × Y7 analogue of the results on AdS5 × SE5 solutions, with

toric SE5 [10]. As an illustration, we use the formalism to re-derive the central charge of

some known explicit AdS3 × Y7 solutions constructed in [18], just using the toric data.

Second, we consider AdS2 × Y9 solutions where Y9 arises as fibration of a toric Y7

over Σg, which allows us to make contact with I-extremization. These solutions can be

obtained by starting with an N = 2, d = 3 SCFT dual to an AdS4×Y7 solution of D = 11

supergravity, with a Sasaki-Einstein metric on Y7, and then compactifying on Σg with a

topological twist to ensure that two supercharges are preserved. Using the master volume

formula on Y7 we can generalise the results of [16] to derive formulae which provide a

geometric dual of I-extremization.

The principle of I-extremization, introduced in [6], arose from the programme of trying

to reproduce the Bekenstein-Hawking entropy of supersymmetric black holes by carrying
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out computations in a dual field theory. Indeed this was achieved for a class of AdS4

black holes with AdS2 × S2 horizons in the context of the ABJM theory in [6], and some

interesting extensions have appeared in [8, 19–24], for example. It is natural to expect that

many and perhaps all of the AdS2×Y9 solutions that we consider here, with Y9 a fibration

of a toric Y7 over Σg, can arise as the near horizon limit of supersymmetric black holes.

Such black holes, with Y9 horizon, would asymptote to AdS4 × Y7 in the UV, with the

conformal boundary having an R × Σg factor associated with the field theory directions,

and approach the AdS2 × Y9 solutions in the IR. We will therefore refer to the suitably

normalized supersymmetric action for this class of Y9 as the entropy function since, as

argued in [5], it will precisely give the black hole entropy after extremization.

Now for a general class of d = 3 quiver gauge theories, using localization techniques it

was shown that the large N limit of the topological index can be expressed in terms of a

Bethe potential [1]. Furthermore, it was also shown in [1] that the same Bethe potential

gives rise to the free energy of the d = 3 SCFT on the three sphere, FS3 . Combining these

field theory results with the geometric results of this paper then provides a microscopic

derivation of the black hole entropy for each such black hole solution that actually ex-

ists. This provides a rich framework for extending the foundational example studied in [6]

associated with Y7 = S7 and the ABJM theory.

An important general point to emphasize is that, as in [5, 16], the geometric extrem-

ization techniques that we discuss in this paper will give the correct quantities in the dual

field theory, provided that the AdS3 and AdS2 and solutions actually exist. In other words

they will give the correct results provided that there are no obstructions to finding a solu-

tion. A related discussion of obstructions to the existence of Sasaki-Einstein metrics can

be found in [25] and furthermore, for toric Sasaki-Einstein metrics it is known that, in fact,

there are no such obstructions [26]. No general results are yet available for AdS3 × Y7 and

AdS2 × Y9 solutions, although several examples in which the existence of the supergravity

solution is obstructed were discussed in [5, 16], showing that this topic is an important one

for further study.

The plan of the rest of the paper is as follows. In section 2 we consider toric, complex

cone geometries, C(Y7), in four complex dimensions. In the special case that the metric on

the cone is Kähler then the metric on Y7 is a toric Sasakian metric. Using the toric data

we derive a master volume formula for Y7 as a function of an R-symmetry vector and an

arbitrary transverse Kähler class, generalising a similar analysis for cone geometries in three

complex dimensions carried out in section 3 of [16]. In section 3 we deploy these results

to obtain expressions for the geometric dual of c-extremization for AdS3 × Y7 geometries

when Y7 is toric and study some examples.

In section 4 we analyse AdS2 × Y9 solutions when Y9 is a fibration of a toric Y7 over

a Riemann surface Σg, generalising the analysis in section 4 of [16]. We illustrate the

formalism for the universal twist solutions of [27], in which one fibres a SE7 manifold

over Σg, with g > 1, in which the fibration is just in the R-symmetry direction of Y7

and in addition the fluxes are all proportional to the R-charges, recovering some results

presented in [8]. We also consider some additional generalizations for the special cases when

Y7 = Q1,1,1 and M3,2 for which we can compare results obtained using our new formulae
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with some explicit supergravity solutions first constructed in [28]. We then consider an

example in which C(Y7) is the product of the conifold with the complex plane. Some new

features arise for this example, as the link, Y7, of this cone contains worse-than-orbifold

singularities and some care is required in using the master volume formulae. For this

example, we are able to make a match between the off-shell entropy function and the

twisted topological index calculated from the field theory side in [29] in the genus zero

case. We then revisit the case of Y7 = Q1,1,1 and are able to match the off-shell entropy

function with the twisted topological index calculated from the field theory side, which was

calculated in [29] in the genus zero case. Following this, we consider another example, with

similar singularities, associated with C(Y7) being a certain Calabi-Yau 4-fold singularity,

that is closely related to the suspended pinch point 3-fold singularity. Once again we can

match with some field theory results of [1]. We end section 4 with some general results

connecting our formalism with the index theorem of [1]. We conclude with some discussion

in section 5.

In appendix A we have included a few details of how to explicitly calculate the master

volume formula from the toric data in the specific examples discussed in the paper, while

appendix B contains a derivation of a homology relation used in the main text. Appendix C

analyses flux quantization for the AdS2 solutions of [28] that we discuss in section 4.

Note added. As this work was being finalised we became aware that there would be

significant overlap with the results of [30], which appeared on the arXiv on the same day.

2 Toric geometry and the master volume formula

2.1 General setting

We will be interested in complex cones, C(Y7), in complex dimension n = 4 that are

Gorenstein, i.e. they admit a global holomorphic (4, 0)-form Ψ. Furthermore, we demand

that there is an Hermitian metric that takes the standard conical form

ds2
C(Y7) = dr2 + r2ds2

7 , (2.1)

where the link (or cross-section) of the cone, Y7, is a seven-dimensional manifold. The

complex structure pairs the radial vector r∂r with a canonically defined vector ξ. Likewise,

the complex structure pairs dr/r with the dual one-form η, and ξyη = 1. The vector ξ

has unit norm and defines a foliation Fξ of Y7. The basic cohomology for this foliation is

denoted H∗B(Fξ).
For the class of geometries of interest [5], we furthermore require the vector ξ to be a

Killing vector for the metric on Y7, with

ds2
7 = η2 + ds2

6(ω) , (2.2)

where the metric ds2
6(ω) transverse to the foliation Fξ is conformally Kähler, with Kähler

two-form ω.

Finally, in this paper we will also take the metric to be invariant under a U(1)4 isom-

etry, with the isometry generated by ξ being a subgroup. Introducing generators ∂ϕi ,
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i = 1, . . . , 4, for each U(1) action, where ϕi has period 2π, we may then parametrize the

vector ξ in terms of ~b ≡ (b1, b2, b3, b4), with

ξ =

4∑
i=1

bi∂ϕi . (2.3)

For convenience, we choose a basis so that the holomorphic (4, 0)-form has unit charge

under ∂ϕ1 and is uncharged under ∂ϕi , i = 2, 3, 4. Notice that we then have2

LξΨ = ib1Ψ . (2.4)

This also implies that

[dη] =
1

b1
[ρ] ∈ H2

B(Fξ) , (2.5)

where ρ denotes the Ricci two-form of the transverse Kähler metric, and moreover

[ρ] = 2πcB1 , where cB1 is the basic first Chern class of the foliation.

2.2 Toric Kähler cones

We now assume that the cone metric is Kähler so that the metric on Y7 is a toric Sasakian

metric, as studied in [10]. In this case the transverse conformally Kähler metric ds2
6(ω)

in (2.2) is Kähler. Denoting the transverse Kähler form by ωSasakian, we have

dη = 2ωSasakian . (2.6)

Because dη is also a transverse symplectic form in this case, by definition η is a contact

one-form on Y7 and ξ, satisfying ξyη = 1 and ξydη = 0, is then called the Reeb vector field.

Considering now the U(1)4 isometries, we may define the moment map coordinates

yi ≡
1

2
r2∂ϕiyη , i = 1, 2, 3, 4 . (2.7)

These span the so-called moment map polyhedral cone C ⊂ R4, where ~y = (y1, y2, y3, y4)

are standard coordinates on R4. The polyhedral cone C, which is convex, may be written as

C = {~y ∈ R4 | (~y,~va) ≥ 0 , a = 1, . . . , d} , (2.8)

where ~va ∈ Z4 are the inward pointing primitive normals to the facets, and the index

a = 1, . . . , d ≥ 4 labels the facets. Furthermore, ~va = (1, ~wa), where ~wa ∈ Z3, follows

from the Gorenstein condition, in the basis for U(1)4 described at the end of the previous

subsection. An alternative presentation of the polyhedral cone C is

C =

{∑
α

tα~uα | tα ≥ 0

}
, (2.9)

where ~uα ∈ Z4 are the outward pointing vectors along each edge of C.
2For the case of SE7 geometry we need to take b1 = 4, as discussed below. For the supersymmetric AdS3

geometry discussed in section 3 we take b1 = 2, while for the supersymmetric AdS2 geometry discussed in

section 4 we need b1 = 1.
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As shown in [10], for such a Kähler cone metric on C(Y7) the R-symmetry vector
~b = (b1, b2, b3, b4) necessarily lies in the interior of the Reeb cone, ~b ∈ C∗int. Here the Reeb

cone C∗ is by definition the dual cone to C. In particular ~b ∈ C∗int is equivalent to (~b, ~uα) > 0

for all edges α. Using ξyη = 1, together with (2.3) and (2.7), the image of Y7 = {r = 1}
under the moment map is hence the compact, convex three-dimensional polytope

P = P (~b) ≡ C ∩H(~b) , (2.10)

where the Reeb hyperplane is by definition

H = H(~b) ≡
{
~y ∈ R4 | (~y,~b) =

1

2

}
. (2.11)

Later we will frequently refer to the toric diagram (in a minimal presentation) which

is obtained by projecting onto R3 the vertices ~va = (1, ~wa), with the minimum set of lines

drawn between the vertices to give a convex polytope. When all of the faces of the toric

diagram are triangles the link of the toric Kähler cone is either regular or has orbifold singu-

larities. We will also discuss cases in which some of the faces of the diagram are not triangles

and then there are worse-than-orbifold singularities (for some further discussion see [31]).

2.3 Varying the transverse Kähler class

As in [16], we first fix a choice of toric Kähler cone metric on the complex cone C(Y7). This

allows us to introduce the moment maps yi in (2.7), together with the angular coordinates

ϕi, i = 1, 2, 3, 4, as coordinates on C(Y7). Geometrically, C(Y7) then fibres over the

polyhedral cone C: over the interior Cint of C this is a trivial U(1)4 fibration, with the

normal vectors ~va ∈ Z4 to each bounding facet in ∂C specifying which U(1) ⊂ U(1)4

collapses along that facet.

For a fixed choice of such complex cone, with Reeb vector ξ given by (2.3), we would

then like to study a more general class of transversely Kähler metrics of the form (2.2). In

particular, we would like to compute the “master volume” given by

V ≡
∫
Y7

η ∧ ω
3

3!
, (2.12)

as a function both of the vector ξ, and transverse Kähler class [ω] ∈ H2
B(Fξ). With

the topological condition H2(Y7,R) ∼= H2
B(Fξ)/[ρ], discussed in [5], which will in fact

hold for all the solutions considered in this paper, all closed two-form classes on Y7 can

be represented by basic closed two-forms. Following [16], if we take the ca to be basic

representatives in H2
B(Fξ) that lift to integral classes in H2(Y7,Z), which are Poincaré

dual to the restriction of the toric divisors on C(Y7), then we can write

[ω] = −2π
d∑
a=1

λaca ∈ H2
B(Fξ) . (2.13)

Furthermore, the ca are not all independent and [ω] will depend on just d − 3 of the d

parameters {λa}. As in [5] it will also be useful to note that the first Chern class of the
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foliation can be written in terms of the ca as

[ρ] = 2π
d∑
a=1

ca ∈ H2
B(Fξ) . (2.14)

In the special case in which

λa = − 1

2b1
, a = 1, . . . d , (2.15)

we recover the Sasakian Kähler class [ρ] = 2b1[ωSasakian] and the master volume (2.12)

reduces to the Sasakian volume

V
(
~b;

{
λa = − 1

2b1

})
=

∫
Y7

η ∧ 1

3!
ω3

Sasakian ≡ Vol(Y7) . (2.16)

Following [16], this volume can be shown to be

V =
(2π)4

|~b|
vol(P) . (2.17)

Here the factor of (2π)4 arises by integrating over the torus U(1)4, while vol(P) is the

Euclidean volume of the compact, convex three-dimensional polytope

P = P(~b; {λa}) ≡ {~y ∈ H(~b) | (~y − ~y0, ~va) ≥ λa , a = 1, . . . , d} . (2.18)

Here

~y0 =

(
1

2b1
, 0, 0, 0

)
∈ H , (2.19)

which lies in the interior of P, while the {λa} parameters determine the transverse Kähler

class. It will be important to remember that the transverse Kähler class [ω] ∈ H2
B(Fξ), and

hence volume vol(P), depends on only d − 3 of the d parameters {λa}, with three linear

combinations being redundant.

We may compute the Euclidean volume of P in (2.18) by first finding its vertices ~yα.

By construction, these arise as the intersection of an edge of C with the Reeb hyperplane

H(~b). Let us fix a specific two-dimensional facet of P, associated with a specific (va, λa),

given by

Pa ≡ P ∩ {(~y − ~y0, ~va) = λa} . (2.20)

This is a compact, convex two-dimensional polytope, and will have some number la ≥ 3

of edges/vertices. In turn, each edge of Pa arises as the intersection of Pa with la other

faces which we label Pa,k, each associated with (va,k, λa,k), with k = 1, . . . , la. We choose

the ordering of Pa,k cyclically around the ath face Pa and it is then convenient to take

the index numbering on k to be understood mod la (hence cyclically). The vertices of Pa
arise from the intersection of neighbouring edges in this ordering. We may thus define the

vertex ya,k of Pa as the intersection

~ya,k = Pa ∩ Pa,k−1 ∩ Pa,k , (2.21)
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where k = 1, . . . , la, with the index numbering on k understood mod la (hence cyclically).

By definition, ~ya,k then satisfies the four equations

(~ya,k − ~y0, ~va) = λa , (~ya,k − ~y0, ~va,k−1) = λa,k−1 ,

(~ya,k − ~y0, ~va,k) = λa,k , (~ya,k − ~y0,~b) = 0 , (2.22)

which we can solve to give

~ya,k − ~y0 =
λa( ~E,~va,k−1, ~va,k,~b)− λa,k( ~E,~va, ~va,k−1,~b) + λa,k−1( ~E,~va,k, ~va,~b)

(~va, ~va,k−1, ~va,k,~b)
. (2.23)

Here (·, ·, ·, ·) denotes a 4× 4 determinant, and we have defined

~E ≡ (~e1, ~e2, ~e3, ~e4)T . (2.24)

Here (~ej)
i = δij and, to be clear, the vector index on the left hand side of (2.23) corresponds

to the vector index on ~E on the right hand side.

We next divide P up into tetrahedra, as follows. For each face Pa, a = 1, . . . , d, we first

split the face into la−2 triangles. Here the triangles have vertices {~ya,1, ~ya,k, ~ya,k+1}, where

k = 2, . . . , la − 1. Each of these triangles then forms a tetrahedron by adding the interior

vertex ~y0. The volume of P is then simply the sum of the volumes of all of these tetrahedra.

On the other hand, the volume of the tetrahedron Ta,k with vertices {~ya,1, ~ya,k, ~ya,k+1, ~y0}
is given by the elementary formula

vol(Ta,k) =
1

3!|~b|
(~ya,1 − ~y0, ~ya,k − ~y0, ~ya,k+1 − ~y0,~b) , k = 2, . . . , la − 1 . (2.25)

Thus, the master volume (2.17) can now be written as

V(~b; {λa}) =
(2π)4

|~b|

d∑
a=1

la−1∑
k=2

vol(Ta,k) ,

=
(2π)4

3!(~b,~b)

d∑
a=1

la−1∑
k=2

(~ya,1 − ~y0, ~ya,k − ~y0, ~ya,k+1 − ~y0,~b) . (2.26)

On the other hand, using the explicit formula (2.23) for the vertices ~ya,k, together with

some elementary identities, we find the master volume formula for Y7 is given by

V(~b; {λa}) = −(2π)4

3!

d∑
a=1

λa

la−1∑
k=2

XI
a,kX

II
a,k

(~va, ~va,k−1, ~va,k,~b)(~va,la , ~va, ~va,1,
~b)(~va,k, ~va,k+1, ~va,~b)

,

(2.27)

where we have defined

XI
a,k ≡ −λa(~va,k−1, ~va,k, ~va,k+1,~b) + λa,k−1(~va,k, ~va,k+1, ~va,~b)

− λa,k(~va,k+1, ~va, ~va,k−1,~b) + λa,k+1(~va, ~va,k−1, ~va,k,~b) ,

XII
a,k ≡ −λa(~va,1, ~va,k, ~va,la ,~b) + λa,1(~va,k, ~va,la , ~va,

~b)

− λa,k(~va,la , ~va, ~va,1,~b) + λa,la(~va, ~va,1, ~va,k,~b) . (2.28)
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Notice that V(~b; {λa}) is cubic in the {λa}, as it should be. When all of the λa are equal,

λa = λ, a = 1, . . . , d, using a vector product identity these simplify considerably to give

XI
a,k = −λb1(~va,k−1, ~va,k, ~va,k+1, ~va) , XII

a,k = −λb1(~va,1, ~va,k, ~va,la , ~va) . (2.29)

In particular, for the special case of the Sasakian Kähler class with λa = − 1
2b1

, as in (2.15),

the formula (2.27) reproduces the known [32] expression for the volume of toric Sasakian

manifolds, namely

Vol(Y7) =
(2π)4

48b1

d∑
a=1

la−1∑
k=2

(~va,k−1, ~va,k, ~va,k+1, ~va)(~va,1, ~va,k, ~va,la , ~va)

(~va, ~va,k−1, ~va,k,~b)(~va,la , ~va, ~va,1,
~b)(~va,k, ~va,k+1, ~va,~b)

. (2.30)

In [10] it was shown that the Reeb vector ξ ∈ C∗int for a Sasaki-Einstein metric on Y7

is the unique minimum of Vol(Y7) on C∗int, considered as a function of ~b, subject to the

constraint b1 = 4.

It will be helpful to present some formulas here that will be useful later. Using (2.13)

the master volume may be written as

V = −(2π)3
d∑

a,b,c=1

1

3!
Iabcλaλbλc , (2.31)

where the triple intersections Iabc are defined as

Iabc ≡
∫
Y7

η ∧ ca ∧ cb ∧ cc = − 1

(2π)3

∂3V
∂λa∂λb∂λc

. (2.32)

We then have ∫
Y7

η ∧ 1

2!
ρ2 ∧ ω =

1

2

d∑
a,b=1

∂2V
∂λa∂λb

= −(2π)3

2!

d∑
a,b,c=1

Iabcλc ,

∫
Y7

η ∧ ρ ∧ 1

2!
ω2 = −

d∑
a=1

∂V
∂λa

=
(2π)3

2!

d∑
a,b,c=1

Iabcλbλc . (2.33)

Furthermore, the first derivative of the master volume with respect to λa gives the volume

of the d torus-invariant five-manifolds Ta ⊂ Y7, Poincaré dual to the ca, via

∫
Ta

η ∧ 1

2!
ω2 =

(2π)2

2!

d∑
b,c=1

Iabcλbλc = − 1

2π

∂V
∂λa

. (2.34)

Finally, we note that the Sasakian volume Vol(Y7) and the Sasakian volume of torus-

invariant five-dimensional submanifolds Ta, Vol(Ta), can be expressed in terms of the Iabc as

Vol(Y7) =
π3

3!b31

d∑
a,b,c=1

Iabc , Vol(Ta) =
π2

2b21

d∑
b,c=1

Iabc . (2.35)
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For the various examples of Y7 that we consider later which are regular or have orbifold

singularities, we have explicitly checked that the relation

d∑
a=1

(
~va −

~b

b1

)
∂V
∂λa

= 0 , (2.36)

holds as an identity for all ~b and {λa}. We have not yet constructed a proof of this result,

but we conjecture that it will always hold for this class of Y7. When it does hold it is simple

to see that the master volume formula is invariant under the “gauge” transformations

λa → λa +
4∑
i=1

γi(v
i
ab1 − bi) , (2.37)

for arbitrary constants γi, generalising a result of [17]. Noting that the transformation

parametrized by γ1 is trivial, this explicitly shows that the master volume only depends

on d− 3 of the parameters {λa}, as noted above.

However, we emphasize that (2.36) does not hold for Y7 which have worse-than-orbifold

singularities, unless we impose some additional restrictions on the {λa}. This is an impor-

tant point since many examples whose field theories have been studied in the literature have

this property. We discuss this further for the representative example of the link associated

with the product of the complex plane with the conifold in appendix A.3.

To conclude this section we note that the above formulae assume that the polyhedral

cone C is convex, since at the outset we started with a cone that admits a toric Kähler cone

metric. However, as first noted in [33], and discussed in [5, 16], this convexity condition

is, in general, too restrictive for applications to the classes of AdS2 and AdS3 solutions

of interest. Indeed, many such explicit supergravity solutions are associated with “non-

convex toric cones”, as defined in [5], which in particular have toric data which do not

define a convex polyhedral cone. We conjecture that the key formulae in this section

are also applicable to non-convex toric cones and we will assume that this is the case in

the sequel. The consistent picture that emerges, combined with similar results in [5, 16],

strongly supports the validity of this conjecture.

3 Supersymmetric AdS3 × Y7 solutions

3.1 General set-up

In this section we will consider the class of supersymmetric AdS3 × Y7 solutions of type

IIB supergravity that are dual to SCFTs with (0, 2) supersymmetry of the form

ds2
10 = L2e−B/2

(
ds2

AdS3
+ ds2

7

)
,

F5 = −L4 (volAdS3 ∧ F + ∗7F ) . (3.1)

Here L is an overall dimensionful length scale, with ds2
AdS3

being the metric on a unit

radius AdS3 with corresponding volume form volAdS3 . The warp factor B is a function on

the smooth, compact Riemannian internal space (Y7, ds
2
7) and F is a closed two-form on
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Y7 with Hodge dual ∗7F . In order to define a consistent string theory background we must

impose the flux quantization condition

1

(2π`s)4gs

∫
ΣA

F5 = NA ∈ Z , (3.2)

which also fixes L. Here `s denotes the string length, gs is the string coupling constant,

and ΣA ⊂ Y7, with {ΣA} forming an integral basis for the free part of H5(Y7,Z). The

geometry of these solutions was first analysed in [13] and then extended in [15].

The geometric dual to c-extremization, described in detail in [5], starts by considering

supersymmetric geometries. By definition these are configurations as in (3.1) which admit

the required Killing spinors. These off-shell supersymmetric geometries become supersym-

metric solutions when, in addition, we impose the equation of motion for the five-form.

Equivalently, we obtain supersymmetric solutions when the equations of motion obtained

from extremizing an action, S, given explicitly in [15] are satisfied.

The supersymmetric geometries have the properties stated at the beginning of

section 2.1. In particular, we have

ds2
7 = η2 + eBds2(J) , (3.3)

where ds2(J) is a transverse Kähler metric with transverse Kähler form J . This is exactly as

in (2.2) after making the identification J = ω. The transverse Kähler metric determines the

full supersymmetric geometry, including the fluxes. In particular, the conformal factor is

fixed via eB = R/8 where R is the Ricci scalar of the transverse Kähler metric. We also have

dη =
1

2
ρ , (3.4)

where ρ is the Ricci two-form of the transverse Kähler metric, and LξΨ = ib1Ψ, with

b1 = 2. The Killing vector ξ is called the R-symmetry vector.

Putting the supersymmetric geometries on-shell implies solving the equations of motion

coming from varying a supersymmetric action, SSUSY, which is the action S mentioned

above evaluated on a supersymmetric geometry. Explicitly it was shown in [5] that

SSUSY =

∫
Y7

η ∧ ρ ∧ J
2

2!
, (3.5)

which, in fact, just depends on the R-symmetry vector ξ and the transverse Kähler class

[J ] ∈ H2
B(Fξ) i.e. SSUSY = SSUSY(ξ; [J ]). Furthermore, in order to impose flux quantization

on the five-form the following topological constraint must also be imposed∫
Y7

η ∧ ρ2 ∧ J = 0 . (3.6)

Flux quantization is achieved by taking a basis of 5-cycles, ΣA, that are tangent to ξ and

demanding ∫
ΣA

η ∧ ρ ∧ J =
2(2π`s)

4gs
L4

NA , (3.7)

with NA ∈ Z.
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Assuming now that Y7 is toric, admitting a U(1)4 isometry as discussed in section 2.1,

it is straightforward to generalize section 3 of [16] to obtain expressions for SSUSY, the

constraint and the flux quantization conditions in terms of the toric data. Remarkably,

they can all be expressed in terms of the master volume V = V(~b; {λa}) given in (2.27).

Specifically, using the formulas given in section 2.3, the off-shell supersymmetric action,

the constraint equation and the flux-quantization conditions are given by

SSUSY = −
d∑
a=1

∂V
∂λa

, (3.8)

0 =

d∑
a,b=1

∂2V
∂λa∂λb

, (3.9)

2(2π`s)
4gs

L4
Na =

1

2π

d∑
b=1

∂2V
∂λa∂λb

, (3.10)

respectively, where Na ∈ Z. The Na are not all independent: they are the quantized fluxes

through a basis of toric five-cycles [Ta] ∈ H5(Y7;Z). While the [Ta] generate the free part

of H5(Y7;Z), they also satisfy 4 linear relations
∑d

a=1 v
i
a[Ta] = 0 ∈ H5(Y7;Z), and hence

we have

d∑
a=1

viaNa = 0 , i = 1, 2, 3, 4 . (3.11)

Notice that the i = 1 component of this relation is in fact the constraint equation (3.9).

We also note that when (2.36) holds, from the invariance of the master volume under

the transformations (2.37) it follows that all the derivatives of V with respect to λa are

also invariant. Therefore, the complete set of equations (3.8), (3.9), (3.10) is invariant

under (2.37) and we could use this to “gauge-fix” three of the λa parameters, or alternatively

work with gauge invariant combinations. However, in the examples below we will not do

this, but instead we will see that the results are consistent with the gauge invariance.

Finally, we also note that we can also write the supersymmetric action in the form

SSUSY = −(2π)
(2π)4`4sgs

L4

d∑
a=1

λaNa , (3.12)

where we used the fact the master volume is homogeneous of degree three in the λa
(see (2.31)).

We can now state the geometric dual to c-extremization of [5], for toric Y7. We hold b1
fixed to be b1 = 2, and then extremize SSUSY with respect to b2, b3, b4 as well as the d−3 in-

dependent Kähler class parameters determined by {λa}, subject to the constraint (3.9) and

flux quantization conditions (3.10). Equivalently, we extremize the “trial central charge”,

Z , defined by

Z ≡ 3L8

(2π)6g2
s`

8
s

SSUSY , (3.13)
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which has the property that for an on-shell supersymmetric solution, i.e. after extremiza-

tion, we obtain the central charge of the dual SCFT:

Z |on-shell = csugra . (3.14)

In practice, and generically, we have d− 4 independent flux quantum numbers that we are

free to specify. The constraint equation and d−4 of the flux quantization conditions (3.10)

can be used to solve for the d − 3 independent {λa}. This leaves Z as a function of the

d−4 independent flux numbers as well as b2, b3, b4, of which we still need to vary the latter.

We emphasize that (3.14) will be the central charge of the (0, 2) CFT dual to the AdS3×Y7

solution, provided that the latter actually exists (i.e. when there are no obstructions).

We now illustrate the formalism by considering a class of explicit AdS3×Y7 supergravity

solutions presented3 in [18]. The construction involves a four-dimensional Kähler-Einstein

(KE) base manifold with positive curvature, KE+
4 . Such KE+

4 manifolds are either CP 1×
CP 1, CP 2 or a del Pezzo surface dPk with k = 3, . . . , 8. Of these CP 1 × CP 1, CP 2 and

dP3 are toric. The solutions depend on two integers p, k with p > 0, k < 0 and we will

label them Y p,k(KE+
4 ). The associated complex cones over Y p,k(KE+

4 ) are non-convex

toric cones, as defined in [5, 16], and the associated compact polytopes are not convex.

The exposition in [27] illuminated the very close similarity of these Y p,k(KE+
4 ) solu-

tions with a class of seven-dimensional Sasaki-Einstein manifolds, Y p,k(KE+
4 ), constructed

in [34], which utilized exactly the same KE+
4 manifolds. For the latter, using techniques

developed in [35], the toric geometry of the associated Calabi-Yau 4-fold singularities for

Y p,k(CP 2) and Y p,k(CP 1×CP 1) was discussed in [31]. The integers p, k are both positive

and satisfy jp/2 < k < jp, with j = 3 for Y p,k(CP 2) and j = 2 for Y p,k(CP 1 × CP 1).

The associated compact polytopes for these ranges are, of course, convex. Below we shall

analyse these two families in turn. Although we will not utilize this below, we note that

both of these examples satisfy the relation (2.36) for the master volume.

3.2 The Y p,k(CP 2) and Y p,k(CP 2) families

The toric data associated with Y p,k(CP 2) was given in [31], in the context of the discussion

of explicit Sasaki-Einstein metrics. We take the d = 5 inward pointing normal vectors to

be given by

~v1 = (1, 0, 0, 0) , ~v2 = (1, 0, 0, p) , ~v3 = (1, 1, 0, 0) ,

~v4 = (1, 0, 1, 0) , ~v5 = (1,−1,−1, k) . (3.15)

The associated toric diagram, obtained by projecting on R3 the vertices in (3.15), is given

in figure 1. For Y p,k(CP 2) we have 0 < 3p/2 < k < 3p, and we have a convex polytope.

However, for the explicit solutions Y p,k(CP 2) we have k < 0 and p > 0. We continue with

general p, k.

The master volume V(~b; {λa}) given in (2.27) can be obtained from the toric data (3.15)

and some results in appendix A. In the Sasakian limit, {λa = − 1
2b1
}, setting b1 = 4 and

3The local solutions were constructed as a special example of a class of AdS3 solutions of D = 11

supergravity found in [28].
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Figure 1. Toric diagram of Y p,k(CP 2) with p = 1, k = 2, obtained by projecting on R3 the vertices

in (3.15).

extremizing with respect to {b2, b3, b4} [10] we find that the critical Reeb vector is given

by b2 = b3 = 0, with b4 solving the cubic equation

b34
(
−k2 + 3kp− 3p2

)
+ b24p

(
6k2 − 8kp+ 3p2

)
+ 8b4kp

2(p− 2k) + 16k2p3 = 0 . (3.16)

The fact that b2 = b3 = 0 is due to the SU(3) symmetry of the CP 2 base space. Equiva-

lently, the value of b4 obtained from (3.16) can be obtained from extremizing the Sasakian

volume with b1 = 4 upon setting b2 = b3 = 0, which reads

Vol(Y7)(b4) =
π4p

[
3b4
(
b4
(
k2 − 3kp+ 3p2

)
+ 4kp(p− k)

)
+ 16k2p2

]
3b34 (4p− b4)3 . (3.17)

This expression, with b4 obtained from (3.16), can be shown to be precisely equal to the

Sasaki-Einstein volume

Y p,k(CP 2) =
3π4(x2 − x1)

(
x2

3 − x1
3
)

256p(1− x1)(x2 − 1)
, with x1 =

x2(k − 3p)

k − 3px2
, (3.18)

given in equation (2.13) of [31], where it was computed using the explicit Sasaki-Einstein

metric. The relation between the variables b4 and x2 in the two expressions above is simply

x2 = 4k
3b4

. Note, for example, for the special case p = 2, k = 3 we have Y7 = M3,2 and

Vol(M3,2) = 9π4/128.

We now turn to the AdS3 × Y p,k(CP 2) solutions. We begin by setting b1 = 2 in

the formulae (3.9)–(3.10). The transverse Kähler class is determined by d − 3 = 2 of the

parameters {λa}. We use the constraint equation (3.9) and one of the flux equations (3.10),

which we take to be N1, to solve for two of the {λa} which we take to be λ1 and λ2. The

remaining fluxes can all be expressed in terms of N1, and the flux vector is given by

{Na} =

{
1,− k

k − 3p
,

p

k − 3p
,

p

k − 3p
,

p

k − 3p

}
N1 . (3.19)
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We can then calculate the trial central charge Z finding, in particular, that it is

independent of λ3, λ4 and λ5, in agreement with the invariance of the problem under the

three independent transformations in (2.37). Furthermore, Z is quadratic in b2, b3 and

b4, again as expected. It is now straightforward to extremize Z with respect to these

remaining variables and we find the unique extremum has ~b = (2, 0, 0, b4), with

b4 =
kp(k − p)

k2 − 3kp+ 3p2
. (3.20)

The fact that b2 = b3 = 0 is again due the SU(3) symmetry of the CP 2 base space.

Evaluating Z at this extremum we find the central charge is given by

csugra =
3kp3N2

1

(k − 3p) (k2 − 3kp+ 3p2)
. (3.21)

This is the central charge for the AdS3 × Y p,k(CP 2) solutions, provided that they

exist. We can now compare with the explicit solutions constructed in [18]. These solutions

depended on two relatively prime integers p, q > 0 (which were labelled p, q in [18]). We

first note that in [18] we should set m = 3, M = 9, and h = 1 since we are considering

KE+
4 = CP 2. We then need to make the identifications

(k, p)→ (−p, q) , N1 → −(p + 3q)n . (3.22)

The flux vector is then {Na} = {−(p + 3q), p, q, q, q}n. In particular, we identify N1, N2

with N(D0), N(D̃0) in equation (18) of [18], respectively, while (N3, N4, N5) are associated

with N(Da). With these identifications, we precisely recover the result for the central

charge given in equation (1) of [18]. Note that the conditions p, q > 0, required to have an

explicit supergravity solution [18], translate into the conditions

k < 0 p > 0 , (3.23)

as mentioned earlier. In particular the polytope is not convex, as observed in [33].

It is an interesting outstanding problem to identify the d = 2 (0, 2) SCFTs that are

dual to these AdS3 × Y p,k(CP 2) solutions.

3.3 The Y p,k(CP 1 × CP 1) and Y p,k(CP 1 × CP 1) families

The toric data associated with Y p,k(CP 1 × CP 1) was given in [31]. We take the d = 6

inward pointing normal vectors to be given by

~v1 = (1, 0, 0, 0) , ~v2 = (1, 0, 0, p) , ~v3 = (1,−1, 0, 0) ,

~v4 = (1, 1, 0, k) , ~v5 = (1, 0,−1, 0) , ~v6 = (1, 0, 1, k) . (3.24)

The associated toric diagram, obtained by projecting on R3 the vertices in (3.24), is given

in figure 2. For Y p,k(CP 1×CP 1) we have 0 < p < k < 2p, and there is a convex polytope.

For the explicit metrics Y p,k(CP 1 × CP 1) we again have k < 0 and p > 0. We continue

with general p, k.
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Figure 2. Toric diagram of Y p,k(CP 1×CP 1) with p = 2, k = 3, obtained by projecting on R3 the

vertices in (3.24).

The master volume V(~b; {λa}), given in (2.27), can be obtained from the toric

data (3.24) and the results in appendix A. In the Sasakian limit, {λa = − 1
2b1
}, setting

b1 = 4 and extremizing with respect to {b2, b3, b4} [10] we find that the critical Reeb vector

is given by b2 = b3 = 0, with b4 solving the cubic equation

b34
(
−3k2+6kp−4p2

)
+2b24p

(
9k2−8kp+2p2

)
+16b4kp

2(p−3k)+48k2p3 = 0 . (3.25)

The fact that b2 = b3 = 0 is due to the SU(2) × SU(2) symmetry of the CP 1 × CP 1 base

space. Equivalently, the value of b4 obtained from (3.25) can be obtained from extremizing

the Sasakian volume with b1 = 4 upon setting b2 = b3 = 0, which reads

Vol(Y7)(b4) =
2π4p

(
b24
(
3k2 − 6kp+ 4p2

)
+ 4b4kp(2p− 3k) + 16k2p2

)
3b34 (4p− b4) 3

. (3.26)

Again, this expression, with b4 obtained from (3.25), can be shown to be precisely equal to

the Sasaki-Einstein volume

Y p,k(CP 1 × CP 1) =
π4(x2 − x1)

(
x2

3 − x1
3
)

96p(1− x1)(x2 − 1)
, with x1 =

x2(k − 2p)

k − 2px2
, (3.27)

given in equation (2.13) of [31], where it was computed using the explicit Sasaki-Einstein

metric. The relation between the variables b4 and x2 in the two expressions above is

x2 = 2k
b4

. Note, for example, for the special case p = k = 1 we have Y7 = Q1,1,1 and

Vol(Q1,1,1) = π4/8.

We now turn to the AdS3 × Y p,k(CP 1 × CP 1) solutions. We begin by setting b1 = 2

in the formulae (3.9)–(3.10). The transverse Kähler class is determined by d− 3 = 3 of the

parameters {λa}. We use the constraint equation (3.9) and two of the flux equations (3.10),
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which we take to be N1 and N3, to solve for three of the {λa} which we take to be λ1, λ2

and λ3. The remaining fluxes are then expressed in terms of N1, N3, and we have

{Na} =

{
N1,−

kN1

k − 2p
,N3, N3,

pN1

k − 2p
−N3,

pN1

k − 2p
−N3

}
. (3.28)

It will be useful in a moment to notice that if we restrict the fluxes by imposing

N3 = pN1

2(k−2p) , then {Na} = {1,− k
k−2p ,

p
2(k−2p) ,

p
2(k−2p) ,

p
2(k−2p) ,

p
2(k−2p)}N1.

We next calculate the trial central charge Z and find, in particular, that it is inde-

pendent of λ4, λ5 and λ6, in agreement with the invariance of the problem under the three

independent transformations in (2.37). Furthermore, Z is quadratic in b2, b3 and b4, again

as expected. It is now straightforward to extremize Z with respect to these remaining

variables and we find the unique extremum has ~b = (2, 0, 0, b4), with

b4 =
kp
[
N2

1 p
2(k − p) +N2

3 (k − 2p)3 −N1N3p(k − 2p)2
]

N2
1 p

2(k − p)2 + kN2
3 (k − 2p)3 − kN1N3p(k − 2p)2

. (3.29)

The fact that b2 = b3 = 0 is due to the SU(2) × SU(2) symmetry of the CP 1 × CP 1 base

space. Evaluating Z at this extremum we find the central charge is given by

csugra =
6kN3p

[
N3

1 p
3 − 2N3N

2
1 p

2(k − 2p) + 2N2
3N1p(k − 2p)2 −N3

3 (k − 2p)3
]

N2
1 p

2(k − p)2 + kN2
3 (k − 2p)3 − kN1N3p(k − 2p)2

. (3.30)

This is the central charge for the AdS3 × Y p,k(CP 1 × CP 1) solutions, provided that

they exist. We can now compare the above results, for the special case that the fluxes are

restricted via N3 = pN1

2(k−2p) as mentioned above, with the explicit solutions constructed

in [18]. These solutions depended on two relatively prime integers p, q > 0 (which were

labelled p, q in [18]). Since we are considering KE+
4 = CP 1 × CP 1, we need to set m = 2

and M = 8 in the formulae in [18]. We also need to make the identifications

(k, p)→ (−p, q) , N1 → −2(p + 2q)
n

h
. (3.31)

The flux vector is then {Na} = {−2(p + 2q), 2p, q, q, q, q}nh . In particular, we identify N1,

N2 with N(D0), N(D̃0) in equation (18) of [18], respectively, while (N3, N4, N5, N6) are

associated with N(Da). With these identifications, we precisely recover the result for the

central charge given in equation (1) of [18]. The analysis of [18] shows that the supergravity

solutions exist for p, q > 0, which translates into the conditions

k < 0 , p > 0 . (3.32)

In particular the polytope is not convex, as observed in [33].

It is interesting that the central charge for these AdS3 × Y p,k(CP 1 × CP 1) can also

be obtained in another way. Indeed, by selecting one of the CP 1 factors, we can view

Y p,k(CP 1×CP 1) as a fibration of Y p̄,q̄ over the other CP 1 factor, as discussed in section 6.1

and 7.2 of [16] (and we note that (p̄, q̄) were denoted (p, q) in [16]). The fibration in [16]

was specified by three integers n1, n2, n3, with n1 = 2, as demanded by supersymmetry,

and for simplicity n2 and n3 were taken to be equal with n2 = n3 ≡ −s. In addition, the
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solutions were specified by an additional two integers, m,N , which determined the fluxes.

To compare to the solutions discussed here we should first restrict the solutions so that the

fibration has s = q̄− p̄. We then need to make the identifications (p, k) = (p̄, p̄− q̄) as well

as (m,N) = (−N1/N3, N3). Having done this, one finds that the central charge in (3.30)

agrees exactly with equation (6.7) of [16].

It is an interesting outstanding problem to identify the d = 2 (0, 2) SCFTs that are

dual to these explicit AdS3 × Y p,k(CP 1 × CP 1) solutions. In particular, as discussed

in [16], viewing them as a fibration of Y p̄,q̄ over CP 1 we have p̄ < q̄ and hence they are not

associated, at least in any simple way, with compactifying the d = 4 quiver gauge theories

dual to AdS5 × Y p̄,q̄, with Sasaki-Einstein metric on Y p̄,q̄, since the latter have p̄ > q̄.

Finally, we note that the explicit supergravity solutions in [18] with KE+
4 = CP 1×CP 1

can be generalised, allowing the relative sizes of the two CP 1 to be different. Indeed such

local solutions can be obtained by T-dualising the solutions in section 5 of [27]. It is

natural to conjecture that regular solutions with properly quantized flux can be obtained

with independent N1, N3, and central charge as in (3.30).

4 Supersymmetric AdS2 × Y9 solutions

4.1 General set-up

We now consider supersymmetric AdS2×Y9 solutions of D = 11 supergravity that are dual

to superconformal quantum mechanics with two supercharges of the form

ds2
11 = L2e−2B/3

(
ds2

AdS2
+ ds2

9

)
,

G = L3volAdS2 ∧ F . (4.1)

Here L is an overall length scale and ds2
AdS2

is the metric on a unit radius AdS2 with

volume form volAdS2 . The warp factor B is a function on the compact Riemannian internal

space (Y9, ds
2
9) and F is a closed two-form on Y9. We also need to impose flux quantization.

Since G ∧G = 0 for the above ansatz, we need to impose

1

(2π`p)6

∫
ΣA

∗11G = NA ∈ Z , (4.2)

where `p is the Planck length and ΣA ⊂ Y9, with {ΣA} forming an integral basis for the

free part of H7(Y9,Z). The geometry of these solutions was first analysed in [14] and then

extended in [15].

We again consider off-shell supersymmetric geometries, as described in detail in [5].

These are configurations of the form (4.1) which admit the required Killing spinors and

become supersymmetric solutions when we further impose the equation of motion for the

four-form. The complex cone C(Y9), in complex dimension n = 5 and with Hermitian

metric ds2
C(Y9) = dr2 + r2ds2

9, admits a global holomorphic (5, 0)-form Ψ. The complex

structure pairs the radial vector r∂r with the R-symmetry vector field ξ. Likewise, the com-

plex structure pairs dr/r with the dual one-form η, and ξyη = 1. The vector ξ has unit norm

and defines a foliation Fξ of Y9. The basic cohomology for this foliation is denoted H∗B(Fξ).
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The supersymmetric geometries have a metric of the form

ds2
9 = η2 + eBds2(J) , (4.3)

where ds2(J) is a transverse Kähler metric with transverse Kähler form J . The trans-

verse Kähler metric determines the full supersymmetric geometry including the fluxes. In

particular, the conformal factor is fixed via eB = R/2, where R is the Ricci scalar of the

transverse Kähler metric. We also have

dη = ρ , (4.4)

where ρ is the Ricci two-form of the transverse Kähler metric, and LξΨ = ib1Ψ, with

b1 = 1. It was shown in [5] that there is a supersymmetric action SSUSY = SSUSY[ξ; [J ]],

whose extremum allows one to determine the effective two-dimensional Newton’s constant,

G2, with 1/(4G2) giving the logarithm of the partition function of the dual superconformal

quantum mechanics.

In this paper we are interested in the specific class of Y9 which are fibred over a

Riemann surface Σg:

Y7 ↪→ Y9 → Σg . (4.5)

The R-symmetry vector ξ is assumed to be tangent to Y7. While the general class of

supersymmetric AdS2 × Y9 solutions might arise as the near horizon limits of black hole

solutions of D = 11 supergravity, this seems particularly likely in the case that Y9 is of

the fibred form (4.5). Indeed we expect that such solutions can arise as the near horizon

limit of black holes, with horizon topology Y9, in an asymptotically AdS4×Y7 background

with a Sasaki-Einstein metric on Y7. In fact this is known to be the case for the so-called

universal twist fibration with genus g > 1 [27, 36–39]. As shown in [5] the entropy of the

black holes, SBH , should be related to the effective two-dimensional Newton’s constant,

G2, via SBH = 1/(4G2). In the following we will refer to the supersymmetric action SSUSY,

with a suitable normalization given below, as the entropy function.

We now further consider Y7 to be toric with an isometric U(1)4 action, as described

in section 2. In order to obtain SSUSY, we can generalise the analysis of section 4 of [16].

The fibration structure is specified by four integers (n1, n2, n3, n4) and we have

n1 = 2(1− g) , (4.6)

since we have chosen a basis for the U(1)4 vectors satisfying (2.4) with b1 = 1. Furthermore,

up to an irrelevant exact basic two-form, the transverse Kähler form on Y9 may be taken

to be

J = ωtwisted +A volΣg + basic exact . (4.7)

Here ωtwisted is a Kähler form on the complex cone over Y7 that is suitably twisted over

Σg. We have normalized
∫

Σg
volΣg = 1, and A is effectively a Kähler class parameter for

the Riemann surface.
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By directly generalizing the arguments in section 4.2 of [16], we find that the key

quantities can all be expressed in terms of ni and A as well as the master volume V(~b;λa).

The supersymmetric action is given by

SSUSY = −A
d∑
a=1

∂V
∂λa
− 2πb1

4∑
i=1

ni
∂V
∂bi

. (4.8)

The constraint equation that must be imposed, in order that flux quantization is well-

defined, is given by

0 = A
d∑

a,b=1

∂2V
∂λa∂λb

− 2πn1

d∑
a=1

∂V
∂λa

+ 2πb1

d∑
a=1

4∑
i=1

ni
∂2V
∂λa∂bi

. (4.9)

Finally, we consider flux quantization, and there are two types of seven-cycle to consider.

First, there is a distinguished seven-cycle, Σ, which is a copy of Y7 obtained by picking a

point on Σg, and we have

(2π`p)
6

L6
N = −

d∑
a=1

∂V
∂λa

. (4.10)

We can also consider the seven-cycles Σa, a = 1, . . . , d, obtained by fibreing a toric five-cycle

Ta on Y7, over Σg, and we have

(2π`p)
6

L6
Ma =

A

2π

d∑
b=1

∂2V
∂λa∂λb

+ b1

4∑
i=1

ni
∂2V
∂λa∂bi

. (4.11)

We find it convenient to also introduce the equivalent notation for the fluxes Ma:

na ≡ −
Ma

N
. (4.12)

The toric five-cycles [Ta] ∈ H5(Y7,Z) are not all independent. The [Ta] generate the free

part of H5(Y7;Z), but they also satisfy 4 linear relations
∑d

a=1 v
i
a[Ta] = 0 ∈ H5(Y7;Z). This

gives rise to the corresponding homology relation in Y9,
∑d

a=1 v
i
a[Σa] = −ni[Y7] ∈ H7(Y9;Z),

which implies the useful relation4

d∑
a=1

viaMa = −niN ⇔
d∑
a=1

viana = ni , i = 1, 2, 3, 4 . (4.13)

We thus have a total of d− 3 independent flux numbers N and {Ma}. In all of the above

formulae we should set

b1 = 1 , (4.14)

4A topological proof of (4.13) may be found in appendix B. It would be nice to prove this relation more

directly, using a similar method to that given in (4.37)–(4.39) of [16].
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after taking any derivatives with respect to the bi. Finally, we note that we can also express

the supersymmetric action in the following compact form

SSUSY =
(2π`p)

6

L6

2πN

3

(
A

2π
+

d∑
a=1

λana

)
. (4.15)

To prove this we first multiply (4.11) by λa and then sum over a. Recalling that the master

volume is homogeneous of degree three in the λa and using Euler’s theorem we deduce that

(2π`p)
6

L6

d∑
a=1

λaMa =
A

2π
2

d∑
b=1

∂V
∂λb

+ 3b1

4∑
i=1

ni
∂V
∂bi

. (4.16)

Using this and (4.10) we then obtain (4.15).

For a given fibration, specified by (n1, n2, n3, n4) with n1 = 2(1 − g), the on-shell

action is obtained by extremizing SSUSY. A priori with b1 = 1, there are d+ 1 parameters

comprising (b2, b3, b4), along with the (d − 3) + 1 independent Kähler class parameters

{λa} and A. The procedure is to impose (4.9), (4.10) and (4.11), which, as we noted, is

generically d − 2 independent conditions, and hence SSUSY will generically be a function

of three remaining variables. We then extremize the action with respect to these variables,

or equivalently extremize the “trial entropy function”, S , defined by

S ≡ 8π2L9

(2π`p)9
SSUSY , (4.17)

which has the property that for an on-shell supersymmetric solution, i.e. after extremiza-

tion, we obtain the two-dimensional Newton’s constant

S |on-shell =
1

4G2
. (4.18)

As explained in [5] this should determine the logarithm of the partition function of the dual

supersymmetric quantum mechanics. Moreover, when the AdS2×Y9 solution arises as the

near horizon limit of a black hole solution, it gives the entropy of the black hole, SBH =

S |on-shell. The entropy of such black holes should be accounted for by the microstates

of the dual d = 3, N = 2 field theories when placed on S1 × Σg; the number of these

microstates is expected to be captured by the corresponding supersymmetric topological

twisted index.

We may also compute the geometric R-charges Ra = R[Ta] associated with the oper-

ators dual to M5-branes wrapping the toric divisors Ta ⊂ Y7 at a fixed point on the base

Σg. The natural expression5 is given by

Ra = R[Ta] =
4πL6

(2π`p)6

∫
Ta

η ∧ 1

2!
ω2 . (4.19)

5We have not verified this formula by explicitly checking the κ-symmetry of an M5-brane wrapped on

the toric divisors Ta. It is analogous to the corresponding expression for AdS3 solutions, where it was also

motivated by computing the dimension of baryonic operators dual to D3-branes wrapping supersymmetric

cycles in Y5 [40]. We will indirectly verify this normalization below.
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Following similar arguments to those of section 4 in [16] we then deduce that

Ra = − 2L6

(2π`p)6

∂V
∂λa

. (4.20)

As for the fluxes in (4.12), we find it convenient to strip out a factor of N and define

∆a ≡
Ra
N

. (4.21)

In particular, using (4.10), notice that we have

d∑
a=1

Ra = 2N ⇔
d∑
a=1

∆a = 2 . (4.22)

We also note that for the generic examples, with toric data satisfying (2.36) we have,

equivalently,

d∑
a=1

viaRa =
2bi

b1
N ⇔

d∑
a=1

via∆a =
2bi

b1
, i = 1, 2, 3, 4 , (4.23)

from which the relation (4.22) is the i = 1 component. Recall that this relation implies

that the master volume V is invariant under the “gauge transformation” (2.37) acting on

the λa. As we noted in the previous section, this implies that all of the derivatives of V
with respect to λa are also invariant under this gauge transformation. However, this is not

the case after taking derivatives with respect to bi (since the gauge transformation involves

the vector bi) and so we now discuss the effect of (2.37) on the extremal problem in the

case of fibered geometries.6

The variation of ∂V
∂bj

under (2.37) is given by

δ
∂V
∂bj

=

d∑
a=1

∂2V
∂λa∂bj

δλa =

4∑
i=1

γi

d∑
a=1

(viab1 − bi)
∂2V

∂λa∂bj
. (4.24)

On the other hand, assuming that (2.36) holds and taking a derivative of this with respect

to bj , a short computation leads to the identity [16]

d∑
a=1

(
b1v

i
a − bi

) ∂2V
∂bj∂λa

=

(
δij −

biδ1j

b1

) d∑
a=1

∂V
∂λa

, (4.25)

and hence we have

δ
∂V
∂bj

= −

(
γj −

1

b1
δ1j

4∑
i=1

γibi

)
(2π`p)

6

L6
N , (4.26)

6This analysis applies also to the Y5 ↪→ Y7 → Σg geometries discussed in [16].
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where we used (4.10). A similar computation for the variation ∂2V
∂λa∂bj

, and using the

expression obtained by differentiating (4.25) with respect to λb, we deduce that

δ
∂2V

∂bj∂λa
=

(
γj −

1

b1
δ1j

4∑
i=1

γibi

)
∂2V

∂bj∂λa
. (4.27)

Using these results we find that if we extend the gauge transformation to also allow for a

variation of the Kähler class parameter A via

δλa =
4∑
i=1

γi(v
i
ab1 − bi) ,

δA ≡ −2π
d∑
a=1

δλana = −2π
4∑
i=1

γi(nib1 − bin1) , (4.28)

where the second expression in the second line follows from (4.13), then in addition to N

being invariant then so are the fluxes Ma as well as the supersymmetric action SSUSY, as

one can easily see from the expression (4.15).

While these gauge transformations are certainly interesting and useful, they are con-

strained. This follows from the fact that since {λa} and A parametrize Kähler classes they

must satisfy some positivity constraints. For example, the transformations (4.28) naively

suggest that we might choose a gauge with A = 0, but this should not be possible. In fact

in some of the examples we study, one finds bi = b1
n1
ni, on-shell, which also indicates the

problem with such a putative gauge choice. It would certainly be interesting to determine

the positivity constraints on the Kähler class parameters and hence the restrictions on the

gauge transformations.

4.2 Entropy function in terms of ∆a variables

Before discussing some explicit examples of AdS2×Y9 solutions with Y9 obtained as a fibra-

tion of toric Y7 over Σg, we first show that the above variational problem incorporates some

general features concerning I-extremization discussed in [1]. We will further develop the

connection of our formalism to I-extremization, in the subsequent subsections, especially

section 4.8.

The master volume V is defined to be a function of (d−3)+3 = d independent variables

(λa, b2, b3, b4). We want to consider a change of variables in which V is, instead, a function

of the d variables ∆a (see (4.21)) given by

∆a = − 2L6

N(2π`p)6

∂V
∂λa

, (4.29)

where at this stage N is a free parameter (i.e. not yet given by (4.10) so we don’t yet

impose
∑

a ∆a = 2.) Assuming that this is an invertible change of variables, using the
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chain rule, we then have

∂V
∂bi

=
∑
a

∂V
∂∆a

∂∆a

∂bi
= − 2L6

N(2π`p)6

∑
a

∂V
∂∆a

∂2V
∂bi∂λa

,

∂V
∂λa

=
∑
b

∂V
∂∆b

∂∆b

∂λa
= − 2L6

N(2π`p)6

∑
b

∂V
∂∆b

∂2V
∂λa∂λb

. (4.30)

Using this, and also (4.10), we can then write the supersymmetric action (4.8) as

SSUSY =
(2π`p)

6

L6
AN +

4πb1
N

L6

(2π`p)6

∑
i,a

ni
∂V
∂∆a

∂2V
∂bi∂λa

. (4.31)

We next multiply the expression for the fluxes Ma, given in (4.11), by ∂V
∂∆a

and then sum

over a to get

(2π`p)
6

L6

∑
a

Ma
∂V
∂∆a

=
A

2π

∑
a,b

∂2V
∂λa∂λb

∂V
∂∆a

+ b1
∑
i,a

ni
∂2V
∂λa∂bi

∂V
∂∆a

. (4.32)

Using the second line of (4.30) as well as (4.10), we can recast this as

4π

N

∑
a

Ma
∂V
∂∆a

=
(2π`p)

6

L6
AN +

4πb1
N

L6

(2π`p)6

∑
i,a

ni
∂V
∂∆a

∂2V
∂bi∂λa

. (4.33)

Hence the off-shell supersymmetric action can be written in the remarkably simple form

SSUSY(bi, na) = −4π

d∑
b=1

nb
∂V
∂∆b

∣∣∣∣
∆b(bi,na)

, (4.34)

where na are the normalized fluxes na ≡ −Ma/N that were introduced in (4.12). Here on

the right hand side recall that originally the master volume V is a function of (λa, b2, b3, b4),

which we then express as a function of ∆b = ∆b(λa, b2, b3, b4), assuming this is invertible.

However, one can then eliminate the Kähler parameters {λa} in terms of the flux quantum

numbers na ≡ −Ma/N by imposing (4.11) as a final step, so that ∆b = ∆b(bi, na).

4.3 The universal twist revisited

As our first example, we apply our general formalism of section 4.1 to the case called the

universal twist. Specifically, we consider a nine-dimensional manifold Y9 that is a fibration

of a toric Y7 over a Riemann surface Σg, with genus g > 1, where the twisting is only along

the U(1)R R-symmetry. The corresponding supergravity solutions exist for any Y7 = SE7

that is a quasi-regular Sasaki-Einstein manifold; these solutions, generalising [38], were

mentioned in footnote 5 of [27] and in section 6.3 of [28]. Furthermore, the magnetically

charged black hole solutions of [36, 37] can be uplifted on an arbitrary SE7 using the

results of [39] to obtain solutions which interpolate between AdS4 × SE7 in the UV and

the AdS2 × Y9 solutions in the IR. These solutions and the associated field theories were

recently discussed in [8]. We will use the formalism of section 4.1 to recover some of the
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results of [8] as well as extend them by discussing the geometric R-charges associated with

wrapped M5-branes.

We closely follow the analysis in section 5 of [16] which considered the analogous

universal twist in the context of AdS3 solutions. From a geometric point of view the

universal twist corresponds to choosing the fluxes ni to be aligned with the R-symmetry

vector, and so we impose

ni =
n1

b1
bi , (4.35)

with n1 = 2(1 − g). We also need to impose that the R-charges are proportional to the

fluxes as is clear from the construction of the supergravity solutions. Note that we will

need to check, a posteriori, that after carrying out extremization the on-shell value of ~b is

consistent with the left hand side of (4.35) being integers. Inserting this into the formulas

for the action (4.8), the constraint (4.9) and the flux quantization conditions (4.10), (4.11),

and using the fact that the master volume V is homogeneous of degree minus one in ~b,

these reduce respectively to

SSUSY = A
(2π`p)

6

L6
N + 2πn1V , (4.36)

0 = A

d∑
a,b=1

∂2V
∂λa∂λb

+ 4πn1
(2π`p)

6

L6
N , (4.37)

(2π`p)
6

L6
Ma =

A

2π

d∑
b=1

∂2V
∂λa∂λb

− n1
∂V
∂λa

, (4.38)

(2π`p)
6

L6
N = −

d∑
a=1

∂V
∂λa

. (4.39)

In contrast to [16], the above equations are now quadratic in λa instead of linear.

In general we may also freely specify the flux quantum numbers Ma, subject to the con-

straint (4.13) that follows because the seven-cycles Σa are not all independent in homology

on Y9. However, by definition the universal twist has a specific choice of the fluxes Ma,

proportional to the R-charges Ra (see equation (4.54) below). In order to solve (4.36)–

(4.39), we will instead make the ansatz that the λa parameters are all equal, and then a

posteriori check that this correctly reproduces the universal twist solutions. Thus setting

λa = λ for a = 1, . . . , d, from (2.31) and (2.35) we have

V =− 8b31λ
3Vol(Y7) , (4.40)

and from (2.33) we also have

d∑
a=1

∂V
∂λa

= −24b31λ
2Vol(Y7) and

d∑
a,b=1

∂2V
∂λaλb

= −48b31λVol(Y7) . (4.41)

We can next use the constraint equation (4.37) to solve for A to obtain

A =
(2π`p)

6

L6

4πn1N

48λb31Vol(Y7)
. (4.42)
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Since A > 0 is the volume of the Riemann surface Σg (see (4.7)), we deduce that n1N has

the same sign as λ. Without loss of generality we continue with N > 0, and since we are

assuming g > 1 we must have λ < 0. From (4.39) we next solve for λ to get

λ = −(2π`p)
3

L3

N1/2

2
√

6b
3/2
1 Vol(Y7)1/2

. (4.43)

Inserting these results into the supersymmetric action (4.36) we find that we can write the

off-shell entropy function (4.17) as

S =
32π3(g − 1)N3/2

3
√

6b
3/2
1 Vol(Y7)1/2

. (4.44)

This action has to be extremized with respect to b2, b3, b4, holding b1 fixed to be 1.

On the other hand, the Sasaki-Einstein volume can be obtained by varying over b2, b3, b4
while holding b1 fixed to be 4. To proceed we define ~b = 1

4~r and use the fact that Vol(Y7)

is homogeneous of degree minus four in ~b, to rewrite the action as

S (~r) =
2π3(g − 1)N3/2

3
√

6b
3/2
1 Vol(Y7)1/2

. (4.45)

Since Vol(Y7)(~r) with r1 = 4 is extremized by the critical Reeb vector ~r = ~r∗, with

Vol(Y7)(~r∗) being the Sasaki-Einstein volume, we conclude that SSUSY(~r) is extremized

for the critical R-symmetry vector given by

~b∗ =
1

4
~r∗ . (4.46)

The value of the entropy function at the critical point is then

S |on-shell =
(g − 1)N3/2π3

√
2√

27Vol(Y7)
. (4.47)

Recalling that the holographic free energy on S3 associated with the AdS4×SE7 solutions

is given by [41–44]

FS3 = N3/2

√
2π6

27Vol(Y7)
, (4.48)

we finally obtain

S |on-shell = (g − 1)FS3 , (4.49)

in agreement with the general field theory result derived in section 2 of [8]. In particular,

the latter result follows from restricting the topological twist performed in the index com-

putation [9, 45] to coincide with the twist along the exact superconformal R-symmetry of

the three-dimensional theory. In the field theory, implementing the universal twist amounts
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to identifying the R-charges of the fields ∆I with their topological fluxes nI , where I labels

the fields in the field theory, as

∆I =
nI

1− g
, (4.50)

which we can indeed reproduce in our set up, as we discuss further below. We also note that

using (4.40), (4.43), as well as the above rescaling argument, the off-shell master volume is

also related simply to the off-shell geometric free energy in this case, as

V =
(2π`p)

9

L9

FS3

64π3
. (4.51)

Next it is straightforward to compute the geometric R-charges defined in (4.19). In

particular, we have
∂V
∂λa

= −λ28πb21Vol(Ta) , (4.52)

and using the rescaling argument above, we obtain

Ra =
πNVol(Ta)

6Vol(Y7)
≡ N∆3d

a , (4.53)

where ∆3d
a denote the geometric R-charges of the three-dimensional theories [46]. The

equations (4.38), (4.39) then imply that the fluxes Ma are related to the geometric R-

charges via

Ma = (g − 1)Ra . (4.54)

Using (4.53) we deduce that the R-charges of the parent three-dimensional field theory, ∆3d
a ,

are rational numbers, as expected from the fact that the Sasaki-Einstein seven-manifolds in

the dual supergravity solutions must be quasi-regular. This is analogous to what was found

in [16]. The relation (4.54) between fluxes Ma and R-charges Ra is part of the definition

of the universal twist solution, and thus this equation also confirms, a posteriori, that our

ansatz earlier for the ni and λa correctly reproduces the universal twist.

To make further contact with the field theory discussion of [8], it is convenient to

use the geometric R-charges and fluxes stripped of the overall factor of N , as in (4.21)

and (4.12), namely

Ra ≡ N∆a , Ma ≡ −Nna , (4.55)

which are related in the present context via

∆a =
na

1− g
. (4.56)

From (4.22) and the i = 1 component of (4.13) we have

d∑
a=1

∆a = 2 ,

d∑
a=1

na = 2(1− g) . (4.57)

More generally, using (4.35), from (4.13) we deduce

(1− g)
d∑
a=1

~va∆a =
d∑
a=1

~vana = 2(1− g)~b . (4.58)
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Note that the relation (4.56) has exactly the same form as the field theory result (4.50).

However, the index a in (4.56) runs over all d toric divisors, while the index I in (4.50)

labels the chiral fields of the field theory. For the special case of ABJM theory, with d = 4,

these two indices can be identified, and in this case the relations in (4.57) can be directly

interpreted as the conditions that the superpotential of the quiver gauge theory has R-

charge 2 and flux 2(1− g) [8], respectively. More generally, the fields7 ΦI are associated to

linear combinations of the toric divisors Ta, through a “field-divisors” map

ΦI ←→
d∑
a

caITa , (4.59)

which induces the relations ∆I =
∑d

a c
a
I∆a, and nI =

∑d
a c

a
Ina. Since these are linear

relations, from (4.56) we can deduce that for every field in the quiver we must have

nI = (1− g)∆I , as in [8].

4.4 Comparing with some explicit supergravity solutions

In this section we will make some additional checks of our new formulae by comparing

with some other explicit AdS2 × Y9 supergravity solutions, with Y9 a toric Y7 fibred over

Σg, first constructed in [28]. The construction of interest here utilises an eight-dimensional

transverse Kähler manifold which is a product of a four-dimensional Kähler-Einstein space,

KE+
4 , with the product of two two-dimensional Kähler-Einstein spaces, taken to be CP 1×

Σg, with g > 1. Focusing on toric Y7, the KE+
4 is either CP 1 ×CP 1, CP 2 or the third del

Pezzo surface. For simplicity, we just discuss the first two cases. When KE+
4 = CP 1×CP 1

we have Y7 = Q1,1,1 and when KE+
4 = CP 2 we have Y7 = M3,2 (although not, in general,

with their Sasaki-Einstein metrics). The solutions are specified by a positive number, x,

and in the case x = 1 we have special instances of the universal twist solutions considered

in the last subsection.

In appendix C we have extended the results of [28] by carrying out the analysis of flux

quantization for the AdS2×Y9 solutions. Combined with some results of this paper we can

then extract the four integers ~n, determining the fibration of Y7 over Σg, as well as the R-

symmetry vector ~b, the R-charges, Ra, the fluxes Ma and the entropy function S . Ideally

we would like to recover all of these results by carrying out the extremization procedure

described in section 4.1. However, it turns out that this is algebraically somewhat involved

and so instead we show that if we assume the R-symmetry vector ~b of the explicit solutions

is indeed the critical, on-shell vector of the extremal problem, then we precisely recover

the remaining results of appendix C.

7In the class of N = 2 superconformal quiver theories of interest, the ΦI are the chiral fields transforming

in the adjoint and bi-fundamental representations of the gauge groups as well as certain chiral monopole

operators that arise in the description of the quantum corrected vacuum moduli space [47]. Note that the

index label I does not include chiral “flavour” fields transforming in the (anti-)fundamental representations.

We also note that since the fields ΦI have definite charges under the flavour group, and in particular under

the abelian subgroup, setting a field to zero in the abelian quiver gauge theory picks out a particular toric

divisor as in (4.59).
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We first consider the case when KE+
4 = CP 1×CP 1. We take the twisting parameters

to be given by ~n = n1(1, 0, 0, 1/2), with n1 = 2(1− g) as in the explicit solutions. We also

take the R-symmetry vector to be ~b = (1, 0, 0, 1/2), which we notice is proportional to ~n,

and assume that it is the critical vector, as just mentioned. The toric data can be obtained

from that of Y p,k(CP 1 × CP 1) in (3.24) with k = p = 1 (for k = p 6= 1 one has Q1,1,1/Zp)
and is given by the following six inward pointing normal vectors

~v1 = (1, 0, 0, 0) , ~v2 = (1, 0, 0, 1) , ~v3 = (1,−1, 0, 0) ,

~v4 = (1, 1, 0, 1) , ~v5 = (1, 0,−1, 0) , ~v6 = (1, 0, 1, 1) . (4.60)

The toric diagram is shown in figure 4 in section 4.6. Of the six Kähler class parameters,

λa, only three are independent and, after some analysis, one can show that these can be

taken to be λ1 +λ2, λ3 +λ4 and λ5 +λ6. With the given R-symmetry vector, we find that

the constraint equation (4.9) and the flux quantization conditions in (4.10), (4.11) are all

satisfied providing that

λ1 + λ2 = λ3 + λ4 = − 1

8π2

x1/2

(2 + x)1/2

(
2π`p
L

)3

N1/2 ,

λ5 + λ6 = − 1

4π2

1

x1/2(2 + x)1/2

(
2π`p
L

)3

N1/2 , (4.61)

where x > 0 and A =
(2π`p)3

L3
x1/2(2+x)1/2

4π(1+2x) (g− 1)N1/2. Indeed we find that the fluxes Ma are

given by

M1 = M2 = M3 = M4 =
1 + x+ x2

(2 + x)(1 + 2x)
(g − 1)N ,

M5 = M6 =
3x

(1 + 2x)(2 + x)
(g − 1)N . (4.62)

To ensure that these are integers we demand that x+1/x ∈ Q. Furthermore, the R-charges

are given by

R1 = R2 = R3 = R4 =
1

2 + x
N, R5 = R6 =

x

2 + x
N , (4.63)

with
∑

aRa = 2N . It is interesting to point out that while the geometry is quasi-regular

for all values of x (since ~b = (1, 0, 0, 1/2)) the R-charges can be irrational. Notice also that

when x = 1 the R-charges are proportional to the fluxes, as in the universal twist solutions

in section 4.3. Finally, after calculating the on-shell supersymmetric action (4.8), (4.17)

we obtain

S |on-shell = 2π(g − 1)
3 + 2x+ x2

(1 + 2x)

x1/2

(2 + x)3/2
N3/2 . (4.64)

These expressions precisely agree with their counterparts in appendix C obtained by

analysing the explicit supergravity solutions.
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As an aside we note that given the Kähler class parameters in (4.61) and our choice of
~b, the master volume as a function of x takes the simple form

V =
(2π`p)

9

L9

x1/2

16π2(2 + x)3/2
N3/2 . (4.65)

As we recalled in section 4.3, a dual quiver gauge theory for Y7 = Q1,1,1 was proposed in [47]

and a calculation of the large N topologically twisted index on S1×S2 was presented in [29].

Indeed for x = 1 (which corresponds to the universal twist) we have already noted that the

geometric results are in agreement with the field theory results.8 It would be interesting to

find a dual field theory interpretation of the x-deformed geometry that we discussed above.

We now consider the case when KE+
4 = CP 2, which is very similar. We take the

twisting parameters to be given by ~n = n1(1, 0, 0, 1), with n1 = 2(1− g) as in the explicit

solutions. We also take the R-symmetry vector to be ~b = (1, 0, 0, 1), which is again pro-

portional to ~n, and we again assume that it is the critical vector. The toric data for M3,2

can be obtained from Y p,k(CP 2) in (3.15) with p = 2 and k = 3:

~v1 = (1, 0, 0, 0) , ~v2 = (1, 0, 0, 2) , ~v3 = (1, 1, 0, 0) ,

~v4 = (1, 0, 1, 0) , ~v5 = (1,−1,−1, 3) . (4.66)

Of the five Kähler class parameters, λa, only two are independent and, after some analysis,

one can show that these can be taken to be λ1 + λ2 and λ3 + λ4 + λ5. With the given

R-symmetry vector, we find that the constraint equation (4.9) and the flux quantization

conditions (4.10), (4.11) are all satisfied providing that

λ1 + λ2 = − 1

6π2

1

x1/2(2 + x)1/2

(
2π`p
L

)3

N1/2 ,

λ3 + λ4 + λ5 = − 1

4π2

x1/2

(2 + x)1/2

(
2π`p
L

)3

N1/2 , (4.67)

where x > 0 and A =
(2π`p)3

L3
x1/2(2+x)1/2

3π(1+2x) (g − 1)N1/2. The fluxes Ma are given by

M1 = M2 =
3x

(1 + 2x)(2 + x)
(g − 1)N ,

M3 = M4 = M5 =
4

3

1 + x+ x2

(2 + x)(1 + 2x)
(g − 1)N . (4.68)

We again demand x+ 1/x ∈ Q in order that these are all integers. The R-charges are

R1 = R2 =
x

2 + x
N , R3 = R4 = R5 =

4

3

1

2 + x
N , (4.69)

with
∑

aRa = 2N , and these can be irrational. One can again check that the R-charges

are proportional to the fluxes when x = 1, which is the case of the universal twist solution.

Finally, for the on-shell supersymmetric action (4.8), (4.17) we obtain

S |on-shell =
8π

3
(g − 1)

3 + 2x+ x2

(1 + 2x)

x1/2

(2 + x)3/2
N3/2 . (4.70)

8Which requires setting ∆m = 0 in [29].
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Figure 3. Toric diagram for the link of the C×Conifold singularity.

These expressions precisely agree with their counterparts in appendix C obtained by

analysing the explicit supergravity solutions.

4.5 C×conifold example

In the reminder of this section we will study examples of the form Y7 ↪→ Y9 → Σg, with

toric Y7, with known dual N = 2 three-dimensional field theories. Specifically, we start

here considering as Y7 the link of the complex cone obtained by taking the product of the

complex plane with the conifold singularity. This complex cone is specified by five inward

pointing normal vectors given by

~v1 = (1, 0, 0, 0) , ~v2 = (1, 0, 0, 1) , ~v3 = (1, 0, 1, 1) ,

~v4 = (1, 0, 1, 0) , ~v5 = (1, 1, 0, 0) . (4.71)

The toric diagram is obtained by projecting on R3 the vertices in (4.71) and is shown

in figure 3.

The presence of the square face in the toric diagram (as opposed to a triangle), in-

dicates that the link Y7 of C×Conifold has worse-than-orbifold singularities. Specifically,

the divisor associated with ~v5 is a copy of the conifold, sitting at the origin of the complex

plane C, and this gives rise to an associated singularity on Y7. As we explain in more

detail in appendix A.3 some care is required in using the master volume formula. The

diagnostic that the master volume formula is not, in general, calculating a volume is that

the relation (2.36) is not satisfied unless we impose that the Kähler class parameters satisfy

X ≡ λ1 − λ2 + λ3 − λ4 = 0.

A procedure one can follow is to resolve the singularity by adding an extra line either

from ~v2 to ~v4 or from ~v1 to ~v3 as illustrated in figure 6 in appendix A.3. In both of these

resolutions (2.36) is satisfied and from the {λa} one can construct two gauge invariant

variables given by

X = λ1 − λ2 + λ3 − λ4 ,

Y = (b1 − b2 − b4)λ1 + (b4 − b3)λ2 + b3λ3 + b2λ5 . (4.72)

Furthermore, when one sets X = 0 in the associated master volume formulae one finds that

the two expressions are equal and moreover they are equal to the master volume for the toric
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diagram in figure 3, associated with the singular Y7, after setting X = 0. Thus, we conclude

that one can use the master volume formulae for Y7 associated with figure 3 provided

that one sets X = 0, and then checks a posteriori that one has a set-up consistent with

flux quantization. An additional subtlety is that for the singular geometry Y7 we should

not impose that all fluxes Ma are integer, but instead only certain linear combinations,

associated with the fact that it is these linear combinations that correspond to bona fide

cycles of Y7. We expect that this procedure should yield the same results as starting

with the non-singular resolved geometries, associated with figure 6, and then imposing an

additional condition on the quantised fluxes, but we have not checked this in detail.9

Proceeding with X = 0 and with the master volume for figure 3, we first solve the

constraint equation (4.9) for A, finding a long expression that we don’t record.10 We then

solve the flux quantization condition (4.10) for Y finding

Y 2 =
(2π`p)

6

L6

b2b3b4(b2 + b3 − 1)(b2 + b4 − 1)

8π4(1− b2)
N , (4.73)

where we have now set b1 = 1. The sign ambiguity in solving for Y will get resolved after

extremization and demanding that the entropy is positive. This issue arises in generic

examples and we will not explicitly keep track of it. One can then use (4.73) to obtain

expressions for the fluxes Ma from (4.11) obtaining

M1 =
(b21 + b22 − 2b1b2)(−n1 + n2 + n3 + n4) + (b2 − b1)(b4n3 + b3n4) + b3b4(n1 − n2)

(b1 − b2)2
N

M2 =
b3b4(n2 − n1) + b4(b1 − b2)n3 + (b1 − b2)(−b1 + b2 + b3)n4

(b1 − b2)2
N ,

M3 =
b3b4(n1 − n2) + b4(b2 − b1)n3 + b3(b2 − b1)n4

(b1 − b2)2
N ,

M4 = −(b1 − b2)(b1 − b2 − b4)n3 + b3b4(n1 − n2) + b3(b2 − b1)n4

(b1 − b2)2
N ,

M5 = −n2N , (4.74)

and one can check that (4.13) is satisfied. Apart from M5 these are not, in general integers.

However, various linear combinations are, for example:

M1 +M2 = (−n1 + n2 + n3)N , M3 +M4 = −n3N ,

M2 +M3 = −n4N , M1 +M4 −M2 −M3 = (−n1 + n2 + 2n4)N . (4.75)

We can also work out the R-charges from (4.20) and we find

R1 = −2(b2 + b3 − 1)(b2 + b4 − 1)

b2 − 1
N, R2 =

2(b2 + b3 − 1)b4
b2 − 1

N ,

R3 = − 2b3b4
b2 − 1

N, R4 =
2b3(b2 + b4 − 1)

b2 − 1
N, R5 = 2b2N , (4.76)

9It is difficult to explicitly carry out the extremization procedure at the algebraic level.
10One finds that after substituting for Y , A still has some dependence on λ1, λ2 and λ3. This is expected,

because A is not invariant under gauge transformations but it transforms as in (4.28).
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which satisfy (4.23). Various linear combinations of these expressions simplify, echoing

the expressions in (4.75). Finally, we can then obtain an explicit form for the off-shell

entropy function S , using (4.8) (4.17) (or equivalently (4.15)) which is expressed in terms

of b2, b3, b4, n1 = 2(1 − g), n2, n3, n4 and N . Up to an overall sign ambiguity (arising

from (4.73)) we obtain

S =
2
√

2πN3/2

3(1− b2)3/2[b2b3b4(b2 + b3 − 1)(b2 + b4 − 1)]1/2
×[

b2b3b4
(
−b22 + 2b2 + b3b4 − 1

)
n1

+ b3b4
(
2b32 + (b3 + b4 − 5)b22 − 2(b3 + b4 − 2)b2 − (b3 − 1)(b4 − 1)

)
n2

+ (b2 − 1)b2(b2 + 2b3 − 1)b4(b2 + b4 − 1)n3

+ (b2 − 1)b2b3(b2 + b3 − 1)(b2 + 2b4 − 1)n4

]
. (4.77)

We can now compare these results with the field theory analysis, for genus g = 0,

carried out in [29]. We first recall various aspects of the three-dimensional quiver gauge

theory discussed in section 6.1 of [47]. This is an instance of a general family of “flavoured”

quiver gauge theories with gauge group SU(N) and three adjoint chiral fields φ1, φ2, φ3.

There are also three sets of fields q(f), q̃(f), f = 1, 2, 3 transforming in the fundamental and

anti-fundamental representation of SU(N) and associated with U(kf ) global symmetries.

The superpotential reads

W = Tr

[
φ1[φ2, φ3] +

k1∑
i=1

q
(1)
i φ1q̃

(1)
i +

k2∑
i=1

q
(2)
i φ2q̃

(2)
i +

k3∑
i=1

q
(3)
i φ3q̃

(3)
i

]
, (4.78)

and the quiver diagram can be found in (5.48) of [29], whose notation we will follow below.

As discussed in [47] the C×Conifold geometry corresponds to the theory with k1 = k2 = 1

and k3 = 0 (see figure 3(b) of [47]). An important aspect of these models is that there

is a quantum correction to the moduli space of vacua, due to the presence of monopole

operators T and T̃ , which satisfy the relation

T T̃ = φk11 φ
k2
2 φ

k3
3 . (4.79)

When k1 = k2 = 1, k3 = 0 this gives the C×Conifold geometry.

For generic values of k1, k2, k3 these three-dimensional theories flow to a SCFT in the

IR, with gravity dual AdS4 × Y7, where Y7 is the Sasaki-Einstein base of the Calabi-Yau

cone singularity. In [44] it was shown that the large N limit of the free energy, FS3 , obtained

from the exact localized partition function on S3, takes the form (4.48), where Vol(Y7) is

the Sasakian volume.

To compare the field theory with the geometry, we need to relate the fields of the

quiver with the toric data of the singularity. In particular, the fields φ1, φ2, φ3, T, T̃ corre-

spond to linear combinations of the toric divisors and the field-divisors map (4.59) may be

obtained by employing the perfect matching variables [47]. This map was explicitly given

in [44] for the above class of theories and for the case of the C×Conifold model reads, in
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~v1 ~v2 ~v3 ~v4 ~v5

a0 a1 b1 b0 c0

Table 1. Relation between toric data (4.120) and perfect matchings for the C×Conifold

singularity [44].

the notation of [44],

φ1 = a0a1 , φ2 = b0b1 , φ3 = c0 , T = a0b0 , T̃ = a1b1 , (4.80)

where the perfect matching variables (a0, a1, b0, b1, c0) are associated to the toric data (4.71)

as in table 1 below. With this map, we can parametrize the R-charges of the fields in the

quiver in terms of the geometric R-charges ∆3d
a , defined using the volumes of supersym-

metric five-dimensional toric submanifolds Ta, through the relation (4.53).

We now consider compactifying this d = 3 quiver gauge theory on a Riemann surface

Σg, with a twist that is parametrized by integer valued flavour magnetic fluxes for the fields

{nφ1 , nφ2 , nφ3} with nφ1 +nφ2 +nφ3 = 2(1− g) units of flux, as required for supersymmetry.

Assuming that the theory flows to a SCQM in the IR, we expect that the dual supergravity

solution will be an AdS2×Y9 solution of D = 11 supergravity with Y9 a fibration of a toric

Y7 over Σg and we can compare with our geometric results above. To proceed, we can

use the map (4.80) to relate the R-charges of the fields, ∆I , with the geometric R-charges,

∆a ≡ Ra/N (see (4.21)), via

∆φ1 = ∆1 + ∆2 = 2(1− b2 − b3) ,

∆φ2 = ∆3 + ∆4 = 2b3 ,

∆φ3 = ∆5 = 2b2 , (4.81)

and

∆T = ∆1 + ∆4 = 2(1− b2 − b4),

∆T̃ = ∆2 + ∆3 = 2b4 , (4.82)

where in the last equalities we used the parametrization (4.76) coming from the geometry.

We also define (see (2.3) of [44])

∆m ≡
1

2
(∆T −∆T̃ ) = 1− b2 − 2b4 . (4.83)

Notice that the R-charges of the adjoint fields satisfy ∆φ1 + ∆φ2 + ∆φ3 = 2, as implied by

supersymmetry.

Similarly, the fluxes of the fields can be identified with a set of geometric flux param-

eters na ≡ −Ma/N (see (4.12)) in an entirely analogous manner, namely

nφ1 = n1 + n2 = n1 − n2 − n3 ,

nφ2 = n3 + n4 = n3 ,

nφ3 = n5 = n2 , (4.84)
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and

nT = n1 + n4 = n1 − n2 − n4,

nT̃ = n2 + n3 = n4 , (4.85)

where in the last equalities we used the parametrization (4.75) coming from the geometry.

Notice that the fluxes of the adjoint fields satisfy nφ1 + nφ2 + nφ3 = n1, as implied by

supersymmetry.

Finally, for the case of g = 0, we can compare with the large N limit for the off-shell

index on S1 × S2, I(∆, n), that was computed in [29]. Specifically, equation (5.56) of this

reference11 gives

I(∆φI , nφI ) = −π
3

√
∆̂

2∆̄
(∆̄2 − 4∆2

m)

[
n̂ +

n̄(∆̄2 + 4∆2
m)

∆̄(∆̄2 − 4∆2
m)
− 8∆m

∆̄2 − 4∆2
m

]
, (4.86)

with

n̂ ≡
nφ1
∆φ1

+
nφ2
∆φ2

+
nφ3
∆φ3

, n̄ ≡ nφ1 + nφ2 ,

∆̂ ≡ ∆φ1∆φ2∆φ3 , ∆̄ ≡ ∆φ1 + ∆φ2 . (4.87)

Using the dictionary given in (4.81)–(4.85), we see that the off-shell entropy function (4.77)

calculated from the geometry side cannot agree with the expression given in (4.86), since

the former depends on n4 whereas the latter does not (only the monopole fluxes nT , nT̃
depend on n4). However, remarkably, if we impose12 the additional constraint on the

geometric fluxes that

n2 = n1 − 2n4 − 2 , (4.88)

then we find our off-shell entropy geometric result S (~b, n1, n3, n4), obtained from (4.77),

agrees with the expression I(∆φa , nφa) in (4.86). The result reported in [29] corresponds

to setting g = 0.

We can make a further connection between geometry and field theory by relating our

master volume V with the function µ that is proportional to the large N limit of the matrix

model Bethe potential and determines the S1 ×Σg index. This was shown [29] to coincide

with the large N limit of the free energy on S3 of the d = 3 field theory, namely

µ =
3π

4N3/2
FS3 . (4.89)

Recall from (4.51) that in the universal twist case we found that the off-shell master volume

is related to the large N free energy as V =
(2π`p)9

L9

FS3

64π3 . We can show that this relation

11To compare with the expression in [29] one should relate the variables used here to that used in [29] as

∆HM = π∆.
12The relation (4.88) is equivalent to the particular relation among monopole charges nT − nT̃ = 2 in

the field theory variables. Interestingly, we also find agreement of (4.77) and (4.86) if we restrict to the

subspace of ∆m = 1− b2 − 2b4 = 0, without imposing any relation among the fluxes ni.
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also holds in the C×Conifold setting. To see this, from [29] we have that

µ = π2

√
∆̂

2∆̄
(∆̄2 − 4∆2

m) , (4.90)

and using the dictionary above we find

µ(bi) = π2

√
32b2b3b4(b2 + b3 − 1)(b2 + b4 − 1)

1− b2
. (4.91)

On the other hand, evaluating the master volume with X = 0 and Y obtained from (4.73),

we find

L9

(2π`p)9

48π4

N3/2
V(bi) = µ(bi) , (4.92)

where both sides are regarded as functions of (b2, b3, b4).

We conclude this subsection by considering the expression (4.34) for the supersym-

metric action in the context of the present example. Recall that when the change of

variables (4.29) between the {∆a} and the {λ1, . . . , λd−3, b2, b3, b4} is invertible, we can

write the master volume as a function of the {∆a} and the off-shell supersymmetric action

takes the form (4.34). For the C×Conifold example, we imposed X = 0 on the Kähler

classes, leaving us with four variables Y, b2, b3, b4 (before imposing the constraint or flux

quantisation conditions), implying that we cannot carry out such an invertible change of

variables. Nevertheless, we can re-write the off-shell master volume in terms of the ∆a

variables, where an ambiguity is fixed by requiring that this is a homogeneous function of

degree two. Namely we have

V(∆a) =
(2π`p)

9

L9

N3/2

24
√

2π2

[(∆1 + ∆2)(∆2 + ∆3)(∆1 + ∆4)(∆3 + ∆4)∆5]1/2

[∆1 + ∆2 + ∆3 + ∆4]1/2
. (4.93)

We can now take derivatives of V in (4.93) with respect to ∆a and after substituting

for ∆a = Ra/N and na = −Ma/N from (4.76) and (4.74), we find that (4.34) gives

S ≡ 8π2L9

(2π`p)9
SSUSY(bi, na).

4.6 Q1,1,1 example

In this section, we will revisit the case of Y7 = Q1,1,1, that we already studied in section 4.4

in the context of explicit supergravity solutions. In particular here we will be able to make

a connection with a field theory result for the twisted topological index that was given

in [29]. Recall that the toric data is specified by the vectors

~v1 = (1, 0, 0, 0) , ~v2 = (1, 0, 0, 1) , ~v3 = (1,−1, 0, 0) ,

~v4 = (1, 1, 0, 1) , ~v5 = (1, 0,−1, 0) , ~v6 = (1, 0, 1, 1) . (4.94)

The corresponding toric diagram, obtained by projecting the vertices in (4.94) onto R3, is

given in figure 4.
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Figure 4. Toric diagram of Q1,1,1.

To connect with the field theory analysis of [29] we will consider the fibration to be of

the form

~n =

(
n1, 0, n3,

1

2
(n1 + 2n3)

)
, (4.95)

where n3 is an arbitrary integer and n1 = 2(1− g). Due to the algebraic complexity of the

extremal problem, to proceed we will make a simplifying assumption on the Reeb vector,

consistent with the symmetries associated with (4.95), which then needs to be justified a

posteriori. Specifically, we assume

~b =

(
1, 0, b3,

1

2
+ b3

)
. (4.96)

This implies, via (4.23), that we are assuming that the R-charges satisfy R3 = R4, R6−R5 =

2b3N and R2 + R4 + R6 = (1 + 2b3)N in addition to
∑

aRa = 2N . There are similar

conditions for the fluxes Ma due to (4.13) and (4.95).

Within this ansatz we can construct three linear combinations of the Kähler parame-

ters, invariant under the gauge transformations (2.37), given by

X = b3(λ2 − λ5) +
1

2
(λ1 + λ2) ,

Y = b3(λ2 − λ5) +
1

2
(λ3 + λ4) ,

Z = b3(λ2 − λ5) +
1

2
(λ5 + λ6) . (4.97)

In terms of these variables, the master volume reads

V =
256π4

3

[
−3XY Z+

b3X
3

(2b3+1)2
+

3b3X
2Y

2b3+1
−Z

2b3 (−6b3Y +3Y +Z)

(1−2b3)2
−b3(X−Z)3

]
.

(4.98)

Note if we set b3 = 0, X = Y and also13 n3 = 0 then we are within the framework of the

explicit supergravity solutions that we discussed in section 4.4. We continue with b3 6= 0.

13Including the parameter n3 in the analysis, should be associated with the more general explicit super-

gravity solutions discussed in section 6.3 of [28].
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Next we can solve the constraint equation (4.9) for A. We also find that the expression

for N in (4.10) is linear in Y and hence can be simply solved for Y . At this point we

would next like to solve two of the equations for the fluxes Ma given in (4.11) for X and

Z. However, it is difficult to solve the simultaneous polynomial equations in closed form.

However, we can get results matching with the field theory results using some inspired

guesswork. Specifically, we make the further assumption that Y = X = Z. With the given

solution for Y we then have

X = Y = Z =
(2π`p)

3

L3

4b23 − 1

16π2
√

3− 4b23
N1/2 . (4.99)

Substituting this into the master volume we find

V =
(2π`p)

9

L9

1− 4b23
48π2

√
3− 4b23

N3/2 . (4.100)

The R-charges take the form

R1 =

(
1

3−4b23
−b3

)
N, R2 =

(
1

3−4b23
+b3

)
N, R3 =

(
2

4b23−3
+1

)
N ,

R4 =

(
2

4b23−3
+1

)
N, R5 =

(
1

3−4b23
−b3

)
N, R6 =

(
1

3−4b23
+b3

)
N , (4.101)

while the fluxes are given by

M1 = M5 =
(2b3 − 1)

[
(6b3 + 3)n1 +

(
8b33 + 4b23 − 10b3 − 9

)
n3

]
2
(
3− 4b23

)
2

N ,

M3 = M4 =

(
16b3n3 −

(
16b43 + 3

)
n1

)
2
(
3− 4b23

)
2

N ,

M2 = M6 =
(2b3 + 1)

[
(6b3 − 3)n1 +

(
−8b33 + 4b23 + 10b3 − 9

)
n3

]
2
(
3− 4b23

)
2

N . (4.102)

Finally, we find the following off-shell expression for the entropy

S = 4π(g − 1)

(
8b43 − 6b23 + 3

)
− n3b3

(
4b23 − 5

)
3
(
3− 4b23

)
3/2

N3/2 . (4.103)

Remarkably, for g = 0 this agrees precisely computation of the large N limit of the S1×S2

index presented in (5.47) of [29], after identifying n3 = t + t̃ and b3 = ∆m/2, as we discuss

further below. Furthermore, there is also agreement between the large N free energy and

the expression for the master volume given in (4.99).

An important point is that we have a consistent framework provided that the Ma are

all integer. This is possible provided that the extremal point of the entropy function is such

that the expression for the Ma in (4.102) are all rational multiples of N . We leave further

investigation of this point for the future. It is worth noting, though, that if we set b3 = 0

then this condition is satisfied. In addition, when b3 = 0 both the master volume and the

entropy do not depend on n3 and the expressions agree with the corresponding expressions
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for the universal twist. However, noting that the R-charges are not proportional to the

fluxes, we see that these solutions are not associated with the universal twist, but instead

can be interpreted as a marginal deformation, parametrised by n3.

As in the previous subsection, we can compare these geometric results with the field

theory analysis that was presented in [29], for genus g = 0. The relevant three-dimensional

quiver gauge theory was discussed in section 6.2 of [47]; it is an instance of a family of

“flavoured ABJM” theories, with gauge group SU(N) × SU(N) and four bi-fundamental

chiral fields A1, A2, B1, B2. The flavour fields consist of four sets of fields q(f), q̃(f), f =

1, 2, 3, 4 transforming in the fundamental or anti-fundamental representations of one of the

two SU(N) nodes. The associated quiver diagrams are drawn in figure 6(a) of [47], and

the superpotential is given by

W = Tr

[
A1B1A2B2 −A1B2A2B1 +

k1∑
i=1

q
(1)
i A1q̃

(1)
i +

k2∑
i=1

q
(2)
i A2q̃

(2)
i

+

k3∑
i=1

q
(3)
i B1q̃

(3)
i +

k4∑
i=1

q
(4)
i B2q̃

(4)
i

]
. (4.104)

In particular, the theory14 with k1 = k2 = 1 and k3 = k4 = 0 (see figure 9 of [47])

corresponds to the C(Q1,1,1) geometry of relevance here. In this family of theories the

monopole operators T and T̃ satisfy the quantum relation

T T̃ = A1A2 . (4.105)

The large N free energy on S3 for the Q1,1,1 case was first computed in [43] and later

extended to the full class of theories with arbitrary number of flavours in [44]. In this

reference it was also shown that the free energy agrees with the expression (4.48) in terms of

the Sasakian volume in the dual AdS4×Y7 supegravity solution. The large N topologically

twisted index on S1 × S2 of these theories was calculated in [29].

Let us now focus on the Q1,1,1 model. The field-divisors map (4.59) that is needed to

read off the charges of fields in the quiver is obtained using the perfect matching variables

which were given in [47]. In the notation of that reference we have

A1 = a−1a0 , A2 = c0c1 , B1 = b0 , B2 = d0 , T = a−1c0 , T̃ = a0c1 , (4.106)

where the perfect matching variables (a0, b0, c0, d0, a−1, c1) are associated to the toric

data15 (4.94) as in table 2 below.

14Interestingly, the case k1 = 1 and k2 = k3 = k4 = 0 corresponds to the C×conifold geometry that we

discussed in the previous section.
15The toric data given in (4.94) and that associated with figure 9 of [47] are related via an SL(3;Z)

transformation given by  −1 −1 1

0 −1 1

0 1 0

 (4.107)

acting on the ~va in (4.94), followed by a reflection of the third coordinate z → −z.
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~v1 ~v2 ~v3 ~v4 ~v5 ~v6

a0 c0 d0 b0 c1 a−1

Table 2. Relation between toric data (4.94) and perfect matchings for the Q1,1,1 singularity [47].

We now consider compactifying this d = 3 quiver gauge theory on a Riemann surface

Σg, with a twist that is parametrized by integer valued flavour magnetic fluxes for the

fields {nA1 , nA2 , nB1 , nB1 , nT , nT̃ } with nA1 + nA2 + nB1 + nB2 = 2(1 − g), as required for

supersymmetry.

Assuming that the theory flows to a SCQM in the IR, we expect that the dual super-

gravity solution will be an AdS2 × Y9 solution of D = 11 supergravity with Y9 a fibration

of a toric Y7 over Σg and we can compare with our geometric results above. Using the

relations (4.106) we can express the R-charges of the fields, ∆I , in terms of the geometric

R-charges, ∆a, via

∆A1 = ∆1 + ∆6 =
2

3− 4b23
, ∆A2 = ∆2 + ∆5 =

2

3− 4b23
,

∆B1 = ∆4 =
1− 4b23
3− 4b23

, ∆B2 = ∆3 =
1− 4b23
3− 4b23

, (4.108)

and

∆T = ∆2 + ∆6 = 2

(
b3 +

1

3− 4b23

)
, ∆T̃ = ∆1 + ∆5 = 2

(
−b3 +

1

3− 4b23

)
. (4.109)

Here the equalities ∆A1 = ∆A2 , ∆B1 = ∆B2 follow from our initial restriction of
~b = (1, 0, b3,

1
2 + b3). Notice that the ∆m monopole charge is simply given by

∆m ≡
1

2
(∆T −∆T̃ ) = 2b3 , (4.110)

and of course the R-charges satisfy ∆A1 + ∆A2 + ∆B1 + ∆B2 = 2. Analogously, the

fluxes associated to the fields can be identified with a set of geometric flux parameters

na ≡ −Ma/N (see (4.12)) via

nA1 = n1 + n6 =
−3
(
4b23 − 1

)
n1 + 8b3n3(

3− 4b23
)2 ,

nA2 = n2 + n5 =
−3
(
4b23 − 1

)
n1 + 8b3n3(

3− 4b23
)2 ,

nB1 = n4 =
−16b3n3 +

(
16b43 + 3

)
n1

2
(
3− 4b23

)2 ,

nB2 = n3 = −
−16b3n3 +

(
16b43 + 3

)
n1

2
(
3− 4b23

)2 , (4.111)
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and

nT = n2 + n6 =
3
(
1− 4b23

)
n1 + (9 + 8b3 − 24b23 − 16b43)n3(

3− 4b23
)2

nT̃ = n1 + n5 =
3
(
1− 4b23

)
n1 + (−9 + 8b3 + 24b23 − 16b43)n3(

3− 4b23
)2 . (4.112)

Notice that the fluxes of the adjoint fields satisfy nA1 + nA2 + nB1 + nB2 = n1, as

implied by supersymmetry, while nT − nT̃ = 2n3, mirroring (4.110) and nT + nT̃ =
6(1−4b23)n1+16b3n3

(3−4b23)
2 . Again, the equalities nA1 = nA2 , nB1 = nB2 follow from our initial re-

striction of ~n = (n1, 0, n3,
1
2 + n3). As already noted above the fluxes given in (4.111) are

not rational a priori and their values depend on the b3, which a dynamical variable. These

should be held fixed while extremizing the index, given below, as a function of b3. This is to

be contrasted with the example discussed in the previous subsection, where the fluxes (4.84)

were manifestly integer and independent of the bi. It would be interesting to determine

the precise conditions when a corresponding supergravity solution exists.

For the case of g = 0, we can compare our results with the large N limit for the off-shell

index on S1 × S2, I(∆, n), that was computed in [29]. Specifically, equation (5.46) of this

reference16 gives

I = −2πN3/2

3

(
∆4
m − 3∆2

m + 6
)

+ (t + t̃)∆m

(
∆2
m − 5

)
(3−∆2

m)3/2
, (4.113)

which remarkably agrees with (4.103), after identifying n3 = t + t̃ and using (4.110).

As for the C×Conifold example, we find that the master volume in (4.100) is related

to the large N free energy and Bethe potential µ as

V(b3) =
(2π`p)

9

L9

FS3(b3)

64π3
=

(2π`p)
9

L9

N3/2

48π4
µ(b3) , (4.114)

which we can also write as a homogeneous function of the geometric R charges, namely

V(∆a) =
32π7l9pN

3/2
(
(∆1 + ∆2 + ∆3 + ∆4 + ∆5 + ∆6)2 − 4∆2

m

)
6L9

√
3(∆1 + ∆2 + ∆3 + ∆4 + ∆5 + ∆6)2 − 4∆2

m

, (4.115)

with 2∆m ≡ ∆2 + ∆6 −∆1 −∆5. Using this, we find that indeed

SSUSY(bi, na) = −4π
d∑
a=1

na
∂V
∂∆a

, (4.116)

holds true.

We conclude by making contact with the results for the universal twist discussed in

section 4.3. Setting b3 = 0 we find the following

∆A1 = ∆1 + ∆6 =
2

3
, ∆A2 = ∆2 + ∆5 =

2

3
,

∆B1 = ∆4 =
1

3
, ∆B2 = ∆3 =

1

3
, (4.117)

16To compare with the expression in [29] one should relate the variables used here to that used in [29] as

∆HM = π∆.
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with ∆m ≡ 1
2(∆T − ∆T̃ ) = 1

2(∆2 + ∆6 − ∆1 − ∆5) = 0, and the values of the entropy

function and master volume reduce to

S |on-shell = (g − 1)
4π

3
√

3
N3/2 = (g − 1)FS3 , (4.118)

which are the values obtained in section 4.3. Although the parameter n3 does not enter

these expressions, nor the following field theory fluxes,

nA1 = nA2 =
2

3
(1− g) , nB1 = nB2 =

1

3
(1− g) , (4.119)

we have nT = 2/3(1− g) +n3 and nT̃ = 2/3(1− g)−n3. When n3 = 0 we precisely recover

the universal twist. However, when n3 6= 0, as noted earlier we don’t have ∆a = na
1−g and,

n3 corresponds to a marginal deformation of the universal twist.

4.7 SPP example

In this section we consider another example of the form Y7 ↪→ Y9 → Σg, with toric Y7.

Specifically, Y7 is the link of a toric Calabi-Yau 4-fold singularity that is closely related

to the 3-fold singularity known as the suspended pinch point (SPP). In a slight abuse of

terminology, we will refer to it as the SPP 4-fold singularity. The dual d = 3 field theory

is a known quiver Chern-Simons theory which we will recall momentarily, and its Abelian

(i.e. rank N = 1) mesonic vacuum moduli space is precisely the SPP 4-fold singularity. In

the genus zero case, g = 0, the large N limit of the twisted topological index on S1 × S2

index was computed in [1]. In this subsection we will use our new formalism to recover the

results of [1] from the gravitational point of view.

The SPP 4-fold singularity is labeled by an integer k, which parametrizes the Chern-

Simons levels in the dual gauge theory, and for simplicity we will set k = 1 in the following.

The toric diagram17 has six vertices associated with six inward pointing normal vectors

which we write as

~v1 = (1, 0, 0, 0) , ~v2 = (1, 1, 1, 0) , ~v3 = (1, 1,−1, 0) ,

~v4 = (1, 2, 0, 0) , ~v5 = (1, 0, 0, 1) , ~v6 = (1, 1, 0, 1) . (4.120)

The toric diagram is obtained by projecting on R3 the vertices in (4.120) and is shown in

figure 5. Notice that this has a manifest Z2 symmetry along the y axis of the figure (the

third entry in (4.120)). The presence of the square face in the diagram reveals that, like in

the preceding subsection, this is a case with worse-than-orbifold singularities.

As in the section 4.5 we can use our master volume formulae for the toric diagram in

figure 5, but we must suitably restrict the Kähler class parameters. By resolving the toric

diagram by adding in an extra line either from ~v1 to ~v4 or from ~v3 to ~v2 we can obtain

master volume formulae that satisfy (2.36) and hence we can introduce gauge invariant

variables X,Y and Z that are explicitly given in (A.12). We can proceed with the toric

17The model is a special case of a family of quiver theories labeled by two integers a, b, known as La,b,a,

for which the corresponding toric diagram has eight vertices, given in (A.11). The case of SPP is L1,2,1 for

which the eight vertices degenerate to six; see for example [48].

– 43 –



J
H
E
P
0
6
(
2
0
1
9
)
1
4
0

Figure 5. Toric diagram for the link of the SPP 4-fold singularity.

diagram in figure 5 provided that we set X = 0. In fact the algebraic expressions are still

rather unwieldy so we will make some additional assumptions in order to connect with the

results of [32]. We will assume that the genus g 6= 1 and consider a one-parameter family

of fibrations, parametrised by n ∈ Z, given by

~n =

(
1, 1− 1

2
n, 0, n

)
n1 , (4.121)

with n1 = 2(1 − g), as usual. Associated with these fibrations, which preserves certain

symmetries, we take the trial R-symmetry vector to be

~b =

(
1, 1− 1

2
b4, 0, b4

)
. (4.122)

It is worth noting that we are not in the universal twist class.18 With this choice of fibration

parameters, we find that is consistent, a posteriori, to not only set X = 0, which we must

do to use the master volume formula, but also to impose λ1 = λ2 = λ3 = λ4 and λ5 = λ6

which then implies that X = 0, Y = −2Z and Z = (1− b4)λ1 + b4λ5.

We can now implement our general procedure to compute the off-shell entropy function

S . We first solve the constraint equation (4.37) for A. We next solve (4.39) for Z finding

Z2 =
(2π`p)

6

L6

(b4 − 2)2(b4 − 1)2b4
64π4(4− 3b4)

N . (4.123)

The fluxes Ma in (4.38) are then given by

M1 = M4 = −2(g − 1)(b4 − 1)(4− 2b4 + n(3b4 − 5))

(3b4 − 4)2
N ,

M2 = M3 = −(g − 1)(−8 + 12b4 − 5b24 + n(6− 8b4 + 3b24))

(3b4 − 4)2
N ,

M5 = M6 = (g − 1)nN . (4.124)

18To see this, note that a necessary requirement for the universal twist is that b1ni = n1bi, as in (4.35),

but this is satisfied if and only if b4 = n. However, b4 = n ∈ Z is not a critical point of the Sasaki

volume (A.14), whose extremum is found at an irrational value of b4 [42], in agreement with the fact that

the SPP is not associated with a quasi-regular Sasaki-metric.
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While M5 and M6 are integers, M1, . . . ,M4 are not, in general. However, we do have

M1 +M2 = M3 +M4 = (g − 1)(1− n)N . (4.125)

We will see that these fluxes precisely agree with those in the field theory; we expect

that from a geometric point of view these can also be directly justified by determining

the bona fide cycles in Y7 and then demanding that the associated fluxes are all integers.

Furthermore, the geometric R-charges can be computed using formula (4.20) to get

R1 = R4 =
2(1− b4)2

4− 3b4
N ,

R2 = R3 =
(2− b4)(1− b4)

4− 3b4
N ,

R5 = R6 = b4N , (4.126)

and one can check that R1 + R2 = (1 − b4)N . Finally, the off-shell entropy function is

computed to be

S =
4π

3
(g − 1)N3/2 b4

(
7b24 − 18b4 + 12

)
+ n

(
−6b34 + 19b24 − 18b4 + 4

)
(4− 3b4)3/2b

1/2
4

. (4.127)

As in previous examples there is an overall sign ambiguity, not explicitly displayed, associ-

ated with solving for Z in (4.123), and can be fixed by demanding that the on-shell value,

obtained by extremizing with respect to b4, is positive.

We can now compare these results with the field theory analysis, for g = 0, carried

out in [1]. We first recall various aspects of the three-dimensional quiver gauge theory.

The gauge group is SU(N)3 and there are three doublets of bi-fundamental chiral fields

Ai, Bi, Ci. The fields Ai and Ci transform in the fundamental and anti-fundamental of a

residual global SU(2) symmetry, while the bi-fundamental Bi and the adjoint field φ are

singlets under this SU(2) symmetry. The quiver diagram can be found in figure 1 of [1]

and the superpotential reads

W = Tr [φ(A1A2 − C1C2)−A2A1B1B2 + C2C1B2B1] . (4.128)

The R-charges of the fields, ∆I , all depend on one parameter, which we denote by ∆ (and

will shortly be identified as ∆ = b4 in the geometry), via

∆Ai = ∆Ci = 1−∆ , ∆Bi = ∆ , ∆φ = 2∆ . (4.129)

To see this we use the fact that each monomial in W must have R-charge equal to 2, and

also that the SU(2) symmetry implies that fields in a doublet have equal R-charges. This

implies the conditions on ∆Ai , ∆Ci given in (4.129) as well as ∆B1 +∆B2 = 2∆. To deduce

that ∆B1 = ∆B2 one can invoke a Z2 symmetry of the quiver and superpotential that acts

on the fields as Ai ↔ Ci, B1 ↔ −B2, φ→ −φ.

This three-dimensional theory flows to a SCFT in the IR, with gravity dual AdS4×Y7,

where Y7 is the Sasaki-Einstein base of the SPP Calabi-Yau cone singularity. In [42] it was
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~v1 ~v2 ~v3 ~v4 ~v5 ~v6

p1 q2 q1 p2 p3 p4

Table 3. Relation between toric data (4.120) and perfect matchings for the SPP singularity [32].

shown that the large N limit of the free energy, FS3 , obtained from the exact localized

partition function on S3, takes the form (4.48), with the Sasakian volume Vol(Y7) given

in (A.14). Moreover the R-charges of the fields in the quiver may be expressed in terms of

the geometric R-charges ∆3d
a , defined using the volumes of supersymmetric five-dimensional

toric submanifolds Ta, through the relation (4.53).

The fields in the d = 3 quiver field theory correspond to linear combinations of these

toric divisors and, furthermore, the field-divisors map (4.59) may be obtained by employing

the perfect matching variables. For the SPP singularity this map was given in [32], and in

the notation of that reference reads

A1 = p1q1 , A2 = p2q2 , B1 = p3 , B2 = p4 ,

C1 = p1q2 , C2 = p2q1 , φ = p3p4 , (4.130)

where the perfect matching variables (p1, p2, p3, p4, q1, q2) are associated to the toric

data19 (4.120) as in table 3.

We now consider compactifying this d = 3 quiver gauge theory on a Riemann surface

Σg, with a twist that is parametrized by integer valued flavour magnetic fluxes for the

fields {nAi , nBi , nCi , nφ}, respecting the global symmetries of the theory. Assuming that

the theory flows to a SCQM in the IR, we expect that the dual supergravity solution will

be an AdS2 × Y9 solution of D = 11 supergravity with Y9 a fibration of a toric Y7 over Σg

and we can compare with our geometric results above. To compare with the known field

theory results of [1] we restrict our considerations to the following fluxes

nAi = nCi = (1− g)(1− n) , nBi = (1− g)n , nφ = (1− g)2n , (4.132)

where n ∈ Z. In particular, one can check that every term in the superpotential (4.78) has

2(1−g) units of flux, as required for supersymmetry. Next, we can use the map (4.130) to re-

late the R-charges of the fields, ∆I , with the geometric R-charges, ∆a ≡ Ra/N (see (4.21)),

via

∆A1 = ∆1 + ∆3 , ∆A2 = ∆2 + ∆4 , ∆B1 = ∆5 , ∆B1 = ∆6 ,

∆C1 = ∆1 + ∆2 , ∆C2 = ∆3 + ∆4 , ∆φ = ∆5 + ∆6 . (4.133)

19The toric diagram here and that used in [32] are related via an SL(3;Z) transformation given by 0 0 −1

1 0 0

0 −1 0

 (4.131)

acting on the ~va in (4.120).
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Then from (4.129) we have

∆4 = ∆1 , ∆3 = ∆2 , ∆6 = ∆5 ,

∆1 + ∆2 = 1−∆ , ∆5 = ∆ , (4.134)

exactly as in the geometric expressions (4.126). Indeed, comparing to the latter allows us

to identify

∆ = b4 . (4.135)

Similarly, the fluxes of the fields can be identified with a set of geometric flux parameters

na ≡ −Ma/N (see (4.12)) in an entirely analogous manner e.g. nA1 = n1 + n3 etc. For the

specific fluxes that we want to consider, given in (4.132), we conclude that the geometric

flux parameters are

n4 = n1 , n3 = n2 , n6 = n5 ,

n1 + n2 = (1− g)(1− n) , n5 = (1− g)n . (4.136)

Notice in particular, that there is not a quantization condition on n1 and n2 individually, but

just on their sum. This is again in exact agreement with the geometric expressions (4.124).

To further compare with the geometric results we need to identify the twist parameters

ni, i = 1, . . . , 4, that define the geometric fibration of Y7 over Σg, and which appear in (4.8)-

(4.11). To do this, we can use the relation (4.13):

d∑
a

viana = ni . (4.137)

Using the toric data (4.120), along with the relations (4.136) obtained from field theory we

deduce that the relationship between the geometric twist ni and the field theory twist n is

given by ~n = (1, 1− 1
2n, 0, n)n1, which is precisely what we assumed on the geometry side

in (4.121).

Finally, for the case of g = 0, with the field theory data for the R-charges ∆I , deter-

mined by ∆ in (4.129), and the magnetic fluxes nI , determined by n in (4.132), the large

N limit for the off-shell index on S1×S2, I(∆, n), that was computed in appendix B of [1];

see equation (B.19) of this reference,20 namely

I(∆, n) = −4π

3
N3/2 ∆

(
7∆2 − 18∆ + 12

)
+ n

(
−6∆3 + 19∆2 − 18∆ + 4

)
(4− 3∆)3/2∆1/2

. (4.138)

Remarkably, this exactly agrees with the geometric result S (~b, ni) in (4.127), for the

restrictions on (~b, ni) given in (4.121), (4.122) after setting g = 0, identifying ∆ = b4, and

taking the upper sign.

20To match the expression in (B.19) of [1] one should relate the variable ∆ used here to that used in [1],

∆HZ , via ∆HZ = π∆.
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From our analysis of the geometry we can obtain the following off-shell expression for

the master volume

V(∆) =
(2π`p)

9

L9

N3/2

24π2

(1−∆)(2−∆)
√

∆√
4− 3∆

. (4.139)

To obtain this we used (4.122), the conditions on the Kähler class parameters, X = 0,

Y = −2Z and Z = (1 − ∆)λ1 + ∆λ5, and we have fixed the sign ambiguity arising from

solving (4.123). Using (A.14), (4.48) we can again relate this to the off-shell free energy of

the dual d = 3 SCFT on S3 via

V(∆) =
(2π`p)

9

L9

1

64π3
FS3(∆) . (4.140)

Furthermore, the following relation between the master volume and the trial entropy func-

tion holds

S = −(2π`p)
9

L9
32π3(1− g)

(
2V + (n−∆)

∂V
∂∆

)
, (4.141)

consistent with the field theory results in appendix B of [1].

4.8 Connection to the index theorem of [1]

In the above examples we have seen that our entropy function S coincides, off-shell, with

the large N limit of the topologically twisted index, I, after using the dictionary between

the geometric and field theory quantities. In this section, we will place these results in

a more general context, making a closer comparison with the index theorem presented

in [1]. A key ingredient is the result for the entropy function given in (4.34) in terms of

the variables ∆a, that we discussed in section 4.2.

The main results of [1] were in the context of N = 2, non-chiral, quiver gauge theories

in d = 3, with matter fields transforming in the adjoint and bi-fundamental representa-

tions of the gauge group, as well as “flavour” fields that transform in the (anti-)fundamental

representations. Below we will restrict to the class of flavoured theories, with quantum cor-

rected moduli spaces, that were considered in [47], but we expect that a similar connection

between I and S will hold more generally, for the class of theories considered in [1] (in-

deed, the SPP example is not a flavoured model). We will also further restrict to cases

where the field-divisor map (4.59) is invertible, which includes the C×Conifold example of

section 4.5 and the Q1,1,1 example of section 4.6.

For this class of field theories the geometric R-charges, ∆a, and fluxes, na, are related

to the field theory R-charges, ∆I , and magnetic fluxes, nI , by invertible linear relationships

of the form

∆I =
d∑
a=1

caI∆a , nI =
d∑
a=1

caIna , (4.142)

where the index I here runs over the adjoint and bi-fundamental chiral fields in the quiver,

as well as the diagonal monopole operators T and T̃ , but not the (anti-) fundamentals.
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Using (4.142) in (4.34) one quickly deduces that

SSUSY = −4π
∑
a

na
∂V
∂∆a

= −4π
∑
I

nI
∂V
∂∆I

. (4.143)

Furthermore, if 21 the master volume V coincides with the S3 free energy via22

V(∆I) =
(2π`p)

9

L9

1

64π3
FS3(∆I) , (4.144)

we can conclude that

S = −1

2

∑
I

nI
∂FS3

∂∆I
, (4.145)

which has exactly the form of the index theorem discussed in [1].

In the field theory result of [1] the sum over the index “I” runs a priori over all

the chiral fields in the quiver, namely the adjoint, the bi-fiundamentals, as well as the

(anti-)fundamental flavours, and also includes contributions from the magnetic fluxes and

fugacities associated with the topological symmetry of the theories. However, the large N

free energy depends on the topological symmetry charges only through the combination

∆m = 1
2(∆T − ∆T̃ ) and the contribution of the (anti-)fundamental fields can always be

rewritten in terms of adjoint and bi-fundamental fields, using the constraints imposed by

the superpotential [44].

Returning to our formula (4.145), it is illuminating to extract from the sum the con-

tributions of the monopole operators T and T̃ . After defining the linear combinations

∆m =
1

2
(∆T −∆T̃ ) , ∆p =

1

2
(∆T + ∆T̃ ) ,

nm =
1

2
(nT − nT̃ ) , np =

1

2
(nT + nT̃ ) , (4.146)

we can rewrite (4.145) as

S = −1

2

∑
I

′
nI
∂FS3

∂∆I
− nm

2

∂FS3

∂∆m
− np

2

∂FS3

∂∆p
,

= −1

2

∑
I

′
nI
∂FS3

∂∆I
− nm

2

∂FS3

∂∆m
, (4.147)

where the prime in the sum indicates that it now does not include the monopole operators

(nor, as usual, the (anti-)fundamental fields) and the second line follows from the fact

that in the large N limit FS3 is independent [44] of ∆p as mentioned above. This result

can be favourably compared with the field theory results of [1] after recalling that here

21Note that this does not seem to be the case for the example of Q1,1,1 that we discussed in section 4.4.

With the assumptions made in that section we have ∆m = 0, and the free energy on S3 is given by

F = 4πN3/2 1

3
√
3

and is only related to V via (4.144) when x = 1, which is the case of the universal twist.
22As we have noted several times, sign ambiguities arise in carrying out the extremal problem which we

are not explicitly writing.
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we are using a set of constrained variables, such that the master volume/free energy is a

homogeneous function.

Let us now return to the C×conifold example of section 4.5 and use this general

expression to discuss further the restriction on the fluxes (4.88). The geometric fluxes ni
are related to the variables introduced above as

np =
1

2
(n1 − n2) , nm =

1

2
(n1 − n2)− n4 , (4.148)

and to get agreement with [29] we had to impose nm = 1. Indeed we find that the first

two terms in (4.86) match the primed sum in (4.147), while the remainder term exactly

agrees if nm = 1. We then conclude that in the field theory calculation in [29] it has been

assumed that nm = 1, but it should be possible to incorporate a generic value of nm that

would then fully agree with our geometric result.

5 Discussion

In this paper we have extended the results of [5, 16] concerning a geometric extremal

problem, analogous to volume minimization in Sasakian geometry [10, 11], that allows

one to calculate key properties of supersymmetric AdS3 × Y7 and AdS2 × Y9 solutions.

Specifically, we have provided a formalism based on a master volume that allows one to

study AdS3×Y7 solutions with toric Y7 as well as AdS2×Y9 solutions where Y9 is a fibration

of a toric Y7 over a Riemann surface Σg. In both cases Y7 can be non-convex toric [5].

The results concerning the latter class of solutions comprise a geometric dual of I-

extremization [6] for the class of d = 1, N = 2 SCFTs obtained from compactifying

toric d = 3, N = 2 SCFTs (i.e. dual to AdS4 × SE7 solutions with toric SE7) on a

Riemann surface Σg, with a partial topological twist. We expect that this class of AdS2 ×
Y9 solutions will generically arise as the near horizon limit of supersymmetric black hole

solutions that asymptotically approach AdS4×SE7 in the UV. The supersymmetric action

to be extremized in our procedure can also be interpreted, after suitable normalization, as

an entropy function, which reduces to the Bekenstein-Hawking entropy of the black hole at

the critical point. Thus, our results can be used to calculate the entropy of large classes of

supersymmetric black holes, independently of a detailed knowledge of the full supergravity

solutions, just assuming that they exist, thus extending [6] to a much more general class

of black hole solutions. Furthermore, when it is possible to carry out a calculation of the

associated topological index in the field theory using localization techniques, and assuming

that they agree, one will then have a microscopic state counting interpretation of the black

hole entropy for this class of black holes.

We illustrated the extremization procedure in various examples. We highlighted that

the formalism can be used, with care, for toric singularities with worse-than-orbifold sin-

gularities. This is important since many examples in the literature are associated with

such singular Y7. Most strikingly, in the examples that we studied we are able to match

the off-shell entropy function and the off-shell field theory results for the large N limits

of the partition functions on S1 × Σg (i.e. the topological twisted index). In addition we

were also able to obtain some general results in section 4.8. It would certainly be very
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interesting determine the necessary and sufficient conditions for the relations discussed

there to hold, in order to aim for a general proof of the equivalence of I-extremization and

S -extremization, analogous to the result of [17] who analysed a similar problem for the

class of AdS3 × Y7 solutions with Y7 a fibration of a toric Y5 over Σg.

In a slightly different direction, it would certainly be interesting to construct a master

volume formula for AdS2×Y9 solutions with toric Y9. This would provide a direct geometric

dual of the d = 1 version of F -extremization for toric Y9 and may well help in establishing

a precise field theory version of F -extremization in d = 1. It would also be very interesting

to determine whether or not this more general class of AdS2×Y9 solutions can arise as the

near horizon limit of black holes.
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A Computation of the master volume in examples

In this appendix we give some details of the computation of the master volume formula in

the examples that we studied in the paper. We recall the master volume formula is given by

V(~b; {λa}) = −(2π)4

3!

d∑
a=1

λa

la−1∑
k=2

XI
a,kX

II
a,k

(~va, ~va,k−1, ~va,k,~b)(~va,la , ~va, ~va,1,
~b)(~va,k, ~va,k+1, ~va,~b)

,

(A.1)

where

XI
a,k = −λa(~va,k−1, ~va,k, ~va,k+1,~b) + λa,k−1(~va,k, ~va,k+1, ~va,~b)

− λa,k(~va,k+1, ~va, ~va,k−1,~b) + λa,k+1(~va, ~va,k−1, ~va,k,~b) ,

XII
a,k = −λa(~va,1, ~va,k, ~va,la ,~b) + λa,1(~va,k, ~va,la , ~va,

~b)

− λa,k(~va,la , ~va, ~va,1,~b) + λa,la(~va, ~va,1, ~va,k,~b) . (A.2)

Here d is the number of vertices {~va}, a = 1, . . . d, of the toric diagram and for each vertex,

la denotes the number of edges meeting there.

A.1 Y7 = Y p,k(CP 2)

The toric diagram for Y p,k(CP 2) is given in figure 1, where we labeled the vertices as

in [31]. In particular, we have

~v1 = (1, 0, 0, 0) , ~v2 = (1, 0, 0, p) , ~v3 = (1, 1, 0, 0) ,

~v4 = (1, 0, 1, 0) , ~v5 = (1,−1,−1, k) . (A.3)
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a ~va ~va,1 ~va,2 ~va,3 ~va,4

1 ~v1 ~v5 ~v4 ~v3 −
2 ~v2 ~v3 ~v4 ~v5 −
3 ~v3 ~v1 ~v4 ~v2 ~v5

4 ~v4 ~v3 ~v1 ~v5 ~v2

5 ~v5 ~v1 ~v3 ~v2 ~v4

Table 4. Vectors used to compute the master volume of Y p,k(CP 2).

a ~va ~va,1 ~va,2 ~va,3 ~va,4

1 ~v1 ~v6 ~v4 ~v5 ~v3

2 ~v2 ~v3 ~v5 ~v4 ~v6

3 ~v3 ~v2 ~v6 ~v1 ~v5

4 ~v4 ~v5 ~v1 ~v6 ~v2

5 ~v5 ~v4 ~v2 ~v3 ~v1

6 ~v6 ~v1 ~v3 ~v2 ~v4

Table 5. Vectors used to compute the master volume of Y p,k(CP 1 × CP 1).

The polytope has d = 5 vertices, with l1 = l2 = 3 and l3 = l4 = l5 = 4. The vectors needed

to evaluate (A.1) are given in table 4. The ordering of the vectors can be obtained by going

counter-clockwise around a vertex when viewed from outside the toric diagram in figure 2.

One can explicitly check that this ensures that each term in the sums in (A.1) is positive

for ~b inside the Reeb cone. The resulting formula fits in a few lines and we do not report

it here.

A.2 Y7 = Y p,k(CP 1 × CP 1)

The toric diagram for Y p,k(CP 1 × CP 1) is given in figure 2, where recall the vertices are

given by

~v1 = (1, 0, 0, 0) , ~v2 = (1, 0, 0, p) , ~v3 = (1,−1, 0, 0) ,

~v4 = (1, 1, 0, k) , ~v5 = (1, 0,−1, 0) , ~v6 = (1, 0, 1, k) . (A.4)

The polytope has d = 6 vertices, with l1 = l2 = l3 = l4 = l5 = l6 = 4. The vectors needed

to evaluate (A.1) are given in table 5. Again the ordering of the vectors can be obtained

by going counter-clockwise around a vertex when viewed from outside the toric diagram in

figure 3 of [31]. The formula of the master volume is lengthy, so we do not write it down.
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a ~va ~va,1 ~va,2 ~va,3 ~va,4

1 ~v1 ~v5 ~v2 ~v4 −
2 ~v2 ~v5 ~v3 ~v1 −
3 ~v3 ~v5 ~v4 ~v2 −
4 ~v4 ~v5 ~v1 ~v3 −
5 ~v5 ~v4 ~v3 ~v2 ~v1

Table 6. Vectors used to compute the master volume of the link of C× Conifold.

Figure 6. Toric diagrams for two resolutions of the link of the C× Conifold singularity.

A.3 Y7 = link of C× conifold

The toric diagram for the toric Kähler cone C× Conifold is given in figure 3 and the vertices

are given by

~v1 = (1, 0, 0, 0) , ~v2 = (1, 0, 0, 1) , ~v3 = (1, 0, 1, 1) ,

~v4 = (1, 0, 1, 0) , ~v5 = (1, 1, 0, 0) . (A.5)

An important feature of this example is that the square face in the toric diagram shows

that the link Y7 has worse-than-orbifold singularities. Indeed, the toric divisor associated

with ~v5 is a copy of the conifold. The polytope has d = 5 vertices, with l1 = l2 = l3 = l4 = 3

and l5 = 4. The vectors needed to evaluate the master volume (A.1) are given in table 6.

As usual, the ordering of the vectors can be obtained by going counter-clockwise around

a vertex when viewed from outside the toric diagram in figure 3. It is important to note

that the relation (2.36) is not satisfied for this example in general. However, it is satisfied

when we impose λ1 − λ2 + λ3 − λ4 = 0. This is precisely a consequence of the fact that Y7

has worse-than-orbifold singularities. Specifically, when λ1 − λ2 + λ3 − λ4 6= 0 the master

volume formula is no longer calculating a volume.

Further insight can be obtained by resolving the conifold singularity on Y7. This can

be done in two different ways, associated with a flop transition of the conifold. In each

case we keep the same vertices but add in an extra line, either stretching from ~v2 to ~v4 or

from ~v1 to ~v3 as in figure 6. Notice that all faces of the toric diagram are triangles and

so there are now at worst, only orbifold singularities. To calculate the master volume for

these two cases we note that in the first we have l1 = l3 = 3 and l2 = l4 = l5 = 4 while in
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a ~va ~va,1 ~va,2 ~va,3 ~va,4

1 ~v1 ~v5 ~v2 ~v4 −
2 ~v2 ~v5 ~v3 ~v4 ~v1

3 ~v3 ~v5 ~v4 ~v2 −
4 ~v4 ~v5 ~v1 ~v2 ~v3

5 ~v5 ~v4 ~v3 ~v2 ~v1

a ~va ~va,1 ~va,2 ~va,3 ~va,4

1 ~v1 ~v5 ~v2 ~v3 ~v4

2 ~v2 ~v5 ~v3 ~v1 −
3 ~v3 ~v5 ~v4 ~v1 ~v2

4 ~v4 ~v5 ~v1 ~v3 −
5 ~v5 ~v4 ~v3 ~v2 ~v1

Table 7. Vectors used to compute the master volume for the two resolved geometries given in

figure 6, respectively.

the second we have l2 = l4 = 3 and l1 = l3 = l5 = 4. The vectors needed to evaluate (A.1)

are given in the left and right hand tables in table 7, respectively. For each of these two

cases, we find that the expression for V(~b; {λa}) now satisfies (2.36). By analysing (2.37)

we can obtain two gauge-invariant combinations of the {λa} given by

X = λ1 − λ2 + λ3 − λ4 ,

Y = (b1 − b2 − b4)λ1 + (b4 − b3)λ2 + b3λ3 + b2λ5 . (A.6)

In terms of these variables, the volumes V(~b; {λa}) take the form

V(1) = 8π4 b3(b1−b2−b4)
[(
b23+b24−(b1−b2+b3)b4

)
X3−3(b3−b4)X2Y +3XY 2

]
+(b2−b1)Y 3

3b2b3b4(−b1+b2+b3)(−b1+b2+b4)
,

V(2) = 8π4 b3(b1−b2−b4)
[
(b3−b4)2X3−3(b3−b4)X2Y +3XY 2

]
+(b2−b1)Y 3

3b2b3(−b1+b2+b3)b4(−b1+b2+b4)
, (A.7)

for the two different resolved geometries, respectively, and V(2) − V(1) = 8π4X3

3b2
. Further-

more, one can check that for the special Kähler class with X = 0, then we get

V(1) = V(2) =
8π4Y 3(b2 − b1)

3b2b3b4(−b1 + b2 + b3)(−b1 + b2 + b4)
, when X = 0 (A.8)

and, importantly, this agrees with the expression for V(~b; {λa}) for the link of C× Conifold,

with its worse-than-orbifold singularities, when X = 0.

The Sasaki Kähler class is obtained when λa = − 1
2b1

, or equivalently when X = 0 and

Y = −1/2. Extremizing this volume while holding b1 = 4 fixed, at the critical point we

recover the Sasakian volume formula23

Vol(Y7) =
16π4

81
, (A.9)

with the critical Reeb vector given by

~b =

(
4, 1,

3

2
,

3

2

)
. (A.10)

23One can check that this volume is twice that given in equation (3.33) of [31] for the case of Y p,k(CP 1×
CP 1) with p = 1 k = 2, consistent with the fact that this is a Z2 orbifold of the link of C× Conifold.
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a ~va ~va,1 ~va,2 ~va,3 ~va,4

1 ~v1 ~v3 ~v5 ~v2 −
2 ~v2 ~v4 ~v1 ~v5 ~v6

3 ~v3 ~v4 ~v6 ~v5 ~v1

4 ~v4 ~v2 ~v6 ~v3 −
5 ~v5 ~v6 ~v2 ~v1 ~v3

6 ~v6 ~v2 ~v5 ~v3 ~v4

Table 8. Vectors used to compute the master volume of the link of the SPP singularity.

A.4 Y7 = link of SPP

The toric diagram for the SPP 4-fold singularity comprises of the following six vertices

~v1 = (1, 0, 0, 0) , ~v2 = (1, 1, 1, 0) , ~v3 = (1, 1,−1, 0) ,

~v4 = (1, 2, 0, 0) , ~v5 = (1, 0, 0, 1) , ~v6 = (1, 1, 0, 1) . (A.11)

The toric diagram, obtained by projecting the vertices in (A.11) onto R3, is shown in

figure 5. Notice that this has a manifest Z2 reflection symmetry along the y axis (third

entry). Just like the case of C× Conifold that we considered in the previous subsection the

link of this singularity has worse-than-orbifold singularities as revealed by the presence of

a non-triangular face bounded by ~v1, ~v2, ~v3 and ~v4.

The polytope has d = 6 vertices, with l1 = l4 = 3 and l2 = l3 = l5 = l6 = 4. The

vectors needed to evaluate (A.1) are given in table 8.

In general the relation (2.36) is not satisfied for this example, but it is satisfied when

we impose λ1 − λ2 + λ3 − λ4 = 0. As in the case of C× Conifold this is again due to

the presence of worse-than-orbifold singularities and we can proceed in a similar manner.

One can consider two resolutions obtained by adding in an extra line in the toric diagram,

either from ~v1 to ~v4 or from ~v2 to ~v3. In each case one gets a master volume formula, V(1)

and V(2), respectively, both of which satisfy the relation (2.36). For these cases we can

then construct three gauge invariant variables given by

X = λ1 − λ2 − λ3 + λ4 ,

Y = b3(λ3 − λ2) + 2b2(λ5 − λ6) + b4(λ2 + λ3 − 2λ6)− b1(λ2 + λ3 + 2λ5 − 2λ6) ,

Z = b1λ1 + b4(λ5 − λ1) + b2(λ6 − λ5) + b3(λ1 − λ3 − λ5 + λ6) . (A.12)

We find that V(2) − V(1) = −4π4X3

3b4
and moreover when X = 0 then V(1) = V(2) is pre-

cisely the same as the master volume calculated from the toric diagram in figure 5 after

setting X = 0.

An expression that we found useful is when λ1 = λ2 = λ3 = λ4 and λ5 = λ6 in which

case X = 0, Y = −2Z = b1λ1 + b4(λ5 − λ1)

V →−16π4

[
−4b31+8b4b

2
1+
(
4b23−b4(2b2+5b4)

)
b1+b4

(
b22+b4b2−3b23+b24

)]
Z3

3b4(b22−b23)(b1+b3−b4)(−2b1+b2−b3+b4)(−b1+b3+b4)(−2b1+b2+b3+b4)
.

(A.13)
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The case of the Sasakian volume is obtained by further setting Z = −1/2, and hence

λa = − 1
2b1

. Further extremizing while holding b1 = 4 we recover the Sasakian volume

formula given in equation (5.5) of [42], namely

Vol(Y7) =
π4(4− 3∆)

96∆(2−∆)2(1−∆)2
, (A.14)

with the Reeb vector parameterised as

~b = (4, 2(2−∆), 0, 4∆) , (A.15)

and ∆ ' 0.319 at the critical point.

B Homology relations and twisting

In this appendix we give a proof of the homology relation (B.8) that leads to (4.13),

extending some of the arguments used in [49].

For simplicity we assume that Y7 is simply connected, which since b1(Y7) = 0 we may

always do by passing to a finite covering space. Recall that the cone C(Y7) may be realized

as a Kähler quotient C(Y7) = Cd//U(1)d−4. The torus U(1)d−4 arises as follows. Define

the linear map

A : Rd → R4 , where A(ea) = va . (B.1)

Here {ea} denotes the standard orthonormal basis of Rd, with components eba = δab. Since

A also maps Zd to Z4, (B.1) induces a corresponding map of tori U(1)d = Rd/2πZd →
R4/2π SpanZ{va}, and the torus U(1)d−4 is precisely the kernel of this map. It is generated

by an integer matrix QaI , I = 1, . . . , d− 4, satisfying

d∑
a=1

QaIv
i
a = 0 , (B.2)

which specifies the embedding U(1)d−4 ⊂ U(1)d. The toric U(1)4 action on C(Y7) is then

via the quotient U(1)4 = U(1)d/U(1)d−4. More physically, the above construction may be

viewed as a gauged linear sigma model with d complex fields and U(1)4 charges specified

by QIa, with C(Y7) being the vacuum moduli space of this theory.

In order to fibre C(Y7) (or equivalently Y7) over a Riemann surface Σg, we may first

fibre Cd over Σg. To do so we must first lift the U(1)4 action on C(Y7) to Cd, which means

specifying αi ∈ Zd, i = 1, 2, 3, 4, satisfying

A(αi) = ei ∈ Z4 , (B.3)

where {ei} denotes the standard orthonormal basis of R4. In components (B.3) reads

d∑
a=1

vjaα
i
a = δij . (B.4)
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Of course, the choice of each αi ∈ Zd is unique only up to the kernel of A, generated by

QaI . Geometrically, this is because C(Y7) is precisely a Kähler quotient of Cd via the torus

U(1)d−4 generated by this kernel. By construction, the charge of the ath coordinate za of

Cd under the ith U(1) ⊂ U(1)4 is αia. We then construct the associated bundle

X ≡ O(~n)Σg ×U(1)4 Cd . (B.5)

The space X is the total space of a Cd fibration over Σg, where we twist the ith U(1) action

on Cd via the line bundle O(ni)Σg , i = 1, 2, 3, 4. This means that za may be regarded as a

coordinate on the fibre of O((αa, ~n))Σg , where (αa, ~n) =
∑4

i=1 α
i
ani. The fibred geometry

we are interested in is

Y9 = X//U(1)d−4
∣∣∣
r=1

, (B.6)

where we take a Kähler quotient of the fibres Cd in (B.5), and set r = 1 to obtain

Y7 = C(Y7) |r=1.

Next we may define the torus-invariant seven-manifolds Σa ⊂ Y9 via Σa ≡ {za = 0} in

the above construction. In Y9 we may view the za as sections of complex line bundles La
over Y9. These are sections of line bundles, rather than functions, because za is charged

both under the torus U(1)d−4 that we quotient by, and is also fibred over Σg as O((αa, ~n))Σg .

Consider now the 4 line bundles

Mi ≡
d⊗
a=1

Lviaa , i = 1, 2, 3, 4 . (B.7)

The restriction of Mi to each fibre Y7 is a trivial line bundle over that fibre. This follows

from (B.2), where recall that QaI generates the torus action U(1)d−4 on Cd. This implies

that
∏d
a=1 z

via
a are invariant under U(1)d−4, and so the sections of Mi are simply complex-

valued functions on each fibre Y7 = Cd//U(1)d−4 |r=1. On the other hand, (B.4) says that

these sections of Mj have charge δij under the ith toric U(1) ⊂ U(1)4. As such, we may

identify Mi = π−1
[
O(−ni)Σg

]
, where π : Y9 → Σg is the projection to the base. Taking

the first Chern class of (B.7) and applying Poincaré duality then precisely gives

d∑
a=1

via[Σa] = −ni[Y7] ∈ H7(Y9;Z) , i = 1, 2, 3, 4 , (B.8)

where ni[Y7] is the Poincaré dual to nivolΣg = c1(O(ni)Σg). Integrating the seven-form

flux of these cycles and using (B.8) then immediately leads to (4.13).

Finally, let us comment on (4.137), which recall arises in the field theory analysis. Here

by definition na ∈ Z is precisely the twisting of the ath gauged linear sigma model field

over the Riemann surface Σg. On the other hand, in our geometric construction above the

ath gauged linear sigma model field is precisely the coordinate za on Cd, and thus we may

identify

na =

4∑
i=1

αiani , a = 1, . . . , d . (B.9)
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Thus in the bundle X defined by (B.5), the Cd fibre coordinate za is precisely a section of

O(na)Σg . On the other hand, (B.4) then implies

d∑
a=1

viana =

d∑
a=1

4∑
i=1

viaα
j
anj = ni , (B.10)

which is precisely (4.137).

C Explicit supergravity solutions

Here we further analyse a class of explicit supergravity solutions of the form AdS2 × Y9

that were first discussed in section 6.3 of [28] and were recently discussed in section 4.3.1

of [8]. The eight-dimensional Kähler base space used for the construction of the solutions

is given by a product of Kähler-Einstein metrics

ds2
8 = ds2(KE

(1)
2 ) + ds2(KE+

4 ) + ds2(KE
(4)
2 ) , (C.1)

where ds2(KE+
4 ) is taken to have positive curvature. The Ricci form is given by

R = l1JKE(1)
2

+ l2JKE+
4

+ l4JKE(4)
2

, (C.2)

where the J ’s are the associated Kähler forms, li are constants and, without loss of gen-

erality, we can take l2 = 1. In order to solve the equation �R − 1
2R

2 + RijR
ij = 0 on

the eight-dimensional manifold we should take l4 = −1+2l1
2+l1

. One of the two-dimensional

Kähler-Einstein spaces is always a Riemann surface of genus g > 1, which we take to be

KE
(4)
2 . The range of l1 is then −2 +

√
3 ≤ l1 <∞. There are three cases to consider. First

when l1 ∈ [−2 +
√

3, 0) and l4 ∈ [−2 +
√

3,−1/2) then KE
(1)
2 is also a Riemann surface

with genus g′ > 1. Second when l1 = 0 and l4 = −1/2, then KE
(1)
2 is a Riemann surface

with genus g′ = 1 and finally when l1 > 0 and l4 ∈ (−2,−1/2), then KE
(1)
2 is a Riemann

surface with genus g′ = 0. For simplicity of presentation we only present details of the

analysis for the latter case, which is the case relevant for the analysis in section 4.

We relabel l1 ≡ x and continue with x > 0. The eight-dimensional Kähler base space

can then be written

ds2
8 =

1

x
ds2(S2) + ds2(KE+

4 ) +
2 + x

1 + 2x
ds2(Σg) , (C.3)

where ds2(S2) is the metric on the unit radius round two-sphere, so that
∫
S2 volS2 = 4π,

and Σg is a Riemann surface of genus g > 1 with
∫

Σg
volS2 = 4π(g−1). It will also be useful

to note that since the metric on KE+
4 satisfies RKE+

4
= JKE+

4
, we have

∫
KE+

4
volKE+

4
=

1
2(2π)2M where M is a topological integer for KE+

4 . For further discussion of this result

see, for example, appendix B of [27], where one can also find a discussion of the Fano

index, m, of KE+
4 . Here we will need the fact that if we consider a set of two-cycles

Σi ⊂ KE+
4 that generate H2(KE+

4 ,Z), then we have
∫

Σi
JKE+

4
= 2πmni for ni ∈ Z.

For KE+
4 = CP 1 × CP 1 we have (m,M) = (2, 8) and n1 = n2 = 1. For CP 2 we have
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(m,M) = (3, 9) and n1 = 1. For the del Pezzos, dPk, k = 3, . . . 8, we have m = 1 and

M = 9− k, as well as ni = 1, i = 1, . . . , k and nk+1 = 3.

The metric on Y9 appearing in the AdS2 solution as in (4.1) is given by

ds2
9 = (dz + P )2 + eBds2

8 , (C.4)

where P is a local one-form satisfying dP = RS2 +RKE+
4

+RΣg and eB = R/2 = 3+2x+x2

2+x .

By defining Y7 to be a circle fibration over S2×KE+
4 , we can then view Y9 in the solutions

as being obtained by fibreing Y7 over Σg. When x = 1 we have special examples of the

universal twist solutions, discussed in section 4.3; the cases KE+
4 = CP 1 × CP 1 and CP 2

correspond to Q1,1,1 and M3,2, respectively. The two-form F appearing in the four-form

flux (4.1) is given by

F = − 3

x(3 + 2x+ x2)
volS2 −

1 + x+ x2

3 + 2x+ x2
JKE+

4
− (2 + x)3

(1 + 2x)(3 + 2x+ x2)
volΣg . (C.5)

For flux quantization we need the seven-form ∗G4, which takes the form

∗G4 = L6(dz + P ) ∧
([

2 + x

x
volS2+

3

(1 + 2x)
volΣg

]
∧ volKE+

4

+
1 + x+ x2

x(1 + 2x)
volS2 ∧ JKE+

4
∧ volΣg

)
, (C.6)

where volKE+
4

= 1
2JKE+

4
∧ JKE+

4
.

Regularity of the metric is ensured if z parametrizes a circle with period 2πh, where

h = hcf(2, 2(g − 1),m). Thus, if m is even then h = 2 and if m is odd then h = 1. Next

we calculate the flux through the various seven-cycles. We first consider the seven-cycle

obtained by fixing a point on Σg, i.e. the z circle fibred over S2×KE+
4 , which is a copy of

Y7, and we obtain

N =

(
L

`p

)6 hM

22π2

2 + x

x
, (C.7)

with N ∈ Z. We can also consider the cycle obtained by fixing a point on the S2 as well

as the cycle obtained as the fibration of z over S2 × Σg × Σi, where Σi ⊂ KE+
4 generate

H2(KE+
4 ,Z). After using (C.7), for these cycles we find, respectively,

Ñ =
3x

(1 + 2x)(2 + x)
(g − 1)N ,

Ni =
22m

M

1 + x+ x2

(2 + x)(1 + 2x)
(g − 1)Nni , (C.8)

with Ñ ,Ni ∈ Z. We need to ensure that N, Ñ,Ni ∈ Z. By considering the ratio Ni/Ñ we

conclude that we must have

x+
1

x
∈ Q , (C.9)
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which, interestingly, can be achieved for irrational x (e.g. x = 2+
√

3). We can then suitably

choose L
`p

and hence N so that Ñ ,Ni ∈ Z. We also note that for the universal twist, when

x = 1, we have Ñ = (1/3)(g − 1)N and Ni = (4m)/(3M)(g − 1)Nni. We next calculate

S ≡ 1

4G2
=

1

(2π)8

(
L

`p

)9

4π

∫
eB(dz + P ) ∧ vol8 ,

=
23

(hM)1/2
π(g − 1)

3 + 2x+ x2

(1 + 2x)

x1/2

(2 + x)3/2
N3/2 . (C.10)

When x = 1 this expression can be recast in the form

S |x=1 =
(g − 1)N3/2π3

√
2√

27Vol(Y7)
, (C.11)

using the fact that the volume of the regular Sasaki-Einstein metrics associated with circle

fibrations over S2 ×KE+
4 can be expressed as Vol(Y7) = hMπ4/128.

In the special case that KE+
4 is toric, i.e. KE+

4 = CP 1×CP 1, CP 2 or dP3, from (4.19),

the R-charges associated with M5-branes wrapping toric divisors associated with five-cycles

Ta on Y7 (i.e. at a fixed point on Σg), are given by,

Ra = R[Ta] =
2L6

(2π)5`6p

∫
Ta

(dz + P ) ∧
(

1

x
volS2 ∧ JKE+

4
+

1

2!
J2
KE+

4

)
. (C.12)

We now consider the case of KE+
4 = CP 1 × CP 1, with (m,M) = (2, 8) and hence

h = 2. In this case24 Y7 is Q1,1,1. Two of the Ta, which we take to be T5, T6 are associated

with the circle fibration over KE+
4 = CP 1×CP 1, while sitting at the north and the south

pole of the generic S2 in (C.3), respectively. Similarly, we can consider sitting at the

north and south pole of each of the two CP 1 factors in KE+
4 leading to four more Ta with

a = 1, . . . , 4. We then find

R1 = R2 = R3 = R4 =
1

2 + x
N , R5 = R6 =

x

2 + x
N , (C.13)

and one can check that
∑

aRa = 2N . The labelling we have chosen is consistent with the

toric data given by

~v1 = (1, 0, 0, 0) , ~v2 = (1, 0, 0, 1) , ~v3 = (1,−1, 0, 0) ,

~v4 = (1, 1, 0, 1) , ~v5 = (1, 0,−1, 0) , ~v6 = (1, 0, 1, 1) , (C.14)

as used in (3.24). One can directly obtain the R-symmetry vector ~b and the integers ~n

defining the fibration, in the toric basis (C.14), by further analysing the associated Killing

vectors in the explicit metric. However, it is more convenient to obtain them via the

following method. For this example, we have verified that the identity (2.36), which we

give again here:

6∑
a=1

viaRa = 2biN , (C.15)

24Note that if we took h = 1 then we would have the regular orbifold Q1,1,1/Z2.
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holds. Therefore, we can immediately conclude that ~b = (1, 0, 0, 1
2) for any x. In addition

the fluxes M1, . . . ,M4 are associated with the Ni, i = 1, 2 in (C.8) with ni = 1, while

M5,M6 are associated with Ñ . Thus we have

M1 = M2 = M3 = M4 =
1 + x+ x2

(2 + x)(1 + 2x)
(g − 1)N ,

M5 = M6 =
3x

(1 + 2x)(2 + x)
(g − 1)N . (C.16)

Similarly, we can use the condition (4.13),

6∑
a=1

viaMa = −niN , (C.17)

to conclude that ~n = 2(1−g)(1, 0, 0, 1
2). Notice that for all values of x we have ni = n1

b1
bi, as

in the universal twist (4.35). For the special value of x = 1 we also have Ra = Ma/(g−1) =

N/3, which is an additional condition that is required in order to obtain the universal twist

solutions in section 4.3.

We now consider the case of KE+
4 = CP 2, with (m,M) = (3, 9) and hence h = 1.

In this case Y7 is M3,2. Two of the Ta, which we take to be T1, T2, are associated with

the circle fibration over KE+
4 = CP 2, while sitting at the north and the south pole of the

generic S2 in (C.3). Similarly, we can consider the product of the generic S2 with the three

two-spheres associated with the toric divisors of CP 2, leading to three more Ta which we

label T4, T5, T6. We then find

R1 = R2 =
x

2 + x
N , R3 = R4 = R5 =

4

3

1

2 + x
N , (C.18)

and again we have
∑

aRa = 2N . The labelling we have chosen is consistent with the toric

data given by

~v1 = (1, 0, 0, 0) , ~v2 = (1, 0, 0, 2) , ~v3 = (1, 1, 0, 0) ,

~v4 = (1, 0, 1, 0) , ~v5 = (1,−1,−1, 3) . (C.19)

We find that the condition (4.23), which is valid for this example, implies ~b = (1, 0, 0, 1) for

any x. In addition the fluxes M1,M2 are associated with Ñ in (C.8) while Ma, a = 3, 4, 5

are associated with the Ni, i = 1 with n1 = 1. Thus we have

M1 = M2 =
3x

(1 + 2x)(2 + x)
(g − 1)N ,

M3 = M4 = M5 =
4

3

1 + x+ x2

(2 + x)(1 + 2x)
(g − 1)N . (C.20)

The condition (C.17) then implies ~n = 2(1 − g)(1, 0, 0, 1). Notice that for all values of x

we again have ni = n1
b1
bi, as in the universal twist (4.35). For the special value of x = 1

we also have Ra = Ma/(g − 1) = N/3, for a = 1, 2 and Ra = Ma/(g − 1) = 4N/9, for

a = 3, 4, 5; the proportionality of the R-charges and the fluxes is an additional condition

for the universal twist solutions in section 4.3.
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In both of the above examples, the R-symmetry vector ~b had rational entries and

hence, as far as the geometry is concerned, the R-symmetry foliation is (quasi-)regular.

Furthermore, when x is rational all of the R-charges are also rational. However, when x is

irrational, and satisfying (C.9), the R-charges are irrational numbers.
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