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Abstract

In this paper we show existence and multiplicity results for a linearly
perturbed elliptic problem driven by nonlocal operators, whose prototype
is the fractional Laplacian. More precisely, when the perturbation param-
eter is close to one of the eigenvalues of the leading operator, the existence
of three nontrivial solutions is proved.
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1 Introduction

A Tokamak machine consists of a toroidal cavity containing a given mass
of plasma surrounded by a vacuum layer. One of the issues of the Plasma
Physics deals with the specification of the region occupied by such a plasma at
equilibrium and the description of its flux through a cross section Ω ⊆ R2 of the
machine, which we assume to be a bounded domain.

Denoting by u the flux function, a possible description of such a phenomenon
is given by the nonlinear eigenvalue problem (though λ is not an eigenvalue
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(GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM), and is supported by the
2017 INdAM-GNAMPA Project Equazioni Differenziali Non Lineari
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1 Introduction 2

according to the usual terminology)

(1) −
2∑
i=1

∂

∂xi

(
1

x1

∂u

∂xi

)
= λu+,

with specific boundary conditions and λ ∈ R, see [12] and [28]. However, in
[28] the domain Ω is far from the line x1 = 0, and so the operator is uniformly
elliptic. For this reason, a simplified but formally equivalent version of (1) is
considered in [29], with the equation

−∆u = λu+.

However, in most cases, the Laplace operator does not fit the problem in a
realistic way. Recall that, since the papers of Einstein [6] and Smoluchowski [25],
the Laplacian has been the successful tool to describe diffusion and Brownian
motion. However, the diffusion of a particle (or of an individual in a Biological
species) at a point x might be influenced by all other particles, and this is
particularly true if one takes into account also long–range particle interactions.
For this reasons, in this case the diffusion operator cannot act pointwise, and
so it is natural to consider the average between the total contributions, that is
an integral average, of the form∫

RN

[
u(x+ y)− u(x)

]
K(y) dy,

where K is a weight which measures the influence of the particle at x + y on
the one at x. Typically, such influence is determined by singular interactions
depending on the distance between the two points, and so a quantity of the form

(2)

∫
RN

u(x+ y)− u(x)

|y|α
dy

for some α > 0 is the most natural operator which shows up, see [4], [26] and
[30] for more details on this replacement of local operators by nonlocal ones.

To our best knowledge, the first replacement of a local operator with a non-
local one was considered in [1], where the author uses the fractional Laplacian
in the eigenvalue problem

(3)

{
Asu = λ(u− a)+ in Ω

u = 0 on ∂Ω

with Ω ⊆ RN a bounded domain, u : Ω → R, s ∈ (0, 1) and a ≥ 0 is a given
constant. Here the fractional Laplacian taken into account is

Asu
.
=

sin(πs)

π

∫ ∞
0

λs−1(λ−∆)−1∆u dλ.

Note that, in spite of the nonlocal definition of As, it is now well known that
a local representation is available: if u ∈ H2(Ω) ∩ H1

0 (Ω), u =
∑
aiφi, where
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ai =
∫

Ω
uφidx ∈ R and φi are the L2-orthonormalized eigenfunctions of −∆ in

Ω with associated eigenvalues Λi, we have

Asu =

∞∑
i=1

Λsiaiφi,

see [2]. For such a problem, Mark Allen studied existence and regularity of
solutions and the properties of the free boundary, using the fact that this frac-
tional Laplacian can be seen as a Dirichlet-to-Neumann map, which makes the
original nonlocal problem in a local one with an additional dimension, see [5]
for the entire space and [3] for bounded domains. For completeness, we briefly
recall this Dirichlet-to-Neumann procedure: set C = Ω × (0,∞), and, given u,
consider the solution v of

div(y1−2s∇v)(x, y) = 0 (x, y) ∈ C,

v(x, y) = 0 x ∈ ∂Ω, y > 0,

v(x, 0) = u x ∈ Ω.

Then, there exists a constant Cs > 0 such that

Cs(−∆)su(x) = − lim
y→0+

y1−2suy(x, y), x ∈ Ω,

i.e the operator mapping the Dirichlet datum u to the Neumann–type datum
limy→0+ −y1−2suy(x, y) is s−root of the negative Laplacian −∆ in Ω. Also

notice that when s = 1/2, we have Cs = 1 and
√
−∆u(x) = −uy(x, 0). For the

precise value of Cs, see [5].
However, it is clear from [2] that actually As has a local representation in

terms of eigenvalues and eigenfunctions of −∆ in Ω, and thus nonlocal inter-
actions are not really considered. For this reason, in this paper we start from
different nonlocal versions of problem (3), whose prototype is{

(−∆)su = λ(u− a)+ in Ω,

u = 0 in RN \ Ω,

where s ∈ (0, 1), a ≥ 0, λ ∈ R, u : RN → R and

(−∆)su(x)
.
= C(N, s) P.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy,

in agreement with the Physical motivations which led to (2).
From now on Ω will be a bounded domain of RN with Lipschitz continuous

boundary. Note that the boundary condition “u = 0 on ∂Ω” is replaced by the
nonlocal one “u = 0 in RN \ Ω, see [27] and [8, Theorem 4.4.3]. In this way,
by definition of (−∆)s, it is clear that an actual nonlocal operator is in force,
and so nonlocal effects describing interactions among particles can be consid-
ered. It is also worth mentioning that As and (−∆)s are different operators
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with different eigenvectors and eigenfunctions, see [23]. However, there are also
some very good properties that this operator enjoys, similarly to the Laplacian,
or a uniformly elliptic operator: for instance, it admits a simple and positive
principal eigenvalue with signed positive eigenfunction ([23]) and it satisfies the
maximum principle and the Harnack inequality ([5]).

In this paper we shall consider more general problems of the form

(P )

{
LKu = λ(u− a)+ in Ω

u = 0 on RN \ Ω,

where

(4) LKu(x)
.
=

∫
RN

(
u(x)− u(y)

)
K(x− y) dy.

Here K is a singular potential, whose prototype is K(x) = 1/|x|N+2s, see as-
sumption (H) for the precise setting, and u belongs to a suitable reference space
Xs

0 , see below.
Even without the precise definitions of the main characters involved, if we

minimize the energy functional

E (u)
.
=

∫∫
O

|u(x)− u(y)|2K(x− y) dxdy,

on the weakly closed constraint{
u ∈ Xs

0 :

∫
Ω

(u− a)2
+ dx = c > 0

}
we find a minimizer u, with associated multiplier λ, so that the couple (u, λ)
solves (P ). In this way, we immediately find the counterpart of the existence
result proved in [1] for the spectral fractional Laplacian:

Proposition 1.1. If a ≥ 0, then there exists λ > 0 such that problem (P )
admits one solution (λ, u), u 6= 0.

The fact that λ > 0 is proved simply starting from the identity∫∫
O

|u(x)− u(y)|2K(x− y) dxdy = λ

∫
Ω

(u− a)+u dx,

using that a ≥ 0.

In the rest of the paper we are interested in another version of problem (P ),
that is

(Pλ)

{
LKu = λu− γ [(u+ 1)−]

p−1
in Ω

u = 0 in RN \ Ω,
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where u : RN → R, γ > 0 and p > 2. Notice that moving from (P ) to (Pλ) we
have set a = 1 (just to fix the ideas), and replaced u by −u. Of course, this
choice is completely irrelevant and an analogous result can be proved for{

LKu = λu+ γ [(u− 1)+]
p−1

in Ω

u = 0 in RN \ Ω.

In order to introduce all the elements we need to solve problem (Pλ), we start
recalling the usual setting for LK , see [22]. Take a function K : RN \ {0} →
(0,∞) satisfying the assumption

(H). For s ∈ (0, 1) and N > 2s, we assume that

• mK ∈ L1(RN), with m(x)
.
= min{|x|2, 1};

• ∃κ > 0 such that K(x) ≥ κ|x|−(N+2s), for every x ∈ RN \ {0};

• K(−x) = K(x) for every x ∈ RN \ {0}.

Introduce the space

Xs .
=
{
v : RN → R

∣∣∣ v|Ω ∈ L2(Ω),
(
v(x)− v(y)

)√
K(x− y) ∈ L2(O)

}
,

where O
.
= R2N \ (Ωc × Ωc) and the space

Xs
0
.
=
{
u ∈ Xs

∣∣u = 0 a.e. in RN \ Ω
}
,

endowed with the scalar product

〈u, v〉 .
=

∫∫
R2N

(
u(x)− u(y)

)(
v(x)− v(y)

)
K(x− y) dxdy,

which makes Xs
0 a Hilbert space, see [22]. From now on, we will denote by ‖ · ‖

the norm induced by 〈·, ·〉.
Operator LK is defined in (4) and u ∈ Xs

0 is a solution of (Pλ) if

〈u, v〉 = λ

∫
Ω

uv dx− γ
∫

Ω

[(u+ 1)−]
p−1

v dx

for every v ∈ Xs
0 .

Setting

2?
.
=

2N

N − 2s
,

our first easy result is

Theorem 1.2. If p ∈ (2, 2?), γ > 0, λ ∈ R and (H) holds, then (Pλ) admits
one nontrivial solution.
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Finally, in order to give our main result, we recall that LK admits a non-
decreasing and diverging sequence (λn)n∈N of eigenvalues with associated L2-
orthonormalized eigenfunctions (en)n∈N, such that, for every u ∈ Xs

0 , we have

u =

∞∑
n=1

αnen,

with αn = 〈u, en〉 ∈ R, for every n ∈ N, see [24]. Moreover, λ1 > 0 is simple,
e1 > 0 is bounded in Ω and every eigenvalue has finite multiplicity.

For further references, it is convenient to state the following remarks.

Remark 1.3. It is straightforward that {en}n are orthogonal also in Xs
0 .

Remark 1.4. The negative (positive) part of any eigenfunction different from e1

cannot be trivial on the whole domain. Indeed, if, by contraddiction, (ei)− = 0
in Ω for some i ∈ N, i ≥ 2, then

0 =

∫
Ω

e1ei dx =

∫
Ω

e1(ei)+ dx > 0,

since e1 > 0 in Ω.

Our main result is

Theorem 1.5. Let p ∈ (2, 2?), γ > 0 and (H) holds. If l ∈ N with l ≥ 1, then
there exists δl > 0 such that, for every λ ∈ (λl+1−δl, λl+1) problem (Pλ) admits
three nontrivial solutions.

The proof of this result is obtained by using a critical point theorem of mixed
nature proved in [11], already successfully applied in [13], [14], [15], [16], [18],
[19], [31], [32], also for variational inequalities, see [9].

2 Mathematical background

In this section we recall some results which will be used throughout the
paper.

Lemma 2.1 (Lemma 9, [21]). Assume that K satisfies (H). Then, the follow-
ing assertions hold true:

(i) if Ω has a Lipschitz boundary, then the embedding Xs
0 ↪→ Lp(RN ) is com-

pact, for every p ∈ [1, 2?);

(ii) the embedding Xs
0 ↪→ L2?

(RN ) is continuous.

Definition 2.2. Let X be a Banach space, I ∈ C 1(X,R). We say that I
satisfies the Palais-Smale condition, (PS) for short, if every (un)n ⊆ X such that
(I (un))n is bounded and I ′(un)→ 0 in X ′ admits a convergent subsequence.
We say that I satisfies the Palais-Smale condition at level c ∈ R, (PS)c for
short, if every (un)n ⊆ X such that I (un) → c and I ′(un) → 0 in X ′ admits
a convergent subsequence.
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The following Linking Theorem, proved by Rabinowitz in [20], though well
known, is here recalled in view of the estimate of the critical value, which will
be needed for establishing the main result. As usual, Sρ is the sphere of radius
ρ in X and BR is the ball of radius R.

Theorem 2.3. Let X be a Banach space and I ∈ C 1(X,R) be such that
I (0) = 0. Suppose that X = X1 ⊕X2, where X1 and X2 are closed subspaces
with dimX1 <∞. Assume that

(i) there exist ρ, α > 0 such that

inf I (Sρ ∩X2) = α;

(ii) there exists e ∈ S1 ∩X2 and R > ρ such that, setting

Q
.
=
(
BR ∩X1

)
⊕ {te | 0 < t < R},

then I (∂Q) ≤ 0;

(iii) (PS) holds for I .

Then I has a critical value β ≥ α, where

β
.
= inf
h∈H

max
v∈Q

I
(
h(v)

)
,

and
H

.
= {h ∈ C (Q,X) : h|∂Q = Id}.

Finally, we state another critical point theorem, which is one of the ∇-
theorems introduced by Marino and Saccon in [11]. The main feature of these
theorems is the following condition, which essentially requires that the func-
tional, constrained on a certain subspace, has no critical points with some uni-
formity.

Definition 2.4 (∇-condition). Let X be a Hilbert space and I ∈ C 1(X,R).
Let C be a closed subspace of X and a, b ∈ R ∪ {−∞,∞}.

We say that I verifies condition (∇)(I , C, a, b) if

there exists ν > 0 such that

inf
{
‖PC∇I (u)‖ : a ≤ I (u) ≤ b, dist (u,C) ≤ ν

}
> 0,

where PC : X → C denotes the orthogonal projection of X onto C.

Now we give the abstract theorem.

Theorem 2.5 (Theorem 2.10, [11]). Let X be a Hilbert space and X1, X2, X3

be three subspaces of X such that X = X1 ⊕X2 ⊕X3, with 0 < dimXi < ∞,
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for i = 1, 2. Let I : X → R be a C 1,1 functional. Let ρ, ρ′, ρ′′, ρ1 be such that
0 < ρ1, 0 ≤ ρ′ < ρ < ρ′′, and set

∆
.
= {u ∈ X1 ⊕X2 : ρ′ ≤ ‖P2u‖ ≤ ρ′′, ‖P1u‖ ≤ ρ1} , and

T
.
= ∂X1⊕X2

∆ (the boundary of ∆ in X1 ⊕X2),

where Pi : X → Xi denotes the orthogonal projection of X onto the subspace
Xi, for every i = 1, 2, and

S23(ρ)
.
= {u ∈ X2 ⊕X3 : ‖u‖ = ρ} ,

B23(ρ)
.
= {u ∈ X2 ⊕X3 : ‖u‖ < ρ} .

Assume that
a′ = sup I (T ) < inf I (S23(ρ)) = a′′.

Let a, b be such that a′ < a < a′′, b > sup I (∆) and

(∇)(I , X1 ⊕X3, a, b) holds;

(PS)c holds for I , for every c ∈ [a, b] .

Then, I has at least two critical points in I −1([a, b]).

3 The superlinear problem (Pλ)

In this section we shall prove Theorem 1.2. A first tool is the following

Lemma 3.1. Let Ω ⊆ RN be an open set and p ≥ 1.
If u ∈ Lp(Ω), then ∫

Ω

[(u+ 1)−]
p
dx = o

(
‖u‖pp

)
,

where o
(
‖u‖pp

)
→ 0 as ‖u‖p → 0.

Proof. First of all,∫
Ω

[(u+ 1)−]
p
dx =

∫
{u≤−1}

(−u− 1)p dx ≤
∫
{u≤−1}

(−u)p dx.

Now take a sequence (un)n ⊆ Lp(Ω) such that un → 0 in Lp(Ω) and any
subsequence (unk

)k. Up to another subsequence, we can assume that unk
→ 0

a.e. in Ω. For every sub-subsequence (unkj
)j we get that∫

Ω

[
(unkj

+ 1)−
]p
dx ≤

∫
{unkj

<−1}
(−unkj

)p dx

≤
∫

Ω

∣∣unkj

∣∣p∣∣{unkj
< −1}

∣∣ dx = ‖unkj
‖pp o(1),

since unkj
→ 0 a.e. in Ω. This being valid for any sub-subsequence, we get the

claim.
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Recalling the spectral properties of LK described above, we have a standard
decomposition of Xs

0 . Indeed, if i ∈ N0 = N ∪ {0} and

Hi
.
= span{e1, . . . , ei}

with its orthogonal complement

H⊥i
.
= span{ei+1 . . .},

we obtain the decomposition

(5) Xs
0 = Hi ⊕H⊥i ,

where H0
.
= {0}.

By using the previous notation, we get this useful result, for whose proof see
[24].

Proposition 3.2. Suppose that u ∈ Xs
0 and i ∈ N0.

(i) If u ∈ Hi, then

(6) ‖u‖2 ≤ λi
∫

Ω

u2 dx;

(ii) if u ∈ H⊥i , then

(7) ‖u‖2 ≥ λi+1

∫
Ω

u2 dx.

O course, problem (Pλ) has a variational structure, since it is the Euler-
Lagrange equation of the C 1 functional Fλ : Xs

0 → R, defined as

(8) Fλ(u)
.
=

1

2
‖u‖2 − λ

2

∫
Ω

u2 dx− γ

p

∫
Ω

[(u+ 1)−]
p
dx.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Throughout the proof we will adopt the decomposition

Xs
0 = Hi ⊕H⊥i ,

for some i ∈ N0, introduced at the beginning of the section.
First, we observe that when λ = λ1, the family {te1}t≥−‖e1‖∞ defines a ray

of solutions, as a simple calculation shows.
Case λ < λ1. In this case it is enough to choose the representation Xs

0 = H⊥0 .
Since Xs

0 is continuously embedded in L2(Ω) (see Lemma 2.1), we have that

‖u‖2 − λ
∫

Ω

u2 dx ≤ ‖u‖2 + |λ|
∫

Ω

u2 dx ≤ c‖u‖2,
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with c > 0; moreover, by (7) we get that

‖u‖2 − λ
∫

Ω

u2 dx ≥

{(
1− λ

λ1

)
‖u‖2 = C‖u‖2 if λ ∈ [0, λ1),

‖u‖2 if λ < 0,

for some C > 0. Hence, in this case the norm defined as

‖u‖2∼
.
= ‖u‖2 − λ

∫
Ω

u2 dx

is equivalent to the usual one ‖ · ‖. This said, let us check that Fλ satisfies the
assumptions of the Mountain Pass Theorem.

In a sphere of radius ρ > 0 small enough, by Lemma 3.1 and Lemma 2.1, we
get that

Fλ(u) =
1

2
‖u‖2∼ −

γ

p

∫
Ω

[(u+ 1)−]
p
dx

≥ 1

2
‖u‖2∼ −

γ

p
ε‖u‖pp

≥ 1

2
‖u‖2∼ − Cε‖u‖p∼ = ‖u‖2∼

(
1

2
− Cε‖u‖p−2

∼

)
≥ α > 0,

provided that ε, Cε > 0 and ρ < (2Cε)
1/(2−p), and so 0 is a strict local minimum

point for Fλ.
Now, by choosing u < 0 in Ω and t > 0 we have that

Fλ(tu) =
t2

2
‖u‖2∼ −

γ

p

∫
Ω

[(tu+ 1)−]
p
dx

=
t2

2
‖u‖2∼ − γ

tp

p

∫
Ω

[(
u+

1

t

)
−

]p
dx.

Therefore, by the Generalized Lebesgue Theorem, we get that

Fλ(tu) −→
t→∞

−∞.

Finally, we need to prove the (PS)c-condition. Take a sequence (un)n ⊆ Xs
0

such that Fλ(un) → c ∈ R and such that F ′λ(un) → 0 in (Xs
0)′ as n → ∞.

Then there exist M,N > 0 such that

pFλ(un)−F ′λ(un)un ≤M +N‖un‖∼.

On the other hand, we have

pFλ(un)−F ′λ(un)un

=
p

2
‖un‖2∼ − γ

∫
Ω

[(un + 1)−]
p
dx− ‖un‖2∼ − γ

∫
Ω

[(un + 1)−]
p−1

un dx

=
(p

2
− 1
)
‖un‖2∼ + γ

∫
Ω

[(un + 1)−]
p−1

dx

≥
(p

2
− 1
)
‖u‖2∼.
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Thus, since p > 2, it follows that (un)n is bounded in Xs
0 .

Then, we get that, up to a subsequence, un ⇀ u in Xs
0 and by Lemma 2.1

(9)
un → u in Lp(Ω) for every p ∈ [2, 2?),

un → u a.e. in Ω.

Since (un − u)n is a bounded sequence and F ′λ(un) → 0 in (Xs
0)′, we get

that
F ′λ(un)(un − u) −→

n→∞
0;

but

F ′λ(un)(un − u) = ‖un‖2∼ − 〈un, u〉∼ + γ

∫
Ω

[(un + 1)−]
p−1

(un − u) dx

where

〈u, v〉∼
.
= 〈u, v〉 − λ

∫
Ω

uv dx for every u, v ∈ Xs
0 .

By (9), ∫
Ω

[(un + 1)−]
p−1

(un − u) dx −→
n→∞

0,

thus we immediately get that un → u in Xs
0 .

Hence, by the Mountain Pass Theorem, there exists a critical point u ∈ Xs
0

for Fλ with
Fλ(u) ≥ α > 0,

that is problem (Pλ) admits one nontrivial solution, as well.
Case λ > λ1. If λ > λ1, then there exists i ≥ 1 such that λi ≤ λ < λi+1 and we
shall apply Theorem 2.3 taking X1 = Hi and X2 = H⊥i .

Suppose that u ∈ H⊥i . Then, in a sphere of radius ρ, by (7) and the same
calculations used in the previous case, we have that

Fλ(u) ≥ 1

2

(
1− λ

λi+1

)
‖u‖2 − γ

p

∫
Ω

[(u+ 1)−]
p
dx

≥ b‖u‖2 − c‖u‖p

= ‖u‖2
(
b− c‖u‖p−2

)
≥ α > 0,

with b, c > 0, provided that ρ is small enough.
Now, if u ∈ Hi, then, by (6), it follows that

Fλ(u) ≤ 1

2
(λi − λ)

∫
Ω

u2 dx− γ

p

∫
Ω

[(u+ 1)−]
p
dx ≤ 0.
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Moreover, taking v = u+ tei+1, with u ∈ Hi and t > 0, since u and ei+1 are
orthogonal in L2(Ω) and in Xs

0 (see Remark 1.3), by (6), we get that

Fλ(v) = Fλ(u+ tei+1)

=
1

2
‖u+ tei+1‖2 −

λ

2

∫
Ω

(u+ tei+1)2 dx− γ

p

∫
Ω

[(u+ tei+1 + 1)−]
p
dx

≤ 1

2
(λi − λ)

∫
Ω

u2 dx+
t2

2
(λi+1 − λ)− γ

p

∫
Ω

[(u+ tei+1 + 1)−]
p
dx

≤ t2

2
(λi+1 − λ)− γ t

p

p

∫
Ω

[(
u

t
+ ei+1 +

1

t

)
−

]p
dx.

Using the Generalized Lebesgue Theorem, we get that∫
Ω

[(
u

t
+ ei+1 +

1

t

)
−

]p
dx −→

t→∞

∫
Ω

(ei+1)p− dx,

and, since by Remark 1.4, (ei+1)− 6≡ 0, we get that Fλ(v) → −∞ as t → ∞
and (ii) of Theorem 2.3 holds, as well.

To conclude the proof, let us check that Fλ satisfies the (PS)c-condition.
Given a (PS)c-sequence (un)n ⊆ Xs

0 , there existsM > 0 such that |Fλ(un)| ≤
M and F ′λ(un)→ 0 in (Xs

0)′.
Suppose by contradiction that (un)n is unbounded. Then, up to a subse-

quence, the sequence
(
‖un‖

)
n

diverges, and by Lemma 2.1 we may assume that
there exists w ∈ Xs

0 such that

(10)
un
‖un‖

⇀ w in Xs
0 , strongly in Lp(Ω) and a.e. in Ω.

Let us observe that (10) implies that

Fλ(un)

‖un‖p
−→
n→∞

−γ
p

∫
Ω

(w−)p dx

and thus, since Fλ(un)/‖un‖p → 0 as n→∞, it follows that

(11) w ≥ 0 in Ω.

On the other hand, we can write

F ′λ(un)un
‖un‖

= 2
Fλ(un)

‖un‖
+γ

(
2

p
− 1

)∫
Ω

[(un + 1)−]
p

‖un‖
dx−γ

∫
Ω

[(un + 1)−]
p−1

‖un‖
dx,

where the first term of the right-hand-side goes to zero as n→∞ and the other
two terms are non-positive. Hence, since F ′λ(un)un/‖un‖ → 0 as n → ∞, we
have that both the following limits exist and

lim
n→∞

∫
Ω

[(un + 1)−]
p

‖un‖
dx = lim

n→∞

∫
Ω

[(un + 1)−]
p−1

‖un‖
dx = 0,
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and consequently

lim
n→∞

∫
Ω

[(un + 1)−]
p−1

un
‖un‖

dx = 0.

Therefore, by (10) we get that

F ′λ(un)un
‖un‖2

= 1− λ
∫

Ω

u2
n

‖un‖2
dx+ γ

∫
Ω

[(un + 1)−]
p−1

un
‖un‖

dx

−→
n→∞

1− λ
∫

Ω

w2 dx.

But F ′λ(un)un/‖un‖2 → 0 as n→∞, thus

(12) w 6≡ 0.

Moreover, if v ∈ C∞c (Ω), we obtain that

F ′λ(un)v

‖un‖
=
〈un, v〉
‖un‖

− λ
∫

Ω

unv

‖un‖
dx+ γ

∫
Ω

[(un + 1)−]
p−1

v

‖un‖
dx,

but ∣∣∣∣∣
∫

Ω

[(un + 1)−]
p−1

v

‖un‖
dx

∣∣∣∣∣ ≤ ‖v‖∞
∫

Ω

[(un + 1)−]
p−1

‖un‖
dx −→

n→∞
0;

so, in this way, by (10)

F ′λ(un)v

‖un‖
−→
n→∞

〈w, v〉 − λ
∫

Ω

wv dx,

for every v ∈ C∞c (Ω).
Now, since F ′λ(un)v/‖un‖ → 0 as n→∞, it follows that

(13) 〈w, v〉 = λ

∫
Ω

wv dx, for every v ∈ C∞c (Ω).

C∞c (Ω) being dense in Xs
0 (see [7]), (13) holds for every v in Xs

0 . Therefore,
w is a nontrivial eigenfuction, see (12), of LK with associated eigenvalue λ. If
λ 6= λi, this is a contradiction.

On the other hand, if λ = λi, w = αei, with α ∈ R, and a contradiction
arises due to Remark 1.4 and the fact that w ≥ 0, see (11).

Hence, every (PS)c-sequence is bounded.
Therefore, by Lemma 2.1 we can suppose that

(14)

un ⇀ u in Xs
0 ,

un → u in Lq(Ω), for any q ∈ [1, 2?),

un → u a.e. in Ω.

We can observe that the sequence (un − u)n is bounded and F ′λ(un)→ 0 in
(Xs

0)′, hence
F ′λ(un)(un − u) −→

n→∞
0.
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Since

F ′λ(un)(un − u) = ‖un‖2 − 〈un, u〉 − λ
∫

Ω

un(un − u) dx

+ γ

∫
Ω

[(un + 1)−]
p−1

(un − u) dx;

by (14) it follows that un → u in Xs
0 .

Therefore, by Theorem 2.3, there exists a nontrivial critical point u for Fλ

with Fλ(u) > 0, and thus problem (Pλ) admits a nontrivial solution.

4 Multiplicity via ∇-theorems

The aim of this section is to produce a multiplicity result for the problem
(Pλ). The idea is to apply Theorem 2.5 to the functional associated to (Pλ),
which reads

Fλ(u) =
1

2
‖u‖2 − λ

2

∫
Ω

u2 dx− γ

p

∫
Ω

[(u+ 1)−]
p
dx,

for every u ∈ Xs
0 .

Remark 4.1. Given q ∈ [1, 2?), we define the inverse of the operator LK ,
L −1
K : Lq

′
(Ω)→ Xs

0 , as L −1
K g = v if and only if v ∈ Xs

0 solves the problem{
LKv = g in Ω

v = 0 in RN \ Ω.

so that

(15) 〈u,L −1
K v〉 =

∫
Ω

uv dx, for every u, v ∈ Xs
0 .

Moreover, L −1
K : Lq

′
(Ω)→ Xs

0 is compact.

Remark 4.2. Consider the Gâteaux derivative of Fλ

F ′λ(u)v = 〈u, v〉 − λ
∫

Ω

uv dx+ γ

∫
Ω

[(u+ 1)−]
p−1

v dx,

with u, v ∈ Xs
0 . Then

〈∇Fλ(u), v〉 = F ′λ(u)v = 〈u, v〉 − 〈L −1
K (λu− γ [(u+ 1)−]

p−1
), v〉,

see [14].

If l,m ∈ N, with l ≥ 1 and m ≥ l+ 1, are such that λl < λl+1 = . . . = λm <
λm+1, we will choose

X1 = Hl = span{e1, . . . , el}
X2 = span{el+1, . . . , em}

X3 = H⊥m = span{em+1, em+2 . . .},

as functional setting for Theorem 2.5.
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Definition 4.3. For any i ≥ 2 define

λ∗i
.
= sup

{
‖u‖2 : u ∈ Hi, u ≥ 0 in Ω,

∫
Ω

u2 dx = 1

}
.

We immediately observe that the previous definition is well-posed, since
e1 ∈ Hi for every i ∈ N and e1 > 0 in Ω.

Remark 4.4. It is clear by Definition 4.3 that

‖u‖2 ≤ λ∗i
∫

Ω

u2 dx,

for every u ∈ Xi, u ≥ 0.

In the sequel, we will need the next property.

Proposition 4.5. If i ≥ 2, then λ∗i < λi.

Proof. Fix i ≥ 2 and take u ∈ Hi such that u ≥ 0 in Ω and
∫

Ω
u2 dx = 1. If

u =
i∑

j=1

αjej , with αj =
∫

Ω
uej dx for all j = 1, . . . , i we have

1 =

∫
Ω

u2 dx =

i∑
j=1

α2
j .

Therefore, since e1 > 0 in Ω, we get that α1 =
∫

Ω
ue1 dx > 0 and thus

‖u‖2 =

i∑
j=1

λjα
2
j = λ1α

2
1 +

i∑
j=2

λjα
2
j ≤ λ1α

2
1 + λi(1− α2

1) < λi.

4.1 Geometry of the ∇-theorem
In this section we check that the geometric condition required in Theorem

2.5 holds true.

Proposition 4.6 ((∇)-geometry for Fλ). Let l,m ∈ N, with l ≥ 1 and m ≥
l + 1, be such that λl < λ < λl+1 = . . . = λm < λm+1, with λ > λ∗m. Then,
there exist ρ and R with R > ρ > 0, such that

sup
{u∈X1: ‖u‖≤R}∪{u∈X1⊕X2: ‖u‖=R}

Fλ(u) < inf
{u∈X2⊕X3: ‖u‖=ρ}

Fλ(u).

Proof. First of all, let us observe that X1 ⊕ X2 = Hm and X2 ⊕ X3 = H⊥l .
Thus, the idea is to show that there exist R > ρ > 0 such that

(a) inf
{u∈H⊥l : ‖u‖=ρ}

Fλ(u) > 0;
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(b) sup
{u∈Hl: ‖u‖≤R}∪{u∈Hm: ‖u‖=R}

Fλ(u) = 0.

Concerning (a), consider u ∈ H⊥l . Fixed ε > 0, there exists ρ > 0 small enough
such that, by Lemma 3.1, (7) and Lemma 2.1, we have that

Fλ(u) =
1

2
‖u‖2 − λ

2

∫
Ω

u2 dx− γ

p

∫
Ω

[(u+ 1)−]
p
dx

≥ 1

2

(
1− λ

λl+1

)
‖u‖2 − γ

p
ε‖u‖pp

≥ ‖u‖2
(

1

2

(
1− λ

λl+1

)
− Cε‖u‖p−2

)
> 0,

for ‖u‖ = ρ small enough.
Now we prove (b). First, consider u ∈ Hl. As a consequence of (6), we easily

get that

Fλ(u) ≤ 1

2
(λl − λ)

∫
Ω

u2 dx ≤ 0.

On the other hand, if u ∈ Hm it can be written in the form

u = v + w,

with v ∈ Hl and w ∈ span{el+1, . . . , em}.
Suppose by contradiction that there exists a sequence (vj+wj)j , with vj ∈ Hl

and wj ∈ span{el+1, . . . , em} for every j ∈ N, such that ‖vj + wj‖ → ∞ as
j →∞ and

Fλ(vj + wj)

=
1

2
‖vj + wj‖2 −

λ

2

∫
Ω

(vj + wj)
2 dx− γ

p

∫
Ω

[(vj + wj + 1)−]
p
dx > 0.

Since Hm = Hl ⊕ span{el+1, . . . , em} is finite-dimensional, then, up to a subse-
quence, by Lemma 2.1 we have that

(16)
vj + wj
‖vj + wj‖

→ v̄ + w̄ in Xs
0 , L

q(Ω) and a.e. in Ω,

for every q ∈ [1, 2?), with v̄ ∈ Hl and w̄ ∈ span{el+1, . . . , em}. In particular, we
have that

(17) v̄ + w̄ ∈ Hm and ‖v̄ + w̄‖ = 1.

If we divide Fλ(vj + wj) by ‖vj + wj‖p we get that

0 <
1

2
‖vj + wj‖2−p −

λ

2
‖vj + wj‖2−p

∫
Ω

(
vj + wj
‖vj + wj‖

)2

dx

− γ

p

∫
Ω

[(
vj + wj
‖vj + wj‖

+
1

‖vj + wj‖

)
−

]p
dx

= o(1)− γ

p

∫
Ω

[(v̄ + w̄)−]
p
dx,
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with o(1)→ 0 as j →∞, and thus

(18) v̄ + w̄ ≥ 0 in Ω.

Moreover, from (18), (17) and Remark 4.4 we get

0 ≤ Fλ(v̄ + w̄) =
1

2
− λ

2

∫
Ω

(v̄ + w̄)2 dx ≤ 1

2
(λ∗m − λ)

∫
Ω

(v̄ + w̄)2 dx < 0,

which is impossible.

4.2 The (∇)-condition

This section is devoted to the proof of a suitable (∇)-condition for functional
Fλ. First of all, we need to prove two lemmas.

Lemma 4.7. Let l,m ∈ N, with l ≥ 1 and m ≥ l+ 1, be such that λl < λl+1 =
. . . = λm < λm+1. Then, for every σ > 0 there exists εσ > 0 such that, for
every λ ∈ [λl + σ, λm+1 − σ], the unique critical point u of Fλ constrained on
Hl ⊕H⊥m such that Fλ(u) ∈ [−εσ, εσ], is the trivial one.

Proof. We proceed by contradiction, so we suppose that there exist σ̄ > 0,
(µj)j ⊆ R, with µj ∈ [λl + σ̄, λm+1 − σ̄], and a sequence (uj)j ⊆ Hl ⊕H⊥m \ {0}
such that

(19) F ′µj
(uj)ϕ = 0, for every ϕ ∈ Hl ⊕H⊥m and for every j ∈ N,

and

(20) Fµj (uj) =
1

2
‖uj‖2 −

µj
2

∫
Ω

u2
j dx−

γ

p

∫
Ω

[(uj + 1)−]
p
dx −→

j→∞
0.

Since uj ∈ Hl ⊕H⊥m for every j ∈ N, by (19) we have that

0 = F ′µj
(uj)uj

= ‖uj‖2 − µj
∫

Ω

u2
j dx+ γ

∫
Ω

[(uj + 1)−]
p−1

(uj + 1− 1) dx

= 2Fµj (uj) + γ
2

p

∫
Ω

[(uj + 1)−]
p
dx− γ

∫
Ω

[(uj + 1)−]
p
dx

− γ
∫

Ω

[(uj + 1)−]
p−1

dx

≤ 2Fµj (uj) + γ

(
2

p
− 1

)∫
Ω

[(uj + 1)−]
p
dx.

Being this valid for every j ∈ N, as a consequence of (20) we get that

0 ≤ γ
(

1− 2

p

)∫
Ω

[(uj + 1)−]
p
dx ≤ 2Fµj (uj) −→

j→∞
0,
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and so

(21) lim
j→∞

∫
Ω

[(uj + 1)−]
p
dx = 0.

Now, since uj ∈ Hl ⊕H⊥m for every j ∈ N, we can write

uj = vj + wj ,

with vj ∈ Hl and wj ∈ H⊥m. Therefore, vj and wj are orthogonal in Xs
0 , and so

(22) 〈uj , vj〉 = ‖vj‖2, 〈uj , wj〉 = ‖wj‖2

and

(23) ‖uj‖2 = ‖vj + wj‖2 = ‖vj‖2 + ‖wj‖2 = ‖vj − wj‖2.

Taking ϕ = vj − wj ∈ Hl ⊕H⊥m, by (19) we can write

0 = F ′µj
(uj)(vj − wj)

= ‖vj‖2 − ‖wj‖2 − µj
∫

Ω

v2
j dx+ µj

∫
Ω

w2
j dx

+ γ

∫
Ω

[(uj + 1)−]
p−1

(vj − wj) dx,

and so, by (7), (6), (22) and (23), we get

0 = ‖vj‖2 − ‖wj‖2 − µj
∫

Ω

v2
j dx+ µj

∫
Ω

w2
j dx

+ γ

∫
Ω

[(uj + 1)−]
p−1

(vj − wj) dx

≤ ‖vj‖2 − ‖wj‖2 −
µj
λl
‖vj‖2 +

µj
λm+1

‖wj‖2

+ γ

∫
Ω

[(uj + 1)−]
p−1

(vj − wj) dx

=
λl − µj
λl

‖vj‖2 +
µj − λm+1

λm+1
‖wj‖2 + γ

∫
Ω

[(uj + 1)−]
p−1

(vj − wj) dx

≤ − σ̄
λl
‖vj‖2 −

σ̄

λm+1
‖wj‖2 + γ

∫
Ω

[(uj + 1)−]
p−1

(vj − wj) dx

≤ − σ̄

λm+1
‖uj‖2 + γ

∫
Ω

[(uj + 1)−]
p−1

(vj − wj) dx.

In this way, we have

(24)
σ̄

λm+1
‖uj‖2 ≤ γ

∫
Ω

[(uj + 1)−]
p−1

(vj − wj) dx.
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On other hand, by Hölder’s inequality, Theorem 2.1 and (23), we have that∣∣∣∣∫
Ω

[(uj + 1)−]
p−1

(vj − wj) dx
∣∣∣∣ ≤ ∫

Ω

[(uj + 1)−]
p−1 |vj − wj | dx

≤
(∫

Ω

[(uj + 1)−]
p
dx

) p−1
p

‖vj − wj‖p

≤ C
(∫

Ω

[(uj + 1)−]
p
dx

) p−1
p

‖vj − wj‖

≤ C
(∫

Ω

[(uj + 1)−]
p
dx

) p−1
p

‖uj‖.

Thus, combining the previous inequality with (24) and the fact that uj 6≡ 0, we
find that

(25) ‖uj‖ ≤ C̃
(∫

Ω

[(uj + 1)−]
p
dx

) p−1
p

, ∀ j ∈ N,

with C̃ =
γCλm+1

σ̄
.

Therefore, ‖uj‖ → 0 as j →∞, and thus, since Hl⊕Hm is finite-dimensional,

(26) uj → 0 in Xs
0 .

But, by (25), Lemma 3.1 and Lemma 2.1, for every ε > 0 we have that

‖uj‖ ≤ C̃
(∫

Ω

[(uj + 1)−]
p

) p−1
p

≤ εC̃‖uj‖p−1,

and thus ‖uj‖p−2 > 0 for every j ∈ N, which is in contradiction with (26).

Lemma 4.8. Let l,m ∈ N, with l ≥ 1 and m ≥ l + 1, be such that λl <
λl+1 = . . . = λm < λm+1 and let λ ∈ R, λ 6= λ1. Denote by P : Xs

0 →
span{el+1, . . . , em} and Q : Xs

0 → Hl ⊕H⊥m the orthogonal projections.
If (uj)j is a sequence in Xs

0 such that

(i) (Fλ(uj))j is bounded in R;

(ii) Puj −→
j→∞

0 in Xs
0 ;

(iii) Q∇Fλ(uj) −→
j→∞

0 in Xs
0 ,

then (uj)j is bounded in Xs
0 .

Proof. Suppose by contradiction that (uj)j is unbounded in Xs
0 . Then, up to

a subsequence, ‖uj‖ → ∞ as j → ∞ and so we may assume that there exists
u ∈ Xs

0 such that (see Lemma 2.1)

(27)
uj
‖uj‖

⇀ u in Xs
0 , strongly in Lp(Ω) and a.e. in Ω.
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By (i) and (27), dividing Fλ(uj) by ‖uj‖p, we get that

0 ←−
j→∞

Fλ(uj)

‖uj‖p
=

1

2
‖uj‖2−p −

λ

2
‖uj‖2−p

∫
Ω

(
uj
‖uj‖

)2

dx

− γ

p

∫
Ω

[(
uj
‖uj‖

+
1

‖uj‖

)
−

]p
dx

= o(1)− γ

p

∫
Ω

(u−)p dx,

with o(1)→ 0 as j →∞, and thus

(28) u ≥ 0 in Ω.

Moreover, every uj can be written in the form

(29) uj = Puj +Quj .

Observe that

(30) 〈Pu, v〉 = 〈u, Pv〉, for every u, v ∈ Xs
0 ,

and that

(31)

∫
Ω

Pujuj dx =

∫
Ω

(Puj)
2 dx for every j ∈ N,

since Puj ∈ span{el+1, . . . , em} and span{el+1, . . . , em} is orthogonal to Hl and
H⊥m also in L2(Ω).

Therefore, by Remark 4.2, (29), (30), (31) and (15) we have that
(32)
〈Q∇Fλ(uj), uj〉 = 〈∇Fλ(uj), uj〉 − 〈P∇Fλ(uj), uj〉

= ‖uj‖2 − λ
∫

Ω

u2
j dx+ γ

∫
Ω

[(uj + 1)−]
p−1

uj dx

− 〈P
(
uj −L −1

K (λuj − γ [(uj + 1)−]
p−1

)
)
, uj〉

= ‖uj‖2 − λ
∫

Ω

u2
j dx+ γ

∫
Ω

[(uj + 1)−]
p−1

uj dx− ‖Puj‖2

+ λ〈Puj ,L −1
K uj〉 − γ〈Puj ,L −1

K

(
[(uj + 1)−]

p−1
)
〉

= 2Fλ(uj) + γ

(
2

p
− 1

)∫
Ω

[(uj + 1)−]
p
dx− γ

∫
Ω

[(uj + 1)−]
p−1

dx

− ‖Puj‖2 + λ

∫
Ω

(Puj)
2 dx− γ

∫
Ω

[(uj + 1)−]
p−1

Puj dx.

Observe that, by the Holder inequality and Lemma 2.1, we have that

(33)

∣∣∣∣∫
Ω

[(uj + 1)−]
p−1

Puj dx

∣∣∣∣ ≤ (∫
Ω

[(uj + 1)−]
p
dx

) p−1
p
(∫

Ω

|Puj |p dx
) 1

p

≤ C
(∫

Ω

[(uj + 1)−]
p
dx

) p−1
p

‖Puj‖.
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On the other hand, by (32), we have that

〈Q∇Fλ(uj), uj〉
‖uj‖p/(p−1)

=
2Fλ(uj)

‖uj‖p/(p−1)
+ γ

(
2

p
− 1

) ∫
Ω

[(uj + 1)−]
p
dx

‖uj‖p/(p−1)

−
γ

∫
Ω

[(uj + 1)−]
p−1

dx

‖uj‖p/(p−1)
− ‖Puj‖2

‖uj‖p/(p−1)
−
λ

∫
Ω

(Puj)
2
dx

‖uj‖p/(p−1)

−
γ

∫
Ω

[(uj + 1)−]
p−1

Puj dx

‖uj‖p/(p−1)
,

and thus, by (i), (ii) and (iii) and throwing away the non-positive terms, we get

0 ≤ γ
(

1− 2

p

) ∫
Ω

[(uj + 1)−]
p
dx

‖uj‖p/(p−1)

= −〈Q∇Fλ(uj), uj〉
‖uj‖p/(p−1)

+
2Fλ(uj)

‖uj‖p/(p−1)
−
γ

∫
Ω

[(uj + 1)−]
p−1

dx

‖uj‖p/(p−1)

− ‖Puj‖2

‖uj‖p/(p−1)
−
λ

∫
Ω

(Puj)
2 dx

‖uj‖p/(p−1)
−
γ

∫
Ω

[(uj + 1)−]
p−1

Puj dx

‖uj‖p/(p−1)

≤ −
γ

∫
Ω

[(uj + 1)−]
p−1

Puj dx

‖uj‖p/(p−1)
+ o(1),

with o(1) → 0 as j → ∞. Therefore, using the Holder inequality and Lemma
2.1, we get that

(34)

0 ≤ γ
(

1− 2

p

) ∫
Ω

[(uj + 1)−]
p
dx

‖uj‖p/(p−1)

≤ a1


∫

Ω

[(uj + 1)−]
p
dx

‖uj‖p/(p−1)


1− 1

p

‖Puj‖
‖uj‖1/(p−1)

+ o(1),

with a1 > 0 and o(1) → 0 as j → ∞. Now, since ‖Puj‖ → 0, see (ii), and
‖uj‖ → ∞ as j → ∞, the previous inequality implies that there exists a2 > 0
such that

(35) M(uj)
.
=

∫
Ω

[(uj + 1)−]
p
dx

‖uj‖p/(p−1)
≤ a2 for every j ∈ N.
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Thus, we can suppose that M(uj) → M as j → ∞. Therefore, passing to the
limit as j →∞ in (34), we have that, for every ε > 0

0 ≤M ≤ εM1− 1
p ,

which implies that M = 0. In this way, we get that

M(uj) =

∫
Ω

[(uj + 1)−]
p
dx

‖uj‖p/(p−1)
−→
j→∞

0,

and thus

(36)
[(uj + 1)−]

p−1

‖uj‖
→ 0 in Lp/(p−1)(Ω) = Lp

′
(Ω).

Then, since L −1
K : Lp

′
(Ω) → Xs

0 is a compact operator, by (27) and (36), we
have that

(37)

QL −1
K

(
λuj − γ [(uj + 1)−]

p−1
)

‖uj‖
= QL −1

K

(
λ
uj
‖uj‖

− γ [(uj + 1)−]
p−1

‖uj‖

)
−→
j→∞

λQL −1
K u.

Moreover, by Remark 4.2, (29) and (iii) we get that

Q∇Fλ(uj)

‖uj‖
=

uj
‖uj‖

− Puj
‖uj‖

−QL −1
K

(
λ
uj
‖uj‖

− γ [(uj + 1)−]
p−1

‖uj‖

)
−→
j→∞

0,

and thus, by (27), (ii) and (37)

(38)
uj
‖uj‖

→ λQL −1
K u = u in Xs

0 ,

with u ∈ Hl ⊕H⊥m and ‖u‖ = 1.
Therefore, for every v ∈ Xs

0 , considering (ii), (36), (38) and the fact that
L −1
K is compact, we have that

QF ′λ(uj)v

‖uj‖
=
〈Quj , v〉
‖uj‖

−
〈QL −1

K

(
λuj − γ [(uj + 1)−]

p−1
)
, v〉

‖uj‖

=

〈
uj
‖uj‖

, v

〉
− 〈Puj , v〉
‖uj‖

− λ
〈
QL −1

K

(
uj
‖uj‖

)
, v

〉
+ γ

〈
QL −1

K

(
[(uj + 1)−]

p−1

‖uj‖

)
, v

〉
−→
j→∞

〈u, v〉 − λ〈QL −1
K u, v〉,
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and thus, by (15) and the fact that Qu = u, since u ∈ Hl ⊕H⊥m, we have that

0 = 〈u, v〉 − λ〈L −1
K u,Qv〉 = 〈u, v〉 − λ

∫
Ω

uQv dx

= 〈u, v〉 − λ
∫

Ω

Quv dx

= 〈u, v〉 − λ
∫

Ω

uv dx,

for every v ∈ Xs
0 .

This means that u is a nontrivial (‖u‖ = 1) and non-negative (see (28))
eigenfunction in the space Hl⊕H⊥m, but this is a contradiction since λ 6= λ1.

Now we are ready to prove the (∇)-condition for Fλ.

Proposition 4.9 ((∇)-condition for Fλ). Let l,m ∈ N, with l ≥ 1 and m ≥
l + 1, be such that λl < λl+1 = . . . = λm < λm+1.

Then, for every σ > 0 there exists εσ > 0 such that, for every λ ∈ [λl + σ, λm+1 − σ]
and for every ε′, ε′′ ∈ (0, εσ), with ε′ < ε′′, functional Fλ satisfies (∇)

(
Fλ, Hl ⊕H⊥m, ε′, ε′′

)
-

condition.

Proof. Let P,Q denote the orthogonal projections introduced in Lemma 4.8.
We proceed by contradiction, supposing that there exists σ > 0 such that,

for every ε0 > 0 there exist λ̄ ∈ [λl + σ, λm+1 − σ] \ {λ1} and ε′, ε′′ ∈ (0, ε0),
with ε′ < ε′′, such that

(39) (∇)
(
Fλ̄, Hl ⊕H⊥m, ε′, ε′′

)
does not hold.

Choose as ε0 the one provided in Lemma 4.7 (associated to σ).
As a consequence of (39), there exists a sequence (uj)j ⊆ Xs

0 such that

(40)

Fλ̄(uj) ∈ [ε′, ε′′] for every j ∈ N;

dist
(
uj , Hl ⊕H⊥m

)
−→
j→∞

0;

Q∇Fλ̄(uj) −→
j→∞

0 in Xs
0 .

Then, by Lemma 4.8, (uj)j is bounded in Xs
0 and thus, up to a subsequence

(see Lemma 2.1)

(41)

uj ⇀ u in Xs
0

uj → u in Lq(Ω), for every q ∈ [1, 2?)

uj → u a.e. in Ω.

On the other hand, by Remark 4.2, we can write

Q∇Fλ̄(uj) = Quj −QL −1
K

(
λ̄uj − γ [(uj + 1)−]

p−1
)

= uj − Puj −QL −1
K

(
λ̄− γ [(uj + 1)−]

p−1
)
.
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Moreover, by (41) and the Generalized Lebesgue Theorem,∫
Ω

[(uj + 1)−]
(p−1)p
p−1 dx =

∫
Ω

[(uj + 1)−]
p
dx −→

j→∞

∫
Ω

[(u+ 1)−]
p
dx,

and so

(42) [(uj + 1)−]
p−1 → [(u+ 1)−]

p−1
in Lp

′
(Ω).

Therefore, since L −1
K : Lp

′
(Ω) → Xs

0 is a compact operator, by (42) and (41)
we have that

(43) QL −1
K

(
λ̄uj − γ [(uj + 1)−]

p−1
)
−→
j→∞

QL −1
K

(
λ̄u− γ [(u+ 1)−]

p−1
)
.

Now, by (40), we get

Q∇Fλ̄(uj) = uj − Puj −QL −1
K

(
λ̄uj − γ [(uj + 1)−]

p−1
)
−→
j→∞

0,

and hence

(44) uj → QL −1
K

(
λ̄u− γ [(u+ 1)−]

p−1
)

.
= u in Xs

0 .

Now, again from (40),

F ′λ̄(uj)ϕ = 〈uj , ϕ〉 − λ̄
∫

Ω

ujϕdx+ γ

∫
Ω

[(uj + 1)−]
p−1

ϕdx −→
j→∞

0,

for every ϕ ∈ Hl⊕H⊥m. But, on the other hand, by (44), (41) and the Generalized
Lebsegue Theorem,

〈uj , ϕ〉 −→
j→∞

〈u, ϕ〉∫
Ω

ujϕdx −→
j→∞

∫
Ω

uϕdx∫
Ω

[(uj + 1)−]
p−1

ϕdx −→
j→∞

∫
Ω

[(u+ 1)−]
p−1

ϕdx,

for every ϕ ∈ Hl ⊕ H⊥m, and thus u is a critical point of Fλ̄, constrained on
Hl ⊕H⊥m.

Then, by Lemma 4.7, u ≡ 0 and hence Fλ̄(u) = 0.
But, by (40), 0 < ε′ ≤ Fλ̄(uj) for every j ∈ N and thus, since Fλ̄ is obviously

continuous and (44) holds, a contradiction arises.

4.3 The multiplicity result

First of all, we want to produce an existence result for problem (Pλ) using
Theorem 2.5. In order to achieve this result, we need to prove the following two
lemmas.
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Lemma 4.10. Let l,m ∈ N, with l ≥ 1 and m ≥ l + 1, be such that λl < λ <
λl+1 = . . . = λm < λm+1, with λ > λ∗m.

Then
lim

‖u‖→∞,
u∈Hm

Fλ(u) = −∞.

Proof. By contradiction, suppose that there exists a sequence (uj)j ⊆ Hm and
a constant M ∈ R such that ‖uj‖ → ∞ as j →∞ and

(45) Fλ(uj) ≥M, for every j ∈ N.

Therefore, by Lemma 2.1 and the fact that Hm is finite-dimensional,

(46)
uj
‖uj‖

→ u in Xs
0 , in Lq(Ω) and a.e. in Ω,

for every q ∈ [1, 2?) and ‖u‖ = 1.
Now, dividing both sides of (45) by ‖uj‖p, by (46) we get that

o(1) =
M

‖uj‖p
≤ Fλ(uj)

‖uj‖p
=

1

2
‖uj‖2−p −

λ

2
‖uj‖2−p

∫
Ω

u2 dx− γ

p

∫
Ω

(u−)p dx+ o(1)

−→
j→∞

−γ
p

∫
Ω

(u−)p dx,

with o(1)→ as j →∞, and thus

(47) u ≥ 0 in Ω.

Therefore, by (45), (46), (47), Remark 4.4 and the fact that λ > λ∗m, we
have that

o(1) =
M

‖uj‖p
≤ Fλ(uj)

‖uj‖2
=

1

2
− λ

2

∫
Ω

u2 dx− γ

p
lim
j→∞

∫
Ω

[(uj + 1)−]
p
dx

‖uj‖2
+ o(1)

≤ 1

2
− λ

2

∫
Ω

u2 dx ≤ 1

2
(λ∗m − λ)

∫
Ω

u2 dx < 0,

which is clearly absurd.

Lemma 4.11. Let l,m ∈ N, with l ≥ 1 and m ≥ l + 1, be such that λl < λ <
λl+1 = . . . = λm < λm+1, with λ > λ∗m.

Then
lim

λ→λl+1

sup
u∈Hm

Fλ(u) = 0.

Proof. Suppose by contradiction that there exist (µj)j ⊆ R+ such that µj →
λl+1 as j →∞, a sequence (uj)j ⊆ Hm and ε > 0 such that for every j ∈ N

(48) Fµj (uj) = sup
u∈Hm

Fµj
(u) ≥ ε > 0.
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Let us remark that Fµj
attains a maximum in Hm, by Lemma 4.10 and the

Weierstrass Theorem.
Now, two possibilities occur.
If (uj)j is bounded in Xs

0 , then, by Lemma 2.1 and the fact that Hm is finite
dimensional,

(49)

uj → u in Xs
0

uj → u in Lq(Ω), for every q ∈ [1, 2?)

uj → u a.e. in Ω.

Using (49) and the assumptions, we get that

Fµj (uj) −→
j→∞

Fλl+1
(u).

Therefore, by (48) and (7),

0 < ε ≤ Fλl+1
(u) =

1

2
‖u‖2 − λl+1

2

∫
Ω

u2 dx− γ

p

∫
Ω

[(u+ 1)−]
p
dx

≤ 1

2
(λm − λl+1)

∫
Ω

u2 dx− γ

p

∫
Ω

[(u+ 1)−]
p
dx ≤ 0,

which is a contradiction.
Conversely, if (uj)j is unbounded in Xs

0 , then we can assume that there
exists w ∈ Hm such that

(50)
uj
‖uj‖

→ w in Xs
0 , in Lq(Ω) and a.e. in Ω,

for every q ∈ [1, 2?) (see Lemma 2.1), with ‖w‖ = 1.
Dividing both sides of (48) by ‖uj‖p, we get that

0 <
Fµj (uj)

‖uj‖p
=

1

2
‖uj‖2−p −

µj
2
‖uj‖2−p

∫
Ω

(
uj
‖uj‖

)2

dx

− γ

p

∫
Ω

[(
uj
‖uj‖

+
1

‖uj‖

)
−

]p
dx

= o(1)− γ

p

∫
Ω

(w−)p dx,

and thus w ≥ 0 in Ω.
Therefore, again by (48), now diving by ‖uj‖2, we have that

0 <
1

2
− µj

2

∫
Ω

(
uj
‖uj‖

)2

dx− γ

p

∫
Ω

[(uj + 1)−]
p
dx

‖uj‖2
,

and so, passing to the limit as j →∞,

0 ≤ 1

2
− λl+1

2

∫
Ω

w2 dx = Fλl+1
(w),
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but

0 ≤ Fλl+1
(w) =

1

2
− λl+1

2

∫
Ω

w2 dx ≤ 1

2
(λ∗m − λ)

∫
Ω

w2 dx < 0,

which is impossible.

Theorem 4.12 (Existence via the (∇)-Theorem). Let l,m ∈ N, with l ≥ 1 and
m ≥ l + 1, be such that λl < λl+1 = . . . = λm < λm+1.

Then, there exists δ > 0 such that, for every λ ∈ (λl+1 − δ, λl+1), with
λl+1 − δ ≥ λ∗m, (Pλ) admits two nontrivial solutions u1, u2 ∈ Xs

0 such that

0 < Fλ(ui) ≤ sup
u∈Hm

Fλ(u), for every i = 1, 2.

Proof. Fix σ > 0 and choose εσ provided in Proposition 4.9. Then, for every
λ ∈ [λl + σ, λm+1 − σ] \ {λ1} and for every ε′, ε′′ ∈ (0, εσ), Fλ satisfies the
(∇)(Fλ, Hl ⊕H⊥m, ε′, ε′′)-condition.

Since λ < λl+1, by Proposition 4.6, the geometry condition of Theorem 2.5
holds true, with

sup Fλ(∆) ≤ sup
u∈Hm

Fλ(u),

where ∆
.
= {u ∈ X1 ⊕X2 : ‖u‖ ≤ R}.

By Lemma 4.11, there exists δ ≤ σ such that, if λ ∈ (λl+1 − δ, λl+1) then

sup
u∈Hm

Fλ(u) < ε′′.

Moreover, we saw in the proof of Theorem 1.2 that Fλ satisfies the (PS)-
condition for every λ ∈ R \ {λ1}.

Then, by Theorem 2.5, there exist u1, u2 critical points of Fλ such that
Fλ(ui) ∈ [ε′, ε′′], for every i = 1, 2.

Since ε′′ is any number smaller than εσ and larger than sup Fλ(∆) (see the
notation of Theorem 2.5), we get that

Fλ(ui) ≤ sup Fλ(∆) ≤ sup
u∈Hm

Fλ(u),

for every i = 1, 2.

Remark 4.13. Of course, the existence of two solutions for λ near λl is obvious
from bifurcation theory, but the application of the ∇-Theorem gives us precise
estimates on the associated critical values, which are fundamental to prove our
main theorem below, which is a precise formulation of Theorem 1.5.

Theorem 4.14. Let l,m ∈ N, with l ≥ 1 and m ≥ l + 1, be such that λl <
λl+1 = . . . = λm < λm+1.

Then, there exists δ > 0 such that, for every λ ∈ (λl+1 − δ, λl+1), with
λ∗m ≤ λl+1 − δ, (Pλ) admits three nontrivial solutions.
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Proof. As a consequence of Theorem 4.12, there exists δ̄ > 0 such that, for
every λ ∈ (λl+1− δ̄, λl+1), with λl+1− δ̄ ≥ λ∗m, (Pλ) has two nontrivial solutions
u1, u2 ∈ Xs

0 , verifying

(51) 0 < Fλ(ui) ≤ ε′′,

see above.
Since λ 6= λ1 and λ < λm, we can use Theorem 1.2 to find another solution

u3 ∈ Xs
0 , adopting the decomposition Xs

0 = Hm ⊕H⊥m.
Indeed, for every τ > 0, for u ∈ H⊥m with ‖u‖ = ρ > 0 small enough, using

(6), Lemma 3.1 and Lemma 2.1, we have that

Fλ(u) =
1

2
‖u‖2 − λ

∫
Ω

u2 dx− γ

p

∫
Ω

[(u+ 1)−]
p
dx

≥ 1

2

(
1− λ

λm+1

)
‖u‖2 − τC‖u‖p

= ρ2

(
1

2

(
1− λ

λm+1

)
− τCρp−2

)
.

Therefore, choosing ρ small enough, we get

(52) inf
u∈H⊥m,
‖u‖=ρ

Fλ(u) := α > 0.

On the other hand, if u ∈ Hm, by (7) we get that

Fλ(u) ≤ 1

2
(λm − λ)

∫
Ω

u2 dx− γ

p

∫
Ω

[(u+ 1)−]
p
dx ≤ 0,

since λ > λm. Moreover, taking v = u + tem+1, with u ∈ Hm and t > 0, since
u and em+1 are orthogonal in L2(Ω) and in Xs

0 (see Remark 1.3), again by (6),
we get that

Fλ(v) = Fλ(u+ tem+1)

=
1

2
‖u‖2 +

t2

2
‖em+1‖2 −

λ

2

∫
Ω

u2 dx− λt
2

2

∫
Ω

e2
m+1 dx

− γ

p

∫
Ω

[(u+ tem+1 + 1)−]
p
dx

≤ 1

2
(λm − λ)

∫
Ω

u2 dx+
t2

2
(λm+1 − λ)

∫
Ω

e2
m+1 dx

− γ

p

∫
Ω

[(u+ tem+1 + 1)−]
p
dx

≤ t2

2
(λm+1 − λ)− γ t

p

p

∫
Ω

[(
u

t
+ em+1 +

1

t

)
−

]p
dx,
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and thus, using the Generalized Lebesgue Theorem and the fact that (em+1)− 6≡
0, we get that Fλ(v)→ −∞ as t→∞.

Then, the geometric condition of the classical Linking Theorem holds and,
since we have already proved the (PS)c-condition for Fλ for every λ 6= λ1 (see
the proof of Theorem 1.2), we find another solution u3 for problem (Pλ) with
the property that

(53) Fλ(u3) ≥ inf
u∈H⊥m,
‖u‖=ρ

Fλ(u) = α.

Therefore, by Lemma 4.11, (51) and (53), there exists δ ≤ δ̄ such that, for
every λ ∈ (λl+1 − δ, λl+1),

ε′′ < α = inf
u∈H⊥m,
‖u‖=ρ

Fλ(u),

and thus
0 < Fλ(ui) < Fλ(u3), for every i = 1, 2,

finally finding the announced third nontrivial solution.

5 γ → ∞
In order to underline the dependence of the functional and of the solutions

from γ, in this section we will use the following replacements:

(Pλ) ; (P γλ ), Fλ ; F γ
λ and ui ; uγi , i = 1, 2, 3.

In this way, we notice all the solutions we found in Theorem 4.14 enjoy the
property that for every γ > 0.

(54) 0 < F γ
λ (uγ1),F γ

λ (uγ2) < F γ
λ (uγ3) ≤ sup F γ

λ (Hm+1) ≤ sup F 0
λ(Hm+1)

with sup F 0
λ(Hm+1) <∞ by Lemma 4.10, since λ < λm+1.

Moreover, also in Theorem 1.2 we have a similar uniform estimate. Indeed,
if λ < λ1 we got the existence of a nontrivial solution uγ via the Mountain
Pass Theorem (see the proof of Theorem 1.2. Hence, we have the following
information:

F γ
λ (uγ) = inf

ϕ∈Γ

max
t∈[0,1]

F γ
λ (ϕ(t)),

for every γ > 0, where Γ =
{
ϕ ∈ C

(
[0, 1] , Xs

0

)
: ϕ(0) = 0, ϕ(1) = e

}
. In

this way, choosing e = −Re1 for some R > 0 large enough and taking the path
ϕ(t) = −tRe1, t ∈ [0, 1], we get that

F γ
λ (−tRe1) = λ1R

2 t
2

2
− λR2 t

2

2
− γ

p

∫
Ω

[(−te1 + 1)−]
p
dx ≤ t2R2

2
(λ1 − λ)
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and hence

(55) sup
γ>0

F γ
λ (uγ) ≤ λ1 − λ

2
R2.

On the other hand, if λ > λ1, and so λi ≤ λ < λi+1 for some i ∈ N, a non-
trivial solution is obtained using the Linking Theorem with the decomposition
Xs

0 = H − i ⊕ H⊥i . In particular, if we choose e = ei+1 and R > ρ > 0 (see
Theorem 2.3), every nontrivial critical point uγ of F γ

λ satisfies

F γ
λ (uγ) = inf

h∈H
max
v∈Q

F γ
λ

(
h(v)

)
,

where
Q = {v = u+ tei+1

∣∣u ∈ Hi, ‖u‖ ≤ R, t ∈ (0, R)}

and
H = {h ∈ C (Q,Xs

0) : h|∂Q = Id}.

Taking h = IdQ and v ∈ Q, by the same estimates provided in the proof of
Theorem 1.2, we have that

F γ
λ (h(v)) = F γ

λ (u+ tei+1)

≤ 1

2
(λi − λ)

∫
Ω

u2 dx+
t2

2
(λi+1 − λ)− γ

p

∫
Ω

[(u+ tei+1 + 1)−]
p
dx

≤ R2

2
(λi+1 − λ).

This being valid for every γ > 0, we get that

(56) sup
γ>0

F γ
λ (uγ) ≤ R2

2
(λi+1 − λ).

Finally, if λ = λ1, we have

F γ
λ (te1) = 0

for every γ, t > 0.
Notice that in this last case it is clear that no upper bound is available for

the set of solutions. On the other hand, in our next result we will show that all
the solutions found in Theorem 1.2 for λ 6= λ1 and in Theorem 1.5 are bounded
thanks to the estimates found in (55), in (56) and in (54). More precisely, we
have the following a priori estimate.

Theorem 5.1. If (uγ)γ>0 is a family of solutions of (P γλ ) with

sup
γ

F γ
λ (uγ) <∞

and λ 6= λ1, then (uγ)γ>0 is bounded in Xs
0 .
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Proof. Case λ < λ1. By the Poincaré inequality we immediately get that

pF γ
λ (uγ) = pF γ

λ (uγ)− (F γ
λ )′(uγ)uγ

=
(p

2
− 1
)(
‖uγ‖2 − λ

∫
Ω

u2
γ dx

)
+ γ

∫
Ω

[(uγ + 1)−]
p−1

dx

≥ C‖uγ‖2,

with C > 0. Thus, by assumption, (uγ)γ is bounded in Xs
0 , as claimed.

Case λ > λ1. Suppose by contradiction that (uγ)γ is unbounded in Xs
0 .

Then, there exists a sequence (un)n
.
= (uγn)n such that ‖un‖ → ∞ as n → ∞

and

(57)
un
‖un‖

⇀ w in Xs
0 , strongly in Lp(Ω) and a.e. in Ω.

We know that

0 = (F γn
λ )′(un)un

= 2F γn
λ (un) + γn

(
2

p
− 1

)∫
Ω

[(un + 1)−]
p
dx− γn

∫
Ω

[(un + 1)−]
p−1

dx.

In particular, by assumption, we get the existence of C > 0 such that

γn

(
1− 2

p

)∫
Ω

[(un + 1)−]
p
dx+ γn

∫
Ω

[(un + 1)−]
p−1

dx = 2F γn
λ (un) ≤ C.

Therefore, dividing the previous inequality by ‖un‖, we have that

lim
n→∞

γn

∫
Ω

[(un + 1)−]
p

‖un‖
dx = lim

n→∞
γn

∫
Ω

[(un + 1)−]
p−1

‖un‖
dx = 0,

and so

(58) lim
n→∞

γn

∫
Ω

[(un + 1)−]
p−1

un
‖un‖

dx = 0.

Moreover, dividing (F γn
λ )′(un)un by ‖un‖2 and passing to the limit as n→∞,

as a consequence of (58) and (57), we get that

0 =
(F γn

λ )′(un)un
‖un‖2

= 1− λ
∫

Ω

u2
n

‖un‖2
dx+ γn

∫
Ω

[(un + 1)−]
p−1

un
‖un‖2

dx

−→
n→∞

1− λ
∫

Ω

w2 dx,

and hence

(59) w 6≡ 0.
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Furthermore, again by (57) we have

0 =
F γn
λ (un)

γn‖un‖p

=
1

2γn
‖un‖2−p −

λ

2γn

∫
Ω

u2
n

‖un‖p
dx− 1

p

∫
Ω

[(un + 1)−]
p

‖un‖p
dx

−→
n→∞

−1

p

∫
Ω

(w−)p dx,

and so

(60) w ≥ 0 in Ω.

Choosing r > 0 such that re1 ≤ 1 a.e. in Ω, we have
(61)

0 = (F γn
λ )′(un)re1 = r(λ1 − λ)

∫
Ω

une1 dx+ γn

∫
Ω

[(un + 1)−]
p−1

re1 dx.

We observe that∫
Ω

[(un + 1)−]
p−1

re1 dx =

∫
Ω

[(un + 1)−]
p−1

(re1 − 1− un + 1 + un) dx

≤ −
∫

Ω

[(un + 1)−]
p
dx−

∫
Ω

[(un + 1)−]
p−1

un dx

≤ −
∫

Ω

[(un + 1)−]
p−1

un dx.

Hence, by (58)

0 ≤ γn
∫

Ω

[(un + 1)−]
p−1

re1

‖un‖
dx ≤ −γn

∫
Ω

[(un + 1)−]
p−1

un
‖un‖

dx −→
n→∞

0,

and so

lim
n→∞

γn

∫
Ω

[(un + 1)−]
p−1

e1

‖un‖ dx
= 0.

Therefore, starting from (61), we obtain that

lim
n→∞

(λ1 − λ)

∫
Ω

une1

‖un‖
dx = (λ1 − λ)

∫
Ω

we1 dx = 0

and thus, by (60), w ≡ 0, which is in contradiction with (59).
Hence, (uγ)γ>0 is bounded in Xs

0 .

We notice that, thanks to (54), (55) and (56), all the set of solutions we
found in the previous sections are equibounded, and so we may assume that
any sequence of solutions (uγn)n converges weakly in Xs

0 as n → ∞. From
now on, we will write (uγ)γ>0 to denote any sequence (uγn)n and we will write
uγ ⇀ u as γ →∞ meaning that uγn ⇀ u as n→∞.
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Since u is a weak limit in Xs
0 , we cannot consider any set defined by point-

wise values of u. For instance, it would be natural to define the “contact set”
as

{x ∈ Ω : u(x) = −1},

which is a closed set if u is continuous, but, at this stage, we don’t have any tool
which lets us say that u has such a regularity. For this reason, we introduce the
following sets:

Sγ :=
{x ∈ Ω : uγ(x) < −1}

∼
,

where two sublevel Sγ and S′γ are equivalent according to ∼ if they differ for a
set of measure zero. Then, we define the “free” set

F =
{
x ∈ Ω : there exists a neighborhood U of x and γ0 > 0 such that

|U ∩ Sγ | = 0 for all γ ≥ γ0

}
,

where |A| here stands for the Lebesgue measure of a set A. Of course, F is an
open subset of Ω. Thus, C := Ω \ F is closed, where

C =
{
x ∈ Ω : for every neighborhood U of x and all γ0 > 0

there exists γ ≥ γ0 such that |U ∩ Sγ | > 0
}
.

We now show that in our situation, C plays the role of the contact set in the stan-
dard obstacle problem. However, being here the sign of the inequality reversed
with respect to the obstacle case, this situation is related to bounce problems,
see [10], [17].

Theorem 5.2. Let uγ be a solution of (P γλ ) and suppose that uγ ⇀ u in Xs
0 as

γ →∞. Then

(i) u ≥ −1 a.e. in Ω;

(ii) there exists a positive Radon measure µ supported in the set C such that∫∫
O

(
u(x)− u(y)

)(
v(x)− v(y)

)
K(x− y) dx dy − λ

∫
Ω

uv dx = −
∫

Ω

v dµ

for every v ∈ C∞c (Ω).

Proof. (i) Suppose by contradiction that there exists a set ω ⊆ Ω, with |ω| > 0,
such that u+ 1 < 0 a.e. in ω. In this way, testing (P γλ ) with e1,

(62) (λ1 − λ)

∫
Ω

uγe1 dx = −γ
∫

Ω

[(uγ + 1)−]
p−1

e1 dx,

and passing to the limit as γ →∞, we would reach a contradiction.
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(ii) Define the family of distributions Tγ : C∞c (Ω)→ R as

Tγ(v)
.
= γ

∫
Ω

[(uγ + 1)−]
p−1

v dx

= −
(∫∫

O

(
uγ(x)− uγ(y)

)(
v(x)− v(y)

)
K(x− y) dx dy − λ

∫
Ω

uγv dx

)
.

Since by assumption uγ ⇀ u in Xs
0 , we have that Tγ → T in the sense of

distributions, where T : C∞c (Ω)→ R is defined as

T (v)
.
= −

(∫∫
O

(
u(x)− u(y)

)(
v(x)− v(y)

)
K(x− y) dx dy − λ

∫
Ω

uv dx

)
.

Now, it is readily seen that Tγ are positive distributions, and so T (v) ≥ 0, as
well. Thus, by the Riesz Representation Theorem, we get that there exists a
positive Radon measure µ such that

T (v) =

∫
Ω

v dµ,

for every v ∈ C∞c (Ω).
Finally, we prove that suppµ ⊆ C: if x0 ∈ Ω \ C, then there exists a neigh-

borhood U of x0 and γ0 > 0 such that uγ + 1 ≥ 0 a.e. in U for every γ ≥ γ0.
Now, take φ ∈ C∞c (U), so that∫∫

O

(
uγ(x)− uγ(y)

)(
φ(x)− φ(y)

)
K(x− y) dx dy − λ

∫
Ω

uγφdx = 0

for every γ ≥ γ0. Passing to the limit as γ →∞, we get the claim.
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