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THE SOAP BUBBLE THEOREM AND A p-LAPLACIAN1

OVERDETERMINED PROBLEM2

FRANCESCA COLASUONNO AND FAUSTO FERRARI3

Abstract. We consider the p-Laplacian equation −∆pu = 1 for 1 < p < 2, on

a regular bounded domain Ω ⊂ RN , with N ≥ 2, under homogeneous Dirichlet

boundary conditions. In the spirit of Alexandrov’s Soap Bubble Theorem and

of Serrin’s symmetry result for the overdetermined problems, we prove that
if the mean curvature H of ∂Ω is constant, then Ω is a ball and the unique

solution of the Dirichlet p-Laplacian problem is radial. The main tools used

are integral identities, the P -function, and the maximum principle.

1. Introduction4

The celebrated Alexandrov’s Soap Bubble Theorem [2], dated back to 1958,5

states that if Γ is a compact hypersurface, embedded in RN , having constant mean6

curvature, then Γ is a sphere. On the other hand, Serrin’s symmetry result (1971)7

[19] for the following overdetermined problem8

−∆u = 1 in Ω, u = 0 on ∂Ω, (1.1)

9

uν = c on ∂Ω, (1.2)

where Ω ⊂ RN is a bounded domain and uν is the outer normal derivative, states10

that if (1.1)–(1.2) has a solution, then Ω must be a ball, and the unique solution11

u must be radial. It is nowadays well-known that these two results are strictly12

related. Indeed, for his proof, Serrin adapted to the PDEs the reflection principle,13

a geometrical technique introduced by Alexandrov in [2], and combined it with the14

maximum principle, giving rise to a very powerful and versatile tool, the moving15

plane method. This method is still very much used, since it can be successfully16

applied to a large class of PDEs. Besides the common techniques used, the link17

between these two results has been further highlighted by Reilly in [18], where the18

author proposed an alternative proof of the Soap Bubble Theorem, considering the19

hypersurface Γ as a level set (i.e., ∂Ω) of the solution of (1.1). For his proof, Reilly20

found and exploited a relation between the Laplacian operator and the geometrical21

concept of mean curvature. Interestingly enough, Serrin’s result for the overde-22

termined problem has been proved via a different technique by Weinberger in a23

two-page paper [22] that was published in the same volume of the same journal24

as the paper by Serrin [19]. Weinberger’s proof is much simpler, it relies on some25

integral indentities, the maximum principle, and the introduction of an auxiliary26

function, the so-called P -function. Even if Weinberger’s technique is less flexible27
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2 F. COLASUONNO AND F. FERRARI

than the moving plane method, it lends itself well to being re-read in quantitative28

terms. Recently, Magnanini and Poggesi in [13, 14] proved the stability both for the29

Alexandrov’s Soap Bubble theorem and for Serrin’s result, by estimating the terms30

involved in an integral identity proved in [22] and refined in [15]. Also the moving31

plane method has been reformulated in a quantitative version to get the stability32

of both Serrin’s result, cf. [1], and Alexandrov’s Theorem, cf. [6]. In those stability33

results, the idea is to measure how much Ω is close to being a ball by estimating34

from above the difference re − ri (re and ri being the radii of two suitable balls35

such that Bre ⊂ Ω ⊂ Bri) in terms of the deviation of the normal derivative uν36

from being constant on ∂Ω, or in terms of the deviation of the mean curvature H37

from being constant on Γ. Other stability issues for the Serrin problem have been38

treated in [3].39

Serrin’s symmetry result has been extensively studied and generalized also to the40

case of quasilinear problems. For the p-Laplacian operator ∆pu = div(|∇u|p−2∇u),41

1 < p <∞, it has been proved that if the following problem42 
−∆pu = 1 in Ω,

u = 0 on ∂Ω,

|∇u| = c on ∂Ω for some c > 0

(1.3)

admits a weak solution in the bounded domain Ω ⊂ RN , then Ω is a ball. Garofalo43

and Lewis [10] proved this result via Weinberger’s approach; Brock and Henrot [5]44

proposed a different proof via Steiner symmetrization for p ≥ 2; Damascelli and45

Pacella [7] succeeded in adapting the moving plane method to the case 1 < p < 2.46

Later, many other refinements and generalizations to more general operators have47

been proposed, we refer for instance to [9, 8, 4] and the references therein.48

In this paper, we consider the following Dirichlet p-Laplacian problem49 {
−∆pu = 1 in Ω,

u = 0 on ∂Ω,
(1.4)

for 1 < p < 2. Here Ω ⊂ RN is a smooth bounded domain and N ≥ 2. Due50

to its physical meaning, (1.4) is often referred to as p-torsion problem. For this51

problem, existence and uniqueness of the solution can be easily proved via the52

Direct Method of the Calculus of Variations and using the strict convexity of the53

action functional associated, see Section 2. In the spirit of Reilly’s result, we regard54

the hypersurface Γ of Alexandrov’s Theorem as the level set ∂Ω of the solution of55

(1.4) and we obtain, for smooth hypersurfaces, an alternative proof of the Soap56

Bubble Theorem. As a consequence, we prove the equivalence of the Soap Bubble57

Theorem to the Serrin-type symmetry result for the overdetermined problem (1.3),58

when 1 < p < 2. We state here our main results.59

Theorem 1.1. Let Γ ⊂ RN be a C2,α surface which is the boundary of a bounded60

domain Ω ⊂ RN , i.e. Γ = ∂Ω, and denote by H = H(x) the mean curvature of ∂Ω.61

Suppose that 1 < p < 2, that u solves (1.4), and that the set of critical points of u62

has zero measure. Then the following statements are equivalent:63

a. Ω is a ball;64

b. |uν(x)|p−2uν(x) = − 1
NH(x) for every x ∈ ∂Ω;65

c. u is radial;66

d. H(x) = H0 for every x ∈ ∂Ω.67
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Moreover, if one of the previous ones holds, then68

e. |∇u(x)| =
(

1
NH0

) 1
p−1

for every x ∈ ∂Ω.69

The implication d. ⇒ a. in the previous theorem is a special case of the Soap70

Bubble Theorem of Alexandrov. We further observe that from the proof of the71

previous theorem, cf. formula (3.4), it results that if d. holds, then Ω must be a72

ball of radius R0 = 1/H0. Moreover, the fact that any of the statements a., b.,73

c., or d. implies e. is a simple consequence of the previous results, but we know74

that the converse implication e. ⇒ a. holds as well: as proved in [10, 9, 8], the75

overdetermined problem (1.3) admits a solution only if Ω is a ball of radius R0.76

This allows us to state the equivalence of the Soap Bubble Theorem and of the77

Serrin-type result for the overdetermined p-Laplacian problem (1.3) under suitable78

regularity assumptions, in the case 1 < p < 2.79

Corollary 1.2. Under the assumptions of Theorem 1.1, statements a., b., c., d.,80

and e. are all equivalent.81

Our proof technique takes inspiration from [13] and follows the approach of82

Weinberger. After having introduced the P -function (2.5) in terms of the solution83

of (1.4), we derive the integral identity (2.7) using the Divergence Theorem. The84

identity (2.7) will be a key tool for the estimates in the rest of the paper. We85

recall then that the p-Laplacian of a smooth function can be expressed as the trace86

of a matrix-operator applied to the same function, cf. (2.2), and we use a simple87

algebraic inequality (2.11) (known as Newton’s inequality) to get an estimate of88

the p-Laplacian of a function. This suggests us to introduce in (3.1) the integral89

Ip(u) which will play the role of the so-called Cauchy-Schwartz deficit in [13] for90

the linear case p = 2. In view of Newton’s inequality, the integral Ip(u) has a sign,91

it is always non-negative. Now the P -function comes into play: thanks to the fact92

that it satisfies a maximum principle, we can prove that, when 1 < p < 2, Ip(u)93

vanishes only on radial solutions of (1.4), cf. Lemma 2.6. This, combined with94

the integral identity (2.7), allows us to obtain an estimate from above of Ip(u) in95

terms of some boundary integrals involving only the mean curvature H and the96

normal derivative uν , see Theorem 3.1. Then Theorem 1.1 and Corollary 1.2 are97

easy consequences: Ip(u) is zero (or equivalently the solution of (1.4) is radial) if98

and only if the mean curvature H is constant on ∂Ω or the modulus of the gradient99

of u is constant on ∂Ω. Finally, in Corollary 3.6, we give an estimate from above100

of the integral Ip(u) in terms of the L1(∂Ω)-norm of the deviation of H from being101

constant and some constants which only depend on the geometry of the problem,102

cf. (3.6).103

The paper is organized as follows: in Section 2 we introduce some useful notation,104

the P -function, some known results, and some preliminary lemmas. In Section 3105

we prove Theorem 1.1 and its consequences, while in Section 4, we present some106

comments on the stability for the p-overdetermined problem.107

2. Preliminaries108

We first introduce the main important quantities and notation involved. Through-109

out the paper, with abuse of notation, we use the symbol | · | to denote both the110

N -dimensional and the (N−1)-dimensional Lebesgue measures. We further denote111

by ‖ · ‖ the Frobenius matrix norm and by 〈·, ·〉 the scalar product in RN .112
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4 F. COLASUONNO AND F. FERRARI

The p-Laplacian on non-critical level sets of u. The p-Laplacian of a regular113

function v can be expressed as follows114

∆pv = |∇v|p−2

(
∆v + (p− 2)

〈D2v∇v,∇v〉
|∇v|2

)
, (2.1)

where D2v denotes the Hessian matrix of v. Moreover, we recall that, in view of115

(2.1), it is possible to express the p-Laplacian of any C2-function v as follows116

∆pv = |∇v|p−2

(
∆v + (p− 2)〈D2v

∇v
|∇v|

,
∇v
|∇v|

〉
)

= |∇v|p−2

Tr(D2v) +
p− 2

|∇v|2
N∑

i,j=1

∂2v

∂xi∂xj

∂v

∂xi

∂v

∂xj


= |∇v|p−2

[
Tr(D2v) + (p− 2)Tr

(
∇v
|∇v|

⊗ ∇v
|∇v|

·D2v

)]
= Tr

[
|∇v|p−2

(
I + (p− 2)

∇v
|∇v|

⊗ ∇v
|∇v|

)
D2v

]
,

(2.2)

where we have denoted simply by I the N ×N identity matrix.117

Let u be a solution of (1.4). We denote by ν the following vector field

ν = − ∇u
|∇u|

,

which coincides with the external unit normal on ∂Ω, being u|∂Ω
constant. The

mean curvature of the regular level sets of u is given by

H = − 1

N − 1
div
∇u
|∇u|

.

It is possible to see that, on non-critical level sets of u, the Laplacian of u can118

be expressed in terms of H as follows119

∆u = uνν + (N − 1)Huν , (2.3)

where uν = ∇u · ν = −|∇u| and uνν = 〈D2u ν, ν〉. Therefore, on non-critical level120

sets of u, we can write the p-Laplacian as121

∆pu = |uν |p−2 [(p− 1)uνν + (N − 1)Huν ] . (2.4)

The P -function. In terms of a solution u of (1.4), we can define the so-called122

P -function as123

P :=
2(p− 1)

p
|∇u|p +

2

N
u a.e. in Ω, (2.5)

we refer to [20, Chapter 7, formula (7.6) with v(q) = q
p−2

2 and q = |∇u|2] for its124

derivation. The main feature of P is that it satisfies a maximum principle, which125

is the starting point for finding useful bounds for the main quantities involved in126

this problem.127

Definition 2.1. Let Ω ⊂ RN be a bounded domain. Ω satisfies the interior128

sphere condition if for every x ∈ ∂Ω there exist x0 ∈ Ω and r > 0 such that129

Br(x0) := {y ∈ RN : |y − x0| < r} ⊂ Ω and x ∈ ∂Br(x0).130

We recall that if Ω is a C2 bounded domain, then it satifies the interior sphere131

condition.132
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Lemma 2.2. Let Ω be of class C1,α and satisfy the interior sphere condition. If u133

solves (1.4), then P is either constant in Ω̄ or it satisfies Pν > 0 on ∂Ω.134

Proof. The proof of this lemma is given in [9, Lemma 3.2] for a solution of the135

overdetermined problem (1.3); we report the outline of the proof here in order to136

highlight that it continues to hold even if u does not satisfy |∇u| = const. on ∂Ω.137

Since u solves (1.4), then by [17, Theorem 3.2.2], u ≥ 0 a.e. in Ω and by138

[12, Theorem 1], u is of class C1,α(Ω̄). Now, [21, Theorem 5] guarantees that139

|∇u| ≥ max∂Ω |∇u| > 0 on ∂Ω. By continuity, |∇u| 6= 0 in a closed neighborhood140

D ⊂ Ω̄ of ∂Ω.141

Now, suppose that P is not constant in Ω̄. Under this assumption, as in [9,142

Lemma 3.2 - Claim - Step 2], it is possible to prove that P attains its maximum143

on ∂Ω and that, if P also attains its maximum at a point x̄ ∈ Ω, then necessarily144

∇u(x̄) = 0. Therefore, being D ⊂ Ω̄ a closed neighborhood of ∂Ω, P attains its145

maximum in D only on ∂Ω. By the proof of [9, Lemma 3.2], we know that P146

satisfies in D a uniformly elliptic equation and so it satisfies the classical Hopf’s147

lemma. Hence, Pν > 0 on ∂Ω. �148

For future use, we derive here an easy identity holding true for any u solution of149

(1.4). By integration by parts, the Divergence Theorem, and (2.3) we get150 ∫
Ω

〈|∇u|p−2∇u,∇∆u〉dx = −
∫

Ω

∆pu∆udx+

∫
∂Ω

∆u|∇u|p−2∇u · νdσ

=

∫
Ω

∆udx+

∫
∂Ω

∆u|uν |p−2uνdσ

=

∫
∂Ω

uνdσ +

∫
∂Ω

|uν |p−2uν [uνν + (N − 1)Huν ]dσ

=

∫
∂Ω

uνdσ −
∫
∂Ω

|uν |p−1uννdσ + (N − 1)

∫
∂Ω

H|uν |pdσ,

(2.6)
where we used that ∂Ω is a non-critical level set of u, as showed in the proof of151

Lemma 2.2.152

Reference constant mean curvature and reference domain. We introduce153

here some reference geometric constants which are related to problem (1.4). These154

constants will be useful to compare problem (1.4) with the same problem set in a155

ball instead of a general domain Ω.156

By Minkowski’s identity, i.e.,∫
∂Ω

H(x)〈x− z, ν(x)〉dσ = |∂Ω| for any z ∈ RN ,

we get, by the Divergence Theorem and if H is constant:

|∂Ω| = H

∫
∂Ω

〈x− z, ν(x)〉dσ =

∫
Ω

N∑
i=1

∂(x− z)
∂xi

dx = H|Ω|N.

If H is not constant, we can take as reference constant mean curvature the quantity

H0 :=
|∂Ω|
N |Ω|
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6 F. COLASUONNO AND F. FERRARI

and, as reference domain, a ball of radius

R0 =
1

H0
=
N |Ω|
|∂Ω|

.

157

Existence and uniqueness for (1.4). Problem (1.4) has a variational structure

with associated action functional I : W 1,p
0 (Ω)→ R given by

I(u) :=

∫
Ω

(
1

p
|∇u|p − u

)
dx.

By strict convexity and the Direct Method of Calculus of Variations, it is possible158

to prove that I has a unique minimizer. Hence, (1.4) has a unique weak solution159

u ∈W 1,p
0 (Ω).160

From now on in the paper, we denote by C the critical set of the solution u of
problem (1.4), namely

C := {x ∈ Ω : |∇u(x)| = 0}.
By [9, Lemma 3.1], we know that the solution u of (1.4) is of class C2,α(Ω̄ \ C).161

Therefore, hereafter we assume that Ω is of class C2,α in order to guarantee that162

the solution u of (1.4) is of class C2,α in a neighborhood of ∂Ω (this is a consequence163

of the regularity of u and of the first part of the proof of Lemma 2.2).164

Lemma 2.3. Let u solve (1.4) and suppose that its critical set C has zero N -165

dimensional measure. The following identity holds166 ∫
Ω

{
(p− 1)|∇u|p−2

[
(p− 2)

∥∥∥∥D2u
∇u
|∇u|

∥∥∥∥2

+ ‖D2u‖2 + 〈∇u,∇∆u〉

]
+

∆u

N

}
dx

= −
∫
∂Ω

(N − 1)

(
1

N
uν +H|uν |p

)
dσ

(2.7)

Proof. By straightforward calculations, we get167

Pν = ∇P · ν = 2uν

(
(p− 1)|uν |p−2uνν +

1

N

)
, (2.8)

cf. [20, formula (7.7)] with f ≡ w ≡ 1, α = 2/N , q = |∇u|2, and v(q) = q(p−2)/2.168

By taking into account (2.3), (2.4), and the equation in (1.4), we can rewrite Pν as169

170

Pν = 2uν

(
∆pu− (N − 1)H|uν |p−2uν +

1

N

)
= −2(N − 1)

(
1

N
uν +H|uν |p

)
.

(2.9)

Moreover,171

∆P = 2

{
(p− 1)|∇u|p−2

[
(p− 2)

∥∥∥∥D2u
∇u
|∇u|

∥∥∥∥2

+ ‖D2u‖2 + 〈∇u,∇∆u〉

]
+

∆u

N

}
(2.10)

cf. [20, formula (7.9)]. The conclusion then follows, since
∫

Ω
∆Pdx =

∫
∂Ω
Pνdσ, by172

the Divergence Theorem. �173
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Proposition 2.4 (Newton’s inequality). Let n ∈ N and A be a (n × n)-matrix,174

then175

‖A‖2 ≥ (Tr(A))2

n
, (2.11)

where denotes Tr(·) the trace of a matrix. Furthermore, the equality holds in (2.11)176

if and only if A = kIn for some constant k.177

Proof. The proof is standard, but we report it here for the sake of completeness.178

The statement is trivial for n = 1. We proceed by induction on n ≥ 2. If we denote179

by aij the elements of the matrix A, we obtain for n = 2 that180

(Tr(A))2 = (a11 + a22)2 = a2
11 + a2

22 + 2a11a22 ≤ 2(a2
11 + a2

22) ≤ 2‖A‖2, (2.12)

where we have used that 2a11a22 ≤ a2
11 + a2

22, being (a11 − a22)2 = a2
11 + a2

22 −181

2a11a22 ≥ 0. As a consequence, we observe that (2.12) holds with the equality signs182

if and only if a11 = a22 and a12 = a21 = 0. We now assume that (2.11) holds true183

for n and we prove it for n+ 1. Indeed,184

(Tr(A))2 =

(
n+1∑
i=1

aii

)2

=

(
n∑
i=1

aii + an+1,n+1

)2

=

(
n∑
i=1

aii

)2

+ 2

(
n∑
i=1

aii

)
an+1,n+1 + a2

n+1,n+1

≤ n
n∑
i=1

a2
ii + n

n∑
i, j=1
i6=j

a2
ij + 2

(
n∑
i=1

aii

)
an+1,n+1 + a2

n+1,n+1.

(2.13)

Now, as above, we can estimate

2

(
n∑
i=1

aii

)
an+1,n+1 =

n∑
i=1

2aiian+1,n+1

≤
n∑
i=1

(a2
ii + a2

n+1,n+1) = na2
n+1,n+1 +

n∑
i=1

a2
ii,

where the equality is achieved only for aii = an+1,n+1 for every i = 1, . . . , n.
Therefore, combining this estimate with (2.13), we obtain

(Tr(A))2 ≤ n
n∑
i=1

a2
ii + a2

n+1,n+1 + na2
n+1,n+1 +

n∑
i=1

a2
ii + n

n∑
i, j=1
i6=j

a2
ij

= (n+ 1)

n∑
i=1

a2
ii + (n+ 1)a2

n+1,n+1 + n

n∑
i, j=1
i6=j

a2
ij

= (n+ 1)

n+1∑
i=1

a2
ii + n

n∑
i, j=1
i6=j

a2
ij ≤ (n+ 1)

n∑
i, j=1

a2
ij ,

where the equalities hold only when A = kIn+1 for some constant k, and the proof185

is complete. �186
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8 F. COLASUONNO AND F. FERRARI

Corollary 2.5. Let v be any C2-function, then the following inequality holds187

(∆pv)2 ≤ N |∇v|2(p−2)

∥∥∥∥(I + (p− 2)
∇v
|∇v|

⊗ ∇v
|∇v|

)
D2v

∥∥∥∥2

. (2.14)

Proof. Taking into account (2.2), it is enough to apply Proposition 2.4 with n := N188

and A := |∇v|p−2
(

I + (p− 2) ∇v|∇v| ⊗
∇v
|∇v|

)
D2v. �189

For every z ∈ RN and r > 0, we introduce the function190

wr(x) := − p− 1

pN
1

p−1

(
|x− z|

p
p−1 − r

)
for every x ∈ Ω. (2.15)

We observe that, if z ∈ Ω and p > 2, w does not have C2 partial derivatives. Clearly,
wr is radial about z, and, if Ω = Br(z), it solves (1.4). Indeed, by straightforward
calculations we get

∇wr = −N−
1

p−1 |x− z|
p

p−1−2(x− z),

|∇wr|p−2∇wr = − 1

N
(x− z),

and so

∆pwr = div

(
− 1

N
(x− z)

)
= −1.

We are now ready to prove the following result.191

Lemma 2.6. Let 1 < p < 2, then the following statements hold true.192

(i) Let wr be defined as in (2.15), then for v := wr the equality holds in (2.14).193

(ii) Let u solve (1.4). Suppose that the critical set C of u has zero N -dimensional194

measure and that for v := u the equality holds in (2.14) for every x ∈ Ω\C.195

Then u is radial.196

Proof. (i) Since

∂2wr
∂xi∂xj

= −N−
1

p−1

[
2− p
p− 1

|x− z|
p

p−1−4(xj − zj)(xi − zi) + δij |x− z|
p

p−1−2

]
,

the Hessian of wr has the following expression

D2wr = −N−
1

p−1 |x− z|
2−p
p−1

(
2− p
p− 1

· x− z
|x− z|

⊗ x− z
|x− z|

+ I

)
.

By (
x− z
|x− z|

⊗ x− z
|x− z|

)2

=
x− z
|x− z|

⊗ x− z
|x− z|

and
∇wr
|∇wr|

=
x− z
|x− z|

,

we get

|∇wr|p−2

(
I + (p− 2)

∇wr
|∇wr|

⊗ ∇wr
|∇wr|

)
D2wr

= −|x− z|
2−p
p−1 +( p

p−1−1)(p−2)

N

[
I +

(
2− p
p− 1

− (p− 2)2

p− 1
+ p− 2

)
x− z
|x− z|

⊗ x− z
|x− z|

]
= − 1

N
I.

Hence, by Proposition 2.4, (2.14) holds with the equality sign for v := wr.197
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(ii) By Proposition 2.4, we know that the equality holds in (2.14) if and only if

|∇u|p−2

(
I + (p− 2)

∇u
|∇u|

⊗ ∇u
|∇u|

)
D2u = kI

for some constant k. By
∥∥∥(2− p) ∇u|∇u| ⊗

∇u
|∇u|

∥∥∥ = |2− p| < 1,

det

(
I− (2− p) ∇u

|∇u|
⊗ ∇u
|∇u|

)
6= 0,

and (
x

|x|
⊗ x

|x|

)i
=

x

|x|
⊗ x

|x|
for all x ∈ RN and all i ∈ N,

we get on Ω \ C198

D2u =
k

|∇u|p−2

(
I− (2− p) ∇u

|∇u|
⊗ ∇u
|∇u|

)−1

=
k

|∇u|p−2

∞∑
i=0

(2− p)i
(
∇u
|∇u|

⊗ ∇u
|∇u|

)i
=

k

|∇u|p−2

(
I +
∇u
|∇u|

⊗ ∇u
|∇u|

∞∑
i=1

(2− p)i
)

=
k

|∇u|p−2

[
I +
∇u
|∇u|

⊗ ∇u
|∇u|

(
1

1− (2− p)
− 1

)]
=

k

|∇u|p−2

(
I− p− 2

p− 1

∇u
|∇u|

⊗ ∇u
|∇u|

)
.

(2.16)

Namely, for i, j = 1, . . . , N

∂2
iju =

k

|∇u|p−2

(
δij −

p− 2

p− 1

∂iu∂ju

|∇u|2

)
.

Hence, in particular,199

∆u =
k

|∇u|p−2

N∑
i=1

(
1− p− 2

p− 1

(∂iu)2

|∇u|2

)
=

k

|∇u|p−2

(
N − p− 2

p− 1

)
. (2.17)

Furthermore, since u solves (1.4), then by (2.16), (2.17), and (2.1), we have

−1 = |∇u|p−2

(
∆u+ (p− 2)

〈
D2u

∇u
|∇u|

,
∇u
|∇u|

〉)
= k

N∑
i=1

(
1− p− 2

p− 1

(∂iu)2

|∇u|2

)
+ (p− 2)

〈
|∇u|p−2D2u

∇u
|∇u|

,
∇u
|∇u|

〉

= k

N∑
i=1

(
1− p− 2

p− 1

(∂iu)2

|∇u|2

)
+ (p− 2)

〈
k

(
I − p− 2

p− 1

∇u
|∇u|

⊗ ∇u
|∇u|

)
∇u
|∇u|

,
∇u
|∇u|

〉
= k

[
N − p− 2

p− 1
+ (p− 2)

(
1− p− 2

p− 1

〈
∇u
|∇u|

⊗ ∇u
|∇u|

∇u
|∇u|

,
∇u
|∇u|

〉)]
= k

[
N − p− 2

p− 1
+ (p− 2)

(
1− p− 2

p− 1

)]
= kN,
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10 F. COLASUONNO AND F. FERRARI

where in the last equality, we have used that

x

|x|
⊗ x

|x|
x

|x|
=

x

|x|
for all x ∈ RN .

Hence, k = − 1
N .200

Now, by the equation in (1.4), (2.17), and (2.3), we get on non-critical level sets
of u

|uν |p−2 [(p− 1)uνν + (N − 1)Huν ] = −1,

uνν + (N − 1)Huν =

(
p− 2

N(p− 1)
− 1

)
1

|uν |p−2
,

being uν = −|∇u|. These two identities give

|uν |p−2uνν = − 1

N(p− 1)

and consequently201

H =
1

N |uν |p−1
on ∂Ω. (2.18)

Now, by Lemma 2.2, we know that either P is constant on Ω̄, or Pν > 0 on ∂Ω. If
the first case occurs, then it is possible to see that all level sets of u are isoparametric
surfaces. In particular, since u satisfies homogeneous Dirichlet boundary conditions,
all level sets must be concentric spheres and so u is radial, cf. [9, Remark 5.5] and
[11, Theorem 5]. If the second case occurs, then by (2.9),

1

N
uν +H|uν |p < 0 on ∂Ω,

therefore, by (2.18),

0 =
1

N
(uν − uν) =

uν
N

+
|uν |
N

< 0 on ∂Ω.

This is impossible and concludes the proof. �202

3. Proof of the main results203

Let u solve (1.4) and suppose that its critical set C has zero N -dimensional204

measure. We introduce the following integral205

Ip(u) :=

∫
Ω

|∇u|(p−2)

∥∥∥∥(I + (p− 2)
∇u
|∇u|

⊗ ∇u
|∇u|

)
D2u

∥∥∥∥2

−

(
∆pu

N1/2|∇u| p−2
2

)2
 dx.

(3.1)

Theorem 3.1. Let 1 < p < 2 and ∂Ω be a C2,α bounded domain of RN . If u solves206

(1.4) and has |C| = 0, then207

(i) Ip(u) ≥ 0 and Ip(u) = 0 if and only if u is radial;208

(ii) Ip(u) ≤ −p(N − 1)

p− 1

∫
∂Ω

(
1

N
uν +H|uν |p

)
dσ;209

(iii) Ip(u) ≤ p(N − 1)

p− 1

∫
∂Ω

|uν |p(H0 −H)dσ.210
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Proof of Theorem 3.1. (i) By (2.14), we know that Ip(u) ≥ 0 and, by Lemma 2.6,211

we know that Ip(u) = 0 if and only if u is radial.212

(ii) First, we observe that a.e. in Ω we have∥∥∥∥(I + (p− 2)
∇u
|∇u|

⊗ ∇u
|∇u|

)
D2u

∥∥∥∥2

=

N∑
i,j=1

(
∂2
iju+ (p− 2)

N∑
k=1

∂iu

|∇u|
∂ku

|∇u|
∂2
kju

)2

= ‖D2u‖2 + 2(p− 2)

N∑
i,j=1

∂2
iju

∂iu

|∇u|

N∑
k=1

∂ku

|∇u|
∂2
kju+ (p− 2)2

N∑
i,j=1

(
N∑
k=1

∂iu

|∇u|
∂ku

|∇u|
∂2
kju

)2

= ‖D2u‖2 + 2(p− 2)

N∑
j=1

(
N∑
i=1

∂iu

|∇u|
∂2
iju

)2

+ (p− 2)2

∥∥∥∥D2u
∇u
|∇u|

∥∥∥∥2

= ‖D2u‖2 + p(p− 2)

∥∥∥∥D2u
∇u
|∇u|

∥∥∥∥2

.

Furthermore, by (2.7), we get

p(p− 2)

∫
Ω

|∇u|p−2

∥∥∥∥D2u
∇u
|∇u|

∥∥∥∥2

dx =− p
∫

Ω

[
|∇u|p−2

(
‖D2u‖2 + 〈∇u,∇∆u〉

)
+

∆u

N(p− 1)

]
dx

− pN − 1

p− 1

∫
∂Ω

(
1

N
uν +H|uν |p

)
dσ.

Hence, using these last two identities, we can rewrite Ip(u) as

Ip(u) =

∫
Ω

{
|∇u|p−2

[
−(p− 1)‖D2u‖2 − p〈∇u,∇∆u〉

]
− p

N(p− 1)
∆u− (∆pu)2

N |∇u|p−2

}
dx

− p(N − 1)

p− 1

∫
∂Ω

(
1

N
uν +H|uν |p

)
dσ.

On the other hand, by (2.1), the C2,α regularity of u in a neighborhood of ∂Ω, and
the Divergence Theorem

−p
∫

Ω

(
|∇u|p−2〈∇u,∇∆u〉+

1

N(p− 1)
∆u

)
dx

=

∫
Ω

−p
(

1 +
1

N(p− 1)

)
∆udx+ p

∫
∂Ω

|∇u|p−1∆udσ

= p

∫
∂Ω

(
1 +

1

N(p− 1)

)
|∇u|(1 + |∇u|p−2∆u)dσ

= −p(p− 2)

(
1 +

1

N(p− 1)

)∫
∂Ω

|∇u|p−1〈D2u
∇u
|∇u|

,
∇u
|∇u|

〉dσ.

Hence,213

Ip(u) =

∫
Ω

{
−(p− 1)|∇u|p−2‖D2u‖2 − (∆pu)2

N |∇u|p−2

}
dx

− p(N − 1)

p− 1

∫
∂Ω

(
1

N
uν +H|uν |p

)
dσ

− p(p− 2)

(
1 +

1

N(p− 1)

)∫
∂Ω

|∇u|p−1〈D2u
∇u
|∇u|

,
∇u
|∇u|

〉dσ.

(3.2)
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12 F. COLASUONNO AND F. FERRARI

In order to estimate from above Ip(u), we want to determine the sign of the last
term in (3.2). By Lemma 2.2, we know that either Pν > 0 on ∂Ω or P is constant
in Ω̄. If the second case occurs, then, as in the proof of Lemma 2.6-(ii), all level sets
of u are concentric spheres, and in particular Ω is a ball. Without loss of generality
we can suppose Ω to be a ball centered in the origin Br, thus, the unique solution
of (1.4) is wr, given in (2.15), with z = 0. Then, by straightforward calculations,
we have for every x ∈ ∂Br

H(x) = − 1

N − 1
div
∇wr
|∇wr|

=
1

N − 1

N∑
i=1

(
1

|x|
− x2

i

|x|3

)
=

1

r

and

(wr)ν(x) = −|∇wr(x)| = − 1

N
1

p−1

r
1

p−1 .

Hence,
1

N
(wr)ν(x) +H(x)|(wr)ν(x)|p = 0 for every x ∈ ∂Br

and the inequality in (ii) is satisfied with the equality sign and we are done. We
consider now the remaining case Pν > 0 on ∂Ω. In this case

(p− 1)|uν |p−2uνν +
1

N
< 0 on ∂Ω

(cf. (2.8) and remember that uν < 0 on ∂Ω), or equivalently

uνν < −
|uν |2−p

N(p− 1)
on ∂Ω.

Hence, uνν < 0 on ∂Ω, and so, when 1 < p < 2, we get

Ip(u) ≤ −p(N − 1)

p− 1

∫
∂Ω

(
1

N
uν +H|uν |p

)
dσ.

(iii) Since u is a solution of (1.4), by Divergence Theorem and Hölder’s inequality
we have

|Ω| =
∫

Ω

−∆pudx = −
∫

Ω

div(|∇u|p−2|∇u)dx = −
∫
∂Ω

|∇u|p−2∇u · νdσ

=

∫
∂Ω

|uν |p−1dσ ≤
(∫

∂Ω

|uν |pdσ
) p−1

p

|∂Ω|
1
p .

By using the definition of H0, the previous estimate reads as(∫
∂Ω

|uν |pdσ
) 1

p′

≥ |Ω|
|∂Ω|

1
p

=
|∂Ω|

1
p′

NH0
.

Consequently, by Hölder’s inequality,

−
∫
∂Ω

uνdσ ≤ ‖uν‖Lp(∂Ω)|∂Ω|
1
p′ ≤ NH0

(∫
∂Ω

|uν |pdσ
) 1

p + 1
p′

= NH0

∫
∂Ω

|uν |pdσ.

By using this inequality, the right-hand side of (2.7) can be estimated as214

−(N − 1)

∫
∂Ω

(
1

N
uν +H|uν |p

)
dσ ≤ (N − 1)

∫
∂Ω

|uν |p(H0 −H)dσ. (3.3)
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Therefore, in view of part (ii) of the present theorem, we have for 1 < p < 2

Ip(u) ≤ p(N − 1)

p− 1

∫
∂Ω

|uν |p(H0 −H)dσ.

This concludes the proof. �215

Remark 3.2. From parts (i) and (iii) of the previous theorem, since |uν |p is bounded
on ∂Ω, we have the following upper bound for the L1-norm of the mean curvature
H of ∂Ω ∫

∂Ω

Hdσ ≤ H0|∂Ω| = |∂Ω|2

N |Ω|
.

The previous theorem allows us to give an alternative proof of the Soap Bubble216

Theorem in the case in which the hypersurface is a level set of the solution of217

problem (1.4).218

Proof of Theorem 1.1. The scheme of the proof is the following: a. ⇒ c. ⇒ b. ⇒219

c. ⇒ a., this proves that a., b. and c. are all equivalent; then we will prove that a.220

⇒ d. ⇒ c., and finally b. ⇒ e.221

a. ⇒ c. If Ω = Br, the only solution of (1.4) is the radial function wr defined in222

(2.15).223

c. ⇒ b. As in the proof of Theorem 3.1-(ii), if the solution of (1.4) is radial,224

Ω = Br for some r > 0, and so u = wr. Hence, by strighforward calculations, b.225

holds true.226

b. ⇒ c. By Theorem 3.1-(ii), we get Ip(u) = 0, which in turn implies that u is227

radial, by Lemma 2.6.228

c. ⇒ a. If u is radial, then Γ = ∂Ω, being a level set of u, is a sphere, and so Ω229

is a ball.230

a. ⇒ d. If Ω = Br for some r > 0, then u = wr and so, for every x ∈ ∂Ω231

H(x) = − 1

N − 1
div
∇wr
|∇wr|

=
1

N − 1

N∑
i=1

(
1

|x|
− x2

i

|x|3

)
=

1

r
=
|∂Br|
N |Br|

= H0. (3.4)

232

d. ⇒ c. By Theorem 3.1-(iii), we get Ip(u) = 0, which in turn implies that u is233

radial, by Lemma 2.6.234

b. ⇒ e. Up to now, we have proved that a., b., c. and d. are equivalent. Thus,
if b. holds, we have by d.

|uν |p−2uν = − 1

NH0
on ∂Ω.

We recall that, on ∂Ω, ν = − ∇u|∇u| and consequently uν = ∇u·ν = −|∇u|. Therefore,

|uν |p−2uν = −|∇u|p−1 = − 1

NH0
on ∂Ω,

which gives e. �235

In the remaining part of this section, we give an upper bound of the integral236

Ip(u) in terms of the L1(∂Ω)-norm of the difference between the mean curvature237

of ∂Ω and the reference constant H0. We start with some preliminary results.238
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14 F. COLASUONNO AND F. FERRARI

Lemma 3.3. Let Ω = A(R1, R2) be an annulus of radii 0 < R1 < R2, then there239

exists a unique R̄ ∈ (R1, R2) such that the positive radial function240

uA(r) :=


∫ r

R1

(
R̄N

NτN−1
− τ

N

) 1
p−1

dτ for every r ∈ [R1, R̄],∫ R2

r

(
τ

N
− R̄N

NτN−1

) 1
p−1

dτ for every r ∈ (R̄, R2]

(3.5)

is of class C1([R1, R2]) and solves (1.4). Furthermore, uA achieves its maximum241

at R̄, where with abuse of notation we have written uA(x) = uA(r) for |x| = r.242

Proof. Suppose first that such R̄ exists and belongs to (R1, R2). In this case, it is
straightforward to verify that the function uA given in (3.5) solves problem (1.4),
which can be written in radial form as{

|u′A|p−2
[
(p− 1)u′′A + N−1

r u′A
]

= −1 in (R1, R2),

uA(R1) = uA(R2) = 0,

where the symbol ′ denotes the derivative with respect to r.243

Now, if we consider the two functions

F1 : ρ ∈ [R1, R2] 7→
∫ ρ

R1

(
ρN

NτN−1
− τ

N

) 1
p−1

dτ ∈ R,

F2 : ρ ∈ [0, R2] 7→
∫ R2

ρ

(
τ

N
− ρN

NτN−1

) 1
p−1

dτ ∈ R,

they have the following properties:

F1(R1) = F2(R2) = 0,

0 < F1(ρ) < +∞ for every ρ ∈ (R1, R2], 0 < F2(ρ) < +∞ for every ρ ∈ [0, R2),

F ′1(ρ) =
1

p− 1

∫ ρ

R1

(
ρN

NτN−1
− τ

N

) 2−p
p−1 (ρ

τ

)N−1

dτ > 0 for every ρ ∈ (R1, R2],

F ′2(ρ) = − 1

p− 1

∫ R2

ρ

(
τ

N
− ρN

NτN−1

) 2−p
p−1 (ρ

τ

)N−1

dτ < 0 for every ρ ∈ [0, R2).

Therefore, there exists a unique ρ = R̄ ∈ (R1, R2) for which F1(R̄) = F2(R̄). This244

concludes the proof. �245

Definition 3.4. A domain Ω ⊂ RN satisfies the uniform interior and exterior246

touching sphere conditions, and we denote with ρi and ρe the optimal interior and247

exterior radii respectively, if for any x0 ∈ ∂Ω there exist two balls Bρi(c
−) ⊂ Ω and248

Bρe(c+) ⊂ RN \ Ω̄ such that x0 ∈ ∂Bρi(c−)∩ ∂Bρe(c+). We call optimal radius the249

minimum between the interior and the exterior radius, ρ := min{ρi, ρe}.250

We observe that is Ω is of class C2, then it satisfies the uniform interior and251

exterior touching sphere conditions.252

Proposition 3.5. Let Ω ⊂ RN be a bounded domain of class C2 and u ∈ C1(Ω̄)
be a solution of (1.4) in Ω. Then(ρi

N

) 1
p−1 ≤ |∇u| ≤

[
(diam(Ω) + ρe)

N

NρN−1
e

− ρe
N

] 1
p−1

on ∂Ω.
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Proof. We follow the ideas in [13, Theorem 3.10]. Let x0 be any point on the
boundary ∂Ω. Without loss of generality, we can place the origin at c−. Thus, the
function

uρi := − p− 1

pN
1

p−1

(
|x|

p
p−1 − ρ

p
p−1

i

)
is the solution of (1.4) in Bρi . Now, being by definition Bρi ⊂ Ω,{

−∆puρi = −∆pu in Bρi ,

uρi ≤ u on ∂Bρi ,

and so, by comparison [9, Lemma 3.7], uρi ≤ u in Bρi . Since uρi(x0) = u(x0), we
have ∂ν(uρi − u)(x0) > 0, where ν is the external unit normal to Bρi . This gives
the first inequality in the statement, namely

|∇u(x0)| ≥
(ρi
N

) 1
p−1

.

On the other hand, let A := A(ρe,diam(Ω) + ρe) be the annulus centered at c+.
By definition, Ω ⊂ A. Again, without loss of generality, we can place the origin at
c+ and consider the function uA whose expression is given by (3.5) with R1 := ρe
and R2 := diam(Ω) + ρe. Reasoning as above we have{

−∆puA = −∆pu in Ω,

uA ≥ u on ∂Ω,

and so uA ≥ u in Ω. Therefore, ∂ν(uA − u)(x0) ≤ 0, being ν the external unit
normal to A. This finally gives

|∇u(x0)| ≤
(

R̄N

NρN−1
e

− ρe
N

) 1
p−1

≤
(

(ρe + diam(Ω))N

NρN−1
e

− ρe
N

) 1
p−1

and concludes the proof. �253

Combining together the results in Proposition 3.5 and Theorem 3.1, we get the254

following corollary.255

Corollary 3.6. Let 1 < p < 2 and Ω ⊂ RN be a C2,α bounded domain. If u solves256

(1.4) and has |C| = 0, the following chain of inequalities holds257

0 ≤ Ip(u) ≤ p(N − 1)

p− 1

[
(diam(Ω) + ρe)

N

NρN−1
e

− ρe
N

] p
p−1

‖H0 −H‖L1(∂Ω). (3.6)

4. Some comments on the stability258

With reference to the result given in Corollary 3.6, we observe that, while Ip(u)259

is related to the solution of problem (1.4), the constant that bounds from above260

Ip(u) in (3.6) depends only on the geometry of the problem. In particular, the261

non-negative integral Ip(u) that vanishes only on radial functions, goes to zero as262

H → H0 in L1(∂Ω). In view of Corollary 3.6, this suggests, at least qualitatively, a263

sort of stability of the Serrin-type result for the overdetermined problem with the264

p-Laplacian.265

In [6], Ciraolo and Vezzoni obtained the following stability result for the Soap266

Bubble Theorem by Alexandrov.267
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Theorem 4.1 (Theorem 1.1 of [6]). Let ∂Ω be a C2-regular, connected, and closed
hypersurface embedded in RN . If

‖H −H0‖L∞(∂Ω) < ε

for some ε > 0 depending only on N , |∂Ω|, and upper bounds on the inverse of the
optimal radius (cf. Definition 3.4) ρ−1 of ∂Ω, then ∂Ω ⊂ B̄re \Bri , with

0 < re − ri ≤ Cε,

where C > 0 depends on N , |∂Ω|, and upper bounds on the inverse of the optimal268

radius ρ−1 of ∂Ω.269

This result gives an estimate of re− ri in terms of the L∞(∂Ω)-norm of H −H0.270

Furthermore, as a consequence, for every 1 < p < ∞, it is possible to compare
the solution u of (1.4) with the radial solutions

ue(x) := − p− 1

pN
1

p−1

(
|x|

p
p−1 − (re)

p
p−1

)
for every x ∈ Bre

and

ui(x) := − p− 1

pN
1

p−1

(
|x|

p
p−1 − (ri)

p
p−1

)
for every x ∈ Bri

of {
−∆pue = 1 in Bre ,

ue = 0 on ∂Bre ,
and

{
−∆pui = 1 in Bri ,

ui = 0 on ∂Bri ,

respectively. Indeed, by the weak comparison principle [9, Lemma 3.7], we easily
get

u ≥ ui in Bri and u ≤ ue in Ω,

giving in particular the following estimate of u in terms of the radial solutions ui
and ue on the interior ball Bri

− p− 1

pN
1

p−1

(
|x|

p
p−1 − (ri)

p
p−1

)
≤ u(x) ≤ − p− 1

pN
1

p−1

(
|x|

p
p−1 − (re)

p
p−1

)
in Bri .

It is quite challenging to obtain an estimate from below of Ip(u) in terms of some271

increasing function of re−ri. This would allow to improve –at least in some relevant272

cases– the stability result in Theorem 4.1, getting a stability result in terms of the273

L1(∂Ω)-norm, instead of the L1(∂Ω)-norm, of H−H0. This approach was proposed274

by Magnanini and Poggesi for the case p = 2 in [13], where the authors used in275

a very clever way the mean value property for harmonic functions. Nevertheless,276

their method works well only in the linear case and seems very difficult to generalize277

it to the case p 6= 2. Some other issues related to the stability of the symmetry278

result for the overdetermined p-Laplacian problem are treated in [16].279
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